

A Free and Open Source Verilog-to-Bitstream
Flow for iCE40 FPGAs

Yosys ● Arachne-pnr ● Project IceStorm

Clifford Wolf

Overview

Project IceStorm
– Tools and Documentation for

the Lattice iCE40 FPGA
Bitstream Formats (currently
supported: HX1K, HX8K)

Arachne-pnr
– An FPGA Place-and-Route

tool for iCE40 FPGAs

– Based on IceStorm Docs

IcoBoard (Demo)
– A Raspberry PI HAT

– Lattice HX8K FPGA

– Up to 20 PMODs for IO

(= about 200 IO pins)

Yosys
– A Verilog Synthesis Suite

– For FPGAs and ASICs

– Formal Verification

The IceStorm Flow

Verilog Sources

Yosys

Synthesis Script

BLIF File Arachne-pnr

Place&Route Script

IceStrom .TXT File

icepack

FPGA Bit-Stream

Physical Constraints

Part 1 of 4:

Project IceStorm

Lattice iCE40 Overview

● Family of small FPGAs (up to 7680 4-input LUTs in HX8K)
● Grid of tiles, the following tile types exist:

– Logic Tiles: 8x 4-input LUT with optional FF and carry logic

– RAM Tiles: Each RAMB/RAMT pair implements a 4 kbit SRAM

– IO Tiles: Each IO tile connects to two PIO pins and has one fabout
pin that connects to other external blocks (PLLs, global nets, etc.)

● Available in reasonable packages (e.g. HX1K in 144-pin TQFP)
● Cheapest dev board (Lattice iCEstick) costs under 25 $.

 Lattice iCEstick
from iCE40 LP/HX Family Data Sheet

Project IceStorm

● Project IceStorm aims at documenting the bit-stream format for
iCE40 FPGAs and providing low-level tools for working with iCE40
bit-streams.

● IceStrom introduces a simple ASCII
format for iCE40 FPGA configs.

● IceStrom provides tools for:
– .txt→.bin conversion and vice versa

– Converting .txt to a Verilog model

– Creating timing netlists from .txt

– Various tools to inspect .txt files

IceStorm Documentation

● It's all on teh Interwebs: http://www.clifford.at/icestorm/
● Prerequisites: Basic understanding of how FPGAs work internally.

This is a reference and not an introductory textbook!
● Also: It's not very well structured, so simply read it all. It's only a few pages.

For example: Most of the interconnect is explained in the section on LOGIC
Tiles, global nets and PLLs are covered in the section on IO Tiles..

● There are three parts to the documentation:
1) The written documentation on how the interconnect and the function blocks work

in principle.

2) An auto-generated HTML reference for all the configuration bits.

3) An auto-generated ASCII database file that can be used by tools to generate or
process FPGA bit-streams. Arachne-pnr for example is using this database files.

http://www.clifford.at/icestorm/

Some screenshots from IceStrom Docs:

Part 2 of 4:

Arachne-pnr

Arachne-pnr

● Arachne-pnr is a place and route tool for iCE40 FPGAs
● Input format: BLIF Netlist (Berkeley Logic Interchange Format)
● Output format: TXT FPGA Config (IceStorm ASCII Format)
● Performs the following operations (optionally controlled by script):

– Instantiate IO Cells and Global Clock Buffers

– Pack LUT, CARRY, FF Instances into iCE40 Logic Cells

– Place Design (currently only simulated annealing)

– Route Design

– Generate FPGA Config

Input Netlist Format

● Cell types compatible with Lattice iCE40 Technology Library

SB_IO, SB_GB_IO, SB_GB, SB_LUT4, SB_DFF*,
SB_RAM40_4K*, SB_PLL40*, SB_WARMBOOT

● Using BLIF as easy-to-parse netlist format
– Some non-standard extensions for parameters and attributes

– Simple example: .model top
.inputs a b c d
.outputs y
.gate SB_LUT4 I0=b I1=c I2=d I3=a O=y
.param LUT_INIT 0000011111111000
.end

Additional Input Files

● Physical Constraints File (.pcf)
– Using a similar format as the Lattice Tools

– Used primarily for IO pin placement

● Place-and-route Script (aka “passfile”)
– Defines which passes to execute

– And what options to use for this passes

– E.g. for using Yosys' Analytical Placer output with Arachne-pnr

Output Formats

● Primary Output:
– FPGA Config in IceStorm ASCII Format

– Can be converted using IceStorm tools to
● Timing Netlist (under construction)
● Behavioral Verilog Model
● FPGA Bit-stream

● Optional Additional Outputs:
– BLIF Netlist of all intermediate steps

– PCF File with assigned placements

Part 3 of 4:

Yosys

Yosys Open SYnthesis Suite

● Yosys can:
– Read Verilog, BLIF, Liberty Cell Libraries, ...

