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Abstract. At the heart of cryptosystems that provide authenticity guarantees are arguments given
by the prover that they are in possession of some secret quantity. Since the authenticity guarantee
requires that the quantity remain secret, the argument should not reveal any clues that would allow
an attacker to infer the secret. We review how this concept can be efficiently generalized into zk-
SNARKs (zero-knowledge succinct non-interactive arguments of knowledge) and summarize their
use in cryptocurrencies.
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1. Introduction

The advent of public-key cryptosystems [DH76] has issued in the age of ubiquitous authenticated
cryptography. Although more efficient systems (in terms of computation time and space) have
been developed [RSA78, HPS98], the underlying principles have remained relatively unchanged.
To encrypt message M , the sender generates a key pair (e, d) and communicates d to the receiver
out-of-band. The sender, equipped with a function f such that C = f(e,M) and M = f(d,C)
transmits C to the receiver. The receiver, now in possession of d and C and equipped with f can
recover M . In practice, this process should be efficient. For such a system to work, f and the
relationship between (e, d) must be carefully constructed and mathematically verified. Crucially,
given d and C it must be exceedingly difficult to determine e.

Consider if instead the sender merely wishes to attest that they are in possession of e. Then,
they may encrypt a known M (e.g. a digest of a larger message). A verifier can use d to check
that the resulting ciphertext does indeed decrypt back to M . Cryptocurrencies use this property in
various ways. For example, in Bitcoin a transaction occurs when the owner of coins signs a hash of
the previous transaction of the coins along with the public key of the intended recipient [Nak09]. In
essence, the sender has given a witness or proof that they are in possession of e without revealing
any information about e itself.

It is reasonable to ask if this concept can be generalized. We review zk-SNARKs, which are
non-interactive, zero-knowledge witnesses for arbitrary problems in NP. To put it another way, zk-
SNARKs are digital signatures that prove possession of the input to an arbitrary algorithm which
shall produce some desired output. This ability has proven useful for creating succinct, auditable
transaction ledgers in cryptocurrencies while maintaining privacy.

The organization of this review is as follows: Section 2 provides definitions for the theoretical
foundation of zk-SNARKS, Section 3 builds on these definitions to describe zk-SNARKs, Section
4 reviews constructions of zk-SNARKs, and Section 5 reviews applications of zk-SNARKs in cryp-
tocurrencies.

2. Witnesses, knowledge, and proofs

2.1. Interactive proof systems. [GMR89] introduced the concept of interactive proof systems.
In an interactive proof system, two Turing machines share a pair of common tapes over which they
can communicate. Each machine shares the same input but is equipped with a unique random
tape and a private worker tape. This setup is known as an interactive protocol. One machine, the
verifier, is limited to a polynomial amount of work on a given input, but may make use of the
output of the prover machine in addition to allowing for an arbitrarily small amount of error given
a sufficient input length.

Definition 1. Let L ⊆ {0, 1}∗ and (P, V ) be an interactive protocol. Then, (P, V ) is an interactive
proof system if:

(1) (Completeness) For each k and sufficiently large x ∈ L as input to (P, V ), V accepts with
probability at least 1− |x|−k.

(2) (Soundness) For each k, interactive Turning machine P ′, and sufficiently large x /∈ L as
input to (P ′, V ), V halts and accepts with probability at most |x|−k.

If such machines exist, then the language is said to be in the interactive polynomial time (IP)
class. For IP to be interesting, it should contain some languages not in NP. Otherwise, the in-
teractivity would be merely a novelty; the language’s membership in NP guarantees the existence
of a non-interactive polynomial verifier. Several problems not known to be in NP (such as graph
non-isomorphism) were shown to be in IP [GMW86], which tells us that IP is more expressive than
NP. In a celebrated result, IP = PSPACE, from which we can conclude that when randomization
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and interaction are allowed, the proofs that can be verified in polynomial time are exactly those
proofs that can be generated with polynomial space [Sha92].

