
Thinking the (Virtual)Box

Niklas Baumstark
@_niklasb

outside

userland

kernel

VBoxDrv.sys

VirtualBox.exe

VBoxHeadless.exe

etc.

VBoxSVC.exe

COM

ioctl

Host Guest userland

kernel

Device drivers
PCI
MMIO
VGA
…

userland

kernel

VBoxDrv.sys

VirtualBox.exe

VBoxHeadless.exe

etc.

VBoxSVC.exe

COM

ioctl

Host Guest

VBoxControl.exe

VBoxClient.exe

VBoxService.exe

userland

kernel

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
…

ioctl

Guest-to-host interfaces

● Hypervisor /src/VBox/VMM
○ Memory manager
○ x86 emulation

● Emulated devices /src/VBox/Devices
○ Audio
○ Networking
○ Graphics (VGA)
○ AHCI
○ ACPI
○ USB
○ Virtual Machine Monitor device
○ Paravirtualization interface (KVM/Hyper-V)

● HGCM services /src/VBox/HostServices
○ Shared OpenGL
○ Drag & Drop
○ Shared folders
○ Shared clipboard

● HGSMI services
○ VirtualBox Video Acceleration (VBVA)

4

Guest-to-host interfaces

● Hypervisor /src/VBox/VMM
○ Memory manager
○ x86 emulation

● Emulated devices /src/VBox/Devices
○ Audio
○ Networking
○ Graphics (VGA)
○ AHCI
○ ACPI
○ USB
○ Virtual Machine Monitor device
○ Paravirtualization interface (KVM/Hyper-V)

● HGCM services /src/VBox/HostServices
○ Shared OpenGL (20+ CVEs…)
○ Drag & Drop
○ Shared folders
○ Shared clipboard

● HGSMI services
○ VirtualBox Video Acceleration (VBVA)

5

● Many features are disabled (= secure :) by default
○ 3D support
○ Drag & drop
○ Clipboard sharing
○ USB 2.0 & 3.0

● Some vectors do not exist
○ ThinPrint

● No userland RPC backdoor
● VirtualBox userland parts are privileged, privesc to host kernel is trivial

Comparison to VMware Workstation

6

● Simple RPC protocol, handled by the VMM PCI device
● Guest allocates request buffer of type

○ VMMDevHGCMConnect or
○ VMMDevHGCMDisconnect or
○ VMMDevHGCMCall

● Physical address of request is written to I/O port
● Call request specifies function ID and parameters

○ Integers
○ Buffers

Host-Guest Communication Manager

7

● VBoxSharedClipboard

● VBoxDragAndDropSvc

● VBoxGuestPropSvc

● VBoxGuestControlSvc

● VBoxSharedFolders

● VBoxSharedCrOpenGL

HGCM - Services
/src/VBox/HostServices

8

● VBoxSharedClipboard

● VBoxDragAndDropSvc

● VBoxGuestPropSvc

● VBoxGuestControlSvc

● VBoxSharedFolders

● VBoxSharedCrOpenGL

HGCM - Services
/src/VBox/HostServices

9

HGCM - Example

VMMDevHGCMConnect(“VBoxGuestPropSvc”) = 42

VMMDevHGCMCall(42, SET_PROP, “foo”, “bar”) = VERR_SUCCESS

VMMDevHGCMCall(42, GET_PROP, “foo”, <result buffer>, ...) = VERR_SUCCESS

/src/VBox/HostServices/GuestProperties/service.cpp

10

HGCM - Call request

size ... u32Function cParms ...aParms[0] aParms[1]

VMMDevHGCMCall

HGCMFunctionParameter32 (12 bytes)
0 4 8 12

type = 64bit value64

type = LinAddr size linearAddr

type = PageList size offset

Integer

Buffer (virt.)

Buffer (phys.)

