
Camgaze.js: Browser-based Eye Tracking and Gaze Prediction using JavaScript

Alexander Wallar ∗

Aleksejs Sazonovs †

University of St Andrews

Christian Poellabauer ‡

Patrick Flynn §

University of Notre Dame

Abstract

Eye tracking is a difficult problem that is usually solved using spe-
cialised hardware and therefore has limited availability due to cost
and deployment difficulties. We describe Camgaze.js, a client-side
JavaScript library that is able to estimate the point of gaze using
only commodity optical cameras without relying on any external
application installed besides a web-browser. We conduct experi-
ments using Camgaze.js to show the usability of such a system. We
also discuss the challenges and applications of using an in-browser
eye tracking system. Since the described eye tracker works inside
the browser without any additional installation setup, it provides a
solution to a larger deployment of eye tracking systems.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Tracking I.4.9 [Image Processing and Computer
Vision]: Applications;

Keywords: gaze prediction, eye detection, pupil detection, low-
cost eye tracking, linear calibration, JavaScript eye tracker, in-
browser eye tracking

1 Introduction

Eye tracking is a challenging problem that has been a topic of re-
search since the 19th century [Wade 2010]. Currently, it is mostly
viewed as a problem in Computer Vision. The majority of eye
tracking solutions available on the market today are a combination
of software and specialised hardware. Hardware based solutions
employ a variety of technologies such as head-mounted cameras
and magnetically actuated lenses. State of the art solutions can al-
low predicting the gaze point with high precision. Despite that,
carrying out eye tracking experiments remains an issue – it is ex-
pensive, requires complicated deployment and calibration and, in
most cases, has to be carried out in a controlled environment.

In recent years, it has been shown [San Agustin et al. 2009][Sewell
and Komogortsev 2010] that it is possible to use commodity cam-
eras, often built into modern computers to perform eye tracking
with promising quality. Deployment of such systems is relatively
simple, but in the described cases it is tied to specific computer
platforms [Holland and Komogortsev 2012].

∗email: aw204@st-andrews.ac.uk
†email: as245@st-andrews.ac.uk
‡email: cpoellab@nd.edu
§email: flynn@nd.edu

Web applications are rich websites that are able to run without ex-
ternal plugins inside the browser. Recently, web browsers have
evolved to adapt to the markets requirements – new technologies
have risen, allowing web application to be increasingly interactive.
For example, WebRTC (Web Real-Time Communication) is an API
that aims to enable in-browser audio and video communication. As
of September 2013, WebRTC is supported in the stable versions of
Google Chrome and Mozilla Firefox. A recent report [Disruptive
Analysis 2013], claims that by 2016 there will be 3 billion capable
devices and 1 billion individual users of WebRTC-enabled devices.

In this paper, we describe Camgaze.js – a JavaScript library that
uses WebRTC to obtain the video from built-in or USB cameras
and measures the point of gaze. It has the potential to be deployed
in a wide range of applications such as entertainment, healthcare
and user-interface design

2 Challenges

The deployment of eye tracking systems on a wide range of hard-
ware creates number of challenges challenges. The cameras that
are built-in (or supplied with) consumer devices vary greatly: there
is no standard resolution, colour profile, brightness level, or physi-
cal position. Currently, WebRTC provides very limited options for
changing any of the parameters of the camera that is providing a
stream. This problem can be partially addressed by defining indi-
vidual profiles for a variety of popular devices. The identification of
the device is not a trivial task by itself, but services like DeviceAtlas
[DeviceAtlas 2013] solve it by looking at a variety of factors, such
as browsers User-Agent and screen resolution. Unfortunately, this
approach would be mostly applicable for handheld devices and not
commodity PCs.

The client-side JavaScript environment in which Camgaze.js runs
sets some constraints. There are no comprehensive computer vi-
sion libraries available in JavaScript as of this writing. There is
also currently no simple way to port native C/C++ code, which are
languages in which popular libraries such as OpenCV are written
in. Projects like Emscripten are making early attempts to allow
translation of LLVM bitcode code to JavaScript, potentially allow-
ing to port some of the well-established computer vision libraries to
JavaScript in the future. For now, we had to create a custom imple-
mentation of connected component detection and image moment
calculation to use in Camgaze.js.