Recall the presence of the k error in the above definition, wherein the verifier V will accept
strings not in L at a probability at most 1

k when connected to an arbitrary “prover” machine P ′.
Thus, the verifier must be resilient even to a malicious prover with unlimited power, maintaining
its soundness guarantee even when facing an adversary with a decided computational advantage.

Definition 2. An interactive proof system is an interactive argument if it is an interactive proof
system with the soundness guarantee relaxed to

(2) (Soundness) For each k, interactive probabilistic polynomial time Turning machine P ′, and
sufficiently large x /∈ L as input to (P ′, V ), V halts and accepts with probability at most
|x|−k.

Interactive arguments, also known as computationally-sound proof systems or argument systems,
provide interesting gains in the expressiveness of the proof systems within the class. In particular,
all languages in NP have interactive arguments [BCC88]. Moreover, this class of languages with
argument systems maintains this property when the complexity of the interactivity is bounded to
polylogarithmic size, while interactive proof systems do not [GH98].

It is important to note that interactive arguments merely speak to “convincing” the verifier that
x ∈ L. For example, a prover in the problem of circuit satisfiability may convince a verifier that a
satisfying assignment exists, but it does not necessarily mean that the prover actually “knows” the
satisfying assignment.

Definition 3. An interactive argument (P, V ) is a proof of knowledge if, for accepting instance
x ∈ L, there exists a polynomial time machine E that can extract a witness for w from P .

The above definition lacks mathematical rigor; for a full treatment see [BG92]. For now we will
simply say that in addition to being able to convince V , P is truly in possession of some extra
knowledge about x.

2.2. Zero knowledge. Intuitively, to say that something is “proved” is to say that there is a
sufficiently convincing argument that it is true. For cryptographic applications it is useful if that
proof itself can be verified quickly. Formally, a language L is said to be in the NP class if there
exists an algorithm P that accepts or rejects in polynomial time a candidate string x given a witness
wx that is polynomial in length of x. Since wx need not be computable from x in polynomial time,
it can be thought of as encapsulating or serializing some large amount of computation on x. For
example, the statement “n is not prime” can be accepted for input 1337 given witness factors
(7, 191) since it can be quickly verified that 7× 191 = 1337.

For problems such as the decision version of integer factorization the witness may provide signif-
icant information about the underlying search problem (i.e. the factors themselves are used as the
witness). Although the IP class is expressive, it is important to ask what information the verifier
can extract from the witness string provided by the prover. Can a witness be provided that reveals
no information about the underlying solution other than x ∈ L? Intuitively, for an interactive
proof system to be “zero-knowledge” a malicious verifier having access to the prover should come
away from the exchange with no additional computational ability (in particular any knowledge that
would allow the malicious verifier to replicate the prover). [GMR89] formalized this reasoning.

To begin, let ViewV [P (x) ↔ V (x)] be the record of all interactions between P and V on x, as
well as the random tape for V .

Definition 4. Let (P, V ) be an interactive proof system for language L. Then, (P, V ) is perfectly
zero-knowledge if, for all x ∈ L, h ∈ {0, 1}∗, and probabilistic polynomial time Turing machine
V ′, ViewV ′ [P (x)↔ V ′(x, h)] = S(x, h), where S(x, h) is an expected probabilistic polynomial time
algorithm.
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The universal quantifiers in the definition capture the power of zero-knowledge; for all members of
L, there exists (some) expected polynomial time algorithm that could recreate the communication
between any verifier and the prover give some “extra” bit string h. Thus, the interaction between
P and all verifiers reveals no new knowledge since there already exists S that can replicate it in
polynomial time. This relaxation is analogous to that from interactive proof systems to interactive
arguments; in both cases the existence of adversaries with unbounded power is set aside.

Definition 5. An interactive proof system is computationally zero-knowledge if no probabilistic
polynomial time Turing machine can distinguish ViewV ′ [P (x)↔ V ′(x, h)] and S(x, h).

