<IEEE

IEEE Standard for Verilog®
Hardware Description Language

IEEE Computer Society

Sponsored by the
Design Automation Standards Committee

|IEEE

3 Park Avenue IEEE Std 1364™-2005
New York, NY 10016-5997, USA (Revision of IEEE Std 1364-2001)
7 April 2006

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1364™-2005
(Revision of IEEE Std 1364-2001)

IEEE Standard for Verilog®
Hardware Description Language

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Abstract: The Verilog hardware description language (HDL) is defined in this standard. Verilog
HDL is a formal notation intended for use in all phases of the creation of electronic systems. Be-
cause it is both machine-readable and human-readable, it supports the development, verification,
synthesis, and testing of hardware designs; the communication of hardware design data; and the
maintenance, modification, and procurement of hardware. The primary audiences for this standard
are the implementors of tools supporting the language and advanced users of the language.
Keywords: computer, computer languages, digital systems, electronic systems, hardware, hard-
ware description languages, hardware design, HDL, PLI, programming language interface, Verilog,
Verilog HDL, Verilog PLI

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 7 April 2006. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

Verilog is a registered trademark of Cadence Design Systems, Inc.

Print: ISBN 0-7381-4850-4 SH95395
PDF: ISBN 0-7381-4851-2 SS95395

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which brings
together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not
necessarily members of the Institute and serve without compensation. While the IEEE administers the process
and establishes rules to promote fairness in the consensus development process, the IEEE does not independently
evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a spe-
cific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards
documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the
viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard. Every IEEE Standard is
subjected to review at least every five years for revision or reaffirmation. When a document is more than five
years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value,
do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely
upon the advice of a competent professional in determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this
reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received formal
consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on
IEEE standards shall make it clear that his or her views should be considered the personal views of that individual
rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affil-
iation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Comments on standards and requests for interpretations should
be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854

USA

NOTE—Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Insti-
tute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance
Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service,
222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any indi-
vidual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Introduction
This introduction is not a part of IEEE Std 1364-2005, IEEE Standard for Veri10g® Hardware Description Language.

The Verilog hardware description language (HDL) became an IEEE standard in 1995 as IEEE Std 1364-
1995. It was designed to be simple, intuitive, and effective at multiple levels of abstraction in a standard
textual format for a variety of design tools, including verification simulation, timing analysis, test analysis,
and synthesis. It is because of these rich features that Verilog has been accepted to be the language of choice
by an overwhelming number of integrated circuit (IC) designers.

Verilog contains a rich set of built-in primitives, including logic gates, user-definable primitives, switches,
and wired logic. It also has device pin-to-pin delays and timing checks. The mixing of abstract levels is
essentially provided by the semantics of two data types: nets and variables. Continuous assignments, in
which expressions of both variables and nets can continuously drive values onto nets, provide the basic
structural construct. Procedural assignments, in which the results of calculations involving variable and net
values can be stored into variables, provide the basic behavioral construct. A design consists of a set of mod-
ules, each of which has an input/output (I/O) interface, and a description of its function, which can be struc-
tural, behavioral, or a mix. These modules are formed into a hierarchy and are interconnected with nets.

The Verilog language is extensible via the programming language interface (PLI) and the Verilog proce-
dural interface (VPI) routines. The PLI/VPI is a collection of routines that allows foreign functions to access
information contained in a Verilog HDL description of the design and facilitates dynamic interaction with
simulation. Applications of PLI/VPI include connecting to a Verilog HDL simulator with other simulation
and computer-assisted design (CAD) systems, customized debugging tasks, delay calculators, and
annotators.

The language that influenced Verilog HDL the most was HILO-2, which was developed at Brunel Univer-
sity in England under a contract to produce a test generation system for the British Ministry of Defense.
HILO-2 successfully combined the gate and register transfer levels of abstraction and supported verification
simulation, timing analysis, fault simulation, and test generation.

In 1990, Cadence Design Systems placed the Verilog HDL into the public domain and the independent
Open Verilog International (OVI) was formed to manage and promote Verilog HDL. In 1992, the Board of
Directors of OVI began an effort to establish Verilog HDL as an IEEE standard. In 1993, the first IEEE
working group was formed; and after 18 months of focused efforts, Verilog became an IEEE standard as
IEEE Std 1364-1995.

After the standardization process was complete, the IEEE P1364 Working Group started looking for feed-
back from IEEE 1364 users worldwide so the standard could be enhanced and modified accordingly. This
led to a five-year effort to get a much better Verilog standard in IEEE Std 1364-2001.

With the completion of IEEE Std 1364-2001, work continued in the larger Verilog community to identify
outstanding issues with the language as well as ideas for possible enhancements. As Accellera began work-
ing on standardizing SystemVerilog in 2001, additional issues were identified that could possibly have led to
incompatibilities between Verilog 1364 and SystemVerilog. The IEEE P1364 Working Group was estab-
lished as a subcomittee of the SystemVerilog P1800 Working Group to help ensure consistent resolution of
such issues. The result of this collaborative work is this standard, IEEE Std 1364-2005.

Copyright © 2006 IEEE. All rights reserved. 1i1

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http:/stan-
dards.ieee.org/reading/icee/updates/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants
At the time this standard was completed, the IEEE P1364 Working Group had the following membership:
Johny Srouji, IBM, /[EEE SystemVerilog Working Group Chair
Tom Fitzpatrick, Mentor Graphics Corporation, Chair
Neil Korpusik, Sun Microsystems, Inc., Co-chair
Stuart Sutherland, Sutherland HDL, Inc., Editor
Shalom Bresticker, Intel Corporation, Editor through February 2005

The Errata Task Force had the following membership:

Karen Pieper, Synopsys, Inc., Chair

Kurt Baty, WFSDB Consulting

Stefen Boyd, Boyd Technology

Shalom Bresticker, Intel Corporation

Dennis Brophy, Mentor Graphics Corporation

Cliff Cummings, Sunburst Design, Inc.

Charles Dawson, Cadence Design Systems, Inc.

Tom Fitzpatrick, Mentor Graphics Corporation

Ronald Goodstein, First Shot Logic Simulation and
Design

Mark Hartoog, Synopsys, Inc.

James Markevitch, Evergreen Technology Group

Dennis Marsa, Xilinx

Francoise Martinolle, Cadence Design Systems, Inc.
Mike McNamara, Verisity, Ltd.

Don Mills, LCDM Engineering

Anders Nordstrom, Cadence Design Systems, Inc.
Karen Pieper, Synopsys, Inc.

Brad Pierce, Synopsys, Inc.

Steven Sharp, Cadence Design Systems, Inc.

Alec Stanculescu, Fintronic USA, Inc.

Stuart Sutherland, Sutherland HDL, Inc.

Gordon Vreugdenhil, Mentor Graphics Corporation
Jason Woolf, Cadence Design Systems, Inc.

Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

The Behavioral Task Force had the following membership:

Steven Sharp, Cadence Design Systems, Inc., Chair

Kurt Baty, WFSDB Consulting

Stefen Boyd, Boyd Technology

Shalom Bresticker, Intel Corporation

Dennis Brophy, Mentor Graphics Corporation

Cliff Cummings, Sunburst Design, Inc.

Steven Dovich, Cadence Design Systems, Inc.

Tom Fitzpatrick, Mentor Graphics Corporation

Ronald Goodstein, First Shot Logic Simulation and
Design

Keith Gover, Mentor Graphics Corporation

Mark Hartoog, Synopsys, Inc.

Ennis Hawk, Jeda Technologies

Atsushi Kasuya, Jeda Technologies

The PLI Task Force had the following membership:

Jay Lawrence, Cadence Design Systems, Inc.
Francoise Martinolle, Cadence Design Systems, Inc.
Kathryn McKinley, Cadence Design Systems, Inc.
Michael McNamara, Verisity, Ltd.

Don Mills, LCDM Engineering

Mehdi Mohtashemi, Synopsys, Inc.

Karen Pieper, Synopsys, Inc.

Brad Pierce, Synopsys, Inc.

Dave Rich, Mentor Graphics Corporation

Steven Sharp, Cadence Design Systems, Inc.

Alec Stanculescu, Fintronic, USA

Stuart Sutherland, Sutherland HDL, Inc.

Gordon Vreugdenhil, Mentor Graphics Corporation

Charles Dawson, Cadence Design Systems, Inc., Chair
Ghassan Khoory, Synopsys, Inc., Co-chair

Tapati Basu, Sysnopsys, Inc.

Steven Dovich, Cadence Design Systems, Inc.
Ralph Duncan, Mentor Graphics Corporation

Jim Garnett, Mentor Graphics Corporation

Joao Geada, CLK Design Automation

Andrzej Litwiniuk, Synopsys, Inc.

Francoise Martinolle, Cadence Design Systems, Inc.
Sachchidananda Patel, Synopsys, Inc.

Michael Rohleder, Freescale Semiconductor, Inc.
Rob Slater, Freescale Semiconductor, Inc.

