
RESEARCH BULLETIN MRL-XXXX

Ring Threshold Multisignature Schemes and Security Models

Brandon Goodell∗ and Sarang Noether†

Monero Research Lab

October 22, 2017

Abstract

This research bulletin extends [4] by constructing a t-of-n threshold multi-layered linkable spontaneous

anonymous group signature scheme (t-of-n MLSAG) in the same style as the LSAG schemes put forth

by [3].

1 Introduction and Background

Collaboration to construct, compute, share, and leak a secret is a central goal in the construction of cryp-

tographic systems. Although the idea of constructing a shared secret has a very long history, modern secret

sharing through threshold cryptosystems found its most successful footing in [6]. These and related ideas

(as in [7]) formed the historical foundation of secure multi-party computation, threshold encryption, and

threshold authentication. For example, threshold multisignatures play a critical role in multi-factor mes-

sage authentication in general and off-chain transactions for cryptocurrencies in particular, e.g. the Bitcoin

Lightning Network. For a more modern treatment of threshold cryptosystems, see [2].

Ring signatures are digital signatures that are verifiably signed by one of possibly several public keys

(ring members), and can play a critical role in promoting signer during message authentication. It is

therefore natural to apply the notion of threshold cryptosystems to ring signatures for implementation in

cryptocurrencies, resulting in signer-ambiguous threshold multisignatures.

A t-of-N threshold multisignature scheme specifies sets containing N public keys and thresholds t such

that any subset with at least t elements may collaborate to fashion a signature. A ring threshold multisig-

nature (RTM) scheme allows any set of N keys to collaborate as a coalition of signers with threshold t.

The coalition is assigned a shared public key Xshared such that any t coalition members may collaborate to

fashion a ring signature with Xshared. The ring of signatories Q contains the key Xshared, but an adversary

cannot determine which element of Q computed the signature. This may be made into a linkable signature

scheme using key images, and this may be made into a one-time signature scheme by inserting a one-time

key exchange step between signing and the construction of Xshared. A one-time signature scheme inserts a

barrier between user key pairs and one-time signature key pairs. Due to this utility, one-time ring signature

schemes enjoy application in many cryptocurrency protocols.

A usual digital signature scheme is a 1-of-1 multisignature scheme, so we can regard all keys as shared

public keys (just perhaps with a coalition of only one member). A 1-of-N multisignature scheme can be

trivially accomplished by handing out the same private key to each coalition member.

If the number of users cooperating in the construction of a signature is not secret, naive multisignature

schemes can be constructed from any signature scheme (ring signature or otherwise) by simply requiring each

participating user to present a separate signature. These signatures can be combined into a list to obtain

∗surae.noether@protonmail.com
†sarang.noether@protonmail.com

1

signature sizes that vary according to the number of signers, or can be combined in more sophisticated ways

that are more private (see [2]). If a user does not desire to reveal to an adversary how many devices were

used for some multi-factor authentication, it should be difficult for an adversary to determine the size of a

coalition behind some shared public key. We investigate some security definitions for a one-time linkable

ring threshold multisignature (OT-LRTM) scheme.

1.1 Our Contribution

We consider a formal definition of one-time linkable ring threshold multisignature (OT-LRTM) schemes. We

introduce the definition of coalition-indistinguishable keys, signer ambiguity, and existential unforgeability

in these schemes. We describe a modified implementation of t-of-N linkable ring threshold multisignature

(under the restriction N−1 ≤ t ≤ N with 2 ≤ t and 2 ≤ N) first described by previous Monero Research Lab

(MRL) contributors Shen Noether in [4] and implemented for use in Monero by contributor Luigi. We prove

that this implementation satisfies our security definitions. Lastly, we remark on some recent advancements

in thresholdizing cryptoschemes from [2] using different security definitions.

1.2 Notation and Prerequisites

We let G be a group with prime order q and we let G ∈ G denote a commonly-known point with order q.

Let Hp and Hs be secure cryptographic hash-to-point and hash-to-scalar functions. Denote the user and

transaction key spaces, respectively, as Kuser,Ktxn. In implementations involving cryptocurrencies, there

exists a function dest : Ktxn → Kuser describing the user key pair to whom a certain transaction key pair is

addressed. For any transaction key pair (q,Q) ∈ Ktxn, we say dest(q,Q) is the destination user key pair for

(q,Q).

2 MLSAG and Straightforward Threshold Set-ups

We briefly describe LSAG ring signatures in the sense of [3] and their MLSAG variant as used in Monero,

and then a straightforward implementation of an LRTM scheme (which is one-time if the transaction keys

are one-time).

2.1 MLSAGs

A user with user key pair (y, Y) wishes to spend an old transaction output with private-public transaction

key pair (q,Q) ∈ Ktxn such that dest(q,Q) = (y, Y). With a destination user key X, the user computes a

new transaction public key Q∗, constructs an appropriate message M , computes the key image J = qHp(Q),

and selects a ring of public transaction keys Q = {Q1, . . . QL} such that, for a secret distinguished index k,

Qk = Q. For each i = 1, . . . , L, the signer computes an elliptic curve point from the ith ring member public

key as Hi := Hp(Qi). The signer computes M∗ = (M,J,Q∗,Q).

The signer selects a random secret scalar u, computes an initial temporary pair of points uG and uHk,

and computes an initial commitment ck+1 := Hs(M
∗, uG, uHk). The signer sequentially proceeds through

indices i = k+1, k+2, . . . , L, 1, 2, . . . , k−1 by selecting a random scalar si, computing the next pair of points

siG + ciQi and siHi + ciJ , and computes the next commitment ci+1 := Hs(M
∗, siG + ciQi, siHi + ciJ).