Despite some of the described difficulties, we believe that a com-
bination of JavaScript and WebRTC is a reasonable technological
stack on which a scalable eye tracking solution can be built.

3 Implementation

Algorithm 1 shows a high-level overview of Camgaze.js. The al-
gorithm first executes a calibration phase. Once the system is cali-
brated, it is able to project the gaze position of the user.

Camgaze.js executes three steps in order to predict the position on
the screen that the user is looking at. Firstly, the pupils are detected.
Then the positions of these pupils with reference to the eye are used

SUBMISSION #163 - CONFIDENTIAL

Algorithm 1 Pseudocode for Camgaze.js

1: F ← INITGAZEMAPPING()
2: while STILLCALIBRATING() == true do
3: Plist ← DETECTPUPILS()
4: G ← DETERMINEGAZEMETRIC(Plist)
5: F ← CALIBRATE(G,F)
6: while SESSIONFINISHED() == false do
7: Plist ← DETECTPUPILS()
8: G ← DETERMINEGAZEMETRIC(Plist)
9: PROJECTGAZEONTOSCREEN(F(G))

to determine a gaze metric. This gaze metric is then calibrated and
mapped to a position on the screen.

3.1 Pupil Detection

Detecting the pupils enables Camgaze.js to determine the gaze di-
rection. Firstly, the frame is converted to grayscale and the eye is
detected using the Viola-Jones object detection framework [Viola
and Jones 2001]. The region of interest (ROI) is then thresholded
for an array of different grayscale shades in order to produce bi-
nary images. Connected components are then detected on these bi-
nary images. All of the detected connected components are stored
as possible pupils. Out of these possible pupils, the one with the
minimum overall error is designated as the pupil. Below are the
expressions to be minimized.

ERRα(p) =

X
c∈Corners

|π
4
− ARCTAN(| py−cy

px−cx
|)|

π
(1)

ERRsize(p) =
|avgPupilSize− SIZE(p)|

2
(2)

In these equations, p represents a possible pupil and thus has an
(x, y) position and a size. The Corners set refers to the corners of
the Haar bounding rectangle surrounding the eye. ERRα s an angu-
lar distance between the centroid of the connected component and
the center of the Haar bounding rectangle. We use angle deviation
instead of pixel distance for this metric because we assume that
the pupil would not always reside immediately in the center of the
boundary rectangle. A direct pixel distance might yield different,
and perhaps more suitable, connected components. The angle devi-
ation acts a weak error function in order to be more lenient without
the use of constants. Once the connected component with the min-
imum error is extracted, its center is returned.

ERRsize is the difference between the scaled area of the detected
blob and the average scaled area of a general pupil. This means
that during the thresholding process, out of the array of connected
components detected with minimal ERRα, the one that has the area
closest to that of an average pupil will be returned.

Using a combination of these two error functions, we are able to
detect the pupils accurately and derive a gaze metric.

Figure 1 depicts the process of pupil detection. The first photo
shows the connected component segmentation. In the second im-
age, the centers of the connected components are extracted. The
final image shows the deviation of the ERRα for the two connected
components. Since the has a smaller overall error and is returned as
the pupil.

Figure 1: Pupil Detection Process

3.2 Determining the Gaze Metric

The gaze metric is a quantifiable measurement that describes the
gaze direction for an eye. To determine the gaze direction, we must
be able to capture the movement of the pupil relative to the eye
position. This is done by computing the horizontal and vertical
displacements from the center of the Haar bounding rectangle sur-
rounding the eye to the pupil center. Since the center of the Haar
bounding rectangle stays in a constant position with reference to the
pupil, it can be used to discern the relative movement of the pupil.

Using a point that remains in a relatively constant position with
reference to the pupil is vital for determining the gaze direction
because the determined gaze will not be affected by the movement
of the head or the jitter of the camera.

