
Fuzzing at Google
Today & Tomorrow

Kostya Serebryany <kcc@google.com>
NII Shonan Meeting:

Fuzzing and Symbolic Execution: Reflections, Challenges, and Opportunities
September 2019

mailto:kcc@google.com

Agenda

● Overview of fuzzing at Google
● Fuzz wider
● Fuzz deeper

Scope: Fuzzing C/C++ APIs (source code available)

Not in scope:

● Other languages
○ See cargo-fuzz and go-fuzz

● OS Kernels
○ See syzkaller

● Binaries w/o source code:
○ Useful for offensive security research (hi, Project Zero)

or for commercial service (hi, MSRD), or for legacy code
○ Counterproductive for 1-st party defensive research and general software quality

● Complete programs with main(), even with source.
○ Counterproductive! Need to Fuzz APIs instead

https://rust-fuzz.github.io/book/cargo-fuzz.html
https://github.com/dvyukov/go-fuzz
https://github.com/google/syzkaller

Sanitizing Google’s & everyone’s C++ code since 2008

○ Testing: ASan, TSan, MSan, UBSan (also: KASAN for kernel)

○ Fuzzing: libFuzzer, Syzkaller, OSS-Fuzz

○ Hardening in production: LLVM CFI, ShadowCallStack, UBSan

○ Testing in production: GWP-ASan

○ Hardware-assisted memory safety (Arm MTE)

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://llvm.org/docs/LibFuzzer.html
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://chromium.googlesource.com/chromium/src/+/master/docs/gwp_asan.md
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf

Testing vs Fuzzing

 // Test

 MyApi(Input1);

 MyApi(Input2);

 MyApi(Input3);

// Fuzz

while (true)

MyApi(

Fuzzer.GenerateInput());

5

Fuzzing @ Google started gaining traction ~ 2012

● Before ~2012: researchers used their own fuzzers
● First versions of ClusterFuzz (2012-04)

○ Internal, generation-based fuzzers
○ Running generated inputs on the entire Chrome built ASAN

● FFmpeg and thousand fixes (2014-01)
○ First, unguided mutations
○ Later, coverage-guided, ~500 more bugs in FFmpeg

● Still, only a handful of security researchers

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://security.googleblog.com/2014/01/ffmpeg-and-thousand-fixes.html

The Heartbleed
● 2011-12-31: Introduced into OpenSSL

● 😠

● 2014-03: Found independently by
○ Google's Neel Mehta: code audit
○ Codenomicon: specialized fuzzer

● 2015-04-07 (Hanno Böck):
○ AFL (out-of-process): 6 hours

● 2015-04-09 (Kostya Serebryany):
○ libFuzzer (in-process): 10 seconds 7

https://en.wikipedia.org/wiki/Heartbleed
https://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=4817504d069b4c5082161b02a22116ad75f822b1
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
http://blog.llvm.org/2015/04/fuzz-all-clangs.html

2014-2015: year of realization (for me)

● Fuzzing is not for elites - everyone must fuzz
● Blockers:

○ No easy-to-use-tools
○ Complicated build system integration
○ No continuous fuzzing services
○ No Awareness
○ No motivation
○ ...

libFuzzer
bool FuzzMe(const uint8_t *Data, size_t DataSize) { // my_api.cc

 return DataSize >= 3 &&

 Data[0] == 'F' &&

 Data[1] == 'U' &&

 Data[2] == 'Z' &&

 Data[3] == 'Z'; // :‑<

}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { // fuzz_me.cc

 FuzzMe(Data, Size);

 return 0;

}

% clang -g -fsanitize=address,fuzzer my_api.cc fuzz_me.cc && ./a.out

9

Fuzz Target
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

DoStuffWithYourAPI(Data, Size);

return 0;

}

● Consumes any data: {abort,exit,crash,assert,timeout,OOM} == bug

● Single-process

● Deterministic (need randomness? Use part of the input data as RNG seed)

● Does not modify global state (preferably)

● The narrower the better (fuzz small APIs, not the entire application)

10

● Independent from the fuzzing engine
○ Plug-compatible with most engines today, at least libFuzzer, AFL, honggfuzz
○ Simple standalone main() driver if you need one

● Used for
○ Fuzzing
○ Regression Testing in CI
○ Performance monitoring
○ Any other form of testing (in future)

