
 1 

PAIRUP-MS Documentation and Example 
version 1.2 (July 3, 2018) 

 
Yu-Han Hsu, Harvard Medical School 

 
Introduction 
 
PAIRUP-MS (Pathway Analysis and Imputation to Relate Unknowns in Mass Spectrometry-based metabolite 
data) is a suite of computational methods for analyzing unknown signals in mass spectrometry (MS)-based 
untargeted metabolomics datasets. PAIRUP-MS consists of three main components: (1) a data processing 
pipeline for cleaning, processing, and preparing the metabolite data for downstream analyses, (2) an imputation-
based approach for pairing up unknown signals across two datasets, which would enable meta-analysis of 
matched signals across studies, and (3) a pathway annotation and enrichment analysis framework that links the 
unknown signals to plausible biological functions, without needing to confirm their chemical identities. 
 
PAIRUP-MS source code on GitHub (https://github.com/yuhanhsu/PAIRUP-MS) is split into three sub-
directories, including DataProcessing, ImputationMatching, and PathwayAnalysis, corresponding to each of the 
components described above. A brief description of all scripts and an example of how to run them are provided 
in this documentation. In general, all input and output files are tab-delimited text files unless specified otherwise, 
except for plots that are stored as PDFs. The example uses randomized data generated for testing purpose only 
and does not capture real biological relationships. 
 
We note that while the methods in PAIRUP-MS were designed to be run in a streamlined manner, each 
component can be used independently depending on the characteristics of your datasets and your analysis 
needs. For example, you can perform data processing using an alternative approach and still apply the matching 
method to your version of cleaned data. It is also possible to apply the pathway method to non-MS-based dataset 
without any m/z information. 
 
Finally, an additional sub-directory, DataForPaper, contains several data files used in the PAIRUP-MS paper 
(https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006734) for which we have the 
permission to release publically. Description for each data file is provided in the last section of this 
documentation. 
 
 
Software and Hardware Requirements 
 
All scripts were tested using R v3.2 or Python v2.7. The R scripts make use of the following R packages (and 
their dependencies): moments (v0.14), lawstat (v3.0), plyr (v1.8.4), mice (v2.25), abind (v1.4-3), ggplot2 (v2.2.1), 
and ROCR (v1.0-7). Some Python scripts require scipy (v0.16.0). 
 
Memory and run time will depend on the size of your datasets. For reference, for our largest dataset (containing 
~580 samples and ~15,000 metabolite signals), DataProcessing scripts took a total of ~1 day to run, 
ImputationMatching took < 12 hours, and PathwayAnalysis took ~2 days (with “ConstructAnnotationMatrix.py” 
taking most of the time). Maximum memory requirement was < 14 GB. 
 
  



 2 

1. Data Processing 
 
Overview 
 
The DataProcessing pipeline consists of four main steps: (1) quality control (QC) that adjusts for measurement 
variation associated with technical artifacts and remove samples, metabolite signals, and data points with noisy 
trends, (2) remove samples and signals based on percentage of missingness, (3) impute any remaining missing 
values, and (4) adjust for covariates and perform inverse normal transformation step. While QC should be 
separately performed on data generated by each profiling experiment, the other three steps are applied to the 
combined dataset after merging QC’ed data from different profiling experiments/methods. An important note is 
that our QC procedure requires the presence of internal standards and interspersed control samples in the raw 
profiling data (i.e. standard design used by Broad Metabolomics Platform), so it may not be applicable to all 
profiling platforms. However, the procedures after QC are not platform-dependent. 
 
 
DataProcessing Scripts and Other Provided Files  
 
Location File Name Description 
src/ QC_submission_script.r R script for running QC procedure 

QC_step1_normalization.r R script for sample and signal normalization (called by 
QC_submission_script.r) 

Smoothed_Spline_Normalization_Breaks.r R script for spline-based normalization function (called 
by QC_step1_normalization.r) 

QC_step2_postnormFiltering.r R script for post-normalization filtering (called by 
QC_submission_script.r) 