John Stickley, Mentor Graphics Corporation
Stuart Sutherland, Sutherland HDL, Inc.

Bassam Tabbara, Novas Software, Inc.

Jim Vellenga, Cadence Design Systems, Inc.
Doug Warmke, Mentor Graphics Corporation

In addition, the working group wishes to recognize the substantial efforts of past contributors:

Michael McNamara, Cadence Design Systems, Inc.,
1364 Working Group past chair (through September 2004)
Alec Stanculescu, Fintronic USA, 1364 Working Group past vice-chair (through June 2004)
Stefen Boyd, Boyd Technology, ETF past co-chair (through November 2004)

Accellera

Bluespec, Inc.

Cadence Design Systems, Inc.
Fintronic U.S.A.

IBM

Infineon Technologies

Copyright © 2006 IEEE. All rights reserved.

The following members of the entity balloting committee voted on this standard. Balloters may have voted
for approval, disapproval, or abstention.

Intel Corporation

Mentor Graphics Corporation
Sun Microsystems, Inc.
Sunburst Design, Inc.
Sutherland HDL, Inc.
Synopsys, Inc.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

When the IEEE-SA Standards Board approved this standard on 8 November 2005, it had the following

membership:
Steve M. Mills, Chair
Richard H. Hulett, Vice Chair
Don Wright, Past Chair
Judith Gorman, Secretary
Mark D. Bowman William B. Hopf T. W. Olsen
Dennis B. Brophy Lowell G. Johnson Glenn Parsons
Joseph Bruder Herman Koch Ronald C. Petersen
Richard Cox Joseph L. Koepfinger* Gary S. Robinson
Bob Davis David J. Law Frank Stone
Julian Forster* Daleep C. Mohla Malcolm V. Thaden
Joanna N. Guenin Paul Nikolich Richard L. Townsend
Mark S. Halpin Joe D. Watson
Raymond Hapeman Howard L. Wolfman

*Member Emeritus
Also included are the following nonvoting IEEE-SA Standards Board liaisons:
Satish K. Aggarwal, NRC Representative

Richard DeBlasio, DOE Representative
Alan H. Cookson, NIST Representative

Michelle D. Turner
1IEEE Standards Project Editor

Vi Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Contents

Lo OVERIVIEW ottt ettt ettt et eh e bttt h bttt et es e b e bt eb b bt s bt s b e b e s b et et eneeneeneeneebeabeseentenneneens 1
) B o0 oL PO PSR STUPRRRORRRPRRNt 1

1.2 Conventions used in this Standardcocceeierieienieiiee e ee 1

R TN 11 ot (o (1ot ox 4 015 (o) s WSS 2

1.4 Use of color in this Standardcccueecuiiiiiiiieiiece et e be e sbeeaeeaeeenas 3

1.5 Contents of this Standard.............cocoriiiiiiiii e e 3

1.6 DePrecated CLAUSES.....c.eeiuieeiieiiecieeiie ettt ettt e et e steeae e taeebeesteeesseessaessseesssessseenseessseenseenseas 5

1.7 Header file TISHINEZS ...cuveveriieieiiieiecieteete ettt ettt te et e e b e et e e s e teesseeseessesseensesseessensanssensenns 5

1.8 EXAMIPICS...cviiuiiiiieieitieiiete ettt ettt ettt ettt et e st et esbeesaesbeesb e beesse b e esaesseeseeeseesaeseenseseesaenseesaeseens 5

1.9 PrOICQUISIEES .. uveuvieuieeeeiieteeiee st eite it et e steestesteeseesseesaesseessesseessenseense s e essenseansesseensesseensensesssensenssensenns 5

2. NOIMALIVE TEICIEICES ..e.vveuvieeieniieiieiteteteete st et et etesteestesteeseeteeseenseaseessesneesseassensesssensesssensesseansesseansenses 6
3. LeXiCal COMVENTIONS ...ecuviiiieeeiieiieeitieettesiteesteestteeeseesteeesseesssaasseesseassseanseesssaasssessessseesseessseensaesesssseenseensss 8
RIS B 1 < Ter: 1 I 70) (=) 1 TSRS 8

3.2 WHIEE SPACEuieiuiieiieitieeieeette st et e ete et eseteebeestbeesbeenteessbeasseesnseensaeasseanseesssesnseensseanseenseessseenseesses 8

3.3 COMUMEIES ...ttt ettt ettt et ettt e et satesb e e st e s bt e et e sb e ea s e bt ea e e et e em et ebeemeeebeenteaseentesbeenteaseenteane 8

R T €3S -1 10) ¢ F U UPRPPTR PR 8

3.5 NUIMIDEIS ..ttt sttt et et e st e bt eb e b bt st et et e st et en e e bbbt b b be s 9
3.5.1 INEEZET COMNSTANLS ..eevuvieiieeiiieiieeteeiee sttt ettt ettt st et e sat e e bt e sabeesbeesbteebeesbeesabeeaeesatens 10

3.5.2 REAL CONSTANLSeouveiieiiiiieie ettt ettt ettt ae st essesteense s st enseeseensesseensesneensenneas 12

3.5.3 COMVEISION ..eeutiieiiieiieetietee ettt esteeetaeesteessaeeseeseseesseesseeesseessaassseessaessssessaesssasnseesssasnseenseens 12

T N 56 1oV USRS 12
3.6.1 String variable declarationcccueivieriienieiieeieeree ettt e aeeaee s 13

3.6.2 String ManiPUIAtION........cccieiiiierierieeieeeee et ereeeteesteeseeebeesaeesbeesseessbeesseesseesnsaenseesssens 13

3.6.3 Special Characters N StINES......c.occverieeieriieieieeterte ettt e seebe e eseeeeessesseessesseessesseas 13

3.7 Identifiers, keywords, and SYStEM NAMESc.eecverrirceerrieieriieienteeeesteseesseeeeeseesesesseesseeseennes 14
3.7.1 ESCaped identifierS.......cccieeieieriieie ettt ettt en e neas 14

3.7.2 KEYWOTAS ..ottt ettt ettt et et e et e sseesaesseensesseensesseensenseensesseensesneensennean 15

3.7.3 System tasks and fUNCHIONSc.eoeeiirieiieiiee et 15

374 COMPILET QITECLIVES ...eecuveeiieitieeiiesiieeieereeeie et eseeeeteesaeesae e teessbeesseessseeseenseesnsaenseesssens 15

3.8 ALIIIDULES ..ttt ettt et bbbttt e h et b et sh et be et sbeentenbean 16
3.8.1 EXAMPICS..cuiiiiiiiieiieciieiecteeie sttt ettt ettt ere e ae e b e e ta et e e ta e b e ets e beeseenseeneenaeeneas 16

382 SYMEAX 1ttt b e bbbt ettt ne bbbttt nee 18

4. DAL LYPES weeuveeurieitienite ettt ettt ettt ettt et ettt s b e bt e e a bt e bt e s at e e bt e s ht e e e bt e shteeabe e beesabeeabeenbeeenbeeaee s 21
AT VAIUE SCL .ttt sttt ettt eb bbbt b ettt b et eh e b e nae s 21

4.2 NetsS aNd VAIIADIESiiuieeiiieiieciiecie ettt ee et et eete et eebeesteestbe e beeesaeesbaessaeenbeetaeebeenreens 21
4.2.1 NEt dECIarationsccueeeieeeiieiiieieeetie et eette et e esteebe e taessaeebeestseesseessseeseassseesseesssessseenses 21

4.2.2 Variable declarationscocerireeriiieniiiereeee e e 23

4.3 VECLOTS ..ttt ettt ettt ettt sttt s bt et e b e et b et eh e ea et e h e et bt et e bt et e eh e e bt e bt et b et eae et eee 24
4.3.1 SPCCIYING VECIOIS...eeuietieiieitieiiieiieeeeteetesteetesteesseteessesseessesseessesseessesseessesseessensenssenseeses 24

4.3.2 Vector Net aCCeSSIDIIILYvieiiiiiieiiiieieetete ettt s re et e s eseene e 24

O)1 1 1T RSP TTS 25
4.4.1 Charge Stren@th.....c.ocieieeieieeeeece ettt ne e e 25

442 DIive StIENGN ..ceeiiiiieiee et 25

T 0401 o) L Tod L [<tod 2 1 1o 4 LSS 25

4.0 INEL LYPOS weeeureetieeiieritesieesteestteesteesstesteessaessseessaeasseeseessseassaeasseenseeaseeasseeasseanseensaeanseenseeataeenaeereens 26
4.6.1 W€ And T NEES...euiiuiiiiiiieitietiete ettt ettt sb et be ettt naeeee 26

4.6.2 WITEA NS ...ttt ettt et b e bbb e st e st et et ebe bt ebe et et nee 27

4.0.3 TIITEE NCL..eicvieiieieeeiectiete ettt ete et et eteettebe et e beeseesseessesseeseasseessesseessesseesseseessanseessensenses 28