● Is associated with a corpus (e.g. via BUILD files)
○ Manually selected representative inputs
○ Minimized corpus from fuzzing
○ Inputs for fixed bugs

Fuzz Target

https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/fuzzer/standalone/StandaloneFuzzTargetMain.c

libFuzzer: coverage-guided fuzzing

● Acquire the initial corpus of inputs for your API
● while (true)

○ Randomly mutate one input
○ Feed the new input to your API
○ new code coverage => add the input to the corpus

12

libFuzzer
● In-process only
● Corpus expansion guided by edge coverage and value profiles
● Mutations (partially) guided by data flow (CMP instrumentation)
● Relies on SanitizerCoverage instrumentation (LLVM-only)
● Supports “custom mutators” (aka mutator plugins)
● Tightly integrated with ASan/LSan/MSan/UBSan

○ E.g. calls LSan after very input where # mallocs != # frees
○ E.g. calls to sanitizer rt to produce better reports

● Corpus merging/minimization, crash minimization/cleansing, parallel fuzzing...
● Part of LLVM distribution

https://clang.llvm.org/docs/SanitizerCoverage.html

Fuzzing @ Google 2019: finds more vulns than anything else

● Chrome Browser
○ 8 years (In-process API fuzzing: 4 years)
○ 18K bugs (17.5K fixed, 4K: libFuzzer)
○ 4.5K vulnerabilities (99% fixed) (800+: libFuzzer)

● OSS-Fuzz (in-process only)
○ 3 years, 230 projects (and growing), 15K bugs, 13K fixed
○ 3.5K vulnerabilities (over 3K fixed; 2.4K: libFuzzer, 500: AFL)

● Server-side code (libFuzzer, AFL, Honggfuzz, in-process only):
○ 2000+ fuzz targets running 24/7

● ChromeOS, Android, Fucshia, …
● Self-service: hundreds (thousands?) of code owners, not security experts
● Fully automated: commit => run => report bugs => track until fixed

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz%20status%3AFixed%2Cverified&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz%20status%3AFixed%2Cverified%20libfuzzer&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz%20%20Type%3DBug-Security%20&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz%20status%3AFixed%2Cverified%20Type%3DBug-Security%20&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=-status%3AWontFix%2CDuplicate%20reporter%3Aclusterfuzz%20%20Type%3DBug-Security%20libfuzzer%20&can=1
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://github.com/google/oss-fuzz/tree/master/projects
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate%20status%3AVerified%20&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate%20Type%3DBug-Security%20&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate%20Type%3DBug-Security%20status%3AFixed%2Cverified%20&can=1
https://github.com/google/honggfuzz

Continuous fuzzing infrastructure is critical
● Scaling: compute, storage, fuzz targets, fuzzing engines, sanitizers
● Deduplication
● Bug reporting & tracking
● Fault tolerance
● Testcase minimization
● Regression testing (bisection)
● Statistics for fuzzer performance and crashes
● Friendly GUI
● Coverage dashboard ⇐ ask for demo if interested
● Experiment with strategies, new tools, etc

ClusterFuzz: https://github.com/google/clusterfuzz
● The infra behind OSS-Fuzz and Chrome fuzzing
● Runs at 25,000 cores at Google
● Thousands of in-process fuzz targets (libFuzzer, AFL)
● Hundreds of custom generation-based fuzzers
● Linux, Windows, macOS, Android
● Does everything mentioned on the previous slide

○ and even more than that

● Actively maintained and developed, open-source
○ External contributions are welcome :)

https://github.com/google/clusterfuzz

Fuzz Wider

Drive further adoption
Google Now:
● We control the build system => made fuzzing builds super easy
● Automated bug finding, reporting, and tracking
● Held FuzzIts, Fuzzathons, and Fuzzing weeks
● Advertized fuzzing in Google toilets worldwide, 4 times
● Fuzzing enforced in some cases by securit reviews
● Fix for a high/critical needs to contain a fuzz target (or explanation why not)
● Patch Reward Program for OSS

You can help:
● Teach fuzzing in college as part of the software development workflow
● Consult OSS and Commercial projects
● Add projects to OSS-Fuzz (and/or MSRD?)
● ???