Figure 2: Determining the Gaze Metric

Since the gaze metric represents the pupil’s displacement from the
center, it can be represented as a 2D vector. In Figure 2, this vec-
tor is being drawn from the pupil center. This gives us a visual
representation of the gaze direction. This metric is also used in cal-
ibration so that we can interpolate the position on the screen that
user is looking.

3.3 Calibration

Calibration in an eye tracking system is necessary to ensure that
the predicted point of gaze resembles the expected point of gaze.
The calibration creates a mapping from what the eye tracker deter-
mines the gaze metric is to a point on the screen. For visible light
based eye tracking using commodity eye trackers, neural network
[Holland and Komogortsev 2012] and linear based calibration tech-

SUBMISSION #163 - CONFIDENTIAL

niques have been deployed. In our work, we use a linear based
approach due to ease of implementation and computing power re-
strictions imposed by doing the computation inside the browser in
real-time.

The linear approach works by placing sample points in the corners
of the viewing screen and asking the user to look at these points,
one at a time. Using the data gathered from the eye tracker and
the knowledge of what point the data corresponds to on the screen,
we can construct a linear mapping from the gaze metric onto the
screen. We map the distance between the uncalibrated point on the
top left and the uncalibrated point on the top right to the width of
the screen. We also map the distance between the uncalibrated top
left point the uncalibrated bottom right point to the height of the
screen. This mapping determines parametric equations that be used
to interpolate the gaze point on the screen.

The system corresponds a box determined by the user’s prompted
gaze direction to the box defined by the prompt locations, and deter-
mines a linear mapping between the two boxes that is used to define
screen coordinates from subsequent gaze measurements. The appli-
cation we created for calibration presents a point in each corner of
the screen, one at a time. The user then has 7 seconds to look at the
point before the next point is shown.

3.4 Obtaining Video Data

Due to constraints imposed by JavaScript as a language while writ-
ing computer vision applications, there are certain steps that need
to be taken when implementing the algorithms described above.
Firstly, a video tag needs to be already present in the HTML or
created by the JavaScript application in order for a video feed to be
retrieved from the camera. Likewise, a canvas element needs to be
present in the HTML in order to retrieve the RGBA pixel values for
the video. This is because the video element needs to be drawn onto
the canvas in order to retrieve the ImageData object for it. Once the
ImageData has been obtained, processing mentioned above can take
place.

4 Methodology

4.1 Apparatus

For the test we used an Apple MacBook Pro 13’ laptop (mid-2013
model: Intel Core i7 processor running on 2.9 GHz clock speed,
8 GB of RAM, 1280x800 screen resolution). It is equipped with
a built-in FaceTime HD Camera, capable of recording video with
720p resolution. The computer was running Apple OS X (10.8.2)
and Google Chrome web browser (build 30.0.1599.66) at the time
of the experiment. The screen of the laptop was 90◦ with the base.

The room where the experiments were held was equipped with
mildly-bright fluorescent lamps and had no natural light access.

4.2 Procedure

A simple test was created to measure the precision of gaze predic-
tion. At first, linear calibration is performed in order to ensure that
the gaze will be projected on the screen correctly. During the cali-
bration phase, users are asked to look at the circles that appear on
the screen. The calibration points are sequentially shown at the cor-
ners of the screen, each for 7 seconds (as mentioned in Section 3.3).
After the calibration phase, the precision test begins. A monochro-
matic circle appears on the screen in a random location, 20 pixels
from each border, being displayed for 7 seconds. This is repeated
10 times. For the precision testing, the average gaze point is being
recorded. There was no indication of where the tracker predicted

Table 1: Accuracy in Gaze Prediction (Phase 1 and 2 come from
Holland and Komogortsev)

Metric Value (in) Uncertainty (in)
Phase 1 [2012] 1.4 0.2
Phase 2 [2012] 1.5 0.1
Distance 2.1 0.1

the gaze to the user in order to limit the bias imposed by this infor-
mation.

We then calculate the distance between the average gaze point and
the center of the associated test circle, and denote this as the er-
ror. The 10 error measurements are then averaged to determine the
accuracy and the standard deviation is calculated to determine the
uncertainty in measurement.