QC_filteredInfo.r R script for summarizing data filtered during QC 
MissingnessFilter.r R script for filtering based on missingness 
MissingValueImputation.r R script for missing value imputation 
AdjustCov_InvNorm.r  R script for covariate adjustment and inverse normal 

transformation 
example/ example_raw_data_C8-pos.txt Raw metabolite profiling data (C8-pos method) 

example_raw_data_C18-neg.txt Raw metabolite profiling data (C18-neg method) 
example_sample_run_window.txt Sample run window annotation 
example_phenotype_data.txt Sample phenotype data 
example_QC_C8-pos_param.r Config file for QC_submission_script.r (C8-pos) 
example_QC_C18-neg_param.r Config file for QC_submission_script.r (C18-neg) 
example_MissingnessFilter_param.r Config file for MissingnessFilter.r 
example_MissingValueImputation_param.r Config file for MissingValueImputation.r 
example_AdjustCov_InvNorm_param.r Config file for AdjustCov_InvNorm.r 
example_DataProcessing_submission.sh Shell script to test run all DataProcessing scripts using 

the example data and config files 
 
 
Example Commands and Output Description 
 
The following command line commands (also in “example_DataProcessing_submission.sh”) should be executed 
in DataProcessing/example/ directory. 
 
Step 1: Running QC (data normalization and noise filtering) 
 
Command: 
$ Rscript ../src/QC_submission_script.r example_QC_C8-pos_param.r 
$ Rscript ../src/QC_submission_script.r example_QC_C18-neg_param.r 
 
Output: The following files (or directories) can be found in the output directory (e.g. QC_output_C8-pos/). 



 3 

File/Directory Name Description 
logfile.txt Log file for QC procedure 
Metabolite_info.txt List of all input signals with their mass-to-charge ratio (m/z) 

and retention time (RT) information 
Metabolite_raw_summaries.txt Summary statistics of all input signals 
BreakpointDetection/ Directory containing text files and plots describing locations of 

detected breakpoints for each signal 
spline_plots/ (optional) Directory containing plots overlaying control sample spline fits 

on metabolite abundance vs. run order 
XISPPnorm_C8-pos.txt Internal standard (IS) and control sample normalized 

metabolite data 
Biorec_Var.txt Variance of second set of control samples (not used for 

normalization) in normalized data 
Filtering_samples.txt (not generated in example) List of filtered samples (with outlier IS values) 
Filtering_metabolites.txt List of filtered signals and reasons for removing them 
Filtering_points.txt List of filtered data points and reasons for removing them 
Filtering_windows.txt List of filtered windows (with outlier mean/variance) 
X_QCed_C8-pos_withcontrols.txt QC’ed metabolite data for control + experimental samples 
X_QCed_C8-pos.txt *** QC’ed metabolite data for experimental samples 
Metabolites_QCpass.txt List of signals that passed QC 
QCed_plots/ (optional) Directory containing QC’ed metabolite abundance vs. run 

order plots 
All_metabolites_mz_vs_rt_Known.pdf Plot of m/z vs. RT for known vs. unknown signals 
Filtered_metabolites_mz_vs_rt.pdf 
Filtered_metabolites_mz_vs_rt_50miss.pdf 
Filtered_metabolites_mz_vs_rt_cvPP.pdf 
Filtered_metabolites_mz_vs_rt_Var_diff.pdf 
Filtered_metabolites_mz_vs_rt_Breaks.pdf 
(not all generated in example) 

Plots of m/z vs. RT for filtered signals removed for different 
reasons 

Filtered_metabolites_abundance.pdf Plot comparing abundance of filtered vs. unfiltered signals 
Filtered_metabolites_count.txt Number of known vs. unknown signals filtered for different 

reasons 
 
*** “X_QCed_C8-pos.txt” is used as input of next step and contains a signal x sample data matrix. Missing values 
are stored as “NA”. 
 
 
Step 2: Filtering samples and signals based on missingness 
 
Command: 
$ Rscript ../src/MissingnessFilter.r example_MissingnessFilter_param.r 
 
Step 3: Missing value imputation 
 
Command: 
$ Rscript ../src/MissingValueImputation.r example_MissingValueImputation_param.r 
 
Step 4: Covariate adjustment and inverse normal transformation 
 
Command: 
$ Rscript ../src/AdjustCov_InvNorm.r example_AdjustCov_InvNorm_param.r  
 
The outputs of Steps 2-4 are “example_spQC_miss0.25.txt”, “example_spQC_miss0.25_medianMiceImp.txt”, 
and “example_spQC_miss0.25_medianMiceImp_adjAgeSex_invNorm.txt”, respectively, and each contains a 
sample x signal data matrix. Missing values are stored as “NA”. 
 