/src/VBox/Devices/VMMDev/VMMDevHGCM.cpp

11

HGCM - Call request

size ... u32Function cParms ...aParms[0] aParms[1]

VMMDevHGCMCall

HGCMFunctionParameter32 (12 bytes)
0 4 8 12

type = 64bit value64

type = LinAddr size linearAddr

type = PageList size offset

HGCMPage
ListInfo

...

... cPages aPages[0] aPages[1] ...

Integer

Buffer (virt.)

Buffer (phys.)

/src/VBox/Devices/VMMDev/VMMDevHGCM.cpp

12

HGCM - Call handling (< 5.2.10)
1. Copy VMMDevHGCMCall to host heap
2. Allocate VBOXHGCMCMD large enough to hold copy of parameters

(host params) & buffer data
3. Copy buffer data from the guest into the VBOXHGCMCMD

... paHostParms ... parm0 parm1 parm2 ... Buffer data Buffer data ...

13

Bug #1: Double fetch on buffer write-back

● Most HGCM functions return data
● Implemented by writing back VBOXHGCMCMD buffers to guest memory
● hgcmCompletedWorker re-fetches the request to determine sizes
● Disclose heap memory by increasing the size during dispatch!

case VMMDevHGCMParmType_LinAddr: {
/* Copy buffer back to guest memory. */
uint32_t size = pGuestParm->u.Pointer.size;
...

/* Use the saved page list to write data back to the guest RAM. */
rc = vmmdevHGCMWriteLinPtr (...,

pHostParm->u.pointer.addr,
size, ...);

14

Bug #2: Heap out-of-bounds double read

● VMMDevHGCMCall is copied from guest to the host heap
○ size bytes are copied
○ No check that size is large enough to hold all parameters
○ Later: OOB read access on the heap

● Looks harmless, because the guest fully controls the object anyways

size ... u32Function cParms ...aParms[0] aParms[1]

VMMDevHGCMCall
OOB access

15

Bug #2: Heap out-of-bounds double read

● VMMDevHGCMCall is copied from guest to the host heap
○ size bytes are copied
○ No check that size is large enough to hold all parameters
○ Later: OOB read access on the heap

● Looks harmless, because the guest fully controls the object anyways
● But: parameters are accessed twice! TOCTOU issue?

size ... u32Function cParms ...aParms[0] aParms[1]

VMMDevHGCMCall
OOB = other heap data

16

Bug #2: Heap out-of-bounds double read

● Pass 1: cbCmdSize variable sums up size values for buffer params
● Allocate VBOXHGCMCMD including space for cbCmdSize bytes of data
● Pass 2: Copy data from guest

○ Due to OOB access we can change size values concurrently

size ... u32Function cParms ...aParms[0] aParms[1]

type = LinAddr size linearAddr

type = PageList size offset

17

Bug #2: Turn into OOB write

size ... aParms[n]aParms[0] aParms[1] aParms[n+1]... aParms[n+2] ...

VMMDevReqHGCM allocation on the heap
(size bytes)

Heap
metadata
(8 bytes)

Guest-controlled
heap buffer

Params n + 1 and upwards are in a different heap chunk,
we can race them between the two passes

=> Requires two vCPUs

In bounds OOB

18

Bug #2: Turn into OOB write

size ... aParms[n]aParms[0] aParms[1] aParms[n+1]... aParms[n+2] ...

VMMDevReqHGCM allocation on the heap
(size bytes)

Heap
metadata
(8 bytes)

Guest-controlled
heap buffer

Challenge 1: Find an object on the heap that we can write repeatedly
Challenge 2: Incorporate heap metadata into the request

In bounds OOB

19

Bug #2: Turn into OOB write

size ... aParms[n]aParms[0] aParms[1] aParms[n+1]... aParms[n+2] ...