5 Results

5.1 Accuracy

We have conducted 5 tests. The result of these tests are shown
Table 1 along with the results from Holland and Komogortsev’s
experiments. [2012]. The distance accuracy refers to the aver-
age radius around the test point that tracker predicted the gaze to
be. These results are comparable to those of Holland and Ko-
mogorstev which implemented gaze prediction on a unmodified
common tablet [2012]. Since the constraints that exists when pro-
gramming on a tablet and programming in JavaScript (JavaScript
can run on a tablet through a web browser), the accuracy in the re-
sults can be compared. Their work performed with better accuracy
by 0.7 inches during their first phase and by 0.6 inches in the second
phase. The key factor in this difference is the existence of a com-
puter vision library in Objective-C but not in JavaScript. Increasing
the performance of the implemented computer vision algorithms
will lead to better results.

In general, we believe that the received results provide a positive in-
dication of the viability of conducting eye tracking in a web-based
environment. This work concentrates on creating a proof of con-
cept implementation of an in-browser, client side gaze prediction
application. The conducted tests were meant to show the feasibility
of the proposed concept. The results are preliminary due to lim-
ited testing and we believe that further testing and a usability study
should be done to determine the absolute accuracy that is possible
to achieve using Camgaze.js.

5.2 Performance

We have conducted 5 tests to measure the performance of
Camgaze.js. The tests are the same as the accuracy tests except
that the calibration phase is not needed. Our results are computed
by obtaining the amount of usable frames from a testing session and
dividing it by the session length. The sampling rate was 17.5 FPS
(± 4.5). This is a strong indication that our system is sufficient to
run on a vast range of different devices.

Our performance degrades under poor lighting conditions. Since
the implementation of the Haar detector in JavaScript currently does
not support tree-based cascades, different lighting conditions affect
the amount of frames that eyes were detected. We have found the
best results when the user has limited light projected directly on the
face. The distance to the camera is also an impeding factor on the
performance. The user needs to be about 1 ft from the webcam for
the best results.

SUBMISSION #163 - CONFIDENTIAL

6 Discussion

6.1 Privacy Concerns

Camgaze.js is intended to bring eye tracking to larger-scale deploy-
ment. This intensifies the need to address the privacy concerns
some users might have. The library we describe attempts to do
this in several ways.

When the user accesses a web page that uses Camgaze.js, they are
prompted a notice that the website is attempting to use the video
from their computer. This is the default behaviour of both Chrome
and Firefox and this behaviour can not be overridden by any web-
site. Camgaze.js displays a notice that explains how this data will
be used. Thus, we prevent capturing the data from an unaware user.

As previously mentioned, Camgaze.js is implemented in
JavaScript. Since the majority of modern web browsers have an
built-in JavaScript interpreter, it is possible to do the eye tracking
on the client-side. This allows the proposed solution to avoid
sending and storing the users video stream to an external server.
In general, we believe that sensible measures have been taken to
mitigate the potential privacy impacts.

6.2 Limitations

Currently, Camgaze.js lacks any spatial awareness between the
camera and the user. In some cases, due to specific change in align-
ment of the user the result from the eye tracker will be imprecise.
Likewise, a change in head pose potentially disrupts the precision
of Camgaze.js (e.g. if the user is looking at the center of the screen
but starts to tilt his / her head down, the gaze metric will predict the
user looking up due to the displacement from the center of the eye
to the pupil).

The lack of well trained Haar classifiers also limits the ability of
this work. The current classifiers available in JavaScript are not as
highly trained and thus do not detect the eyes as frequently in dif-
ferent lighting conditions. This causes problems with Camgaze.js

because a gaze metric can not be determined and a point on the
screen is not mapped.

7 Future Research & Applications

Preliminary experiments show that Camgaze.js is working on a
tablet computer (Google Nexus 7 – 2013 version, Chrome Beta
30.0.1599.81, V8 3.20.17.13 JavaScript engine), which brings a po-
tential to bring eye tracking to a variety of handheld devices. Fur-
ther research could address the feasibility of eye tracking on even
smaller devices such as smartphones and phablets (phones with a
screen wider than 5 inches).