 4 

2. Imputation-based Matching 
 
Overview 
 
The ImputationMatching pipeline consists of six steps: (1) impute the abundance of Dataset 1 signals in Dataset 
2 samples and vice versa, (2) pair up signals across the two datasets using m/z + imputation-based correlation, 
(3) pair up signals using m/z + RT (for comparison against step 2), (4) generate “combined” adduct ion setting 
matches, (5) generate “unique” or “reciprocal” match type matches, and (6) calculate statistics of matched shared 
known metabolites (can be used to evaluate matching performance). Not all steps have to be run sequentially 
(e.g. step 3 is independent from steps 1 and 2) and some steps may need to be repeated using different 
parameter settings before moving on to the next step (e.g. step 4 requires both “noAdduct” and “adduct” matches 
to have been generated in previous steps). Please see Methods in the PAIRUP-MS paper for detailed 
descriptions of all relevant parameters for this pipeline. 
 
 
ImputationMatching Scripts and Other Provided Files 
 
Location File Name Description 
src/ ImputeSignals.r R script for imputing signals across datasets 

MatchSignalsByImp.r R script for imputation-based matching 
MatchSignalsByPredRt.r R script for RT-based matching 
Match_MZ_Function.r R script for function to check for m/z 

agreement (called by MatchSignalsByImp.r 
and MatchSignalsByPredRt.r) 

GetCombinedMatches.py Python script for generating matches with 
“combined” adduct ion setting 

GetUniqueReciprocalMatches.py Python script for generating matches with 
“unique” and “reciprocal” match types 

GetMatchedKnownStats.r R script for statistics of matched shared known 
metabolites 

example/ example_met_data_1.txt Sample x signal abundance z-score matrix for 
Dataset 1 

example_met_data_2.txt Sample x signal abundance z-score matrix for 
Dataset 2 

example_met_names_1.txt List of signals in Dataset 1 file above 
example_met_names_2.txt List of signals in Dataset 2 file above 
example_shared_knowns.txt Known metabolites shared by the two datasets 
example_met_info_1.txt m/z and RT for Dataset 1 signals 
example_met_info_2.txt m/z and RT for Dataset 2 signals 
example_ImputeSignals_param.r Config file for ImputeSignals.r 
example_MatchSignalsByImp_noAdduct_param.r 
example_MatchSignalsByImp_adduct_param.r 

Config files for MatchSignalsByImp.r 
(only differ in adduct ion setting) 

example_MatchSignalsByPredRt_noAdduct_param.r 
example_MatchSignalsByPredRt_adduct_param.r 

Config files for MatchSignalsByPredRt.r 
(only differ in adduct ion setting) 

example_GetCombinedMatches.cfg Config file for GetCombinedMatches.py 
example_GetUniqueReciprocalMatches.cfg Config file for 

GetUniqueReciprocalMatches.py 
example_GetMatchedKnownStats_param.r Config file for GetMatchedKnownStats.r 
example_ImputationMatching_submission.sh Shell script to test run all ImputationMatching 

scripts using the example data and config files 
 
 
Example Commands and Output Description 
 
The following command line commands (also in “example_ImputationMatching_submission.sh”) should be 
executed in ImputationMatching/example/ directory. 



 5 

 
Step 1: Imputing signals across datasets 
 
Command: 
$ Rscript ../src/ImputeSignals.r example_ImputeSignals_param.r 
 
Output: “example_imp_data_1.txt” and “example_imp_data_2.txt” contain imputed signal abundance for Dataset 
1 (Dataset 1 samples x Dataset 2 signals) and Dataset 2 (Dataset 2 samples x Dataset 1 signals), respectively. 
 
 
Step 2: Matching signals using imputation 
 
Command: 
$ Rscript ../src/MatchSignalsByImp.r example_MatchSignalsByImp_noAdduct_param.r 
$ Rscript ../src/MatchSignalsByImp.r example_MatchSignalsByImp_adduct_param.r 
 
