
Solving Partial Differential Equations With the pde1dm

Function and MATLAB/Octave

Bill Greene

Version 0.4, July 5, 2021

1 Overview

The pde1dm function works in either MATLAB or Octave and solves systems of partial dif-
ferential equations (PDE) and, optionally, coupled ordinary differential equations (ODE) of the
following form:

c(x, t, u,
∂u

∂x
)
∂u

∂t
= x−m ∂

∂x

(
xmf(x, t, u,

∂u

∂x
)
∂u

∂x

)
+ s(x, t, u,

∂u

∂x
) (1)

F (t, v, v̇, x̃, ũ, ∂ũ/∂x, f̃ , ∂ũ/∂t, ∂2ũ/∂x∂t) = 0 (2)

where
x Independent spatial variable.
t Independent variable, time.
u Vector of dependent variables defined at every spatial location.
c Vector of diagonal entries of the so-called “mass matrix”. Note the

entries can be functions of x, t, u, and du/dx.
f Vector of flux entries. Note the entries can be functions of x, t, u,

and du/dx.
s Vector of source entries. Note the entries can be functions of x, t, u,

and du/dx.
m Allows for problems with spatial cylindrical or spherical symmetry.

Ifm = 0, no symmetry is assumed, i.e. a basic Cartesian coordinate
system. If m = 1, cylindrical symmetry is assumed. If m = 2,
spherical symmetry is assumed.

F Vector defining a system of ODE in so-called implicit form. That
is, a function of the indicated variables that must equal zero for a
solution.

v Vector of dependent ODE variables.
x̃ Vector of spatial locations where the ODE system is coupled to the

PDE system. That is, the PDE variables are evaluated at these
specific values of x so they can be used in defining the system of
ODE. This set of PDE variables is denoted ũ.

Equation (1) is defined on the interval a ≤ x ≥ b. The number of PDE in the problem will
be denoted as N and the number of ODE (which may be zero) will be denoted as M .

The complete definition of the problem to be solved includes initial conditions (values of the
solution variables at the initial time) and, for the PDE variables, boundary conditions. The

1

boundary conditions are defined at the ends of the spatial domain– x = a and x = b. These
boundary conditions take the following form

p(x, t, u) + q(x, t)f(x, t, u, du/dx) = 0 (3)

where p and q must be defined by the user at both ends of the domain.

2 Calling pde1dm

The basic calling sequence for pde1dm when there are no ODE is

solution = pde1dm(m,pdeFunc,icFunc,bcFunc,meshPts,timePts)

m Defines the spatial coordinate system type, as described above.
pdeFunc Handle to a user-written function that describes the system of PDE

to be solved. This function is described in detail below.
icFunc Handle to a user-written function that describes the initial condi-

tions for the system of PDE. This function is described in detail
below.

bcFunc Handle to a user-written function that describes the boundary con-
ditions for the system of PDE. This function is described in detail
below.

meshPts Vector of x locations defining the spatial mesh. The first entry in
meshPts must equal the beginning of the interval, a, the last point
must equal b, and the values of the intermediate points must be
monotonically increasing. The accuracy of the solution depends on
the density of the points in this mesh. The spacing between points
need not be uniform; it is often advantageous to prescribe a higher
density of points in places where the solution is changing rapidly.

timePts Vector of time points where it is desired to output the solution.
The density of points in this vector has no effect on the accuracy of
solution. Often the number of points is determined by the number
required to produce a smooth plot of the solution as a function of
time.

solution Values of the PDE variables at each time and mesh point. The size
of this output matrix is number of time points × number of mesh
points × N.

This function signature is identical to that of the MATLAB pdepe function.
An additional argument, options, may be included to change various parameters controlling

the behavior of pde1dm .

solution = pde1dm(m,pdeFunc,icFunc,bcFunc,meshPts,timePts,options)

This argument is a structure array. The name, default value, and purpose of the supported
options are

Name Default Purpose
RelTol 1e-3 Relative tolerance for converged solution
AbsTol 1e-6 Absolute tolerance for converged solution
Vectorized false If set to true, pdeFunc is called with a vector of x-values and is

expected to return values of c, f, and s for all of these x-values.
Setting this option to true substantially improves performance.

2

When ODE are included in the problem definition, three additional arguments to the pde1dm

function are required.