VMMDevReqHGCM allocation on the heap
(size bytes)

Heap
metadata
(8 bytes)

Guest-controlled
heap buffer

Find an object on the heap that we can write repeatedly
● Intel HD audio device command output ring buffer (CORB)

○ 0x400 bytes, can be re-allocated at will

In bounds OOB

20

Bug #2: Turn into OOB write

size
0x408

... aParms[n]aParms[0] aParms[1] aParms[n+1]... aParms[n+2] ...

VMMDevReqHGCM allocation on the heap
(0x408 bytes)

Heap
metadata
(8 bytes)

CORB
(0x400 bytes)

Incorporate heap metadata into request
● CORB size 0x400 => LFH bucket size 0x410 (incl. 8 bytes metadata)
● VMMDevReqHGCM with 83 parameters has size 0x410

○ Last 8 bytes of 83rd parameter are uncontrolled heap metadata
○ This is ok for integer parameters!

In bounds OOB

21

Bug #2: Make it an OOB write

One thread constantly flips a PageList parameter size in CORB

uint32_t size = pGuestParm->u.PageList.size; // <- fully controlled!
...
// This will happily read less than size bytes, if page list is smaller
rc = vmmdevHGCMPageListRead(pThis->pDevIns, pcBuf, size, pPageListInfo);
...
pcBuf += size; // <- will be used as destination for the next parameter

22

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

23

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

24

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

req

25

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

req

26

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

req

27

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

req cmd

28

Exploit
● Powerful, heap-based relative read and write primitives
● VBOXHGCMCMD is variable-size, we can put it on a “nice” heap

○ Allocator fully predictable, with help of bug #1
● Can already leak some vtable pointers from VBoxC.dll with bug #1
● Next: want to corrupt

○ a pointer that is read from (for full ASLR break)
○ a function or vtable pointer (for control flow hijack)

LFH bucket 0x410

CORB ...

Segment heap (> 8k)

req cmd

29

Exploit - Absolute read
● VBOXHGCMCMD is an interesting data structure with pointers

○ Not all HGCM calls return immediately!
○ Send GET_NOTIFICATION to guest properties service
○ It returns when a property is set that matches the given pattern
○ This will cause a writeback using pointers from VBOXHGCMCMD
○ Used to leak kernel32 and ntdll base addresses

... paHostParms ... parm0 parm1 parm2 ... Buffer data Buffer data ...

... kernel32 addr ...VBoxC.dll

corrupted

/src/VBox/HostServices/GuestProperties/service.cpp

30

Exploit - Nail in the coffin
● A HGCMMsgCall object is allocated for each HGCM call
● Unlike VBOXHGCMCMD, it has a constant size of 0x98 => LFH heap
● Contains a pointer to itself

○ use a small spray and bug #1 to find it
● We corrupt the pHGCMPort field

Segment heap (> 8k) LFH bucket 0xa0

... HGCMMsgCall ...

/src/VBox/Main/src-client/HGCM.cpp

31

Exploit - Nail in the coffin
● A HGCMMsgCall object is allocated for each HGCM call
● Unlike VBOXHGCMCMD, it has a constant size of 0x98 => LFH heap
● Contains a pointer to itself

○ use a small spray and bug #1 to find it
● We corrupt the pHGCMPort field

Segment heap (> 8k) LFH bucket 0xa0

... HGCMMsgCall ...cmd

/src/VBox/Main/src-client/HGCM.cpp

32

Exploit - Nail in the coffin
● A HGCMMsgCall object is allocated for each HGCM call
● Unlike VBOXHGCMCMD, it has a constant size of 0x98 => LFH heap
● Contains a pointer to itself

○ use a small spray and bug #1 to find it
● We corrupt the pHGCMPort field

static DECLCALLBACK(void) hgcmMsgCompletionCallback(int32_t result,
HGCMMsgCore *pMsgCore) {

/* Call the VMMDev port interface to issue IRQ notification. */
HGCMMsgHeader *pMsgHdr = (HGCMMsgHeader *)pMsgCore;
...
if (pMsgHdr->pHGCMPort && !g_fResetting) {

pMsgHdr->pHGCMPort->pfnCompleted(pMsgHdr->pHGCMPort, ...);