The signer continues proceeding through the set of keys until commitments ci have been computed for each

i = 1, . . . , L. The signer then computes sk := u− ckqk.

2

Now σ = (c1, s1, . . . , sL) is the signature on M∗. A verifier checks this M∗ signed by at least one member

of Q in the following way. Given a message M∗ and signature σ, the verifier parses M∗ = (M,J,Q∗,Q) and

σ = (c1, s1, . . . , sL). For each i = 1, 2, . . . , L, the verifier computes zi = s∗iG+c∗iQi and z′i = s∗iHi+c∗i J
∗ and

uses these to compute the (i + 1)th commitment ci+1 = Hs(M
∗, zi, z

′
i). After computing c2, c3, . . . , cL, c1,

the verifier approves of the signature if and only if c1 = c∗1. A verifier can check against double spends by

comparing the key images of two signature-tag pairs.

Remark 2.1.1. The MLSAG generalization, where transaction keys are represented by vectors, is straight-

forward. With transaction keys q = (q1, . . . , qw), each component of q is used to generate a temporary pair of

points starting with ujG, ujHk and then sj,iG+ ciQj,i, sj,iHj,i+ ciJ , providing the associated commitments

ci+1 := Hs

(
M∗, {(sj,iG+ ciQj,i, sj,iHj,i + ciJ)}wj=1

)
.

Remark 2.1.2. Note that user keys are not used above except as a destination for the transaction key.

Anyone with a destination public user key in mind and knowledge of a transaction private key may fashion

a signature like the one above. In the reference CryptoNote protocol [8], the private transaction key q

associated to some public transaction key Q is only feasibly computable by a user who knows the private

destination user key in dest(q,Q) or by an adversary who can solve the discrete logarithm problem.

2.2 Extending to Threshold Signatures

Generally, we wish to allow a coalition of (distinct) public user keys C = {X1, X2, . . . , XN} ⊆ Kuser (where

each Xi = xiG) to collaboratively fashion a shared public user key Xshared such that, for any transaction key

pair (q,Q) ∈ Ktxn such that dest(q,Q) = Xshared, any subset of at least t of the users in C can collaborate

to fashion a signature on a message M corresponding to public transaction key Q. Certainly we wish that

no member of C reveal their own private user key xi, but moreover we wish that coalition members cannot

feasibly learn the private transaction key q.

In the N -of-N case, we may use CryptoNote-styled user and transaction keys to see an example imple-

mentation. For this example, we assume user private-public key pairs (x,X) take the form x = (a, b) for

some scalars a, b and X = (A,B) where A = aG and B = bG. The private-public transaction key pair (q,Q)

takes the form Q = (S, P), q = (s, p) where s is a scalar, S = sG, p = Hs(aS) + b, and P = pG‡.

Given a message M , the coalition of user keys C compute their shared public key as Xshared :=

(
∑
iAi,

∑
iBi), which is published. The coalition members secretly compute and share a∗ =

∑
i ai and share

this secret view key among themselves. With a destination user key X, the coalition computes a new transac-

tion public key Q∗. Assume (q,Q) = ((s, p), (S, P)) is a transaction key pair such that dest(q,Q) = Xshared.

The coalition C selects a ring of public transaction keys Q = {Q1, Q2, . . . , QL} such that Q = Qk for

some secret index k. For each j = 1, . . . , N , the jth coalition member in C computes a partial key image

Jj = bjHp(Q), picks a random secret scalar uj , and computes Hi = Hp(Qi) for each Qi ∈ R. The coali-

tion C computes the key image J = Hs(a
∗S) +

∑
j Jj . The coalition constructs an appropriate message

M∗ = (M,J,Q∗,Q).

The coalition computes the points ukG =
∑
j ujG and ukHk =

∑
j ujHk. The coalition C decides upon

‡In the CryptoNote whitepaper, the private key p was denoted x, the random scalar s wa denoted r, and the random point

S = sG was denoted R = rG. The point S = sG (originally denoted R) in the original CryptoNote whitepaper was the public

transaction key, the value P was the public output key. This allowed for many outputs (each with their own signature) to

have a common transaction output key. However, in MLSAG, we only use one output per signature anyway, so the value in

distinguishing between S as a transaction key and P as an output key is diminished.

3

random values sk+1, . . . , sL, s1, . . . , sk−1. Any member in C may compute the commitments

ck+1 :=Hs(M
∗, ukG, ukHk) and

ci+1 :=Hs(M
∗, siG+ ciQi, siHi + ciJ) for i = k + 1, . . . , k − 1.

All coalition members then use ck to compute their personal sk,j = uj − ckbj . The signers share their sk,j

with the other signers. Any threshold member may then compute the value sk = (
∑
j sk,j)− ckHs(a

∗S) and

publishes as before. Any user may verify this signature corresponds to the N -of-N shared public key Xshared

using the same method as above.

This set-up extends naturally to an (N−1)-of-N set-up. As before, a set ofN public keys {X1, X2, . . . , XN}
form a coalition. Each pair of users has a shared secret scalar zi,j = Hs(xiXj) with associated point

Zi,j = zi,jG. There are N(N−1)
2 such pairs; if any N − 1 members get together, all of the associated shared

secrets are known. Hence, we may simply instantiate the (N−1)-of-N threshold as an N∗-of-N∗ set-up with

N∗ = N(N−1)
2 . All values Zi,j are necessary to compute the shared public user key Zshared, and all values of

zi,j are necessary to fashion a signature with a public transaction key Q with dest(Q) = Zshared.