Copyright © 2006 IEEE. All rights reserved. vii

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

T T U o (01 Vo Uo 5w 1 11 =TSP OPRTRRRN 31

4.6.5 UNIESOIVEA NELS....couiiiiriiriiiiiiiiteiiete ettt st sttt ettt sa e 31

O N TN 1) 0] 11 £ SRS 32

AT REES tetteiieeie ettt ettt et e et e ettt e bt e te e bt e ate e bt enaeeeabeennteenbeeebeeenbeereens 32
4.8 Integers, reals, times, and realtimescccceeoiiiiiiiiriiiiniee e 32
4.8.1 Operators and 1eal NUMDETScccuierieeiiieriienieeieerie et esiee e esteeseaesbeeseeessseesseessneennes 33

A 1) 1 13 5 () SRS 33

B N & ¢) £ OO OO O OO P U PORUPTOPRRRURTR 34
49T INEEAITAYS teeteeeuteeiieiteeriee ettt et e ettt et e sttt et e e sttt eabeesaeeeabeesbtesabeesbbeeabeenbeesabeanstesaneenseesanesanes 34

4.9.2 reg and variable arTaAYS........cceoieieriieieriieieste et ete ettt e sre e s e b sea s sa s eneenns 34

4.9.3 MEIMIOTIES ..ttt ettt ettt et sttt ettt ee b et e bt en et s bt et e sbe et bt e b eb e et eneenaeeaee 35

4100 PaTAIMELEIS ... ceutiiiieieitiete ettt ettt ettt b ettt et eb ettt e et bt ettt nbeeb e e b e bt e b bt e bt et e e eae 35
4.10.1 MOAUIE PATAMELELSecuveeeeeertieieetieieeteeteeteeteetee e sseeeesteentesseensesseensesseeneeeseeneesneeneesees 36
4.10.2 Local parameters (loCaIParam)ceceeeerreieririenieeiiesieeie e eece et 37
4.10.3 SPECI{Y PATAMELETSevieiieiieiiieiieieete ettt te st e teette e et et e esaetesseesesneessesnsensesnseseensenes 38

41T INAINE SPACES ..vveeuveeereeieerreetterteesteessteateesstessteessaessseesseessseeseessseessesssstessesssseenseesssessseesssesnsessseens 39
S EXPICSSIONS ...iviiuvieiietieeieteetestesttesteestesteeteesseestessesseessesseessesseessassesseaseesseeseensesseessesseesseeseesseesseseeseensens 41
5.1 OPETALOTSveeuvieiieeieeiteeeteeette st eteeesteettessaeesseesseeesseensaesrsaenseessseensaeassesnseanssesnseenssesssessseesssensennen 41
5.1.1 Operators with real Operandsc.cererieiirieiieiieeee e 42

5.1.2 OPerator PrECEACIICEeeiueeueeetieuieetietieeteteette et et esteeete et eseeteeneesseeneesseenseeseeneesneeneesneas 43

5.1.3 Using integer NUMDErS N €XPIESSIONSeeverrrrrerrerierrerseenteeeessesseessesseessesseessessesssessenns 44

5.1.4 EXpression evaluation OTAET.........c.ccveveeieriirrieierieeiesteeetesteesesseesaesesseessesseessesssessessenns 45

5.1.5 ArithmetiC OPETALOTSc.vevieiieiieeieriieeiesteetesteete e etestesstesteessesseessesseessesseessessesssessesssens 45

5.1.6 Arithmetic expressions with regs and INtEZETSc.eevveereerrieereenieeieereeneeeree e senees 47

5.1.7 Relational OPETAtOrSc.eeiuieieieeeieie ettt ettt ettt ettt et ese et e seeeneeneeeneas 48

5.1.8 EqUAlity OPETALOLS .. .eeiueiueitieieetietett et etce ittt ettt e st ettt et e st e es e teeneeeseeneesseesesneeneesnean 49

5.1.9 LOZICAL OPCTALOLSeevieeieniieiieieeieetieiesteeteseeesteseeetessessseseessesseessenseeneesseensessesnsessennnens 49
S5.1.10 BItWISE OPETALOTSveeuverveeererieeresriesresseessesseessesseessesseessasseessesseessesseessesseessessesssessesssessenns 50
S5.1.11 RedUCHON OPEIALOTSeevvevieiieiieireieeeienteetesteestesteeaessesssesseessessesssessesseessesssessesssessesseens 51
S5.1.12 SRt OPETALOTS ...ccuiiiiieeieeieeciie ettt sttt et ste st teeeaae e beessbeenseetaeenseenseesssaenseensnenn 53
5.1.13 Conditional OPEIALOLc.eeuieiireieie ittt ettt ettt ettt b et e e et e e nean 53
5.1.14 CONCAENALIONSeetietietieteeteeteeteete et e e et eteeateseeeseeaeeseenseeseentesseenseeseenseeneesseeneenseenean 54

TN © 11 1<) s Uc TSRS 55
5.2.1 Vector bit-select and part-select addreSSingcceeevevvieieriieiieniiiereeieseeiesie e 56

5.2.2 Array and memory addreSSINgcveverrereieriirierieiiesientieieeeetesreeae e esaeseese e esesreens 57

5.2.3 SHIINES teetietieeieeteesiie et e ette ettt e st e etaesbeestte et e e be e et e e taestbe et e e tae et aeseeetbeantaeesaeenseenraeteenn 58

5.3 Minimum, typical, and maximum delay eXPresSionsccoveevereeeerieerieneeeeseeeeene e seeeeennens 61
5.4 Expression bit Ien@thsccoooiiiiiiiie e 62
5.4.1 Rules for expression bit lengths..........coevevieiiirininiiiicccee e 62

5.4.2 Example of expression bit-length problem..........cccceecieviirienincieniiiese e 63

5.4.3 Example of self-determined eXpreSSIONsccvevverviererrieienieeeeniesiesieseessessesseesessenns 64

5.5 SINEA EXPIESSIONS. ..eeuvieireerieeiieriteeiteestteeteesteestteesseessseasseesseessseesseessseesseesssesssessssesssessssessssssseenes 64
5.5.1 Rules fOr eXPreSSiOn fFPESveruerierieeierieetieteeiesteeeeste e st esee e eeeseeeseesseeneeseeeneeseeeneas 65

5.5.2 Steps for evaluating an eXpPreSSION.ecuerireererrierieeiereeterteeeee st eeeseeeeeseeeeeseeeneenaeas 65

5.5.3 Steps for evaluating an assigNMENL...........cceeeeriereerierieiesieeeseeeesteeeesseeee e eaesseesnens 66

5.54 Handling X and Z in signed XPreSSIONSeccverueerrerrerriesreeeesreeiesseseessessessesaessessenns 66

5.6 Assignments and trUNCALION..........c.evierveitieierieeteeteeetesteetesteestesteestesreessesseessesseessenseeseessesssessesses 66
6. ASSIGINIMIENIESuveeutieiieeteestieeteeeteeeteestteeteestaeesseesseessseessaessseasseeasseenseessseenseenssesssenseesssaesssesnseessesansesnseens 68
6.1 CONtINUOUS ASSIZNIMICIILSeeutieuieeeeeierteetieteeieerteeteenteeteeseeeneeeeeseenseeseesesneenseeseanseeneenseeseenseseanean 68
6.1.1 The net declaration asSIZNMENL............cerueeiirtieiieeieieee ettt ee e eeeeneas 69

6.1.2 The continuous assignment StAtEMENLEcccververeeereirieriereieieseeeeeeeeeeeeeeeseesneeseeneas 69

6.1.3 DICLAYS weevieuiieiieiietieie ettt ettt ettt b e et sa e st te b et e e s b e teeseeereesbeereentesreensenaeas 71

viii Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

6.1.4 SHIENGN ..o et ettt ene et enean 71

6.2 Procedural aSSIZNIMENLS.cc.eeierieiiertesiieieeteteettete st eeeseeesaesseeaesseessesseessesseensenseensesseensensesses 72
6.2.1 Variable declaration assi@NmMENt..........ccecveeueriierierieeiiineeiesieeieseeee e eeee e eeeseeeneesseennes 72

6.2.2 Variable declaration SYNAXccceeereieriieiieriieientieieseete e esesreseesseessessesseesseeseesseesees 73

7. Gate- and switch-1eVel MOAEIINGocviiiiiiiieeiieie et sre e ae e aeebeeseaeebeeneee s 74
7.1 Gate and switch declaration SYNTAXcccceeciereeriieeriienieeieeseeeieesteesteesaeeseeeseesaeeseessneeseenes 74
7.1.1 The gate type SPECITICALIONeeuiiiuieierieeiieie ettt 76