[solution,odeSolution] = pde1dm(m,pdeFunc,icFunc,bcFunc,meshPts,timePts,...

odeFunc, odeIcFunc,xOde)

odeFunc Handle to a user-written function that describes the system of ODE
to be solved. This function is described in detail below.

odeIcFunc Handle to a user-written function that describes the initial condi-
tions for the system of ODE. This function is described in detail
below.

xOde Vector of x locations where the systems of PDE and ODE interact.
At these x locations, the values of various PDE variables are made
available for use in defining the system of ODE. Any reasonable
number of x locations may be defined and they need not coincide
with the mesh points in the PDE definition.

odeSolution Matrix of the values of ODE variables at the time points. The size
of this output matrix is M × number of time points.

The same options argument, described above, may also be included when there are ODE.

[solution,odeSolution] = pde1dm(m,pdeFunc,icFunc,bcFunc,meshPts,timePts,...

odeFunc, odeIcFunc,xOde,options)

3 User-Defined Functions

The user-written functions, mentioned above, that define the systems of PDE and ODE are
discussed in more detail in this section. In the description of these functions, a function name
is chosen which is somewhat descriptive of the function’s purpose; however the user is free to
choose any allowable function name for these functions.

3.1 User-Defined Functions When The Problem Has Only PDE

3.1.1 PDE Definition Function

[c, f, s] = pdeFunc(x, t, u, DuDx)

The user must return the c, f , and s matrices defined in equation (1). The size of these matrices
is N × number of entries in the x vector.

3.1.2 PDE Boundary Condition Function

[pLeft, qLeft, pRight, qRight] = bcFunc(xLeft, uLeft, xRight, uRight, t)

The user must return the q and p vectors defined in equation (3) at the Left and Right ends of
the domain. The input variables, xLeft, uLeft, xRight, uRight, t may be used in defining
pLeft, qLeft, pRight, qRight. (Note that xLeft will equal a and xRight will equal b).
Entries in the qLeft and qRight vectors that are zero at the initial time, are assumed to be
zero at all future times. Entries in the qLeft and qRight vectors that are non-zero at the initial
time, are assumed to be non-zero at all future times.

3

3.1.3 PDE Initial Condition Function

u0=pdeIcFunc(x)

The complete specification of a PDE system requires that initial conditions (solution at the
initial time) be defined by the user. The function must return the initial condition, u0, at spatial
location x. u0 is a vector which has length N . Formally, the boundary conditions returned from
bcFunc and the initial conditions returned from pdeIcFunc should agree but this is not strictly
required by pde1dm .

3.2 User-Defined Functions When The Problem Has Both PDE and
ODE

The following two functions are required only if the problem definition includes ODE.

3.2.1 ODE Definition Function

F=odeFunc(t,v,vdot,x,u,DuDx,f, dudt, du2dxdt)

The system of ODE is defined by equation (2). The input variables to odeFunc are
t time
v vector of ODE values
vDot derivative of ODE variables with respect to time
x Vector of spatial locations where the ODE couple with the PDE

variables. This is referred to as x̃ in equation (2).
u values of the PDE variables at the x locations
DuDx derivatives of the PDE variables with respect to x, evaluated at the

x locations
f values of the flux defined by the PDE definition evaluated at the x

locations
dudt derivatives of the PDE variables with respect to time, evaluated at

the x locations
du2dxdt second derivatives of the PDE variables with respect to x and time,

evaluated at the x locations

The vector

F must be returned.

3.2.2 ODE Initial Condition Function

v0=odeIcFunc()

A vector (length M) of initial values of the ODE variables, v0, must be returned.

3.2.3 PDE Definition Function

[c, f, s] = pdeFunc(x, t, u, DuDx, v, vDot)

The PDE function, pdeFunc, is identical to the definition above except that, when ODE are
included, two additional input variables are provided. These are the values of the ODE variables,
v and their derivatives with respect to time, vDot.

4

3.2.4 PDE Boundary Condition Function

[pLeft, qLeft, pRight, qRight] = bcFunc(xLeft, uLeft, xRight, uRight,

t,v,vDot)

The boundary condition function, bcFunc, is identical to the definition above except that, when
ODE are included, two additional input variables are provided. These are the values of the ODE
variables, v and their derivatives with respect to time, vDot.

4 Examples

4.1 Heat Conduction in a Rod

The first example we will consider is the heat conduction in a rod where the temperature at
the left end is prescribed as 100 ◦C and all other surfaces of the rod are insulated. The initial
temperature of all other points in the rod is zero. The material is copper with density, ρ =
8940 kg/m3; specific heat, cp = 390 J/(kg ◦C) and thermal conductivity, k = 385 W/(m ◦C).

The PDE describing this behavior is

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(4)

With appropriate changes in coefficients, this equation describes a wide variety of physical be-
havior so is particularly appropriate as a first example.