Computational indistinguishability [GM84] is a relaxing of the requirement that the quantities
in the proof be identical. Rather, we simply say that there is no efficient Turing machine that
can tell the two apart. This relaxing aids in the expressiveness of those problems with zero-
knowledge proofs. All NP-complete languages having perfect zero-knowledge proof systems would
require a collapse of the polynomial time hierarchy to the second level [For87], which is believed
to be unlikely1. However, all statements in NP have a computational zero-knowledge proof system
[GMW91].

2.3. Probabilistically checkable proofs. Both NP and IP have interactive verifiers that take
polynomial time for some given error 1

k . Depending on the degree and factors of the polynomial,
these verifiers may be prohibitively expensive in practice. [BFL+91] showed that every nondeter-
ministic computational task (including interactive arguments) has a verifier that is exceptionally
more efficient.

Theorem 6. Let S be a nondeterministic computational task described in error-correcting code on
instance x with witness y. Then, there exists a task S′ such that

(1) S′ accepts the same instances as S,
(2) each instance/witness pair is verifiable in polylogarithmic time, and
(3) a witness for S′ can be computed from a satisfying witness for S in polynomial time.

Such constructions are known as probabilistically checkable proofs, which were formalized by
[BFL+91]. By paying a fixed polynomial cost once2, a witness for P can be constructed that
takes polylogarithmic (or “near-linear”) time, given a specific encoding of the problem. [FGL+91]
considered the modified case of problems in NP with no encoding requirements, specifically giving
an approximation algorithm for determining the size of the largest clique in a graph that used
polynomial time to verify a logarithmically sized witness. This lead to a new characterization of
NP as given in [AS98].

Definition 7. The class NP are those languages whose proofs can be verified in probabilistically
polynomial time using a logarthmic number of random bits and a sublogarithmic number of bits
from the proof.

2.4. Succinctness. Using probabilistically checkable proofs and collision-resistant hashes, [Kil92]
detailed a zero-knowledge proof (interactive argument) for circuit satisfiability running in polyno-
mial time giving 2−k error. The construction uses four messages between the prover and verifier.
Given sufficiently large problems the system was shown to be more efficient than naive verification.

Definition 8. Let x be a string in an NP language L which takes t time to verify membership on
the machine ML. Then, the interactive argument system (P, V ) is succinct if communication and
verification time are O(poly(k+|ML|+|x|+log t)) and the proving time is O(poly(k+|ML|+|x|+t))
where poly(n) is some fixed polynomial independent of the other parameters.

1While this is not the same as P = NP, it is a step closer
2|P |1+ε for proof P and arbitrary error ε > 0
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Since circuit satisfiability is NP-complete, this corresponds to a zero-knowledge proof for all of
NP. This performance can be used as a baseline for measuring other zero-knowledge (interactive or
otherwise) systems.

3. From proofs to zk-SNARKS

3.1. SNARGs. Up until now we have reviewed only interactive systems; non-interactivity has
eluded us. [Kil92, BG08] demonstrated a four message interactive succinct proof of knowledge for
recognizing all languages in NP. This construction, which commits to a probabilistically checkable
proof and then shows consistency with a Merkle hash tree, was made non-interactive with one
message in the random oracle model [Mic00] by applying the Fiat-Shamir heuristic [FS87]. In
the standard model such arguments exist only for a strict subset of NP [BCC+16]. However, this
difficulty can be effectively sidestepped by using a two message argument where one of the messages
is generated independently from the problem itself [GW11].

Definition 9. Let R be the product of all members of an NP language L and their corresponding
witnesses (i.e. R = {(x,w) |x ∈ L with witness w}). Let Π = (G,P, V ) be efficient algorithms and
λ be an arbitrary security parameter. Then, Π is a succinct, non-interactive argument (SNARG) if

(1) (Completeness) For all (x,w) ∈ R, when G(λ)→ (σ, τ) and P (σ, x, w)→ π, the probability
that V (τ, x, π) = 0 is negligible in terms of |λ|.

(2) (Soundness) For all efficient P ′, when G(λ)→ (σ, τ) and P ′(σ, τ)→ (x, π), the probability
that V (τ, x, π) = 1 and x /∈ L is negligible in terms of |λ|.