Output: The following files with (X) = “noAdduct” or “adduct” are generated. 
File Name Description 
example_1-2_MatchedSignals_ByImp1_(X)MzMode.txt Matching from Dataset 1 to 2 using imputation-based 

correlation calculated across Dataset 1 samples 
example_2-1_MatchedSignals_ByImp1_(X)MzMode.txt Matching from Dataset 2 to 1 using imputation-based 

correlation calculated across Dataset 1 samples 
example_1-2_MatchedSignals_ByImp2_(X)MzMode.txt Matching from Dataset 1 to 2 using imputation-based 

correlation calculated across Dataset 2 samples 
example_2-1_MatchedSignals_ByImp2_(X)MzMode.txt Matching from Dataset 2 to 1 using imputation-based 

correlation calculated across Dataset 2 samples 
example_1-2_MatchedSignals_ByImpAll_(X)MzMode.txt Matching from Dataset 1 to 2 using imputation-based 

correlation calculated across all samples 
example_2-1_MatchedSignals_ByImpAll_(X)MzMode.txt Matching from Dataset 2 to 1 using imputation-based 

correlation calculated across all samples 
 
Each row in the files is a pair of matched signals. The columns/headers of the files include: 
“Metabolite1”, “Method1”, “Ion1”, “MZ1”, “RT1”: name, profiling method, ionization mode, m/z, and RT of signal 
in the reference dataset (first dataset in file name); “Metabolite2”, “Method2”, “Ion2”, “MZ2”, “RT2”: name, profiling 
method, ionization mode, m/z, and RT of signal in the matched dataset (second dataset in file name); “DeltaMZ”, 
“DeltaRT”: differences in m/z and RT between the matched signal pair; “Match_Corr”: imputation-based 
correlation between the matched signal pair. 
 
 
Step 3: Matching signals using RT 
 
Command: 
$ Rscript ../src/MatchSignalsByPredRt.r example_MatchSignalsByPredRt_noAdduct_param.r 
$ Rscript ../src/MatchSignalsByPredRt.r example_MatchSignalsByPredRt_adduct_param.r 
 
Output: “example_1-2_MatchedSignals_ByPredRt_(X)MzMode.txt” and “example_2-1_MatchedSignals_ 
ByPredRt_(X)MzMode.txt” (with (X) = “noAdduct” or “adduct”) have similar format as the output from Step 2. The 
only difference is that the last two columns/headers are “PredRT” and “DeltaPredRT” (instead of “DeltaRT” and 
“Match_Corr”), which are the predicted RT for the reference signal in the matched dataset and the difference 
between the predicted RT and the RT of the matched signal. 
 
 
Step 4: Generating “combined” matches 
 
Command: 



 6 

$ python ../src/GetCombinedMatches.py example_GetCombinedMatches.cfg 
 
Output: “example_1-2_MatchedSignals_ByImp1_combinedMzMode.txt” has the same format as output from 
Step 2. 
 
*** NOTE: This step can take output from Step 2 or 3 as input, but requires the appropriate “noAdduct” and 
“adduct” matching files to both have been generated. 
 
 
Step 5: Generating “unique” and “reciprocal” matches 
 
Command: 
$ python ../src/GetUniqueReciprocalMatches.py example_GetUniqueReciprocalMatches.cfg 
 
Output: “example_1-2_UNIQUE_MatchedSignals_ByPredRt_noAdductMzMode.txt” and “example_1-2_ 
RECIPROCAL_MatchedSignals_ByPredRt_noAdductMzMode.txt” have the same format as output from Step 3. 
 
*** NOTE: This step can take output from Step 2, 3, or 4 as input. 
 
 
Step 6: Calculating statistics for matched shared knowns 
 
Command: 
$ Rscript ../src/GetMatchedKnownStats.r example_GetMatchedKnownStats_param.r 
 
Output: The following files are generated. 
File Name Description 
example_1-2_MatchedKnowns_ByImp1_noAdductMzMode.txt 
example_2-1_MatchedKnowns_ByImp1_noAdductMzMode.txt 
example_1-2_MatchedKnowns_ByImp2_noAdductMzMode.txt 
example_2-1_MatchedKnowns_ByImp2_noAdductMzMode.txt 
example_1-2_MatchedKnowns_ByImpAll_noAdductMzMode.txt 
example_2-1_MatchedKnowns_ByImpAll_noAdductMzMode.txt 
example_1-2_MatchedKnowns_ByPredRt_noAdductMzMode.txt 
example_2-1_MatchedKnowns_ByPredRt_noAdductMzMode.txt 

Subsets of matches found in the 
corresponding “MatchedSignals” files 
described above. Only contain matches 
made for shared known metabolites 
(which were treated as 
unshared/unmatched during matching). 
Format is described below. 