7.1.2 The drive strength SpecifiCation..........cceeverierieriieieiieeee ettt 76

7.1.3 The delay SPeCifiCatiONc.ccvevuierieiieiesiieieeieeie ettt sttt e e eneesneeneas 77

7.1.4 The primitive instance 1dentifier.........ccoccveviiivieriiiieriiciere e 77

7.1.5 The range SPECITICAtION ...cc.viiitieeieetiecieecteeee et eee et steeseae et eeseeeeaeeeeeesseebeessaeenseenneas 77

7.1.6 Primitive instance connection HiSt..........ccoeiiireiiiiiiniiniiiiec e 78

7.2 and, nand, nor, or, XOr, aNd XNOT ZALES.....c.eceriierieerieiieierteeeierie e reesteeee st eeeseeeneesseeeesseeneesseeneas 80
7.3 DUFANA DOt GALES ...vieeieiiieiieie ettt ettt et se e st e e s e st e et e e ent et e st eteeneenaesreenseenenn 81
7.4 bufifl, bufif0, notifl, and nOtifd GAES.........ceririeiiiieieeieeee e 82
7.5 MOS SWIECRES ...ttt ettt ettt b e eb et b e bttt es bt b et naene 83
7.6 Bidirectional Pass SWItCHESeccuieriiiiiiieiieiieeieeete ettt ereestteeaeeteesresbeestaesbeenseessseeseenseenes 84
7T CMOS SWILCRES .ottt sttt et b e e s bt et sb et sbeeaesbeenaenbeas 85
7.8 pullup and PulldOWN SOUICESceuerueeieieieieitieie ettt ettt ettt ettt ettt eseeeneesaeeneas 86
7.9 Logic strength MOAEIINGc.cciiiiriiiieiieiee ettt et ee e et e e ssesneenseeneas 86
7.10 Strengths and values of combined SIgNalsccoeiriierieiieiieierieeeeeee e e 88
7.10.1 Combined signals of unambiguous Strength............cccecvevvivieiiecenieieeeeeeeeee e 88
7.10.2 Ambiguous strengths: sources and COMDbINALIONSccveeeueerevierieenieiieenieneeeveenee e 89
7.10.3 Ambiguous strength signals and unambiguous signalscccceeeeeriiienieniieecieeneennnenn 94
7.10.4 Wired LOZIC NEL LYPES ..uveeueeeieeeeeieie st eie ettt te et et et et et ettt ete s et en e eseeneeeseeneeeneenean 98

7.11 Strength reduction by NONIeSiStIVE AEVICESeevevieieriieieriieierieeeeteeeeieeeeeeeseeeesseeaesseeneens 100
7.12 Strength reduction by reSiStive dEVICESecvvervirirriieieiieieieeiese sttt eee s eeesseeneens 100
713 Strengths OF NEt LY PES...uieiiiieieiieie ettt ettt st et e st se et e stae b e eseesseeseessesssessesseessasenns 100
7.13.1 tri0 and tril Net StrENGLNS ...ccvieriieeiieieeie e e 100

T 132 e SIIENZLN ..ottt et et ae b e beeenbeereenees 100
7.13.3 supplyO and supplyl net Strengthsoocoeieieiieiiniiieeee e 101

7.14 Gate and NEt AEIAYScc.eeiiiiieieeieie ettt ettt ettt e nseereenbenreens 101
7.14.1 min:typ:max deLAYS.....ceeieiierieiieiieie sttt enee s 102
7.14.2 trireg Nt Charge AECAYevvevieriieieiieiieieetete ettt et e ste e sre e sreesaesbeesbesteessenseesnenseenes 103

8. User-defined primitives (UDPS)ccociiiiiieiieeiieiie ettt sttt esiee st eiee st eseessaessteessaeenseessaesnnenssesnss 105
8.1 UDP AefiNitiONeciuiieiiiiieiieeeie ettt ettt ettt e e e et eeebe e taeesbeesbeeesseesseessseenseessseenseenseensseas 105
LT O B U1 B) o s 1< 14 < USRS 107

8.1.2 UDP pOrt deClarations........c..erverteureuteieiriineniintetenteteteteeeieete sttt e s ee e eneas 107

8.1.3 Sequential UDP initial Statement..........ccevveeieriieriinieieeienieeeesesee e eae e eevesseessesseenns 107

8.1.4 UDP State tabIeeoueiueiiieieieteieeieet sttt ettt 107

8.1.5 Zvalues N UDPcooiiiiiiiii ettt s 108

8.1.6 Summary of SYMDOLSoouieiiiieiiii et 108

8.2 CombinationNal UDPSccciiiiiiiiiiiiciecieeste ettt sttt te e tae s veestaeeaaeebeessseesseessseenseensseas 109
8.3 Level-sensitive sequential UDPScccciiriiiiiiiiieiecieie et 110
8.4 Edge-sensitive sequential UDPSccoccveviiiiiiieiieieeieieeeet ettt s eeeens 110
8.5 Sequential UDP initialiZatioNccveeieriieieiieierii et seeie st ete st eteesae e esaesreessesaeessesseeseens 111
8.0 TUDP INSLAINCES ...ceuttiutentietietieiie ettt ettt et bt ettt e e s bt et ebeentesbe e et sbeebesaeenbesbeenbesaeeneeneeenee 113
8.7 Mixing level-sensitive and edge-sensitive desCriptions..........cecveeererriererieneniere e 114
8.8 Level-sensitive dOMINANCEcccveeiiieiieiiiieieeeieeeteeteesiteebeeseeebeesteeesbeesseessseeseessseessaessseesseas 115
9. Behavioral MOAEIING..........cocuiiieiieiieiecieeeee ettt ettt e s s e esaesseenaesseensenseeneenseenes 116
9.1 Behavioral MOAE] OVETVIEWcc.eiuiiuiiiiieieieiieiieiteit ettt ettt sttt 116
Copyright © 2006 IEEE. All rights reserved. X

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

9.2 Procedural aSSIZNIMENES.ccouteieieerieiteetieie ettt eete e e steetesteeeestees e teeneesteeneesseeneesseeneessenseens 117

9.2.1 Blocking procedural aSSIgNMENtScccererrieriereerieeieneeeieseeseeseeseeesesseeaeseessnenes 117

9.2.2 The nonblocking procedural asSINMENTtc.ccveviereiriiereriienieeieie e eees 118

9.3 Procedural continUoUS aSSIZNMENLScc.eeuieriireertiireiertesieetesseesesseesesseessesseessesseessesseessessenns 122
9.3.1 The assign and deassign procedural Statements.............cecceerveereereesieenieenieesreeneeennes 123

9.3.2 The force and release procedural StateMENtSccceeevveerieriieerienieeienee e see e 124

9.4 ConditioNal STALEIMENTeeevieiiieeieeitieeieeieesteeteesteesbeesteestbeesseesseeesseessaessseeseasssessseesssesseessseas 125
9.4.1 Tf-elSC-1 COMSLITUCT . ..cvirtitititiieieieitee ettt s 126

0.5 CaSE STALBIMENLcueiiiiiiiiiieieiteteeitet ettt ettt et e e ettt ettt be et saeesa e st ene e e b eas 127
9.5.1 Case statement With dO-NOT-CAIESceceriririerierieieieerc e 128

9.5.2 Constant expression in €ase StAtEIMENT.......c.eeveveeriierreereerieeieereesreeieeseeereesenesseennns 129

0.6 LOOPING STALEIMENLSveeuvieeeieeiieeiieeiteeiteerteerteeeteesteeseteesseessseesseessseeseessseenseessseenseenseessseessesnsses 130
9.7 Procedural timing CONLIOISccuiiiiiiiiiieieie ettt ettt et ettt e e eneesaenneens 131
9.7.1 Delay CONMIOL......iiuiiiieieiiee ettt et ettt et nae et e seeee s enee 132

9.7.2 EVENE CONLIOL..c..iiiiiiiicitcitcicetcet ettt sttt st ebeenen 132

9.7.3 NAMEA EVENLS....couiriiiiieiieiieiieiiet ettt ettt ettt ettt sttt st b e et eneeneens 133

0.7.4 EVENL OF OPETALOT ..evuvieiieeiieiieetieitesiteeieestteeteettesbeesstessteeseesssesnseesssesnseenseesnsesseesens 134

9.7.5 Implicit event eXpreSSION ISccviicieeriierieeriierieeieerte ettt e seesteeseeereebeeseeeenseenens 134

9.7.6 Level-sensitive €Vent CONIOL.......cccuviiiieeiiiiieeieeieeseeeee et eeae e aeereeeeeseaeesee e 136

9.7.7 Intra-assignment timing CONIOLScceeieiieririeii et 136

9.8 BIOCK STALEINENLScoueueiiiitititetetet ettt ettt ettt et eb et be et be et ee 139
9.8.1 Sequential DIOCKSccevuieieiieieriieie ettt et st e s enes 140