Remark 2.2.1. Note that members in C do not directly learn the private transaction key q = Hs(a
∗S) +∑

j bj and do not directly reveal their own private spend keys bj (although they collaborate to compute their

shared private view key a∗. Assuming at least one contributing user key in C was honestly generated from

a uniform random scalar, an adversary who has learned a public threshold address cannot determine the

number of summands contributing to it, let alone determine the summands.

Remark 2.2.2. Note that the same basic extension works for coalitions containing coalitions also: each

time a member of a coalition must make a decision in a signing protocol, the coalition may simply compute

a sum. For example, when the jth coalition member computes the partial key image Jj , if this coalition

member is some sub-coalition, then each member of the sub-coalition can compute their own partial key

image Jj,k and the sub-coalition can report the sum Jj =
∑
k Jj,k. In this manner, signatures involving

nested coalitions may be executed recursively. We elaborate on this in Section 3.1.

Remark 2.2.3. Note that an adversary with knowledge of some set of public keys can compute the sums of

all subsets to brute-force test whether a certain user key X is a threshold key. Moreover, if the computation

of sums is done inappropriately, the summands may be accidentally revealed. Using hash functions and

encrypt-then-authenticate communication, we may resolve these problems.

Consider modifying the N -of-N implementation by having coalition members select secret scalars µj

associated with the threshold t and coalition C, e.g.:

µj = Hs(“multisig constant for escrow at local coffee shop”, secret salt)

Now merely require that participating members not use their private user keys in the construction of their

shared user key pair, but instead the ith coalition member selects a constant µi associated with their coalition

and instead uses x∗i = H(xi, µi) as their private key (or in the (N−1)-of-N case, computing z∗i,j = Hs(x
∗
iX
∗
j)

instead of zi,j = Hs(xiXj) and communicating the points Z∗i,j to the coalition). In the case of CryptoNote

keys of the form ((a, b), (A,B)), select constants µj , γj and set a∗ = Hs(a, µj), b
∗ = Hs(b, γj).

With this modification, an adversary cannot use strictly public information to determine if a certain key

is a threshold key or not. The possibility remains that the adversary may overhear the associated public

points X∗i (or Z∗i,j) being communicated within the coalition, allowing the adversary to fall back on the brute

force approach again. Hence, the points X∗i (or Z∗i,j) should be communicated with a secure encrypt-then-

authenticate scheme. Note that either step alone (hashing, then encrypt-then-authenticating) is insufficient

to prevent the adversary from using brute force. Also note that the above does not take into account the

possibility of malicious coalition members.

4

3 Security Models

3.1 One-Time Linkable Ring Threshold Multisignatures

We begin by defining a one-time linkable ring threshold multisignature (OT-LRTM) scheme. A central idea

to our security models is that a coalition of user keys may be merged into a new user key, which may then

be again merged with other user keys.

Definition 3.1.1. [One-Time Linkable Ring Threshold Multisignature Scheme] A one-time linkable ring

threshold multisignature scheme is a set of PPT algorithms (UserKeyGen, Merge, TxnKeyGen, Sign, Verify,

Link) that, respectively, generates usual private-public keypairs for users, generates public transaction keys,

merges user keys into new shared user keys, fashions signatures on messages given a ring of public transaction

keys, verifies signatures, and links signatures. Formally:

(i) UserKeyGen(1λ) outputs a random user key pair (x,X) called a 1-of-1 user key pair where x is a private

user key with associated public user key X.

(ii) Merge(t, C) takes as input a positive integer (threshold) t and coalition of private-public user keypairs

C = {(x1, X1), (x2, X2), . . . , (xn, XN)} and outputs a public user key Xt,C called a t-of-N user key pair

or a shared user key pair.

(iii) TxnKeyGen(1λ, X) takes as input a public user key X called the destination key. A one-time random

private-public transaction key pair (qX , QX) is generated. TxnKeyGen outputs QX .

(iv) Sign(M,X,Q, k, y) takes as input message M , a destination user key X, ring of public transaction keys

Q = {Q1, . . . , QL}, secret index k, and a set of private user keys y. A transaction key Q∗ addressed

to X is computed Q∗ ← TxnKeyGen(1λ, X), a key image J is generated, and a modified message

M∗ = (M,J,Q∗,Q) is constructed. Sign outputs (σ,M∗).

(v) Verify(M∗, σ) takes as input a message M∗ = (M,J,Q∗,Q) and a signature σ, and outputs a bit

b ∈ {0, 1}.

(vi) Link((M∗0 , σ0), (M∗1 , σ1)) takes as input two signatures on two messages and outputs a bit b ∈ {0, 1}.

Note that a 1-of-1 user key may be regarded as a “usual” user key in a one-time linkable ring signature

scheme. In this way, we may regard all user keys as t-of-N shared user keys by simply regarding 1-of-1 keys

as having a coalition of a single member. We consider only restricted OT-LRTM schemes where Merge is

modified such that (i) if t = 1 and |C| = 1, then Merge returns the public user key in C, (ii) if the inequalities

2 ≤ t and 2 ≤ N and N − 1 ≤ t ≤ N do not hold then Merge outputs ⊥ instead of a key.