example_1-2_MatchedKnowns_ByImp1_noAdductMzMode_Plots.pdf 
example_2-1_MatchedKnowns_ByImp1_noAdductMzMode_Plots.pdf 
example_1-2_MatchedKnowns_ByImp2_noAdductMzMode_Plots.pdf 
example_2-1_MatchedKnowns_ByImp2_noAdductMzMode_Plots.pdf 
example_1-2_MatchedKnowns_ByImpAll_noAdductMzMode_Plots.pdf 
example_2-1_MatchedKnowns_ByImpAll_noAdductMzMode_Plots.pdf 

Plots comparing R2 between “Known” 
(“Metabolite1”), “Match” (“Metabolite2”), 
and “Real” (“RealMetabolite”) 
metabolites (see explanations below). 

 
The columns/headers of the “MatchedKnowns” text files are the same as their “MatchedSignals” counterparts 
except for a few additional columns: “RealMetabolite”: true match for Metabolite1 in the second dataset; 
“CorrectMatch”: whether Metabolite2 == RealMetabolite; “Real_Corr”: imputation-based correlation between 
Metabolite1 and RealMetabolite (only present in imputation-based matching files); “Match_Real_ObsCorr”: 
observed correlation between Metabolite2 and RealMetabolite in second dataset. 
 
*** NOTE: This step can take output from Steps 2-5 as input. 
 
  



 7 

3. Pathway Annotation and Enrichment Analysis 
 
Overview 
 
The PathwayAnalysis pipeline can be split into two parts. Part A deals with generating pathway/metabolite set 
annotations for metabolite signals and include the following steps: (1) create metabolite sets using CPDB 
pathway annotations, (2) derive metabolic components (MCs) that capture correlation patterns in a metabolite 
profiling dataset, (3) calculate MC-metabolite set enrichment, (4) construct signal x metabolite set annotation 
matrix (i.e. reconstitution), (5) generate label confidence scores for reconstituted metabolite sets, and (6) perform 
ROC/AUC analysis to assess robustness of annotation matrix. Part B uses the generated annotations to perform 
pathway enrichment analysis and include the following steps: (1) identify trait-associated signals (in a second 
dataset) and generate null lists of signals ranked by association with permuted traits, (2) convert signal lists for 
second dataset into (shared known or matched) signal lists for first dataset, (3) calculate nominal metabolite set 
enrichment p-values, (4) calculate permutation p-values by comparing observed vs. null results, and (5) calculate 
false discovery rate (FDR) and output final metabolite set enrichment results. Note that Part A only needs to be 
performed once to generate pathway annotations for any given reference dataset, while Part B can be repeated 
many times to perform enrichment analyses for different traits measured in different datasets. 
 
 
PathwayAnalysis Scripts and Other Provided Files 
 
Location File Name Description 
src/ CPDB/CPDB_pathways_metabolites_release31.tab 

CPDB/CPDB_pathways_genes_release31.tab 
Metabolic pathway annotations downloaded 
from ConsensusPathDB (“genes” file not used 
but is provided for reference) 

CreateMetaboliteSets.py Python script for creating metabolite sets 
DeriveMetabolicComponents.r R script for deriving MCs 
CalculateMcMetSetEnrichment.py Python script for calculating MC-metabolite set 

enrichment 
ConstructAnnotationMatrix.py Python script for constructing signal x 

metabolite set annotation matrix 
CalculatePostReconEnrichment.py Python script for calculating label confidence 

scores for reconstituted metabolite sets 
GenerateRocCurveData.py Python script to generate input data file for 

ROC/AUC analysis in R 
PlotRocCurvesWithAuc.r R script for generating ROC curve and AUC 
IdTraitSignals_Pearson.py Python script to identify signals associated 

with a continuous trait 
IdNullTraitSignals_Pearson.py Python script to generate null lists of signals 

ranked by association with permuted 
continuous traits 

IdTraitSignals_Ranksum.py Python script to identify signals associated 
with a dichotomous/binary trait 

IdNullTraitSignals_Ranksum.py Python script to generate null lists of signals 
ranked by association with permuted binary 
traits 

GetMatchedSignalLists.py Python script to convert signal lists in one 
dataset to (shared known or matched) signal 
lists in another dataset 

CalculateRanksumP.py Python script to calculate nominal metabolite 
set enrichment p-values for list(s) of signals 