9.8.2 Parallel DIOCKS......ccueriiieiieiieiteiiet ettt 141

0.8.3 BIOCK NAIMES ...ttt ettt st sttt sb e eb e 141

9.8.4 Start and fINISH tIMEScceiiiiieciiecii et ee et re e eeabe e eens 142

9.9 Structured PIrOCEAULESccueiieiiietietieiettet ettt ettt st ettt e e et eneeeseeeeeeeeneesneesesneensenseens 143
9.9.1 INitial CONSLIUCE ..eovtiiieiieiieieet ettt te sttt ettt e te et esaeenaesseeneesseensenseeneeneeeseenes 143

0.9.2 AIWAYS CONSLIUCT....euieiiiieiiesieeterteetesteetesteeaesteetesseessesseeseessesssessesssessesssensenssesenseenns 144

10, Tasks and fUNCLIONS ..c..eouiitiiiiriiieieteeet ettt st ettt et ebe et ebesbeseennen 145
10.1 Distinctions between tasks and fUNCHONScocueiiiiiiiiiiiiieieeecee e 145
10.2 Tasks and task €nablingcccoiieiiiiiiieie et 145
10.2.1 Task deClarationsccueecuieiieeiieiieeiieecie e st eteeiee st e eteesteesbeessaessseetaesaneesseessseesseenses 146
10.2.2 Task enabling and argument PasSINGceceeereruerreriereerteieeeeereniente e seessenseneeneeneenes 147
10.2.3 Task memory usage and concurrent aCtivation.............c.eceerreeeverreereenreseerseneensesseenenns 149

10.3 Disabling of named blocks and tasks..........cccceeeuerieiierieciiniieieee et eieens 150
10.4 Functions and function CalliNg...........ccceeeieiiieiiienieiieeeeeie et esee e et e e eae et e seveeeeenes 152
10.4.1 Function deClarationscccueeeuieeiieeieesiieiieesieesteesreeseesveesseessaeeseeseaesseesseessseeseenens 152
10.4.2 Returning a value from a functionccceoeiieiiiieiinieeee e 154
10.4.3 Calling @ fUNCHION.eeieiieiieie ettt ettt ettt ettt et e ste e s aeeaeseeeesenseennenseeneenes 155

10.4.4 FUNCHON TULES ...ouveiiiiieiieiiecet ettt sttt sttt ee bbb enes 155
10.4.5 Use of constant fUNCHIONS.......c..euriruirtiririnierieniereeeee et 156

11, SCheduling SEMANTICS.ceccuietieeieeieertteeteeteesteete e bt esaeeteesteeebeeseessseeseessesnseesesssseensessssessesnssesnses 158
11.1 Execution 0f @ MOAELc.cooviiiiieiieiii ettt et e e aa e et esaaeebe e tbeeseensne s 158
11.2 EVENt SIMUIALION ..ecuviiiiiieiieiie ettt ettt ett et e et e sseeesbeeseaeesaeebeessseesseessseenseeseassseeseenssens 158
11.3 The stratified VNt QUEUEC.........ecuirieiieeiee ettt ettt e ste st enteeseeseesseensesneesesseensensenseens 158
11.4 Verilog simulation reference modelccocveiiiiieiiiniiiiiieeceee e 159
11.4.1 DteIMINISIN. ..c.eiuieuienienieiietieteeteet ettt ettt ettt st be b b s bbb e e et et ebeebeeseebeeben 160

11.4.2 NONAEEIMINISIN. c..eeutiiieiiiitieie ittt ettt ettt ettt et st sbesbe et seeenbeeaeenee 160

11.5 RACE CONAITIONS ...ecuviitiiiiiieiieetiesie et e et e ete et e eteeteesbeesseesteeesseessseesseessseasseesssesssaenseessseenseenssens 160
11.6 Scheduling implication of @SSIZNIMENTScceeeeriirierieieee ettt eeens 161
11.6.1 ContinUOUS @SSIZNIMENLecueerteriieieeieteeeiesteetenteeeesteeaessesaesseesseseessesseassenseensessennes 161
11.6.2 Procedural continuoUS aSSIZNMENL.........ccvereerierieereirieienreetesseeseesseeaesseeesessesseessenseenns 161

X Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

11.6.3 Blocking aSSIZNIMENL........cccuertieiirieeierieeieeteeie sttt etee st eeseeeseesaeeeeseeeneesteeneeneeeneenes 161

11.6.4 Nonblocking asSIGNIMENL..........couiruieruerierieiieiesietesteetesteeeesseeseesseessesseessessesssensesseenes 161
11.6.5 Switch (transiStOr) PrOCESSING......ccveruierierrierierrereerieeeteieereesesseeseseensesseessessessessesssenes 161
11.6.6 POTt COMMECLIONS ...c.vitiuteuienienietietieieeteet et ettt ettt ettt sbe bbbt e st et et eneeneeneeneaben 162
11.6.7 Functions and tasKscoeeriiiiiiiiiiieee e 162

12, HierarchiCal STIUCTUIESceouiiuieiiiiiee ettt ettt st sa ettt e st eaee b et eneeeae 163
200 Y Yo L (<P SEUUSTRUPTRS 163
12.1.1 Top-1evel MOAUIEScceeevieiiiieiieiee ettt et ene s 165

12.1.2 Module INStANTIAtIONe.veveuieiieiiiiiriieiirtestcet ettt ettt ettt s st eneenes 165

12.2 Overriding module parameter VAIUES..........ccvecverieriecierieieetceieee et seesee e eae e esae e eseesnens 167
12.2.1 defparam StAtEIMENTcccvierieeieeiieeieeieecteeeteeieesreeteesteesbeesteessreensaessneenseessnessseenses 168
12.2.2 Module instance parameter value assignmentcccueeeveerveeiueerreerveesueeneesueesseennns 170
12.2.3 Parameter dependencCecoecverueeierieieiieeste ettt 173

2 T o ¢ 73 TSRS 173
12.3.1 POTt defINITION c..evetieitcictctcitcte ettt sttt ebe s 173
12.3.2 LISt OF POTES .uviiiieiieiicieiietteie ettt et ettt b e et ebesteesae s e esbeesaessenseensenseenns 174
12.3.3 POTt dECIATAtIONS ..c..evieenienieiieiieiieieet ettt ettt sttt ebeebes 174
12.3.4 List of pOrts deClarations.........cccveieuierieriiieiieeieeieesiteeeeesteesreesaeesreeeeesseeeseessnesnneenes 176
12.3.5 Connecting module instance ports by ordered List..........ccooceroeriereiierinieeseeee 176
12.3.6 Connecting module instance ports by NAMEccceevereeririierenieneeiesceee e 177
12.3.7 Real numbers in POrt CONNECHIONS.......ccveeeeruereerrerieeieeeieeeeeeeeeeeeseesseesesseeaesseessensenns 178
12.3.8 Connecting disSIMIlAr POTLSc.eeeeriirieriiiieieiteieereete st ete e esae e ee e eesessesseesseeseenns 178
12.3.9 POIt CONNECLION TULLSeuviuiinieiieiieiieiiet ettt sttt ebe b 179
12.3.10 Net types resulting from dissimilar port CONNECtIONSccveevveerieerieereenieerieeere e 179
12.3.11 Connecting signed values Via POISceoveruierierieiiiriieie et 181

12,4 GENETALE COMSIIUCTS ...uutirutieriiieiieniie ettt ettt ettt et e st e bt e sttt e bt e sbe e sabeesbtesabe e bt esabeebeesaeenseennee s 181
12.4.1 LOOP ZENETALE CONSLIUCES ...eeuvieiiiriiieriieeieeitieriteeieeniteebeesteesiteesteesbeeeabeesaeesateenbeesaeesans 183
12.4.2 Conditional generate CONSIIUCESccievierrierierierierieerieieeeete e eaeseetesreeesessesseesseeseenns 186
12.4.3 External names for unnamed generate blOCksSccccvvieriiiieriiniieniiiceeee e, 190

12.5 HierarchiCal NAMESc.ccovieiiieiiiriieieitieiestt ettt ettt et et eat et et e bt eat e bt s eesaeebeennenneens 191
12.6 Upwards Name IEETENCINGc.verueruieitertieieetierteetieteeeee sttt ettt e te et et eseeseeenee et eneesaesseesesneens 193
L2.7 SCOPE TULES ...ttt ettt ettt et s h et e bt e e et emt e st et e esee st sneeeesbeensenneans 195
12,8 EIADOTALIONeouiiiiiitietiiterietet ettt ettt ettt b bbbt bbb st ettt besbesbesbenae 197
12.8.1 Order Of €labOration........cc.eoeriirieieieieiieiie ettt ettt 197
12.8.2 Early resolution of hierarchical NAmMEScooirveeriiiiieniiiericee e 197

13. Configuring the contents 0f @ AESIZNccviiiiieriierieiiiee ettt e aeebeeseeeseaeenees 199
L 20 N U U3 (o Yo A (o150 USRS 199
0K 0 B 0 1) 23 o 20 1] 150 s RO 199