– Write Verilog, BLIF, EDIF, SPICE Decks, SMT2, …

– Perform RTL synthesis and logic optimization

– Map designs to FPGA and ASIC cell libraries

– Perform various formal verification tasks

… some say Yosys is “LLVM for Hardware”.

Existing Yosys Flows

● Currently there are two FOSS ASIC Flows that use Yosys:

– Qflow: http://opencircuitdesign.com/qflow/

– Coriolis2: https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/

– Multiple successful tape-outs – People make silicon with this!

● Synthesis for iCE40 FPGAs with Arachne-pnr and IceStorm as place-and-route
back-end.

● Synthesis for Xilinx 7-Series FPGAs with Xilinx Vivado as place-and-route
back-end.

● Yosys-smtbmc is a formal verification flow with support for multiple SMT solvers
(everything with SMT2 support, tested with: Z3, Yices, CVC4, MathSAT)

http://opencircuitdesign.com/qflow/
https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/

Example ASIC Synthesis Script
Yosys is controlled by scripts that execute Yosys passes that operate on the in-memory design.

For example:

read design
read_verilog mydesign.v

generic synthesis
synth -top mytop

mapping to mycells.lib
dfflibmap -liberty mycells.lib
abc -liberty mycells.lib
opt_clean

write synthesized design
write_edif synth.edif

Generic part →

Target-specific part →

Details of “synth” command

 begin:
 hierarchy ­check [­top <top>]

 coarse:
 proc
 opt_clean
 check
 opt
 wreduce
 alumacc
 share
 opt
 fsm
 opt ­fast
 memory ­nomap
 opt_clean

 fine:
 opt ­fast ­full
 memory_map
 opt ­full
 techmap
 opt ­fast
 abc ­fast
 opt ­fast

 check:
 hierarchy ­check
 stat
 check

Many Yosys commands are like scripts on their own: All they do is run a sequence of other
commands. For example the synth command is just an alias for (see also help synth):

Methods of Formal Verification in Yosys

(Off-topic here, but an important part of my work. :)

● SAT solving (built-in MiniSAT-based eager SMT solver, see help sat)

● Built-in equivalence checking framework (see help equiv_*)

● Creating miter circuits for equivalence or property checking (Verilog assert)

– Either solve with built-in solver or

– Export as BLIF and solve with e.g. ABC

● Creating SMT-LIB 2.5 models for circuits and properties that can be used with
external SMT solvers. This is what yosys­smtbmc does.

Part 4 of 4:

IcoBoard + Demo SoC

iCE40 Development Boards

● Nandland Go Board

– https://www.kickstarter.com/projects/1531311296/nandland-go-board-your-fpga-playground

● ICEd = an Arduino Style Board, with ICE FPGA

– https://hackaday.io/project/6636-iced-an-arduino-style-board-with-ice-fpga

● Wiggleport

– https://github.com/scanlime/wiggleport

● eCow-Logic pico-ITX Lattice ICE40

– http://opencores.org/project,ecowlogic-pico

● CAT Board

– https://hackaday.io/project/7982-cat-board

● IcoBoard

– http://icoboard.org/

● Lattice Dev Boards

– iCEstick Evaluation Kit

– iCE40-HX8K Breakout Board

– iCEblink40HX1K Evaluation Kit

– http://www.latticesemi.com/

https://www.kickstarter.com/projects/1531311296/nandland-go-board-your-fpga-playground
https://hackaday.io/project/6636-iced-an-arduino-style-board-with-ice-fpga
https://github.com/scanlime/wiggleport
http://opencores.org/project,ecowlogic-pico
https://hackaday.io/project/7982-cat-board
http://icoboard.org/
http://www.latticesemi.com/

IcoBoard – Open Hardware
iCE40 HX8K Raspberry Pi Hat

● Up to 20 PMOD ports
– 4 PMODs directly on board

– 16 PMODs via IcoX extension boards

– Almost 200 IO pins in total

● Possible Applications
– Intelligent Raspberry IO Expander

– Raspberry Pi as network enabled programmer/debugger

– On-demand HDL generation and bit-stream synthesis

● http://icoboard.org

http://icoboard.org/

Demo SoC – Motivation – Role of Raspberry Pi

● We built a small Demo SOC
– Uses about 50% of the HX8K logic resources

– Includes a 32 Bit Processor (RISC-V Compatible, GCC Toolchain)

● Our motivation is to demonstrate
– That our flow can handle nontrivial real-world designs

– That even a small 8k LUT FPGA can do big things

● In this Demo the Raspberry Pi is exclusively used as
– network-enabled programming and debug probe