CalculateFisherP.py Python script to calculate nominal metabolite 
set over-representation p-values for list(s) of 
known metabolites 

CalculatePermP.py Python script to calculate permutation p-
values for list(s) of nominal p-values 



 8 

CalculateFDR.py Python script to calculate FDR for different 
permutation p-values and output final 
metabolite set enrichment results 

example/ example_met_data_1.txt Sample x signal abundance z-score matrix for 
Dataset 1 

example_met_data_1_knowns.txt List of known metabolites in Dataset 1 
example_met_data_1_knownIDs.txt Table of known metabolite database IDs 
example_met_data_2_covAdj.txt Sample x signal covariate-adjusted 

abundance z-score matrix for Dataset 2 
example_phenotype_data_2.txt Sample phenotype data for Dataset 2 
example_2-1_shared_knowns.txt Known metabolites shared by the two datasets 
example_2-1_matched_signals.txt Matched signals between the two datasets 
example_CreateMetaboliteSets.cfg Config file for CreateMetaboliteSets.py 
example_DeriveMetabolicComponents_param.r Config file for DeriveMetabolicComponents.r 
example_CalculateMcMetSetEnrichment.cfg Config file for 

CalculateMcMetSetEnrichment.py 
example_ConstructAnnotationMatrix.cfg Config file for ConstructAnnotationMatrix.py 
example_CalculatePostReconEnrichment.cfg Config file for 

CalculatePostReconEnrichment.py 
example_GenerateRocCurveData.cfg Config file for GenerateRocCurveData.r 
example_PlotRocCurvesWithAuc_param.r Config file for PlotRocCurvesWithAuc.r 
example_IdTraitSignals_Pearson.cfg Config file for IdTraitSignals_Pearson.py 
example_IdNullTraitSignals_Pearson.cfg Config file for IdNullTraitSignals_Pearson.py 
example_IdTraitSignals_Ranksum.cfg Config file for IdTraitSignals_Ranksum.py 
example_IdNullTraitSignals_Ranksum.cfg Config file for IdNullTraitSignals_Ranksum.py 
example_GetMatchedSignalLists.cfg 
example_GetMatchedSignalLists_sharedKnowns.cfg 

Config files for GetMatchedSignalLists.py 
(second file only outputs shared knowns) 

example_CalculateRanksumP.cfg 
example_CalculateRanksumP_null.cfg 

Config files for CalculateRanksumP.py 
(for observed and null p-values, respectively) 

example_CalculateFisherP.cfg Config file for CalculateFisherP.py 
example_CalculatePermP.cfg 
example_CalculatePermP_null.cfg 

Config files for CalculatePermP.py 
(for observed and null p-values, respectively) 

example_CalculateFDR.cfg Config file for CalculateFDR.py 
example_PathwayAnalysis.sh Shell script to test run all PathwayAnalysis 

scripts using the example data and config files 
 
 
Example Commands and Output Description 
 
The following command line commands (also in “example_PathwayAnalysis_submission.sh”) should be 
executed in PathwayAnalysis/example/ directory. 
 
Step A-1: Creating metabolite sets 
 
Command: 
$ python ../src/CreateMetaboliteSets.py example_CreateMetaboliteSets.cfg  
 
Output: “example_data_1_CPDB_2Mets_MetSet-Metabolites-Pathways.txt” contains three columns/headers: 
“SET_ID”, “Metabolites”, and “Pathways”. Metabolites are separated by “;” and pathways are separated by “|”. 
 
 
Step A-2: Deriving metabolic components 
 
Command:    
$ Rscript ../src/DeriveMetabolicComponents.r example_DeriveMetabolicComponents_param.r 
 



 9 

Output: “example_data_1_MetaboliteCorMatrix.txt.gz” is an optional, gzipped file containing the signal-signal 
correlation matrix; “example_data_1_McStatistics.txt” contains statistics for each MC (i.e. standard deviation, 
proportion and cumulative proportion of variance explained); “example_data_1_McScoreMatrix.txt” contains the 
signal x MC score matrix that is used for reconstitution below. 
 