13.1.2 Basic configuration €lements...........ccoceeierieriieienie ettt 200

13,2 LADTATIES -unteiieiietieieeteet ettt ettt ettt et b e sttt s st e st e bt e bt bt bt bbb e st e et e st e bt ebeebesbenaen 200
13.2.1 Specifying libraries—the library map fileccccceeveeviriieniiiiiieeeeeeeee e 200
13.2.2 Using multiple library map filesccceveviiiierieniiieriecie et 202
13.2.3 Mapping source files t0 lIDIariesccooveiererieriiieie et 202

13.3 CONTIZUIATIONS ...euiitieniieiieite ettt ettt et e et eee s et ete st e e ae e st e teebeanteeseenseeneeaeeneesaesneensanseens 202
13.3.1 Basic cONfigUIration SYNTAX........ccerueeueruerieriereieienteeeestestesseseessessaesseeseessesssensesneessennes 202
13.3.2 Hierarchical CONfIGUIAtIONS.cceicieriiiierieiieieie ettt se e saeees 205

13.4 Using libraries and CONTIGSccvevuerierieriiieiieie sttt ste e steessesreesaesseessesseesesseensansaens 205
13.4.1 Precompiling in a single-pass use Model...........cccoevveriiriieniiieiierieeieeeee e 205
13.4.2 FElaboration-time compiling in a single-pass use modelcoccevvieiinieiencennnnnne 206
13.4.3 Precompiling using a separate compilation to0lccoceereriierinienienieneee e 206
13.4.4 Command line cONSIAETAtIONS.........ccercierirrierieiieieeeeeie et eee st eee e eseeseeeeaesseseeeseeeneenes 206

13.5 Configuration EXaAMPIES.........ceecuerieriiiieiieriete st eteseetesteeteseesesseessesseeseesseessessesssessesssessensanns 206
Copyright © 2006 IEEE. All rights reserved. X1

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

13.5.1 Default configuration from library map filecoccoeeieiiriiiniieieieeeeeee e 207

13.5.2 Using default ClauSe.......c.eecieriiiieiieiere ettt ene s 207
13.5.3 USING CEIL CLAUSEovveeeieniieeieie ettt ettt sr e nbe s e e saeenes 207
13.5.4 USING INSTANCE CLAUSEc.vievietierieiiiierie ettt eiete ettt eteesteeeeesseesaesaessaesseesaessesseessensnenns 208
13.5.5 Using hierarchical CONTIZ......ccccoiiiiieiiieiii it 208

13.6 Displaying library binding infOrmationcceeeueiiiieriieeiienieeie e eie e eve e seee e s 208
13.7 Library mapping eXampPlesccccceeoieiiiieieeierteeeese ettt ettt ettt see e e eneens 209
13.7.1 Using the command line to control library searching...............cccceeerveveenivecienreceennnnne 209
13.7.2 File path specification eXamples..........ccoocvevererrieniieierieieee ettt eeeeneene 209
13.7.3 Resolving multiple path SPecifiCationsc.occeerieveeririieniiierieeiere et 209

T4, SPECITY DIOCKS ...uieiiiiiieiiecit ettt ettt st e et e st e esbeesteeesbeesaeessaeensaenseesssesnseenssennses 211
14.1 Specify block deClaration...........cccueecuieiiieiiieiie ittt ettt ete et aeeaeesteeeeseesseessseenseessse s 211
14.2 Module path deClarationseerueriererieieetieree ettt ettt e st e s e see e saeeneeneenneens 212
14.2.1 Module path TESIICTIONS ...ecueertirtieieeiierieeteee sttt ettt ettt ettt e eesee e beeeeesaeeneeeeene 212

14.2.2 Simple MOAUIE PARS......cooviiieiiciieieeiee ettt 213
14.2.3 Edge-Sensitive PANSccccciieiiriiiieie ettt ettt st sb e ene s 214
14.2.4 State-dependent PAtNSccccviviieieiieie ettt ens 215

14.2.5 Full connection and parallel connection paths..........cccceecvverieerieenieiiieneenie e 219
14.2.6 Declaring multiple module paths in a single statementccecceveereneerenienenennne 220
14.2.7 Module path POLATILYcc.eeiieiieiieiiee ettt st 220

14.3 Assigning delays to module pathsccoeceriioiiiiiciei e 222
14.3.1 Specifying transition delays on module pathsccccooceriiiiinincenieieeeeeeee e 222
14.3.2 Specifying X transition delays..........cccecveriievierieiiieniiiieieceeie e 224
14.3.3 Delay SCIECTION. .. .eeiiieiieiieeiieciteete et te et et e et e st e ebeesteesbeesseeseseessaessseenseessseenseesses 225

14.4 Mixing module path delays and distributed delaysccccoeieiiieieninire e 225
14.5 Driving Wired LOZIC .. .coueeiiiuieieitiee ettt ettt ettt ettt ettt et e et e eesneenaesaeensenneens 226
14.6 Detailed control of pulse filtering behavior.............cceeiriiiiieciirieeeeeee e 228
14.6.1 Specify block control of pulse limit VaIUEsccevirieriicieriiieieeeeeee e 229
14.6.2 Global control of pulse limit VAlUES..........cccueririeriiiieiieieieeeee e 230
14.6.3 SDF annotation of pulse limit ValUeS..........cceeeeriiiriiirieeiieree et e 230
14.6.4 Detailed pulse control capabilitiescoecueruieierieiirieere e 230

15, TIMING CRECKS ...cniitieiiiiiee ettt ettt et a et et e et s aeete s ae et et e eneenteeneeneeenee 237
I5.1 OVETVIBW ...ttt ettt ettt ettt sttt et eb bbbt bbbttt et ettt e bt saeebesbenaen 237
15.2 Timing checks using a stability WinAOW.........cccccercveriiiiieriieieiieiee et see e sae s eenens 240
I5. 2.1 SSCIUP ceeveneeieeeteietetete sttt ettt ettt ettt st et a bt s b e st st e st s be st et ne et e st et e st ete st ete e teneeteneas 241
15.2.2 SROLA -ttt sttt ettt ea e bt ae e eean 242
15.2.3 $SCEUPNOLA ...ttt 243
15.2.4 STEMOVAL .ouviiiiieeee ettt sttt et ettt eneene st eneeen 245
15.2.5 STECOVETY .uviviienieieiesieiieiteie et ettt ettt et e b esbe st ess et beseeseeseeseesessesessessessassessassassaseses 246
I5.2.6 STECTEIM ...ttt ettt ettt ettt sttt ettt e st et e st et ent et e st et et etensesesesenneseneas 247

15.3 Timing checks for clock and control SIgNALScceceeeeiriieciiniieienieeere e 248
1531 SSKEW oottt ettt ettt ettt sttt se et bttt b et et neebeneeseneeseneas 249
15.3.2 SHMESKEW ..eouieeieiieiieeeeeee ettt ettt st e e ae e et e s et eneeseeseeneeeeneas 250
15.3.3 STUIISKEWoveviieiiietisietesiet sttt ettt eb et b ettt ettt ss et esseb et esesesessesesseseneas 252
15314 SWIAN coeiiiii ettt sttt 255
15.3.5 SPETIOW c.viniieiieieieteeteeete ettt ettt sttt ettt ettt sttt ettt ettt e tenea 256
15.3.6 SNOCHANGZE . .oveovieiiiietiietee ettt ettt ettt ettt 257

15.4 Edge-CONtIOl SPECITIETS ...uvieieiieiieriieciierie ettt eiteete et e steesteetaesaeesteessbeeseensaessseanssesnseenseasseenssens 258
15.5 Notifiers: user-defined responses to timing ViOlationscccceeeverueerirneereneeieneeee e 259
15.5.1 Requirements for accurate SIMUIAtIONccoecieririiiriiiiriee e 261
15.5.2 Conditions in negative timing Checks.........cocveiieriiiiiiiinieieeeee e 263
15.5.3 Notifiers in negative timing CheCksoovvevieiieriiiieiecicieceee e 264

xii Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

15.5.4 Option DERAVIOTeevieiieiieeieie ettt ettt sttt ne e eee s 264

15.6 Enabling timing checks with conditioned eVENtScceeieeiirierienieiereese e 265
15.7 Vector signals in timing ChECKSccveririieiieieciieeceeeee e 266
15.8 Negative timing CRECKS......ccviviiriiiieiicicie ettt sre e aesre e essassaens 266
16. Backannotation using the standard delay format (SDF).......ccceeviieiiiiiienieiiieecee e 269
16.1 The SDF QNNOTATOTLcc.titiitieieitieie ittt ettt ettt et st e e eb et b e et eaee bt sseesbesseennenaeens 269
16.2 Mapping of SDF constructs t0 VErilog........ceeriruiriiirieiieeiee ettt 269
16.2.1 Mapping of SDF delay constructs to Verilog declarations...........c.ccoevvereeeeencrcnnennen 269
16.2.2 Mapping of SDF timing check constructs to Verilog.......c..cocevevenereenienecnencncnenes 271
16.2.3 SDF annotation of SPECPATAIMSccuiveeriieierierieniieeeesieeeesreeeeesreeeesreeaesreesaesseessenseens 272
16.2.4 SDF annotation of interconnect delays..........ccceecvierieeiieeiienieeieesie e 273