4.1.1 Code Required by pde1dm

The complete code for this example is shown below. This section highlights some key pieces of
this code.

n=12; % number of nodes in x

L=1; % length of the bar in m

x = linspace(0,L,n);

This code snippet defines the x-locations of the nodes. This example uses twelve nodes but since
the accuracy of the solution depends on the mesh it is important to verify that the mesh is
sufficiently refined.

t = linspace(0,2000,30); % number of time points for output of results

This code snippet defines the points in time where we would like to save the solution. The
accuracy of the solution is not affected by this choice.

The PDE, equation (4), is defined by matching the terms with those in the general equation
(1). The variable m is zero because we have a rectangular Cartesian coordinate system. The
resulting code is

function [c,f,s] = heatpde(x,t,u,DuDx)

rho=8940; % material density

cp=390; % material specific heat

k=385; % material thermal conductivity

c = rho*cp;

f = k*DuDx;

s = 0;

end

5

The actual name for this function is arbitrary. The boundary conditions are defined at each
end to match equation (3). At the left end, we are simply prescribing the value of temperature
so q = 0 and p is defined as the temperature at the left end minus the prescribed value of
temperature, T l − T0. A common mistake is to simply set p = T0 instead of in the form
required by (3), T l − T0! The right end is insulated so the heat flux, k∂T/∂x, is zero. Note
carefully that we have defined the f result in the heatpde function as the heat flux. We want
pde1dm to maintain this quantity as zero at the right end so, referring to equation (3), p = 0
and q = 1. The resulting code is

function [pl,ql,pr,qr] = heatbc(xl,Tl,xr,Tr,t)

T0=100; % temperature at left end, degrees C

pl = Tl-T0;

ql = 0;

pr = 0;

qr = 1;

end

Defining the initial conditions is straightforward. We want the initial temperature of the rod to
be zero everywhere except at the left end where it should match the boundary condition

function u0 = heatic(x)

T0=100; % temperature at left end, degrees C

if x==0

u0=T0;

else

u0=0;

end

end

The full code for this example is

function heatConduction

% transient heat conduction in a rod

n=12; % number of nodes in x

L=1; % length of the bar in m

x = linspace(0,L,n);

t = linspace(0,2000,30); % number of time points for output of results

m=0; % rectangular Cartesian coordinate system

u = pde1dm(m, @heatpde,@heatic,@heatbc,x,t);

figure; plot(t, u(:,end)); grid on;

xlabel(’Time’); ylabel(’Temperature’);

title(’Temperature at right end as a function of time’);

figure; plot(x, u(end,:)); grid on;

xlabel(’x’); ylabel(’Temperature’);

title(’Temperature along the length at final time’);

end

function [c,f,s] = heatpde(x,t,u,DuDx)

rho=8940; % material density

cp=390; % material specific heat

6

k=385; % material thermal conductivity

c = rho*cp;

f = k*DuDx;

s = 0;

end

function [pl,ql,pr,qr] = heatbc(xl,Tl,xr,Tr,t)

T0=100; % temperature at left end, degrees C

pl = Tl-T0;

ql = 0;

pr = 0;

qr = 1;

end

function u0 = heatic(x)

T0=100; % temperature at left end, degrees C

if x==0

u0=T0;

else

u0=0;

end

end

When executed, this script produces the following two figures

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

-5

0

5

10

15

20

25

30

Te
m
p
e
ra
tu
re

Temperature at right end as a function of time

4.1.2 Improving Performance with Vectorized Mode

Execution time can often be substantially reduced by using the vectorized option. The following
changes to the script above are required. The heatpde function is replaced with

function [c,f,s] = heatpde(x,t,u,DuDx)

rho=8940; % material density

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

20

30

40

50

60

70

80

90

100

Te
m
p
e
ra
tu
re

Temperature along the length at final time

cp=390; % material specific heat

k=385; % material thermal conductivity

nx=length(x);

c = rho*cp*ones(1,nx);

f = k*DuDx;

s = zeros(1,nx);

end

And pde1dm is called as follows

options.Vectorized=’on’;

u = pde1dm(m, @heatpde,@heatic,@heatbc,x,t,options);

8

4.2 Simple Coupling of PDE and ODE Equations

The Numerical Algorithms Group (NAG) provides a function, d03phf, for solving coupled sys-
tems of PDE and ODE equations (reference [3]). Their simple example coupling a single PDE
with a single PDE will be shown here.