/src/VBox/Main/src-client/HGCM.cpp

33

34

From VirtualBox.exe to host kernel
● VirtualBox.exe is privileged, since it has access to VBoxDrv IOCTLs
● SUP_IOCTL_LDR_{OPEN,LOAD} load PE file as kernel plugin

○ Verifies driver signature
● SUP_IOCTL_CALL_SERVICE calls into a plugin

○ Full control over 4th argument
=> RIP control via jmp r9

● SUP_IOCTL_PAGE_{ALLOC_EX,MAP_KERNEL,PROTECT}

○ Map RWX code in the kernel

Because why not

/src/VBox/HostDrivers/Support/SUPDrv.cpp

35

CVE-2018-2698

● HGSMI = Host-Guest Shared Memory Interface
● Guest allocates request buffer in video RAM, notifies VGA device
● Used for VBVA subsystem (VirtualBox Video Acceleration)
● VBVA_VDMA_CMD is used for video DMA commands:

○ VBOXVDMACMD_TYPE_DMA_PRESENT_BLT

○ VBOXVDMACMD_TYPE_DMA_BPB_TRANSFER

/src/VBox/Devices/Graphics/DevVGA_VDMA.cpp

36

int rc = vboxVDMACmdExecBltPerform(pVdma, pvRam + pBlt->offDst, pvRam + pBlt->offSrc,

&pBlt->dstDesc, &pBlt->srcDesc,

pDstRectl,

pSrcRectl);

...

static int vboxVDMACmdExecBltPerform(PVBOXVDMAHOST pVdma,

uint8_t *pvDstSurf, const uint8_t *pvSrcSurf,

const PVBOXVDMA_SURF_DESC pDstDesc, const PVBOXVDMA_SURF_DESC pSrcDesc,

const VBOXVDMA_RECTL * pDstRectl, const VBOXVDMA_RECTL * pSrcRectl)

{

...

if (pDstDesc->width == pDstRectl->width && pSrcDesc->width == pSrcRectl->width

&& pSrcDesc->width == pDstDesc->width) {

...

uint32_t cbOff = pDstDesc->pitch * pDstRectl->top;

uint32_t cbSize = pDstDesc->pitch * pDstRectl->height;

memcpy(pvDstSurf + cbOff, pvSrcSurf + cbOff, cbSize);

/src/VBox/Devices/Graphics/DevVGA_VDMA.cpp

37

int rc = vboxVDMACmdExecBltPerform(pVdma, pvRam + pBlt->offDst, pvRam + pBlt->offSrc,

&pBlt->dstDesc, &pBlt->srcDesc,

pDstRectl,

pSrcRectl);

...

static int vboxVDMACmdExecBltPerform(PVBOXVDMAHOST pVdma,

uint8_t *pvDstSurf, const uint8_t *pvSrcSurf,

const PVBOXVDMA_SURF_DESC pDstDesc, const PVBOXVDMA_SURF_DESC pSrcDesc,

const VBOXVDMA_RECTL * pDstRectl, const VBOXVDMA_RECTL * pSrcRectl)

{

...

if (pDstDesc->width == pDstRectl->width && pSrcDesc->width == pSrcRectl->width

&& pSrcDesc->width == pDstDesc->width) {

...

uint32_t cbOff = pDstDesc->pitch * pDstRectl->top;

uint32_t cbSize = pDstDesc->pitch * pDstRectl->height;

memcpy(pvDstSurf + cbOff, pvSrcSurf + cbOff, cbSize);

= guest-controlled

38

VirtualBox host debugging
● Cannot attach to VirtualBox.exe due to process hardening
● Exploit dev on Windows: non-hardened debug build

○ Get ready for a nostalgic experience with VS 2010
○ Ideally have a friend do it for you