16.3 MUltiple QNNOTATIONSeeeuveeiieiieeiiesteerteeetee et e steeebeesteeeaeeteesseeseessseesseenseesnseessessseeseesseensses 274
16.4 MUltiple SDF fI1ESooouiiuiiieieieieiee ettt ettt ettt e et sneereensenneens 275
16.5 Pulse limit annOtationccceiiiieiieie ittt ettt et eee e st saesseentennens 275
16.6 SDF to Verilog delay value Mappingccccceevveeverieiienieeieiesiesieeieieeeeee st eee st saesseeaesseennens 276
17. System tasks and fUNCLIONSc..ceeviieiieiiiiieie ettt sreeaesreesbesteessesseensesseeseenseens 277
17.1 DiSPlay SYSEM tASKS ...cvieieriiieriieiesieeteiteeteeteeteeste st essesseessesseessesseessessaessesseessessesssessesseessensanns 278
17.1.1 The display and WIite tasKS........ceeruierieriiieiiecie ettt ee e ae e see 278
17.1.2 Strobed MONIEOTINGccueevieiieiieiietieie ettt ettt ettt et eseeeneesaeeeeseeeneenseeneenseeneenes 285
17.1.3 ContinUOUS MONIEOTINEcvervierertieteeeieteetiesteeeesteeneesteeeeseeeneesseeaeseeneesseensenseensesseenes 286

17.2 File input-output system tasks and fUNCHONS...........cceririiiriieiirieeeeee e 286
17.2.1 Opening and cloSing fIlesccivvieriiiiieriiiieiereeie et 287
17.2.2 File output SYSteM taSKSccuieiiiiiieiiiieie ettt sbeenn s 288
17.2.3 Formatting data t0 @ StINE ...c..eecveeriieeiieriieiieesieeneeeieeseeereeseesaeeaeeseaeeseeseeesnseenseeenns 289
17.2.4 Reading data from @ file.........cooiriiiiiiiiii e 290
17.2.5 File POSILIONINE ..c.evevieiieiieiieie ettt sttt ettt et este s e sae et e saeese e beeneeneeeneenes 294
17.2.6 FIUSHING OULPUL ...uveiieiiiiieieeie ettt e sre et e be e e nseeneenes 295
17.2.77 T/ @ITOT STATUS ..c.veuveeentenieiienieitetieit ettt ettt ettt ebe st sa st et sbese et ese et eneenenen 295
17.2.8 Detecting EOFooiiciiiiiciieie ettt st ettt e e staessesseessesseenes 295
17.2.9 Loading memory data from a filecccceeviieiiieriiiiiieiee e 296
17.2.10 Loading timing data from an SDF file.........cccoeoiiiiiiiiiieicee e 297

17.3 Timescale SYSTEM tASKSoiuiiiiieiiieitiee ettt ettt sae et saeeneeneenneens 298
17.3.1 SPIINTMESCALE.......evieieteeieeeieieeie ettt ettt sttt ettt s s s tebesaesesaeneneas 299

17.3.2 SHMETOIMAL......ceetiieiieietisieteeet ettt ettt ettt ettt et eteneas 300

17.4 Simulation control SYStEM tASKSceecviriiiiiriieiieieie ettt sreeseessesseesaens 302
T7.4.1 SHINISH 1.ttt sttt eb et ae e ean 302
L7.4.2 BSTOD ettt ettt etttk ettt ettt n ettt n e ene 302

17.5 Programmable logic array (PLA) modeling system tasksccoccevievinieninieninee e 303
L7.5.1 ATTAY LY POt tenitieiteiie ettt sttt ettt ettt ettt sat e s bt e et et e st e bt e sat e e bt e sateeabeesaneeaneentes 303
17.5.2 AITAY LOZIC LYPCS .ureurieiieniietieieetteiesteie st este et esbe et e sseeteesesssessesssesesssessesssensesssensenssenes 304
17.5.3 Logic array personality declaration and loading.............ccccceeeveriincieniecienieeieneeeeenenes 304
17.5.4 Logic array personality fOrmMatS.........c.cecvveriieriieniieiriierie e esee e ere e ereesieeseneeaeeees 304

17.6 Stochastic analysis taSKSccieiiriiieie ettt 307
17.6.1 $Q INIHALIZE «.eovovieieeeeieic ettt 307
1762 $Q A0 ettt 307
17.6.3 $Q TEIMOVE .ovovieirieieteceete ettt ettt ettt a ettt sese et ese et ssesessesessese s ete s esessesesserenas 307
1764 SQ TULL.ceiniiie ettt ettt ettt 308
17.6.5 $Q EXAIM...coiiiiiiiiiieeeeeeeteete ettt ettt ettt ettt ettt eteeteeteete et et e s et et enteteereeaeereers 308
17.6.6 StAtUS COAS....eeuitieiieiieiiet ettt ettt ettt ettt e bt et esteee e sae st e saeeseenteeneeseeneenes 308

17.7 Simulation time SYStem fUNCHIONScc.eeiiirieiieierie ettt eneens 309
L7717 SHIME oottt ettt sttt sttt ettt sttt et et e et e e b e eteneas 309
17.7.2 BSHITIE ..ottt ettt ettt b ettt b bbb b e se b s ebesese s s esesesnssenes 309
Copyright © 2006 IEEE. All rights reserved. Xiil

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

17.7.3 STEAILIITIE ..ottt et e e e e eae e st e e et e e eaeeesateeeeaaeeeans 310

17.8 CONVETSION TUNCHIONS ..ottt sttt ettt ettt et sb ettt et sttt et bteae et sbeebesbenaens 310
17.9 Probabilistic distribution fUNCHIONScc.coerieriiiiieiiiiirer ettt 311
17.9.1 $random fUNCHONeoueuireeieieieteeeete ettt ettt ettt st seaere e 311
17.9.2 $diSt fUNCHONSevvteiieieiietci ettt 312
17.9.3 Algorithm for probabilistic distribution functions............cceeeveeevveecrierieerieeneesveeieee 313

17.10 Command [iNE INPUL.........coiuiiieriiriieiee ettt ettt e st e et e e eseeeeeseenee st esesseenteeneenseensenseens 320
17.10.1 StestSplusargs (STrINE)eerveererreirieieierietestetesietee ettt ettt ettt seebeseebeseeseneeseneas 320
17.10.2 $value$plusargs (user_string, variable)c.cccevveirirerenierieieieieieeee e 321

17.11 Math fUNCLIONS ...eeieeiietiiteiteetet ettt ettt b bbbt bbb e e et et sbeebesbenaens 323
17.11.1 Integer math fUNCLIONSeevvveeiieiieiieecie ettt eae e be e eaeebeesaeeenseeseeeene 323
17.11.2 Real math fUNCHONSeeoviiiiiiiieieeteseee ettt st 323

18. Value change dump (VCD) fIleScoiuieiiiieiiiieiest ettt ettt seeens 325
18.1 Creating four-state VCD file........cccoiiiiiiiieiiiieeeee ettt 325
18.1.1 Specifying name of dump file ($AumMPLile)........cocvririrririeniiiiieieiee e 325
18.1.2 Specifying variables to be dumped ($AUMPVATS)coevevieviiiiiiiiiiiieieeeeeee e 326
18.1.3 Stopping and resuming the dump ($dumpoff/Sdumpon)...........cceevvecireeirieciriinnnne 327
18.1.4 Generating a checkpoint (Sdumpall)..........cccoooiiiiiiiiiiiee e 328
18.1.5 Limiting size of dump file ($dumplimit)ccooovrireniniiieeeeeee e 328
18.1.6 Reading dump file during simulation ($dumpflush)...........ccccerereniieiniiiiieeen 328

18.2 Format of four-state VCD fIlecccccueiiiiiiinininiicictccteee ettt 329
18.2.1 Syntax of four-state VCD file.......cccocieviiriiiiiiiieecicieeeee e 330
18.2.2 Formats of variable ValUesccouecieiriiiiiiinese e 331
18.2.3 Description of keyword cOmmandscceevercrierierieeiiienreeieeieesre e eseesneeeee e 332
18.2.4 Four-state VCD file format eXampleccoceiieiiiieiienieereeee e 337

18.3 Creating extended VCD fIl€cccoiiiiiiieieee et 338
18.3.1 Specifying dump file name and ports to be dumped ($dumpports)...........cecvevrrrenenne. 338
18.3.2 Stopping and resuming the dump ($dumpportsoff/Sdumpportson)...........ccceevereuenenee 339
18.3.3 Generating a checkpoint ($dumpportsall)............cccevveveriivievierieierieiee e 340
18.3.4 Limiting size of dump file ($dumpportslimit)ccocererereieneneeeeeeeeee e 340
18.3.5 Reading dump file during simulation ($dumpportsflush)..........cccccevevrvincincincinnnnnne. 341
18.3.6 Description of keyword commandsccocerieiiiieiiiniereeee e 341
18.3.7 General rules for extended VCD system tasksccceeeriereriinienieiesiceiene e 341