(3) (Succinctness) |π| = poly(|λ|)(|x|+ |w|)o(1).

The definition for SNARGs bears a close resemblance to that of interactive arguments. The
primary difference is the third machine G, and the bounds for the size of the output of P . G is
known as the “generator”, and given a security parameter λ outputs σ, a common reference string,
and τ , a “verification state”. Since G relies only on λ (and not x or even L) the generator can be
run offline to create parameters (σ, τ). Armed with a witness w for x, the prover takes the common
reference string σ and produces a proof π for the statement x ∈ L. Finally, the verifier utilizes the
verification state τ to verify the proof π, ultimately being convinced that x ∈ L.

There exist several variants of SNARGs based on the specific soundness condition used. The
above definition is an adaptive, publicly-verifiable SNARG. A SNARG is adaptive if its soundness
guarantee holds even if the adversarial prover P ′ can choose x; a non-adaptive SNARG would have
P ′(σ, τ, x) → π. Furthermore, a SNARG is publicly-verifiable if P ′ has access to τ in addition to
σ. Otherwise, the SNARG is said to be designated-verifier.

A final variant of SNARGs are preprocessing SNARGs. Informally, preprocessing SNARGs are
those where the generator is permitted to be “expensive”. Since generation is generally counted
towards the verification time, a fully-succinct SNARG is bound by poly(log t) for traditional veri-
fication time t, while a preprocessing SNARG is bound by poly(t).

For SNARGs to be secure we must make certain knowledge extractability assumptions. [GW11]
showed that SNARGs cannot be proven secure under any falsifiable assumption via block-box re-
duction. However, [BCC+16] proved that existence of extractable collision-resistant hash functions
are necessary and sufficient conditions for secure SNARGs.

3.2. SNARKs. Given secure SNARGs, it makes sense to search for an analogue of proofs of
knowledge for interactive arguments. Recall that a proof of knowledge codifies the idea that the
prover really “knows” w, defined in terms of an extractor that can determine the witness given the
prover. We will use a similar idea, incorporated into a modified soundness requirement.

Definition 10. A succinct non-interactive argument of knowledge (SNARK) is a SNARG with the
soundness requirement changed to:
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(2) (Proof of knowledge and soundness) For all efficient P ′ there is an efficient E such that when
G(λ)→ (σ, τ), P ′(σ, τ)→ (x, π), and E(σ, τ)→ w, the probability that V (τ, x, π) = 1 and
x ∈ L is negligible in terms of |λ|.

The variants of adaptive/non-adaptive, publicly-verifiable/designed-verifier, and fully-succinct/preprocessing
are comparable for SNARKs and SNARGs.

3.3. zk-SNARKs. The last piece of the puzzle is to apply zero-knowledge to SNARKs.

Definition 11. Let (G,P, V ) be a SNARK. Then, (G,P, V ) is a perfect zk-SNARK if there is an
efficient simulator S such that for all stateful distinguishers D, whenever D(π) = 1 and x ∈ L, the
probability of G(λ) → (σ, τ), D(σ, τ) → (x,w), and P (σ, x, w) → π is the same as the probability
of G(λ)→ (σ, τ, trap), D(σ, τ)→ (x,w), and S(trap, x)→ π.

To summarize, a zk-SNARK is a SNARG where the prover “knows” the witness w and where the
proof π does not give any information that would help an adversary determine what w is. Thus, we
have fully realized the vision of an efficient “digital signature” for proving membership in arbitrary
languages in NP.

4. zk-SNARK constructions

The definition of a zk-SNARK tells us what a zk-SNARK is, but not how one might be con-
structed. Several such constructions have been developed, ranging from the theoretical to the
practical.

