
From UB to RCE

Memory Unsafety from an attacker’s
point of view

Niklas Baumstark

WHOIS

● Co-Founder @ CASHLINK GmbH

● Passionate about security research
● Reported & exploited bugs in Safari, macOS, and VirtualBox

● Pwn2Own ’17 & ’18

● Capture-the-Flag player & orga with KITCTF and Eat Sleep Pwn Repeat

● Blogging about exploitation @ phoenhex.re

● Contact: @_niklasb on Twitter

Source: https://twitter.com/alisaesage

Why offensive security in software?

● To kill bugs

● To identify risky attack surface

● To evaluate the start of the art of exploitation
● Learn about bug classes and techniques

● Design effective mitigations that make exploitation harder

How to exploit <SOME_C(++)_SOFTWARE>

1. Find 1+ memory corruption bugs reachable by the attacker

2. Turn bugs into useful exploit primitives

3. Upgrade primitives

4. Overwrite a function pointer and forge some data structures

5. Hijack program control flow and get arbitrary code execution

6. Post-exploitation payload

Agenda

1. Common exploit primitives & root causes

2. Common exploit mitigations

3. How modern exploits work

4. Exploit demo

Common exploit primitives
& root causes

Important exploit primitives

● Absolute memory read/write

● Relative read/write: Overflows, underflows and OOB

● Pointer type confusion

Absolute read/write

Absolute read/write

● We control a pointer that is used to read data given back to us

● We control a pointer that is used to write data controlled by us

● General rule of thumb: arbitrary read & write = GAME OVER

Relative read/write: Over/underflow, OOB

Relative read/write: Over/underflow, OOB

● Buffer bounds are not checked correctly

● Linear (buffer over/underflow) vs non-linear (at offset)

● Useful both as read or write

● Useful on the stack, heap or in global memory

● Often used to corrupt pointers, offsets or length fields

Relative read/write: Over/underflow, OOB

Type confusion

Type confusion

● Pointer of type X* points to
○ Object of type Y != X

○ Some buffer containing unrelated data

○ The middle of some object

● We can often choose the pointed-to object from a set of

possible types (ideally type is arbitrary)

Type confusion

Common root causes of memory corruption

● Missing bounds checking of untrusted input (sizes, offsets)

● Integer overflow/truncation

● Dangling pointers (use-after-free)

● Race conditions

● Uninitialized memory

Missing bounds checking of user input

When spotted in a code base, feels like

¯_(ツ)_/¯
When you miss one and somebody else pipes /dev/urandom into

the program:

(╯°□°）╯︵┻━┻
● Occasional oversights or unaudited legacy code

● Mostly during parsing of complex binary data such as image files

Missing bounds checks: Example

Integer overflows

● Integers are hard
○ Unsigned integer overflow (well-defined)

○ Signed integer overflow (UB)

○ Truncation / signedness issues during conversions & comparisons

● Can lead to
○ Unexpected negative offsets

○ Unexpected huge values (e.g. signed -> unsigned cast)

○ Incorrect length computations => overflow

● Static analysis helps a lot, but yields false positives
○ Turn on all the compiler warnings you can, early on

Integer overflows: Example

https://googleprojectzero.blogspot.de/2014/07/pwn4fun-spring-2014-safari-part-i_24.html

Integer overflows: Example

https://googleprojectzero.blogspot.de/2014/07/pwn4fun-spring-2014-safari-part-i_24.html

Integer overflows: Example

https://googleprojectzero.blogspot.de/2014/07/pwn4fun-spring-2014-safari-part-i_24.html

Use-after-Free

● Pointer is dereferenced after pointed-to object has been deleted

● Special case: Double free

● Mostly occurs when raw pointers / iterators are stored in memory

Use-after-Free: Example

https://bugs.chromium.org/p/project-zero/issues/detail?id=1044

Use-after-Free: Example

https://bugs.chromium.org/p/project-zero/issues/detail?id=1044

Use-after-Free: Example

https://bugs.chromium.org/p/project-zero/issues/detail?id=1044

Inside HTMLOutputElement::reset, DOM will be modified:

inner <div> will be removed

Use-after-Free: Example

https://bugs.chromium.org/p/project-zero/issues/detail?id=1044

Use-after-Free: Example

https://bugs.chromium.org/p/project-zero/issues/detail?id=1044

Race condition

● Data structure is modified by one thread and can be observed in

inconsistent state by a separate thread

● Special case: double fetch of memory from a less privileged context
○ Usually in operating systems or hypervisors