The single PDE, is

v2
∂u

∂t
=
∂2u

∂x2
+ xv

∂v

∂t

∂u

∂x
(5)

defined on the domain from x = 0 to x = 1
and the single ODE is

∂v

∂t
= vu(1) +

∂u

∂x
(1) + t+ 1 (6)

where u(1) is the solution at x = 1 and ∂u/∂x(1) is the x-derivative at x = 1.
The left boundary condition at x = 0 is

∂u

∂x
= −vet (7)

The right boundary condition at x = 1 is

∂u

∂x
= −vv̇ (8)

An analytic solution to this problem is

u = e(1−x)t − 1 (9)

v = t (10)

(11)

The initial conditions on u and v in the pde1dm solution are computed from this exact solution.
The code for this example is shown below

function nagD03phfExample

n=10;

L=1;

x = linspace(0,L,n);

t0=1e-4;

t=linspace(t0, .6, 10);

m = 0;

xOde = L;

icF = @(x) icFunc(x,t0);

odeIcF = @() odeIcFunc(t0);

opts.vectorized=’on’; % speed up computation

[u,uode] = pde1dm(m, @pdeFunc,icF,@bcFunc,x,t,@odeFunc, odeIcF,xOde,opts);

va=vAnal(t);

ua=uAnal(t,x);

figure; plot(t, uode(:), t, va, ’o’);

xlabel(’Time’); ylabel(’v’);

legend(’Numerical’, ’Analytical’);

title ’ODE Solution as a Function of Time’;

figure; plot(x, u(end,:), x, uAnal(t(end), x), ’o’);

9

xlabel(’x’); ylabel(’u’);

legend(’Numerical’, ’Analytical’);

title ’PDE Solution At the Final Time’;

fprintf(’Maximum error in ODE valriable=%10.2e\n’, max(abs(uode(:)-va(:))));

fprintf(’Maximum error in PDE valriable=%10.2e\n’, max(abs(u(:)-ua(:))));

end

function [c,f,s] = pdeFunc(x,t,u,DuDx,v,vdot)

% for vectorized mode, we return coefficients at

% multiple x locations

nx = length(x);

c = repmat(v(1)^2,1,nx);

f = DuDx;

s = x.*DuDx*v*vdot;

end

function u0 = icFunc(x, t0)

u0 = uAnal(t0, x);

end

function [pl,ql,pr,qr] = bcFunc(xl,ul,xr,ur,t,v,vdot)

pl = v(1)*exp(t);

ql = 1;

pr = v(1)*vdot(1);

qr = 1;

end

function f=odeFunc(t,v,vdot,x,u,DuDx)

f=v*u + DuDx + 1 + t - vdot(1);

end

function v0=odeIcFunc(t0)

v0=vAnal(t0);

end

function v=vAnal(t)

% analytical soluton for ode variable

v=t;

end

function u=uAnal(t,x)

% analytical soluton for pde variable

u=exp(t’*(1-x))-1;

end

The code produces the following output and figures

Maximum error in ODE valriable= 2.01e-03

Maximum error in PDE valriable= 1.02e-02

10

0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

v

ODE Solution as a Function of Time

Numerical
Analytical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u

PDE Solution At the Final Time

Numerical
Analytical

4.3 Nonlinear Heat Equation with Periodic Boundary Conditions

Here is another example showing the usefulness of being able to couple ODE equations with the
PDE equations. For the solution to be periodic, the following two conditions must hold

u(a) = u(b) (12)

and
∂u

∂x
(a) =

∂u

∂x
(b) (13)

It is not possible to apply such boundary conditions using the standard PDE boundary condition

11

mechanism. However reference [1] shows how a periodic boundary condition can be prescribed
by adding an ODE to the system. This example from reference [1] is presented here. This
example has the added benefit that a simple analytical solution is available to compare with the
numerical results.

We will enforce equation (13) by defining an ODE variable, v, such that

∂u

∂x
(a) = v (14)

∂u

∂x
(b) = v (15)

The ODE used to enforce equation (12) is simply

u(a) − u(b) = 0 (16)

Clearly this doesn’t look like an ODE because neither v nor ∂v/∂t is present. However it does
satisfy the form defined in equation (2);

The code for this example is shown below

function schryer_ex4

n=15;

x = linspace(-pi,pi,n);

t=linspace(0, 3*pi/2.5, 10);

m = 0;

% We need the PDE solution at the right and left ends

% to define the ODE (constraint equation).

xOde = [pi -pi]’;

% Set vectorized mode to improve performance

opts.vectorized=’on’;

[u,vOde] = pde1dm(m,@pdeFunc,@icFunc,@bcFunc,x,t,@odeFunc,@odeIcFunc,xOde,opts);

% Compute analytical solution for comparison.