● Debugging the official Windows build:
○ Run VirtualBox inside VMware Workstation (enable “Virtualize Intel VT-x”)
○ Use a kernel debugger with !gflag +soe and !process

● Bug hunting & PoCs are much easier on Linux host + guest
○ Configure guest VM according to target

39

Dig deeper
Advisories for presented bugs https://www.zerodayinitiative.com/advisories/ZDI-18-782/ https://www.zerodayinitiative.com/advisories/ZDI-
18-783/ https://blogs.securiteam.com/index.php/archives/3649

Bugs in E1000 network card, NAT & virtio-net (2017) https://github.com/fundacion-sadosky/vbox_cve_2017_10235
https://bugs.chromium.org/p/project-zero/issues/detail?id=1086 https://bugs.chromium.org/p/project-zero/issues/detail?id=1136

VDMA exploit and host-/guest-based privilege escalations (2018) https://www.youtube.com/watch?v=fFaWE3jt7qU
https://github.com/phoenhex/files/blob/master/slides/unboxing_your_virtualboxes.pdf

VBVA double fetch (2018) https://www.voidsecurity.in/2018/08/from-compiler-optimization-to-code.html

Windows process hardening https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html

VirtualBox 3D hacks https://www.coresecurity.com/corelabs-research/publications/breaking-out-virtualbox-through-3d-acceleration
https://phoenhex.re/2018-07-27/better-slow-than-sorry https://github.com/niklasb/3dpwn
https://www.thezdi.com/blog/2018/8/28/virtualbox-3d-acceleration-an-accelerated-attack-surface

Simple Python HGCM client library: https://github.com/niklasb/3dpwn/blob/master/lib/hgcm.py

VMware Workstation vulnerabilities & exploitation https://keenlab.tencent.com/en/2018/04/23/A-bunch-of-Red-Pills-VMware-Escapes/
https://www.thezdi.com/blog/2018/3/1/vmware-exploitation-through-uninitialized-buffers
https://comsecuris.com/blog/posts/vmware_vgpu_shader_vulnerabilities/ https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-
The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf and many more

DSEFix (exploits old VBoxDrv version to disable Driver Signature Enforcement on Windows 10 ≤ RS4) https://github.com/hfiref0x/DSEFix
fwexpl: awesome framework for low-level I/O hacking (with ridiculous RWEverything driver) https://github.com/Cr4sh/fwexpl

40

https://www.zerodayinitiative.com/advisories/ZDI-18-782/
https://www.zerodayinitiative.com/advisories/ZDI-18-783/
https://blogs.securiteam.com/index.php/archives/3649
https://github.com/fundacion-sadosky/vbox_cve_2017_10235
https://bugs.chromium.org/p/project-zero/issues/detail?id=1086
https://bugs.chromium.org/p/project-zero/issues/detail?id=1136
https://www.youtube.com/watch?v=fFaWE3jt7qU
https://github.com/phoenhex/files/blob/master/slides/unboxing_your_virtualboxes.pdf
https://www.voidsecurity.in/2018/08/from-compiler-optimization-to-code.html
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://www.coresecurity.com/corelabs-research/publications/breaking-out-virtualbox-through-3d-acceleration
https://phoenhex.re/2018-07-27/better-slow-than-sorry
https://github.com/niklasb/3dpwn
https://www.thezdi.com/blog/2018/8/28/virtualbox-3d-acceleration-an-accelerated-attack-surface
https://github.com/niklasb/3dpwn/blob/master/lib/hgcm.py
https://keenlab.tencent.com/en/2018/04/23/A-bunch-of-Red-Pills-VMware-Escapes/
https://www.thezdi.com/blog/2018/3/1/vmware-exploitation-through-uninitialized-buffers
https://comsecuris.com/blog/posts/vmware_vgpu_shader_vulnerabilities/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf
https://github.com/hfiref0x/DSEFix
https://github.com/Cr4sh/fwexpl