4.1. Theoretical constructions.

4.1.1. Pairing based. [Mic00]’s computationally sound proofs were the first appearance of what we
now call zk-SNARKs, although the explicit formulation used here had not been defined yet. [Gro10]
first improved upon [Mic00] by detailing a preprocessing zk-SNARK for circuit satisfiability in sub-
linear amount of communication without relying on the random oracle model. The construction
uses pairing in bilinear groups to commit to the witness of satisfiability while revealing no infor-
mation about the witness, assuming the hardness of Diffie-Hellman and knowledge of exponent.
Without loss of generality, the circuit C is assumed to consist of NAND gates. From a high level,
the scheme works by committing to tuples (a1, a2, . . . , an, b1, b2, . . . , bn), (b1, b2, . . . , bn, 0, . . . , 0) and
the corresponding outputs (−u1,−u2, . . . , un, 0, . . . , 0) where ai and bi are inputs to gate i and ui
is the gate’s output3 for n = |C|. Then, commitments are made that show the internal consistency
with the of the circuit (e.g. ui = −aibi for all i ∈ n). The commitments themselves use the Peder-
sen commitment scheme [Ped92], which provides the zero-knowledge guarantees while maintaining
consistency.

The [Gro10] construction provides for trade-offs between time and space complexities ranging

from a Θ(1) argument and Θ(|C|2) reference string paired with Θ(|C|2) proving to a Θ(|C|
2
3 )

argument and reference string and Θ(|C|
4
3 ) proving. [Lip12] improved the construction’s argument

and reference string complexity to Θ(|C|
1
2
+o(1)).

4.1.2. Quadratic span based. In an attempt to generalize and improve on the prover complexity of
[Gro10] and [Lip12], [GGP+13] introduced the quadratic span programs, with the goal of quasi-
linear prover times. Quadratic span programs accept an input whenever a target polynomial can
be expressed as a product of two linear combinations of vectors of polynomials.

3For convenience, +1 is used for true and −1 is used for false
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Definition 12 ([GGP+13]). A quadratic span program (QSP) Q over field F contains two sets
of polynomials V = {vk(x)}, W = {wk(x)} for k ∈ {0, . . . ,m}, and a target polynomial t(x), all
from F [x]. Q also contains a partition of the indices I = {1, . . . ,m} into two sets Ilabeled and Ifree,
and a further partition of Ilabeled as ∪i∈[n],j∈0,1Iij . For input u ∈ 0, 1n, let Iu = Ifree ∪i Ii,ui be
the set of indices that “belong” to input u. Q accepts an input u ∈ {0, 1}n iff there exist tuples
(a1, . . . , am) and (b1, . . . , bm) from Fm, with ak = 0 = bk for all k /∈ Iu, such that t(x) divides(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

bk · wk(x)
)
.

Crucially, it was shown that QSPs and boolean circuits are interchangeable with only a con-
stant overhead. Once converted, the properties of polynomials allow for easy construction of a
preprocessing zk-SNARK. Using QSPs, a zk-SNARK for circuit satisfiability was shown using only
seven group elements, with the reference string linear in the size of the circuit and prover time
quasi-linear. In addition, [GGP+13] also presented a variation of QSPs that work on arithmetic
circuits, known as quadratic arithmetic programs, and again showed a zk-SNARK construction.

Definition 13 ([GGP+13]). A quadratic arithmetic program (QAP) Q over field F contains three
sets of polynomials V = {vk(x)}, W = {wk(x)}, Y = {yk(x)} for k ∈ {0, . . . ,m}, and a target
polynomial t(x), all from F [x]. Let f be a function having input variables with labels 1, . . . , n
and output variables with labels m − n′ + 1, . . . ,m. We say that Q is a QAP that computes f if
the following is true: a1, . . . , an, am−n′+1, am ∈ Fn+n′

is a valid assignment to the input/output

variables off iff there exist (an+1, . . . , am−n′) ∈ Fm−n−n′
such that t(x) divides

(
v0(x) +

m∑
k=1

ak ·

vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)
.

4.1.3. Fully succinct. The previously discussed constructions are all preprocessing zk-SNARKs.
The more general type, fully succinct zk-SNARKs (whose provers are linear only in the security
parameter λ), have also been explored. [BCC+13] gave a general construction for converting prepro-
cessing SNARKs into fully succinct SNARKs. Using incrementally-verifiable computation, several
SNARKs are composed that effectively “prove” the steps taken during the extra preprocessing
phase. By doing this, asymptoticly fully succinct SNARKs are given.