18

https://testing.googleblog.com/2007/01/introducing-testing-on-toilet.html
https://www.google.com/about/appsecurity/patch-rewards/

Fuzz-Driven Development

● Kent Beck @ 2003 (?): Test-Driven Development
○ Great & useful approach (still, not used everywhere)
○ Drastically insufficient for security

● Kostya Serebryany @ 2017: Fuzz-Driven Development:
○ Every API is a Fuzz Target
○ Tests == “Seed” Corpus for fuzzing
○ Continuous Integration (CI) includes Continuous Fuzzing
○ Not specific to C++

19

https://en.wikipedia.org/wiki/Test-driven_development

Make it simpler

● Easier input split
● Don’t require BUILD file changes
● Automatically suggest targets to fuzz
● ???
● need your input: for me it’s already simple enough

Input Split
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

std::string s1 = <some part of “Data”>;

std::string s2 = <some other part of “Data”>;

int i1 = <yet another part of “Data”>

DoStuffWithYourAPI(s1, s2, i1);

return 0;

}

● Current solutions:
○ Ad hoc: so-so
○ FuzzedDataProvider: ok-ish
○ Protobufs (via LPM): powerful, but too heavy

21

https://github.com/google/fuzzing/blob/master/docs/split-inputs.md
https://github.com/llvm/llvm-project/blob/master/compiler-rt/include/fuzzer/FuzzedDataProvider.h
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md#example-protocol-buffers

Proposal: C++ attribute (to avoid build changes)

[[fuzz]]

void MyApi(const uint8_t *Data, size_t Size) {…}

22

Proposal: C++ attribute

[[fuzz]]

void MyApi(const std::string &s) {…}

[[fuzz]]

void AnotherApi(const std::vector<uint8_t> &v) {...}

23

Proposal: C++ attribute

[[fuzz]]

void MyApi(const T &Data) {…}

24

Proposal: C++ attribute

[[fuzz]]

void MyApi(const T &Data) {…}

std::vector<uint8_t> serialize(const T&);

T deserialize(const std::vector<uint8_t> &);

T mutate(const T&); // optional

25

FUDGE: (mostly) automated fuzz target generation

https://ai.google/research/pubs/pub48314

Fuzzing is not only about finding crashes

● Differential fuzzing
○ Anything that has two implementations and a way to compare

outputs: crypto, compression, rendering, …
○ assert(OptimizedFoo(InputData) == ReferenceFoo(InputData))
○ CVE-2017-3732, a carry propagating bug in OpenSSL

● Self-differential fuzzing
○ Single API, but different ways to get from A to B
○ assert(2*X == X + X); // for a bignum class

● Round-trip fuzzing
○ assert(Uncompress(Compress(Input)) == Input)

https://www.openssl.org/news/secadv/20170126.txt

Fuzz Deeper

We can’t improve what we can’t measure
● Time to retire LAVA & CGC

○ Too small & artificial
○ Benchmarks with main() are counterproductive

● github.com/google/fuzzer-test-suite
○ ~20 fuzz targets based on fixed revisions of real OSS projects
○ Varying difficulty: from heartbleed (<10 seconds) to CVE-2017-3735 (5 CPU years)
○ Main goal: find more coverage
○ Infra to run on GCE and compare results
○ Was used to measure and prove several improvements in libFuzzer
○ But: still too few benchmarks and already requires lots of CPU

● Future: continuous A/B benchmarking as a side effect of continuous fuzzing
○ If/when implemented in ClusterFuzz will benchmark on 25K cores

https://github.com/google/fuzzer-test-suite
https://www.openssl.org/news/secadv/20170828.txt

New signals for corpus expansion
● Boolean edge coverage (everyone)
● Edge counters (like in AFL) - unconfirmed by benchmarking
● Value profiles: for ‘A < B’ use HammingDistance(A, B) as a signal

○ Works like magic on tiny tests
○ Improves results sometimes, but blows up the corpus. Need to tune further.

● Stack depth instrumentation - limited usefulness for stack overflows.
● ???

https://github.com/llvm-mirror/compiler-rt/blob/master/test/fuzzer/FourIndependentBranchesTest.cpp

Guiding the mutations
● Data Flow Substitution

○ During execution: observe CMP(A,B)
○ During mutation: find A in the input and replace with B

● DFT-based fuzzing
○ Data Flow Trace via taint tracking (DFSan)
○ “What bytes of the given input flow into a given CMP”?
○ Automatically detect which function to focus on (e.g. based on coverage and input frequency)
○ During mutation use DFT to choose which bytes to mutate
○ Again: works magically on tiny tests. Unconfirmed on large ones, needs tuning.