Definition 3.1.2. Assume for each i ∈ {0, 1} that Mi is an arbitrary message, Xi is an arbitrary ti-of-Ni

shared public user key with coalition Ci, Qi = {Qi,j}|Qi|
j=1 is an arbitrary ring of public transaction keys

with associated secret index ki such that dest(Qi,ki) = Xi, each yi is a set of private user keys such that

yi ⊆ Ci and ti ≤ |yi|, and each signature is generated fairly from σi ← Sign(Mi, Xi,Qi, ki, yi). Further say

M∗i = (Mi, Ji, Q
∗
i ,Qi). We say an OT-LRTM scheme is complete if

(a) VER(M∗i , σi) = 1 and

(b) if Qi,ki = Qj,kj then LNK((M∗i , σi), (M
∗
j , σj)) = 1.

5

Recall Remark 2.2.3 and consider the hash-then-encrypt-then-authenticate approach to computing shared

public keys. We let Π = (UserKeyGen∗, Enc∗, Auth∗, Ver∗, Dec∗) be a secure encrypt-then-authenticate

scheme (where Πenc = (Gen∗, Enc∗, Dec∗) is a secure encryption sub-scheme and Πauth = (Gen∗, Auth∗, Ver∗)

is a secure message authentication sub-scheme). Augmenting the implementation of Section 2.2 with Π

allows the coalition for Xshared to compute the appropriate values to participate in the signing of a message

in a recursive fashion.

To see how, note that when the implementation of Section 2.2 is carried out, this t-of-N shared public

user key Xshared must first compute the partial key image, next select a random secret scalar uj , then

compute the commitments ck, and finally must compute the values sk,j = uj − ckbj , and then finally sk =

(
∑
j sk,j)− ckHs(a

∗S). Denote the coalition of user key pairs for Xshared = (A∗, B∗) as {((aj , bj), (Aj , Bj))}.
The coalition for Xshared may use Π to share their (Hs(ajS) + bj) · Hp(Q) and compute the key image

J = (Hs(a
∗S) +

∑
j bj)Hp(Q). If some index, say j, corresponds to a user key pair ((aj , bj), (Aj , Bj)) that

is a tj-of-Nj public key, then the secrets aj and bj are not known by the coalition and so the jth share of

the key image, Jj , must be collaboratively computed by at least tj coalition members for the shared key

((aj , bj), (Aj , Bj)). Denote the coalition for this key as {((aj,i, bj,i), (Aj,i, Bj,i))}Nj

i=1. Each member computes

their share, Jj,i = bj,iHp(Q), this sub-coalition uses Π to compute Jj = (Hs(ajS)Hp(Q) +
∑
i Jj,i, and the

sub-coalition outputs Jj .

Similarly the random scalar uj is computed as a sum uj =
∑
i uj,i using Π. Now any of these coalition

members may compute the commitments ck and disseminate them to the rest of the coalition with Π. At

that point each member of the coalition may compute their individual sk,j,i = uj,i − ckxj,i and the coalition

may use Πauth to compute sk,j =
∑
i sk,j,i. In this way, sub-coalitions are simply handled recursively.

Remark 3.1.3. In Definition 3.2.1, we formalize the notion that keys cannot be feasibly determined by a

PPT algorithm to be threshold keys or 1-of-1 keys. If an OT-LTRM scheme is secure under that definition,

then it is not feasible for any PPT algorithm to check whether the keys used as input for Merge are 1-of-1,

so modifying the straightforward implementation above to prevent recursive formation of coalition keys is

not feasible.

3.2 Coalition Indistinguishable Keys

Definition 3.2.1 formalizes the idea that an adversary should not be able to determine information about the

input of Merge based on its output except with negligible probability.

Definition 3.2.1 (Coalition Indistinguishable Keys). Let A be a PPT adversary. Let N(−), L(−) be

polynomials.

(i) A set of user key pairs S∗ ⊆ Kuser with |S∗| = N(λ) is generated where the ith key pair is ti-of-Ni public

user key for some ti, Ni such that 2 ≤ ti ≤ Ni ≤ L(λ). The set of public keys S = {Xi | ∃(xi, Xi) ∈ S∗}
is sent to A.

(ii) A outputs (τ0, C0) where C0 ⊆ S, τ0 ∈ N, and τ0 ≤ |C0|.

(iii) A random pair (τ1, C1) is selected where C1 ⊆ S, τ1 ∈ N, τ1 ≤ |C1|, τ0 6= τ1, and C1 6= C0. A random

bit b is selected. The key Xτb,Cb
← Merge(τb, Cb) is sent to A.

(iv) A outputs a bit b′. This counts as a success if b = b′.

We say an OT-LRTM scheme has Coalition Indistinguishable Keys (CIK) if the adversary can succeed with

probability only negligibly more than 1/2.

6

Remark 3.2.2. We may be tempted to strengthen Definition 3.2.1 to take into account corruption oracle

access on the part of the adversary. Unfortunately this leads to certain problems with the security definition.

However, by using the hash-then-encrypt-then-authenticate method of computing shared public keys, without

knowledge of the values of µj , even if the adversary corrupts all the public keys in S and has the ability to

compute discrete logs, then A cannot successfully run Merge for each threshold value 1 ≤ t ≤ |S| to check

the results by hand in comparison against the key Xtb,Cb
. Thus, if the participating coalition members keep

each µj and µjG secret, then even a very powerful adversary with corruption and discrete log oracle access

will still be unable to discern whether some user key is a coalition key or not.

3.3 Signer Ambiguity

In addition to coalition indistinguishability, we desire the ring signature property of signer ambiguity. Vari-

ations of security models appear in [1].