4.2. Practical implementations.

4.2.1. Pinocchio. Although constructions of zk-SNARKs were known in the literature, a fully im-
plemented end-to-end system for describing a problem and generating a zk-SNARK for it remained
open until [PGHR13]. Towards this end, [PGHR13] created a system capable of compiling a subset
of C programs into a structure that a specific zk-SNARK could verify. Although the subset was
fairly strict4, the ability to ingest regular C code made SNARKs generally accessible to crypto-
graphic implementors.

The [PGHR13] system consists of two parts. The first part is a compiler, qcc, which converts
the supported C subset to an arithmetic circuit. Recall that an arithmetic circuit is akin to boolean
circuits with the gates of logical AND, OR, etc. replaced with mathematical operations such as
addition and multiplication. Through various techniques all of the fundamental operations in C are
modeled using arithmetic gates5. Once converted, a quadratic arithmetic program is constructed
for the arithmetic circuit. The second portion of the system is a zk-SNARK for QAPs, the primary
operation of which is exponentiation in an elliptic curve group.

From a practical standpoint the [PGHR13] system was the first practical end-to-end system for
using zk-SNARKs in software. The performance was shown to be orders of magnitude faster than

4Non-self-modifying with fixed memory access and compile-time constants for loops and array access
5Surisingly, is was more efficient to still use QAPs for C’s boolean operations
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previous constructions: a sample problem (multivariate polynomial evaluation) is quoted as having
41 second generation time, 246 second proof creation time, and 12 millisecond verification time.

4.2.2. TinyRAM. The construction [PGHR13] supported a large subset of C from a semantic stand-
point, but the programs themselves could not have any data dependencies, e.g. a conditional on
some calculated value derived from the input. To formalize an environment for such computations
to take place, [BSCG+13b] created the TinyRAM architecture, an idealized random-access machine
equipped with a fixed word size and number of registers, a program counter and conditional flag,
and addressable memory. The instructions in TinyRAM are those one would generally expect in
a RISC architecture: loads, stores, compares, jumps, and so on. In addition, a special instruction
signifies the machine has reached an accepting state and should terminate.

The [BSCG+13b] system uses a modified version of gcc to generate TinyRAM instructions from
C. Then, as with [PGHR13], a conversion to an arithmetic circuit is performed, although the
conversion in [BSCG+13b] is much more complicated to account for the consistency of the memory.
From the TinyRAM instructions a routing network with constraints is created, and the generated
arithmetic circuit verifies that the constraints are met for a particular input.

Once the arithmetic circuit is constructed, all that remains is to pass it into a zk-SNARK for
satisfiability. The SNARK presented is a modified version of that found in [BCI+13], which itself
generalizes the quadratic arithmetic programs found in [GGP+13].

4.2.3. vnTinyRAM. Both [PGHR13] and [BSCG+13b] require that the generation step be rerun
for each different program. This generation step is not trivial, and accounts for a significant portion
of the overall time the system takes to execute. While the reference string and verification state
can be reused for different inputs to the same program, expensive work is required whenever a
new program is used. [BSCT+14] created a universal circuit generator which is bound only by the
maximum number of instructions in a program l, the maximum input size n, and some specific
time bound t. This “once-and-for-all key generation” can be used to verify all programs up a given
size, and the size of the generated circuit is O((l + n + t) · log(l + n + t)), which means that the
circuit grows essentially linearly in all three inputs.

In addition to a universal circuit generator, [BSCT+14] operates on a more powerful machine
than [BSCG+13b]: vnTinyRAM. vnTinyRAM is an extension of TinyRAM that allows for self-
modifying code, and can be thought of as an idealized von Neumann machine. As was done
previously, a modified version of gcc takes C programs and outputs vnTinyRAM instructions.
vnTinyRAM also switches to byte-addressable (as opposed to word-addressable) memory.