○ Enables time-of-check vs. time-of-use (TOCTOU) errors

Double fetch: Example

Double fetch: Example

Uninitialized memory

● Object or buffer is left partially uninitialized before usage

● Often leads to other primitives

Uninitialized memory

Common exploit mitigations

Exploit mitigations in 2018

● Address Space Layout Randomization (ASLR)

● No eXecute (NX)

● Stack canaries

● Code Flow Integrity (CFI)

● Heap metadata hardening

Address Space Layout Randomization (ASLR)

Address Space Layout Randomization (ASLR)

No eXecute

● CPU-enforced security mechanism

● Every virtual memory page has read, write and execute bits

● Data (stack, heap, global memory) is RW-

● Code is R-X

 Can’t overwrite code, or execute data1

1 Except when there is RWX memory

No eXecute

No eXecute

Stack canaries

● Secret value placed between stack buffers and return address

● Checked before return

Modern exploit basics

Defeating ASLR & canaries: infoleaks

● Mitigations based on secret values

● In most cases, requires info leaks for exploitation
○ Exploit needs to incorporate the secrets

○ Usually, via interaction between target and exploit

○ In rare cases, file format parsers can be tricked to do perform non-trivial

computation

● Can require additional bugs, or exploiting bugs multiple times

in different ways

Defeating NX: Code reuse

● In non-trivial binaries, useful code exists and can be used

● A single function call is usually enough (mprotect /

VirtualProtect / system / longjmp)

● Common technique: Return oriented programming (ROP)

Heap-based exploitation

● Typical heap-based primitives:
○ Overflows

○ OOB writes

○ Use after free

○ Double free

● Exploitation requires predicting allocation patterns
○ Info leaks

○ Deterministic allocator behaviour

Heap spraying

● Works well for deterministic allocators

● Force allocator into predictable behaviour by “spraying” objects

● Make holes to get allocation in predictable places

Corrupting heap metadata

● Many allocators store metadata in between chunks (e.g. sizes)

● Corrupting those can lead to other primitives such as

overlapping allocations or completely controlled allocations

● Can get arbitrarily complex 1

● Some allocators try to protect against tampering using secrets

○ e.g. Windows Low fragmentation heap

1 https://github.com/how2heap

Vtables

● C++ supports virtual method calls through polymorphic pointers

● Implementation via virtual tables

object->method(arguments)

Becomes

object->p_vtable->p_method(object, arguments)

The prototypical C++ exploit

● info leak

● Optional: arbitrary read/write

● Control flow hijack
○ Function pointer

○ Vtable pointer

○ Stack

○ RWX memory

● Make payload executable

● Jump into payload

Demo time!

Exploitability Quiz

Off-by-one heap overflow

(new char[x])[x] = y

(new char[x])[x] = 0

Off-by-one heap overflow

● ChromeOS sandbox escape via shill TCP proxy

(https://crbug.com/648971)

● RCE in Exim mail server (CVE-2018-6789)

● Off-by-one NULL byte in glibc iconv_open (CVE-2014-5119)

(new char[x])[x] = y

(new char[x])[x] = 0

Memory / reference count leak

x->incrementRefcount();

// no decrement, e.g. because of error condition

Memory / reference count leak

● Can be exploitable if refcounts are not checked for overflow

● Firefox: refcount leak -> 32-bit overflow -> use after free -> RCE
https://phoenhex.re/2017-06-21/firefox-structuredclone-refleak

x->incrementRefcount();

// no decrement, e.g. because of error condition

Double free without intermediate code

x->decrementRefcount();

x->decrementRefcount();

Double free without intermediate code

● Can be exploitable if attacker can interleave an allocation in

separate thread

● CVE-2016-1804: macOS sandbox escape via WindowServer

x->decrementRefcount();

x->decrementRefcount();

Heap out-of-bounds 1-bit write

uint64_t* x = new uint64_t[10];

size_t idx = <attacker value>;

if (some complex condition on x[idx]) {

x[idx] |= 0x40;

}

Source: https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf

NULL pointer dereference

X* x = nullptr;

x->some_struct->y = 0x1337;

NULL pointer dereference

● Exploitable if the attacker can map the zero page

● Possible in almost every OS until a few years ago

● Still possible in Windows 7

● Still possible if x is small but non-zero (i.e. offset provided into

nullptr)

X* x = nullptr;

x->some_struct->y = 0x1337;

Thank you!

Time for questions :)