– ssh-gateway for the SoC text console

Demo SoC – Simplified Block Diagram

128 kB
SRAM

32x32 LED
Matrix

Rotary
Encoder

Frame
Buffer

GPIO
Controller

Raspberry Pi

SRAM
Interface

32
 B

it
S

ys
te

m
 B

us

PicoRV32
32 Bit RISC-V ProcessorConsole

Prog. Upload

On-chip Debugger

IcoLink

Internal
BRAM Clock

Management
12 MHz

OSC

Synthesis Script for Demo SoC

● The Demo SoC FPGA design is built using a Makefile:

– The firmware.hex file is built by other make rules using the RISC-V
Compiler Toolchain (GCC and GNU Binutils).

– Additional Make rules for programming:

c3demo.blif: c3demo.v ledpanel.v picorv32.v firmware.hex
 yosys ­v2 ­p 'synth_ice40 ­abc2 ­top c3demo ­blif c3demo.blif' c3demo.v ledpanel.v picorv32.v

c3demo.txt: c3demo.pcf c3demo.blif
 arachne­pnr ­s 1 ­d 8k ­p c3demo.pcf ­o c3demo.txt c3demo.blif

c3demo.bin: c3demo.txt
 icepack c3demo.txt c3demo.bin

prog_flash: c3demo.bin
 $(SSH_RASPI) 'icoprog ­f' < c3demo.bin
...

Using the On-Chip Debugger

● The on-chip debugger can be connected to any number of nets, use any trigger- and/or
enable-condition.

● Rerunning synthesis is necessary after changes to the debugger.

● Run make debug to download a dump and store as VCD:

Running Applications on the SoC
● The demo SoC project comes with a few example apps.
● The base FPGA design has a boot loader stored in block RAM

that is executed at boot-up.

● The make run target in the app_* directory reboots the FPGA
from its serial flash, and sends the .hex of the application
image to the boot loader via the console interface.

Comparison with Lattice iCEcube2 Flow
Yosys

Arachne-pnr
Synplify Pro

SBT Backend
Lattice LSE

SBT Backend

Packed LCs 2996 2647 2533

LUT4 2417 2147 2342

DFF 1005 1072 945

CARRY 497 372 372

RAM4K 8 7 8

Synthesis Time 30 seconds 30 seconds 21 seconds

Implementation Time 81 seconds 405 seconds 415 seconds

Notes:

1) Timings for Intel Core2 Duo 6300 at 1860 MHz running Ubuntu 15.04.

2) Using iCEcube2.2014.12 because I had troubles activating the license on newer versions.

3) SoC without internal boot memory and frame buffer because Synplify Pro and LSE both could not
infer implementations using iCE40 block RAM resources from the behavioral Verilog code.

Links

● Yosys

– http://www.clifford.at/yosys/

● Project IceStorm

– http://www.clifford.at/icestorm/

● Arachne-pnr

– https://github.com/cseed/arachne-pnr

● PicoRV32

– https://github.com/cliffordwolf/picorv32

● IcoBoard

– http://icoboard.org/

● IcoProg (not final location!)

– http://svn.clifford.at/handicraft/2015/icoprog

● c3demo (not final location!)

– http://svn.clifford.at/handicraft/2015/c3demo

● This presentation

– http://www.clifford.at/papers/2015/icestorm-flow/

http://www.clifford.at/yosys/
http://www.clifford.at/icestorm/
https://github.com/cseed/arachne-pnr
https://github.com/cliffordwolf/picorv32
http://icoboard.org/
http://svn.clifford.at/handicraft/2015/icoprog
http://svn.clifford.at/handicraft/2015/c3demo
http://www.clifford.at/papers/2015/icestorm-flow/

Credits

● Clifford Wolf
– Yosys, Project IceStorm, IcoBoard, Demo SoC

● Cotton Seed
– Arachne-pnr

● Mathias Lasser
– Basic Research for Project IceStorm

● Daniel Amesberger
– IcoBoard PCB Layout and Production

● Edmund Humenberger
– IcoBoard Project Manager, Community Manager

● Many, many, other people..
– Beta Testing, Constructive Feedback, Encouragement, Patches, Ideas, etc.

Assembly at 32C3

● Visit us at our Assembly

on Level 1 (between Blinken Area

and Leiwandville / Metalab, near the

Podcast Area and 3D Printers)

● There will be Workshops:
– Day 1, Day 2, Day 3 at 19:00

– Register at our desk (first-come, first-served!)

– We give away IcoBoards for cool projects!

http://www.clifford.at/papers/2015/icestorm-flow/

http://www.clifford.at/papers/2015/icestorm-flow/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