Double-spend protection in Monero relies on a one-time linkable ring signature scheme that is not signer

ambiguous with respect to adversarially generated keys according to the definition presented in [1]. Indeed,

in Monero, Link simply checks if two key images Ji are identical. In this way, the signer ambiguity game

falls apart: A can obtain signature-tag pair (σ0, J0) on M0 using ring R0 with Qi0 ∈ R0 and a pair (σ1, J1)

on M1 using ring R1 with Qi1 ∈ R1. Then, upon receipt of (σ, J) in step (v), A can check if J = J0 or

J = J1. The definition may be modified, however, to take key images into account.

Let SO(−,−,−,−) be a signing oracle that takes as input (M,X,Q, k) (a message, a destination public

user key, a ring of public transaction keys, and an index k) and outputs a valid signature-tag pair (σ, J)←
Sign(M,X,Q, k, y) for some set y of private user keys.

Definition 3.3.1. [Linkable Signer Ambiguity v. Adversarially Generated Keys] Let N(−) be a positive

polynomial. Let A be a PPT adversary. Let A have access to SO. Consider the following game:

(i) A set of user key pairs S∗ ⊆ Kuser is selected with |S∗| = N(λ). The public keys in S∗ are sent to A.

(ii) A outputs a set of user key pairs S ⊆ S∗.

(iii) For each public user key Xi ∈ S, a public transaction key Q∗i addressed to Xi is generated. The set

Q∗ := {Q∗i } ⊆ Ktxn is constructed, randomly permuted, and then sent to A.

(iv) A outputs a message M , a destination public user key X ∈ Kuser, a ring of transaction public keys

Q = {Q1, . . . , QL} ⊆ Ktxn, and two indices i0 6= i1 such that {Qi0 , Qi1} ⊆ Q ∩Q∗.

(v) A random bit b is chosen. The message M∗ = (M,J,Q∗,Q) and signature σ ← SO(M∗, X,Q, ib) are

sent to A.

(vi) A outputs a bit b′. The game counts as a success if (a) b = b′ and (b) if (M ′, X ′,Q′, i) is any query

from A to SO, then the ith element of Q′ is not Qi0 or Qi1 .

We say the scheme is linkably signer ambiguous against adversarially generated keys (LSA-AGK) if the

probability that A succeeds is negligibly close to 1/2 (with respect to λ).

Definition 3.3.1 essentially modifies the signer ambiguity game in [1] by adding requirements in step (vi)

that the transcript for A reveals the key images for {Qi0 , Qi1} for the first time in step (v).

7

3.4 Unforgeability

Unforgeability of any threshold signature scheme must take into account subthreshold corruption oracle

access. Multisignatures must not be forgeable by a subthreshold collection of malicious coalition members,

otherwise they have no utility as signatures, of course. A naive definition may be something like this:

Definition 3.4.1. [Prototype: Subthreshold Oracle Access] Given a S = {X1, . . . , XN} ⊆ Kuser where each

Xi ∈ S is a ti-of-Ni public user key, we say that any PPT adversary A with access to an oracle O(−) has

had subthreshold oracle access to S if, for any Xi ∈ S, at most ti− 1 coalition members for Xi appear in the

transcript between A and O(−).

However, since Merge allows inputs of arbitrary (possibly threshold) user keys, this definition is insuffi-

cient.

Definition 3.4.2. [Subthreshold Oracle Access] Let S be a set of public user keys S = {X1, . . . , XN} where

each Xi is a ti-of-Ni public user key. We say that any PPT adversary A with access to an oracle O(−) has

had subthreshold oracle access to S if, for any public user key Y ∈ Merge←(S), if Y is a tY -of-NY shared

public user key, then at most tY − 1 coalition members from Merge−1(Y) appear in the transcript between

A and O(−).

Also for notational convenience, we call TxnKeyGen−1(−) an oracle that inverts TxnKeyGen by taking as

input a public transaction key QX and produces as output the user key X. Let CO(−) be a corruption

oracle that takes as input a public user key and outputs the associated private user key.

Definition 3.4.3. [Existential Unforgeability v. Adaptive Chosen Message and Subthreshold Insider Cor-

ruption] Let A be a PPT adversary and N(−) be a polynomials. A is given access to a signing oracle SO,

a corruption oracle COuser. Consider the following game:

(i) A set of user key pairs S∗ ⊆ Kuser is selected with |S∗| = N(λ). The public keys in S∗ are sent to A.

(ii) A outputs a set of user key pairs S ⊆ S∗.

(iii) For each public user key Xi ∈ S, a public transaction key Q∗i ← TxnKeyGen(1λ, Xi) is generated and

the set Q∗ := {Q∗i } is constructed, randomly permuted, and then sent to A.

(iv) A outputs a message M , a destination public user key X ∈ Kuser, ring Q ⊆ Ktxn of public transaction

keys, and a signature σ. The game counts as a success if

(a) Q ⊆ Q∗,

(b) VER(M,σ) = 1,

(c) for each index k in R, (M,X,Q, k) does not appear in the queries between A and SO

(d) for each Qk ∈ Q, COuser is not queried with the public user key TxnKeyGen−1(Qk), and

(e) A has had subthreshold COuser access to the set
{
TxnKeyGen−1(Qk) | Qk ∈ R

}
.

A scheme in which an adversary is only negligibly likely to succeed is said to be existentially unforgeable with

respect to adaptive chosen message attacks and subthreshold insider corruption (or st-EUF for subthreshold

existentially unforgeable).