 
Step A-3: Calculating MC-metabolite set enrichment 
 
Command:  
$ python ../src/CalculateMcMetSetEnrichment.py example_CalculateMcMetSetEnrichment.cfg 
 
Output: “example_data_1_MC_CPDB_2Mets_SetEnrichment_fdr20.txt” lists the most enriched metabolite set(s) 
(“BestP”, “BestFDR”, “BestSets”) and all enriched sets at 5% FDR (“FDR0.05_Sets”) for each MC. 
 
 
Step A-3.5: Getting list of MCs to use for reconstitution 
 
Command:  
$ tail -n +2 example_data_1_MC_CPDB_2Mets_SetEnrichment_fdr20.txt | cut -f 1 | head -10 > 
example_data_1_MC_CPDB_2Mets_SetEnrichment_top10MCs.txt 
 
Output: “example_data_1_MC_CPDB_2Mets_SetEnrichment_top10MCs.txt” lists the first 10 MCs. 
 
*** NOTE: The example command simply takes the first 10 MCs. But when using real data, you should be able 
to filter for MCs enriched for metabolite sets using the output from Step 3. 
 
 
Step A-4: Constructing signal x metabolite set annotation matrix 
 
Command: 
$ python ../src/ConstructAnnotationMatrix.py example_ConstructAnnotationMatrix.cfg 
 
Output: “example_data_1_SignalMetSetAnnotationMatrix_2Mets_top10MCs.txt” contains the signal x 
metabolite set annotation matrix (i.e. reconstituted metabolite sets). 
 
 
Step A-5: Calculating post-reconstitution metabolite set label confidence scores 
 
Command: 
$ python ../src/CalculatePostReconEnrichment.py example_CalculatePostReconEnrichment.cfg 
 
Output: “example_data_1_SignalMetSetAnnotationMatrix_2Mets_top10MCs_labelRankSumP.txt” contains the 
label confidence scores (rank-sum p-values) for each reconstituted metabolite set. 
 
 
Step A-6: Generating ROC curve and AUC using annotation matrix 
 
Command: 
$ python ../src/GenerateRocCurveData.py example_GenerateRocCurveData.cfg 
$ Rscript ../src/PlotRocCurvesWithAuc.r example_PlotRocCurvesWithAuc_param.r 
 
Output: 

(a) “example_data_1_SignalMetSetAnnotationMatrix_2Mets_top10MCs_confidentSets_rocData.txt” lists 
the reconstituted metabolite set scores and original binary membership labels of known metabolites. 



 10 

(b) “example_data_1_SignalMetSetAnnotationMatrix_2Mets_top10MCs_confidentSets_ROC-AUC.pdf” is 
a plot of the ROC curve generated by classifying known metabolites, with AUC value shown in legend. 

 
 
Step B-1: Identifying trait-associated signals + generating null signal lists 
 
Command: 
$ python ../src/IdTraitSignals_Pearson.py example_IdTraitSignals_Pearson.cfg 
$ python ../src/IdNullTraitSignals_Pearson.py example_IdNullTraitSignals_Pearson.cfg 
 
Output: 

(a) “example_2_Trait_PearsonStats.txt” contains Pearson correlation statistics between the continuous 
example trait and all Dataset 2 signals; “example_2_Trait_Pearson_p0.2_signals.txt” is a list of 
“significant” trait-associated Dataset 2 signals separated by “;”. 

(b) “example_2_NullTrait_Pearson_signals_55.txt” contains lists (rows) of Dataset 2 signals ranked by 
association with permuted trait values, also separated by “;”. 

 
Alternative Command: (same output format but for binary traits) 
$ python ../src/IdTraitSignals_Ranksum.py example_IdTraitSignals_Ranksum.cfg 
$ python ../src/IdNullTraitSignals_Ranksum.py example_IdNullTraitSignals_Ranksum.cfg 
 
 
Step B-2: Converting Dataset 2 signal lists to Dataset 1 signal lists 
 
Command: 
$ python ../src/GetMatchedSignalLists.py example_GetMatchedSignalLists.cfg 
 
Output: “example_2-1_Trait_Pearson_p0.2_signals.txt” and “example_2-1_NullTrait_Pearson_signals_55.txt” 
are lists of Dataset 1 signals corresponding to the Dataset 2 lists from the previous step; “example_2-
1_allMappedSignalList.txt” is a list of all mapped (shared known or matched) Dataset 1 signals. 
 