Following the familiar construction, the [BSCG+13b] system converts the intermediate machine
instructions into an arithmetic circuit. Then, a zk-SNARK for arithmetic circuits provides the
proof and verification mechanisms for the program execution. Rather than construct a new zk-
SNARK in its entirety, [BSCT+14] provided several tailored optimizations to the SNARK found in
[PGHR13].

Detailed complexities in time and space are provided, and apples-to-apples comparison with
previous implementations showed modest performance gains. For example, a one-million gate
circuit with a one-thousand bit input with 128 bit security had a generation time of 117 seconds,
a proving time of 147 seconds, and a verification time of 5 milliseconds. In addition, all proofs are
288 bytes regardless of the program or input.

The correctness of the optimizations made in [BSCT+14] relies on an unproven lemma presented
in the paper. [Par15] showed that this lemma is incorrect, and the efficiency gains were (at least
theoretically) incorrect. More seriously, it was shown how to create invalid proofs that would
be accepted by the verification algorithm. Since the publication of [Par15], modifications have
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been made to open source implementations of vnTinyRAM that correct the flaw, with negligible
performance implications6.

The libsnark project is a free, open source software library for constructing zk-SNARKS (and
regular SNARKs) via a variety of the methods presented in literature. The zk-SNARK system used
by libsnark is the that presented in [BSCT+14] (with the correction from [Par15]).

5. Applications in cryptocurrencies

For a cryptocurrency to be trustworthy, a user must be able independently verify the correctness
of transactions. In Bitcoin [Nak09] this property is achieved via a publicly auditable transaction
ledger. Every transaction is fully transparent; the source and destination addresses as well as the
amount of the transaction are “in the clear”. If a real world identity is associated with a Bitcoin
address then a serious loss of privacy can occur. For example, suppose Alice is paid by her employer
in Bitcoin. Should her address ever be known by coworkers then the amount of her salary would
be become public knowledge. Solutions for solving Bitcoin’s privacy problems range from cycling
through many addresses, to “mixers”, where several users send coins to one address which are
subsequently pooled and combined before being returned.

Since Bitcoin’s inception several new cryptocurrencies have been developed that attempt to
include privacy features directly into the protocol of the coin, the most popualar of which are
Dash7, zcash8, and Monero9. The central challenge for these coins is maintaining correctness (e.g.
that coins are not double spent) while ensuring the privacy of the users engaging in the transactions.
Of these three, zcash uses zk-SNARKs to enforce this property.

5.1. Zerocash. The essential operation of a cryptocurrency is the transaction, where some amount
of “coins” are sent from Alice to Bob. Afterwards, Bob is free to send these coins to someone else,
but Alice must not be able to “respend” the coins. Zerocash [BSCG+14] provides privacy and
fungibility by encoding these constraints as an arithmetic circuit with a zk-SNARK proof for the
circuit appended to the blockchain as a record of the transaction, which can be efficiently verified
by anyone.

Zerocash defines the concept of a “decentralized payment scheme”, and then shows how zk-
SNARKs can be used to build such a system.

Definition 14. A decentralized payment scheme (DAP) is a set of polynomial algorithms with the
following properties

(1) Setup. Generates a set of public parameters used by the remaining algorithms. Setup must
be run by a trusted party.

(2) CreateAddress. From the public parameters, generate a public address to which coins can
be sent, and a corresponding private key which will allow coins sent to the public address
to be spent.

(3) Mint. Creates new coins and logs their creation on the blockchain.
(4) Pour. Transfers the value from input coins to new outputs coins and logging the transaction

on the blockchain, optionally revealing their amounts. Allows subdiving, merging, and
transferring coins.

(5) Verify. Verify that a transaction log is correct.
(6) Receive. Determines the balance of unspent coins for a particular address based on all

transactions saved on the blockchain.

6See https://github.com/scipr-lab/libsnark/commit/af725eeb
7https://dash.org/
8https://z.cash/
9https://getmonero.org/

https://github.com/scipr-lab/libsnark/commit/af725eeb
https://dash.org/
https://z.cash/
https://getmonero.org/
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In addition, the DAP must be complete, which means that any unspent coin is able to spent, and
secure, which means that it maintains ledger indistinguishability, transaction non-malleability, and
balance correctness.