8

4 Proposed Implementation

We provide an implementation of a restricted OT-LRTM scheme allowing only for N−1 ≤ t ≤ N in the spirit

of the original CryptoNote methodology. We assume a coordinating member of the coalition is constructing

the signature and has persuaded threshold members to participate. User secret keys and public keys are both

ordered pairs of keys, i.e. private key (a, b) and public key (A,B). Following terminology from [8], we refer to

(a,A) as the view keypair and (b, B) and the spend keypair. We let Π = (Gen∗, Enc∗, Auth∗, Ver∗, Dec∗) be a

secure encrypt-then-authenticate scheme (where Πenc = (Gen∗, Enc∗, Dec∗) is a secure encryption sub-scheme

and Πauth = (Gen∗, Auth∗, Ver∗) is a secure message authentication sub-scheme).

(I) UserKeyGen generates the secret key z = (a, b) by selecting a, b from an i.i.d. uniform distribution on

Zq, and computing Z = (A,B) with A := aG and B := bG. UserKeyGen then outputs (z, Z).

(II) Merge takes as input a threshold t and a set of key pairs C = {(z1, Z1), . . . , (zn, ZN)} such that 2 ≤ t
and 2 ≤ N and N−1 ≤ t ≤ N where each Zi = (Ai, Bi), and outputs a shared public user key Zshared.

(1) Each member of the coalition selects constants µi, γi for the multisig address.

(2) Each member derives a partial secret keypair (a∗i , b
∗
i) where a∗i = Hs(ai, µi) and b∗i = Hs(bi, γi)

and computes their associated public points A∗i = a∗iG and B∗i = b∗iG.

(3) If t = N , then each coalition member uses Π to send a∗i to the coordinating user, who computes

the shared secret view key a∗ =
∑
i a
∗
i
§ The coordinating user computes the shared public spend

key B∗ =
∑N
i=1B

∗
i . The coordinating user outputs (A∗, B∗), which may be made public.

(4) If t = N − 1, then

(a) For each i, j, a partial shared secret view key αi,j := Hs(a
∗
iA
∗
j) and a partial shared secret

spend key βi,j := Hs(b
∗
iB
∗
j) is computed by either participant i or j.

(b) Set N∗ := N(N+1)
2 , S∗ := {((αi,j , βi,j), (αi,jG, βi,jG))}1≤i<j≤N , and run Merge(N∗, S∗).

(III) TxnKeyGen takes as input a set of destination user public keys {(Ai, Bi)}i. For each destination, the

coordinating user selects a random scalar si, computes Si = siG and Pi = Hs(siAi)G + Bi, outputs

the (public) pairs {(Si, Pi)}i.

(IV) Sign takes as input a message M , a destination public user key (Adest, Bdest), a set of input public

transaction keys {(Si, Pi)}Ii=1, a set of output public transaction keys
{

(S̃d, P̃d)
}D
d=1

, a secret index

1 ≤ i∗ ≤ I, and a set of t user private keys y = {(a∗n, b∗n)}tn=1 such that a∗n = a∗m for each n,m.

(1) The coalition computes (S∗, P ∗)← TxnKeyGen(1λ, (Adest, Bdest)).

(2) For each (ai, bi) ∈ y, the points biHp(Sk, Pk) are computed and communicated with Π to the

coalition. The sum
∑
i biHp(Sk, Pk) is computed together with the key image J = (Hs(a

∗
1Sk) +∑

i bi)Hp(Sk, Pk) by any member of the coalition and shared with the coalition using Π.

(3) The coalition computes M∗ = (M,J, S∗, P ∗,Q).

(4) A set {sk+1, sk+2, . . . , sk−1} of i.i.d. observations of uniform random variables are generated by

the coalition and shared among the coalition using Π.

§Note that although secret information is about ai not being directly shared with the coalition, the result of the computation

is, in fact, a secret key, a∗.

9

(5) For each j, the jth signatory selects a random scalar uk,j , computes Hi := Hp(Bi) for each index

1 ≤ i ≤ L, and computes the points uk,jG and uk,jHk. The coalition uses Π to collaboratively

compute ukG :=
∑
j uk,jG and ukHk :=

∑
j uk,jHk.

(6) Some threshold member computes

ck+1 =Hp(M
∗, ukG, ukHk) and

ci+1 =Hp(M
∗, siG+ ciPi, siHi + ciJ) for i = k + 1, k + 2, . . . , k − 1.

(7) The threshold member from the previous step uses Π to send ck to all other signers with authen-

tication. These signers may check that their received ck matches their expected computations.

(8) If t = N , each signatory computes their personal sk,j := uj − ckb∗j . If t = N − 1, each signatory

computes sk,j = uj − ck
∑L
i=1 zi,j . The coalition uses Π to collaboratively compute sk =

∑
j sk,j

and construct σ = (c1, s1, s2, . . . , sL).

(9) Any signatory may now publish the signature σ = (c1, s1, . . . , sN), and any verifier may use

the usual MLSAG verification to check that some member of the ring {(Si, Pi)} fashioned the

signature.

Remark 4.0.1. The resulting signature takes the same form as LSAG signatures as in [3]. Modifying the

above to appropriately to take into account key vectors provides the generalization to MLSAG signatures.

Thus the verification algorithm for these signatures is identical to the verification algorithm for usual MLSAG

signatures and we omit its description. Similarly, Link merely outputs a bit signifying whether two key images

are identical, so we don’t describe it further either.