Alternative Command: (same output format but restricted to shared knowns) 
$ python ../src/GetMatchedSignalLists.py example_GetMatchedSignalLists_sharedKnowns.cfg 
 
 
Step B-3: Calculating nominal metabolite set enrichment p-values 
 
Command: 
$ python ../src/CalculateRanksumP.py example_CalculateRanksumP.cfg 
$ python ../src/CalculateRanksumP.py example_CalculateRanksumP_null.cfg 
 
Output: 

(a) “example_2-1_Trait_signals_MetSetRanksumP.txt” is a tab-delimited list of nominal p-values 
(corresponding to each metabolite set) calculated using observed trait-associated signals 

(b) “example_2-1_NullTrait_signals_MetSetRanksumP_55.txt” contains tab-delimited lists (rows) of nominal 
p-values calculated using null signal lists. 

 
Alternative Command: (same output format but test for “over-representation” using only known metabolites) 
$ python ../src/CalculateFisherP.py example_CalculateFisherP.cfg 
 
 
Step B-4: Calculating permutation p-values 
 
Command: 



 11 

$ python ../src/CalculatePermP.py example_CalculatePermP.cfg 
$ python ../src/CalculatePermP.py example_CalculatePermP_null.cfg 
 
Output: 

(a) “example_2-1_Trait_signals_MetSetPermP.txt” is a tab-delimited list of permutation p-values calculated 
using observed vs. null nominal p-values. 

(b) “example_2-1_NullTrait_signals_MetSetPermP_5.txt” contains tab-delimited lists (rows) of permutation 
p-values calculated using null vs. null nominal p-values. 

 
 
Step B-5: Calculating FDR + Outputting final metabolite set enrichment results 
 
Command: 
$ python ../src/CalculateFDR.py example_CalculateFDR.cfg 
 
Output: “example_2-1_Trait_signals_MetSetFdrEnrichment.txt” is a table summarizing the metabolite set 
enrichment results with columns/headers: “SET_ID”, “Nominal_P”, “Perm_P”, “FDR”, “Label_P” (label 
confidence socre), and “CPDB_Pathways” (original pathway labels for the metabolite set). Metabolite sets are 
first sorted by permutation p-value/FDR then by nominal p-value. 
  



 12 

4. Data for Paper 
 
Overview 
 
In the DataForPaper sub-directory, we provide individual-level metabolite profiling and phenotype data for the 
OE cohort analyzed in the PAIRUP-MS paper. Users can use this dataset as input into the PAIRUP-MS data 
processing pipeline. We also provide OE-BioAge matched signal pairs generated by our imputation-based 
matching method and the BioAge signal x metabolite set annotation matrix generated by the pathway 
reconstitution procedure. Users can use these files to partially replicate the BMI pathway analysis results 
reported in our paper. 
 
 
Data Files 
 
File Name Description 
OE_raw_data_C8-pos.txt Metabolite profiling data for OE samples from 4 different profiling 

methods in the Broad Metabolomics Platform OE_raw_data_C18-neg.txt 
OE_raw_data_HILIC-pos.txt 
OE_raw_data_HILIC-neg.txt 
OE_sample_run_window_C8-pos_C18-
neg_HILIC-pos.txt 

OE sample run window annotations for the respective profiling 
methods 

OE_sample_run_window_HILIC-neg.txt 
OE_phenotype_data.txt Phenotypic variables for the OE samples. “Group”: Lean, Obese, or 

Control; “Sex”: 1=male, 2=female; "Age” in years; “FastingTime”: 
hours since last meal; “BMI” in kg/m2; “BMI_Z”: age and sex-adjusted 
population-based BMI z-score 

OE-BioAge_shared_knowns.txt Shared known metabolites identified in both OE and BioAge cohorts 
OE-BioAge_matched_signals.txt OE-BioAge matched signal pairs generated using PAIRUP-MS 

imputation-based matching procedure 
BioAge_CPDB_2Mets_MetSet-
Metabolites-Pathways.txt 

CPDB metabolite sets containing at least 2 known metabolites 
measured in BioAge profiling data 

BioAge_SignalMetSetAnnotationMatrix_
2Mets_fdr0.05MCs.txt 

BioAge signal x metabolite set annotation matrix generated using 
PAIRUP-MS pathway reconstitution procedure 

BioAge_SignalMetSetAnnotationMatrix_
2Mets_fdr0.05MCs_labelRankSumP.txt 

Post-reconstitution label confidence scores for each metabolite set in 
the BioAge annotation matrix 

 
 