The DAP operations (Mint, Pour, etc.) can be generalized to nearly any cryptocurrency. The
security guarantees of ledger indistinguishability (no information is provided by transactions other
than that which is strictly public), and transaction non-malleability (transactions cannot be mod-
ified and still be valid) provide the core differentiator as an anonymous payment system. The
balance correctness guarantee (cannot spend more coins that one’s unspent balance) is a necessity
for any viable cryptocurrency. Zerocash is an implementation of a DAP which makes extensive use
of zk-SNARKs in its operations.

The Pour operation, where coins are combined, subdivided, and moved is the essential core of
Zerocash, as it facilitates the transfer of value between users. An instance of a Pour operation
involves the certain public commitments generated from the coins to be poured. A witness for
Pour are the private keys for the coins, as well as the specific amounts, sources, and destinations.
To maintain privacy protections, the witness must remain secret. To facilitate this a zk-SNARK
for Pour was created.

The program or algorithm for the Pour zk-SNARK accepts if the witness is valid for the given
instance under the rules of the DAP. The actual zk-SNARK used is the QAP zk-SNARK from
[BSCT+14]. However, rather than generate the circuit for the zk-SNARK via a high-level language
(e.g. the vnTinyRAM construction in [BSCT+14]), Zerocash uses a much more efficient “hand-
designed” circuit. The dominating operation in the circuit is the SHA-256 hash function. An
arithmetic circuit for SHA-256 was created “from scratch” which consisted of around 28,000 gates.
For comparison, implementing the same logic in C and “compiling” to TinyRAM via the method
detailed in [BSCG+13b] resulted in a circuit with 5.7 · 106 gates.

The circuit for the Pour zk-SNARK is constant. Thus, the same reference string and verification
state will be used in every Pour. The Setup procedure generates these public parameters (the
prepocessing phase for the zk-SNARK). Then, to create a transaction the zk-SNARK’s proof gen-
eration is performed using the witness which requires information only the valid coin owner should
know. The output of the proof generation is the proof π (only 288 bytes), and is appended to the
blockchain to record the transaction. The correctness of π can be efficiently verified by any user of
the system by performing the zk-SNARK’s verification operation. While the circuit itself ensures
balance correctness, the inherent properties of zk-SNARKs confer ledger indistinguishability and
transaction non-malleability.

5.1.1. zcash. The Zerocash system described in [BSCG+14] has been implemented as a real-world
cryptocurrency known as zcash. The protocol itself is an extension or “fork” of Bitcoin. zcash
maintains the transparent transactions of Bitcoin and adds optional private transactions known
as “shielded transactions” using the zk-SNARK method described above. While verification of
shielded transactions is fast (about the same as a verification of a transparent transaction), the
proof generation operation, which must be performed every time a user wishes to send coins, is
much more expensive than the counterpart in transparent transactions, totaling several minutes on
a powerful modern desktop. Perhaps because of this, at the time of writing only around 20% of all
zcash transactions are shielded transactions.

Rather than trust a single party to honestly generate the public parameters, the zcash cre-
ators designed a multi-party parameter generation scheme. This method was later formalized in
[BSCG+15]. Six people took part in the parameter generation, and the system is secure if at least
one of the parties was honest.
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Appendix A. STARKs

Although the multi-party parameter generation described in [BSCG+15] amortizes the required
trust in a zk-SNARK over several parties, it does not explicitly eliminate the need for trust. Eli
Ben-Sasson (author of cited works [BSCT+14], [BSCG+14], among others) has recently informally
revealed STARKs (succinct transparent arguments of knowledge) [Ben17] which do not require a
trusted party to perform the parameter generation. In addition, STARKs provide post-quantum
cryptography resistance. Proofs for STARKs do appear to be considerably larger, although [Ben17]
suggests some mitigations a cryptocurrency could use. As of the time of writing STARKs have yet
to formally appear in the literature.
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