Remark 4.0.2. Each uj is kept secret from the other users and is generated randomly when the signature

process begins. Certainly if uj is revealed to another signatory, since the values of sj and ci are communicated

in with authentication but not encryption, revealing the value uj − ci′xj can lead an observer to deduce xj .

Encryption does not solve the problem if threshold members are untrustworthy.

Similarly, if some value of uj is re-used twice with the same private key, an observer can deduce the private

key. Indeed, assuming we are using a hash function resistant to second pre-image attacks, the commitments

from two signature processes ci′ , c
∗
i′ are unequal except with negligible probability even if the other threshold

members are colluding. Hence since si′,j = uj − ci′xj and s∗i′,j = uj − c∗i′xj , an observer may solve for the

private key xj . Don’t re-use values of uj , keep them secret, generate them randomly.

Remark 4.0.3. Note that users in (N − 1)-of-N processes are prompted to select constants µ, γ multiple

times for multiple sets of keys. If our hash function Hs(−) is suitably secure, the lazy user can re-use the

same constants µ and γ without concern; nevertheless, it is recommended that users do not re-use constants

in Merge.

Remark 4.0.4. When a transaction is relayed on the Monero network, the transaction key pair (S, P) is

scanned by any of the coalition members. Any of these members can use their shared secret view key a∗ to

check whether B∗ = P −Hs(a
∗S)G. If so, they can execute Sign to sign a message with the private key p

without revealing it.

5 Security

Recall the critical fact proven in [5] that the sum of a uniform random variable with any indepenent random

variable in Z/mZ results in a uniform random variable (and conversely when m is prime). Hence, no PPT

10

algorithm will be able to distinguish between a uniform random variable U and a sum of uniform random

variables,
∑
i Ui.

Assume Hs, Hp in the OT-LRTM implementation from Section 4 are cryptographic hash functions under

the random oracle model whose outputs are statistically indistinguishable from a uniform distribution except

with non-negligible probability, and whose outputs are independent of one another. Assume UserKeyGen

produces keys from a distribution that is statistically indistinguishable from a uniform distribution.

Theorem 5.0.1. If Hs is a secure hash function under the random oracle model, the restricted OT-LRTM

implementation from Section 4 is CIK.

Proof. Either the key pair Xb = (A,B) received by A in step (iii) of Definition 3.2.1 is N -of-N for some

N ≥ 2, (N − 1)-of-N for some N ≥ 3, or a mere 1-of-1 user key. Of course, (N − 1)-of-N key pairs are

N∗-of-N∗ key pairs. Thus, we really only need to deal with two cases: an N -of-N key pair with N > 1 or a

1-of-1 key pair.

If (A,B) is an N -of-N key pair, then the keys defined in Merge are A∗ =
∑
iHs(ai, µi)G and B∗ =∑

iHs(bi, γi)G. Since Hs is a random oracle, any one of its outputs is uniformly random, and so any sum

of its outputs is uniformly random [5], so no PPT adversary may determine the number of signatories. On

the other hand, if (A,B) is a 1-of-1 key pair, then A and B are each independent uniform random variables

from UserKeyGen, so no PPT algorithm can determine whether A or B is a sum or not.

Theorem 5.0.2. If the Decisional Diffie Hellman hardness assumption holds in G, then the OT-LRTM

implementation from Section 4 is LSA-AGK.

Proof. Assume A has a non-negligible advantage in the game of Definition 3.3.1 played with the above

implementation, namely let us say there exists some polynomial f1(λ) such that

P [A succeeds in Definition 3.3.1] >
1

2
+

1

f1(λ)

We construct an algorithmM that gains a non-negligible advantage in solving the DDH game by running

A as a subroutine, leading us to a contradiction. A base point G is chosen and given toM. Random scalars

r, s, and t are selected, a random bits c ∈ {0, 1} are chosen. The points Q0 = tG, Q1 = rsG, Q2 = rG,

Q3 = sG are computed. The points (Qc, Q2, Q3) are given to M, who outputs a bit c′. The game counts as

a success if c = c′.

The algorithmM receives (Q∗1, Q
∗
2, Q

∗
3) and executes part (i) from Definition 3.3.1 by calling UserKeyGen(1λ),

and calls A to execute (ii) as usual. In (iii),M constructs Q∗ to include Q∗i for i = 1, 2, 3 in the following way.

First, M instructs A to select three user public keys X1, X2, X3 ∈ S, picks a random permutation τ ∈ S3,

and assigns dest(Q∗i) := Xτ(i) for each i = 1, 2, 3. Next, M calls TxnKeyGen using the other members of S

as usual to build Q∗. Denote the index for Q∗i in Q∗ as ji for i = 1, 2, 3. NowM instructs A to select i0 = j1

and i1 ∈ {j2, j3}. Steps (v) and (vi) execute as usual. If A succeeds, then M outputs c′ = 1, otherwise

selects a random bit as an output. We have the following from the law of total probability.

P [M succeeds at DDH] =P [M(Q∗1, Q
∗
2, Q

∗
3) = c | c = 0]P [c = 0] + P [M(Q∗1, Q

∗
2, Q

∗
3) = c | c = 1]P [c = 1]

Certainly, P [c = 0] = P [c = 1] = 1
2 . If c = 0, then A did not succeed so M can only guess. In this case,

P [M(Q∗1, Q
∗
2, Q

∗
3) = c | c = 0] = 1

2 . We have

P [M succeeds at DDH] =
1

4
+

1

2
P [M(Q∗1, Q

∗
2, Q

∗
3) = c | c = 1]

11

Moreover, M outputs 1 if and only if A has succeeded:

P [M succeeds at DDH] =
1

4
+

1

2
P [A succeeds in Definition 3.3.1]

>
1

4
+

1

2

(
1

2
+

1

f(λ)

)
>

1

2
+

1

2f(λ)

Theorem 5.0.3. The OT-LRTM implementation from Section 4 is st-EUF.