ua=uAnal(t,x);

figure; plot(x, u(end,:), x, uAnal(t(end), x), ’o’); grid on;

xlabel(’x’); ylabel(’u’); title(’Solution at Final Time’);

legend(’Numerical’, ’Analytical’);

figure; plot(t, u(:,end), t, u(:,1), t, uAnal(t, x(1)), ’o’), grid on;

xlabel(’Time’); ylabel(’u’); title(’Solution at End Points’);

legend(’Right End’, ’Left End’, ’Analytical’);

figure; plot(t, vOde); grid on;

xlabel(’Time’); ylabel(’v’); title(’ODE Variable as a Function of Time’);

end

function [c,f,s] = pdeFunc(x,t,u,DuDx,v,vdot)

nx=length(x);

c = ones(1,nx);

f = DuDx;

cx=cos(x);

st=sin(t);

12

gxt=cx*cos(t)+cx*st+cx.^3*st^3;

s = -u.^3 + gxt;

end

function u0 = icFunc(x)

u0 = uAnal(0, x);

end

function [pl,ql,pr,qr] = bcFunc(xl,ul,xr,ur,t,v,vdot)

% du/dx at right end must equal

% du/dx at the left end. Use the ODE

% variable to enforce this.

pl = v(1);

ql = 1;

pr = v(1);

qr = 1;

end

function f=odeFunc(t,v,vdot,x,u,DuDx)

% The solution at the right end must equal

% the solution at the left end.

f=u(1)-u(2);

end

function v0=odeIcFunc()

v0=0;

end

function u=uAnal(t,x)

u=sin(t)’*cos(x);

end

From Figure 1 we see that the solution at the final time compares well with the analytical
solution. We also see that the solutions at the right and left ends agree.

Figure 2 shows that the solutions at the right and left ends are equal at all times and that
they agree with the analytical solution.

Figure 3 plots the solution of the ODE equation, v as a function of time. A simple differen-
tiation of the analytical solution with respect to x shows that ∂u/∂x at the ends equals zero for
all times. The figure shows that the numerical solution is also very close to zero for all times.

13

-4 -2 0 2 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

u

Solution at Final Time

Numerical
Analytical

Figure 1: Solution at the final time as a function of x.

14

0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

Time

u

Solution at End Points

Right End
Left End
Analytical

Figure 2: Solution at the two ends as a function of time.

15

0 1 2 3 4
-5e-009

0

5e-009

1e-008

1.5e-008

2e-008

Time

v

ODE Variable as a Function of Time

Figure 3: Solution of the ODE equation as a function of time.

16

A Appendix: Comparison Between pde1dm and MATLAB

pdepe

The types of PDE solved by pde1dm and MATLAB pdepe are similar. The input to pde1dm is also
similar to that of pdepe and, in many cases, the pdepe input for a problem can be used without
changes in pde1dm . However, there are some significant differences between the two PDE solvers
and this section describes those. It is primarily written for users who have a reasonable amount
of experience with pdepe.

1. pdepe has interpolation functions specially designed to provide accurate solutions near
x = 0 in problems with cylindrical (m = 1) and spherical (m = 2) coordinate systems.
pde1dm can solve the PDE for such problems but the solution will generally be less accurate
near x = 0.

2. pdepe allows the user to specify Events to be handled during the solution. pde1dm does
not currently support events.

3. pdepe relies on the MATLAB ode15s ODE solver to solve initial value problem. pde1dm

uses the ode15i solver.

References

[1] N. L. Schryer, POST- A Package for Solving Partial Differential Equations in One Space
Variable, AT&T Bell Laboratories, August 30, 1984.

[2] Partial Differential Equations in MATLAB 7.0

[3] NAG Fortran Library Routine Document D03PHF/D03PHA.

17

https://www.math.tamu.edu/~phoward/m401/pdemat.pdf
https://www.nag.co.uk/numeric/fl/manual/pdf/D03/d03phf.pdf

	Overview
	Calling pde1dm
	User-Defined Functions
	User-Defined Functions When The Problem Has Only PDE
	PDE Definition Function
	PDE Boundary Condition Function
	PDE Initial Condition Function

	User-Defined Functions When The Problem Has Both PDE and ODE
	ODE Definition Function
	ODE Initial Condition Function
	PDE Definition Function
	PDE Boundary Condition Function

	Examples
	Heat Conduction in a Rod
	Code Required by pde1dm
	Improving Performance with Vectorized Mode

	Simple Coupling of PDE and ODE Equations
	Nonlinear Heat Equation with Periodic Boundary Conditions

	Appendix: Comparison Between pde1dm and MATLAB pdepe