We hope to make progress with porting some computer vision li-
braries to JavaScript, allowing to apply the latest developments in
the field to solve the problem of eye tracking. With more sophis-
ticated algorithms, we hope to improve the performance and accu-
racy of Camgaze.js

Additional research on the normalization of the video stream could
be done. Porting some of the algorithms to JavaScript would be a
novel task.

We believe that Camgaze.js should be used in cases where the sim-
plicity and scalability of deployment overweights the need for per-
fect precision of point of gaze prediction. Ability to open a web-
page, click OK on a pop-up bar, and start eye tracking opens up
possibilities for use of eye tracking for various new applications,

which were previously solvable by eye tracking, but not applied
outside the controlled lab environment.

For example, Heitger et al. have shown that impaired eye move-
ments in post-concussion syndrome patients indicate trauma on the
brain that surpasses the influence of intellectual ability [Heitger
et al. 2009]. The use of current generation eye tracking hardware /
software combinations makes a deployable solution for testing con-
cussions based eye movements difficult. Camgaze.js has the ability
to be used in these deployable scenarios such as Emergency Rooms,
ambulances, and sports centres.

8 Conclusion

In this paper, we have described the design and implementation of
a in-browser, client side eye tracker written in JavaScript. We have
also discussed the privacy benefits, limitations, and impact such a
system would have on current eye tracking applications. Through
our evaluation, we have found our implementation to be accurate to
a radius of 2.1 inches (± 0.1) and the sampling rate to be 17.5 FPS.

The performance of the proposed system is influenced by many mu-
table limitations and therefore has the potential to improve. This
work represents an eye tracking system that will have negligible
deployment costs and higher accessibility. However there exists a
price in accuracy that the authors feel is worth the benefits.

This material is based upon work supported by the National Science
Foundation under Grant No. CNS- 1062743.

References

DEVICEATLAS, 2013. Homepage. https://deviceatlas.
com/.

DISRUPTIVE ANALYSIS, 2013. WebRTC Market Status & Fore-
casts: The hype is justified: it will change telecoms. http:
//disruptive-analysis.com/webrtc.htm.

HEITGER, M. H., JONES, R. D., MACLEOD, A. D., SNELL,
D. L., FRAMPTON, C. M., AND ANDERSON, T. J. 2009. Im-
paired Eye Movements in Post-Concussion Syndrome Indicate
Suboptimal Brain Function Beyond the Influence of Depression,
Malingering or Intellectual Ability. Brain: A Journal of Neurol-
ogy 132, Pt 10 (Oct.), 2850–70.

HOLLAND, C., AND KOMOGORTSEV, O. V. 2012. Eye Track-
ing on Unmodified Common Tablets: Challenges and Solutions,
In Proceedings of ACM Eye Tracking Research & Applications
Symposium, Santa Barbara, CA.

SAN AGUSTIN, J., SKOVSGAARD, H., HANSEN, J. P., AND
HANSEN, D. W. 2009. Low-cost gaze interaction. In Proceed-
ings of the 27th international conference extended abstracts on
Human factors in computing systems - CHI EA ’09, ACM Press,
Paris, France, 4453.

SEWELL, W., AND KOMOGORTSEV, O. 2010. Real-time eye gaze
tracking with an unmodified commodity webcam employing a
neural network. In Proceedings of the 28th of the international
conference extended abstracts on Human factors in computing
systems - CHI EA ’10, ACM Press, Atlanta, GA, USA, 3739.

VIOLA, P., AND JONES, M. 2001. Robust real-time object detec-
tion. International Journal of Computer Vision 57, 2, 137–154.

WADE, N. J. 2010. Pioneers of Eye Movement Research. i-
Perception 1, 2 (Jan.), 33–68.

SUBMISSION #163 - CONFIDENTIAL

https://deviceatlas.com/
https://deviceatlas.com/
http://disruptive-analysis.com/webrtc.htm
http://disruptive-analysis.com/webrtc.htm