Proof. Assume A is a PPT adversary that can succeed at the game in Definition ?? with non-negligible

advantage. The adversary has sub-threshold access to the ring, A cannot execute Sign fairly and must

attempt a forgery by generating additional random numbers. In this case, the adversary is merely attempting

to forge a usual LSAG signature, and the security proof reduces to the one presented by [3].

6 Further Analysis

6.1 Efficiency and comparisons

The signatures resulting from the OT-LRTM scheme are indistinguishable from MLSAG signatures, so space

complexity and verification time complexity of the OT-LRTM scheme is identical to that of MLSAGs. Due

to the use of Π and several (possibly recursive) rounds of communication between coalition participants,

efficiency of signatures is greatly reduced.

For a coalition consisting of 1-of-1 keys, Merge takes one round of communication inside the coalition with

Π, ImageGen takes one round of communication inside the coalition with Πauth, Sign takes three distinct

rounds of communication with Πauth and calls TxnKeyGen and ImageGen each once. In total, this amounts

to five rounds of communication inside the coalition per signature. For a coalition containing shared user

keys for sub-coalitions, the rounds of communication in Sign must also take place inside each sub-coalition

(and sub-sub-coalition, and so on).

In total, if we define the depth of 1-of-1 public user key as depth 0, and the depth of any t-of-N public

user key X with coalition C as max {depth(X) | X ∈ C}+ 1. Then for a signature with a coalition of depth

D where each coalition has at most N members, we require at most 2 + 3 ·DN rounds of communication to

fashion a signature.

6.2 Elaborations

In [2], a very general fully homomorphic thresholdizing set-up is described, leading to fully homomorphic

threshold signatures and encryption. The threshold signature scheme defined in [2] generates a unique

verification key (akin to our transaction keys) for each coalition and access structure, so the scheme in

[2] vacuously satisfies CIK. On the other hand, in our proposed implementation, keys are being combined

into new keys, so it is critical to check that combined keys do not reveal anything about the participating

members.

Coalition indistinguishability on keys is related to two distinct security notions defined in [2], where a

highly general fully homomorphic thresholdizing scheme using only one round of communication is presented.

12

Threshold signatures described in [2] are required to be anonymous and succinct. Anonymity in [2] is defined

such that an adversary should be unable to discern which subset of the coalition produced the signature,

and succinctness is defined such that signature size is dependent only on the security parameter.

Our proposed implementation is certainly succinct because it produces a signature in the format of a

usual MLSAG signature, regardless of the details of the coalition. Our scheme is anonymous because all

signatures are, without loss of generality, N -of-N , so each signature is fashioned with a full subset.

A natural question is to ask whether the definition of CIK can be expanded to coalition indistinguishability

on keys and signatures (say CIKS) by demanding that signatures also provide no information about the

signing subset or signing coalition. With an LRTM, an expansion of Definition 3.2.1 to take into account

an adaptive chosen message attack is nontrivial but straightforward. A CIKS LRTM scheme is necessarily

succinct and anonymous according to the definition in [2]. Moreover, a succinct and anonymous threshold

signature scheme from [2] that generates verification keys for each coalition randomly is also CIKS. In this

sense, CIKS is equivalent to succinct anonymity.

Additional helpful definitions appear in [2]. For example, a threshold cryptoscheme may be regarded

as private if no subthreshold collection of key shares can reveal any information about the shared secrets,

and robust if maliciously generated evaluation key shares can always be detected. Since our implementation

never reveals the shared secret key even with a threshold number of coalition members participating, our

implementation is private. However, in the presence of maliciously generated choices in the signature process,

we have no guarantee of robustness: although a malicious subthreshold party will only enjoy a negligible

advantage in constructing a forgery, their attempt will merely appear to be an invalid signature.

Special Thanks: We would like to issue a special thanks to the members of the Monero community who

used the GetMonero.org Community Forum Funding System to support the Monero Research Lab. Readers

may also regard this as a statement of conflict of interest, since our funding is denominated in Monero and

provided directly by members of the Monero community by the Forum Funding System.

References

[1] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and con-

structions without random oracles. In TCC, volume 6, pages 60–79. Springer, 2006.

[2] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR Rasmussen, and

Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.

[3] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group signature

for ad hoc groups. In ACISP, volume 4, pages 325–335. Springer, 2004.

[4] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

[5] Paola Scozzafava. Uniform distribution and sum modulo m of independent random variables. Statistics

& probability letters, 18(4):313–314, 1993.

[6] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[7] Adi Shamir, Ronald L Rivest, and Leonard M Adleman. Mental poker. In The mathematical gardner,

pages 37–43. Springer, 1981.

[8] Nicolas van Saberhagen. Cryptonote v 2. 0, 2013.

13

	Introduction and Background
	Our Contribution
	Notation and Prerequisites

	MLSAG and Straightforward Threshold Set-ups
	MLSAGs
	Extending to Threshold Signatures

	Security Models
	One-Time Linkable Ring Threshold Multisignatures
	Coalition Indistinguishable Keys
	Signer Ambiguity
	Unforgeability

	Proposed Implementation
	Security
	Further Analysis
	Efficiency and comparisons
	Elaborations

