
1 Factoring algorithm

We start off by analysing CVP for the lattice and vector
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and assume that ci > 0.
Suppose that b is the closest vector in L to a, given by
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In some sense B controls how big ei gets. The bigger B gets the bigger

ei gets.
Suppose that ei 6= 0 for all i. If any of them is zero we can just repeat

this analysis with a smaller lattice probably.
By Minkowski’s lattice point theorem, we have
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and if we assume ei is somewhat random in a small range we immediately

see that ε ≈ O(N), which tells us we need roughtly O
(

N
logNn

)
lattices to

obtain a fac-relation, which is pretty trash.
//todo: approx ei with B but honestly looks quite bad lol
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