● Dictionaries (meh, but still works well)

● ML maybe? Reinforcement learning looks promising

https://github.com/google/oss-fuzz/issues/1632

● To user: is my fuzz target already good?
○ Determinism
○ Performance / RAM consumption
○ Shallow bugs? OOMs? Timeouts?
○ Seed corpus coverage, Full corpus coverage
○ Coverage discoverability (from empty corpus)

● From user:
○ More seeds, where to focus, ???

● Annoy the user until morale coverage improves

Feedback to and from user

https://github.com/google/fuzzing/blob/master/docs/good-fuzz-target.md

Structure-aware fuzzing

● Input type is a complicated data structure
○ Compressed? Encrypted? CRCs? TLV?

● Bitflips: valid in ⇒ invalid out (majority of mutations)
● Structure-aware: valid in ⇒ valid out
● For tree-like structures:

○ Mutate the leaf data fields
○ Mutate the tree structure while keeping it valid

● libFuzzer: delegate mutation to the user via “custom mutators”

https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md

● https://github.com/google/libprotobuf-mutator
○ Takes a proto object in memory and applies one local mutation
○ Integration with libFuzzer via a “custom mutator”
○ Mutations of the tree structure (add, remove, shuffle, splice subtrees)
○ Mutations of the data fields via callbacks to libFuzzer
○ Example: [.cc], [.proto]

● Can be used for other input types
○ Create MyType.proto
○ Concert proto to MyType

Fuzzing Protobuf Consumers

https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator/blob/master/examples/libfuzzer/libfuzzer_example.cc
https://github.com/google/libprotobuf-mutator/blob/master/examples/libfuzzer/libfuzzer_example.proto

Example: sqlite3
● Sqlite3: strong focus on quality and security

○ “100% branch test coverage in an as-deployed configuration”

● Fuzzed on oss-fuzz for 2+ years, all 100+ bugs fixed (usually, within one day)

● New structure-aware fuzzer sqlite3_lpm_fuzzer: 30+ new bugs
http://crbug.com/940205

CREATE TEMPORARY TABLE Table0 (Col0 INTEGER, PRIMARY KEY(Col0 COLLATE RTRIM), FOREIGN KEY (Col0)
REFERENCES Table0); ALTER TABLE Table0 RENAME Col0 TO Col0;

==40263==ERROR: AddressSanitizer: heap-use-after-free on address 0x03b054e0 at pc 0x005c0948 bp 0xbff21e08 sp 0xbff21e04
READ of size 1 at 0x03b054e0 thread T0
 #0 0x5c0947 in renameTokenCheckAll sqlite3.c:102755
 #1 0x530c26 in sqlite3RenameTokenMap sqlite3.c:102779
 #2 0x52df05 in sqlite3ExprListSetName sqlite3.c:98359
 #3 0x54a575 in parserAddExprIdListTerm sqlite3.c:147491

https://www.sqlite.org/testing.html
https://github.com/google/oss-fuzz/tree/master/projects/sqlite3
https://bugs.chromium.org/p/oss-fuzz/issues/list?colspec=ID%20Type%20Component%20Status%20Proj%20Reported%20Owner%20Summary&cells=ids&q=Proj%3Dsqlite3&can=1
https://cs.chromium.org/chromium/src/third_party/sqlite/fuzz/sql_query_grammar.proto
https://bugs.chromium.org/p/chromium/issues/list?colspec=ID%20Pri%20M%20Stars%20ReleaseBlock%20Component%20Status%20Owner%20Summary%20OS%20Modified&q=sqlite3_lpm_fuzzer&can=1
http://crbug.com/940205

Summary

● Good progress with Fuzzing, esp. after ~2015, but not enough
○ All Chrome and OSS-Fuzz data is public, please take a look

● Need to Fuzz wider:
○ Drive further adoption with carrot (mostly) and stick (little bit)
○ Promote as a general testing technique, not just securty (fuzz-driven development)
○ Remove roadblocks, make fuzzing as easy as breathing (e.g. no BUILD file changes)
○ (Semi-)automatically discover fuzz targets

● Need to Fuzz deeper:
○ Large scale non-artificial benchmarking as a byproduct of actual fuzzing
○ Find new signals for corpus expansion and for guiding the mutations
○ Improve the User ⇔ Fuzzer feedback loop
○ More structure-aware fuzzing