18.4 Format of extended VCD fIlec..ooeiiiiiiiiiiiiicceeeee et 342
18.4.1 Syntax of extended VCD file........ccoocieieriiiiiiiiiesiececie et 342
18.4.2 Extended VCD node informationceoceieireiieiiniiiienieiineeie e 344
18.4.3 Value ChaNEESccueeiieieiieee ettt sttt e ene s 346
18.4.4 Extended VCD file format eXampleccooeriiiiiiiiiiieeeee e 347

19, COMPILET QITECIIVESceveviieitirtietetest ettt ettt ettt ettt be et ettt bt et e ebesaeseeenen 349
19.1 “celldefine and "endcelldefine............cocovereriiiiiniinieieicie e 349
19.2 "default NELEYPE .oovereieieciieieciecieste ettt ettt te e st et e et e ts e b e eseesbeent e beenaesaeereensensaens 349
19.3 “define and "UNdef..........ooiiiiiiii e 350
L 0 T 1<) s U< ST 350
19.3.2 TUNACT ..ottt ettt eae s 352

19.4 ‘ifdef, “else, “elsif, ‘endif, Idelooooiiii e 352
1.5 TINCTUAR ..ottt b et ettt a s 356
19.6 TTESEEALL ... cueiieeet ettt b bbbttt st be b e 356
LT TTHIIE ettt ettt ettt a st h e eh e bt ekt b e b b et et et et e nten e eneeaeebesbesaen 357
LR 111 (<1l o7 1 U< TSRS URPSTUR 358
19.9 “unconnected drive and ‘nounconnected driVecccoooeeiirieiieeieni e 360
TO.T0 "PLAGIMNA «..euveeiiieieeite ettt ettt et sttt e st e et esat e s b e sabe et e e bt e e bt e bt e sab e e bt e shbeebe e aeeeates 360
19.10.1 Standard Pragmas........cccceecieriereeriereerieeeetesteetesteeeesseeaesseesaessesssessesssessesssensesseessesses 361

Xiv Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

19.11 "begin_keywords, "end _KEYWOIdSceeieiiieieiieiet ettt s 361

20. Programming language interface (PLI) OVEIVIEWccecieieriieiiinieieniieie et 366
20.1 PLI purpose and NiStOTYcecuieieriirierieiieriesiteieeteteeteeteetesteseeessesaessessaensesssenseensanseensensesnnas 366

20.2 User-defined system task/function NAMEScceeveerrieierieeienieeieseeiesreeeeseeeeeseeneseeessesenes 367

20.3 User-defined system task/fUNCION tYPEScevveeeieriiierieeiieieeeieeiee sttt ee e seee e e seeeeaae e 367
20.4 Overriding built-in system task/function NAMESccoeceerrrriereeienieiereeeee e 367

20.5 User-supplied PLI appliCatiOns.cccueeueeieruieiiieiieieeiesieeiesteeie st et et ssee s e e eneeeesneeeeeneas 367
20.6 PLIMECHAMISII ..c..etiiiiiiiieieietet ettt ettt ettt sttt ettt et et ebe b benaens 368
20.7 User-defined system task/function argumentscceevveeeeriieeesieiienesienieeeesseeeesseseessesnnes 368
20.8 PLITNCIUAR fI1ESctiiiiiiiieieieeee ettt 368

21. PLITF and ACC interface mechanism (deprecated)..........cverueriiieiieeiiienieeieereecieeseeeee e eve e 369
22. Using ACC routines (depreCated).........ooeiiriiririeitieieie ettt ettt et sttt neeste e steeneeseeenes 370
23. ACC routine definitions (deprecated)........coeveririierieiierieiereeee sttt et ebesee e sseeneesseens 371
24, Using TF routines (deprecated)c.eoiiiererieriieieiieierie et ete st eee e eee e eaesreesaesseesaesseensenseeneenseenes 372
25. TF routine definitions (AePreCated)c.ovieieriirierieiieie ettt ettt se et st eteesaesreens 373
26. Using Verilog procedural interface (VPI) TOUINES.......ccueeiiriiriiriiiiniiiierieee e 374
26.1 VPI system tasks and fUNCLIONScoouiiieiiiieiieee e 374
26.1.1 sizetf VPI application TOULINGcceoueeuiiriieieiieeieie ettt 374

26.1.2 compiletf VPI application TOULINE.cc.eevieriereieiiriieiesieeieeieeiesee et enee e enae e enne e 374

26.1.3 calltf VPI application TOULINE.ecvervieiecieiieiesieeeeeteeeesreeseesteeseesseessesseesaesseessenseens 375

26.1.4 Arguments to sizetf, compiletf, and calltf application routines............c.cceeeverveenennne. 375

260.2 VPIMECRANISIN . ..ceutiitieiiiiiieie ettt ettt b et b et s ae e saeenaesaeas 375
26.2.1 VPI CAlIDACKS ...c.eeenieieieiecieee ettt ettt ettt et nnens 375

26.2.2 VPI access to Verilog HDL objects and simulation objects...........cooceevereerierveriennnnns 376

26.2.3 Error handlingcceecveiiieiiiiieieriieteeie ettt ettt e seeseesseessesseesaesbeesaessensnens 376

26.2.4 Function availabilityccceecueviirieriieieiiee ettt et aesbeesaesseesnens 376

26.2.5 TraversSing EXPIESSIONSc.eeccveerreereerrveereesueerseesseesseesseessseasseesseessseesseesssessseesssssssessses 377

26.3 VPI Object ClasSifICAtIONS.eeuieuieieeiieieeierie st eeie ettt ee ettt sttt e st et en e te e e eeeeneeneenean 377
26.3.1 Accessing object relationships and propertiesccoocveeereererieereseerieseee e 378

26.3.2 ObJECt tYPE PLrOPEILIES ...eevveueieeierieiierieeeesteetesteetesteessesseeeesseesesseesesseensesseessesseessessenns 379

26.3.3 Object file and 1INE PrOPEILICS......cccverrieeririieieriieierieeieiesteebesteeeeeteessesseeaesseesaessessnens 380

26.3.4 Delays and VAIUEScceecvieiiieeiiieiie ettt eate s ae e aeebe e e enbeereeeees 380

26.3.5 ODbject ProteCtion PrOPETTIES.....ccverrrierireereerieerreeieesreerteeseesreesseesseessseesseesseessessseessns 381

26.4 List of VPI routines by functional Category..........ccveeerieierieieieeiesiiee e 381

26.5 Key to data model dia@ramsccocceevuiieieriiiieiieieie ettt ettt e n e nneenees 383
26.5.1 Diagram key for objects and ClasSESscccevieieriirierieiieiinieeeete e eee e eae e 384

26.5.2 Diagram key for acCesSing PrOPEItICS.......cccvereeverreerrerrieriesriesieseeeesseesseseessessaessessenns 384

26.5.3 Diagram key for traversing relationshipscccccceeveveevieenieniieeiieenie e 385

26.6 Object data MOdel dIAGIAMScceevuiiiieiieieeii ettt eneas 386
260.0. 1 MOAUIE ...ttt sttt ene s 387

26.6.2 INSLATICE AITAYS ..eevuveerereriieiieeieeiee sttt et e sttt et ettesate e bt e sueesabeesbtesateesbeesasesnseesbeeenseenseenns 388

260.60.3 SCOPE..ueieuiieitieeteetie st erite sttt et testte e bt e ae et e e bt e et e e bt e srbe et e e tte et e enateenbeensteeabeenteesnaeenreenne 389

26.6.4 1O deClarationcceeoueruieiiiiieiiiee ettt 389

26.60.5 POTLS ..ottt ettt ettt a et ae e h et be et et et ettt eneeneeneeaeanan 390

26.6.6 NEtS ANd N ATTAYS .. .eeueeiieeieeiieierteeie ettt ettt e bt eeesteeseesteeneesteeneesseesesseeneesneesens 391

26.6.7 REZS ANA ICZ AITAYSeeuveuiieereiieietieiesteetesteeeeseeetessteaesseessesseessesseansesseensesseensesseesens 393

26.6.8 VAITIADIES ...ueuiiiiiiieeteetst ettt sttt eae s 395

Copyright © 2006 IEEE. All rights reserved. XV

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

260.0.9 MBIMOTY ..ottt ettt ettt ettt et sht e e bt e bt st e bt e sat e sbeeeabe e beesaaeebee e 396

26.6.10 ODJECT TANZEeveeieeeeeieciieteetieiesteetesttetesteeseesseessessaessesseessesseessesssansesseensesseensessenseens 396
26.6.11 NAMEA EVENL ...c.oiviiiiiiiitiitiicie ettt ettt sttt st e et beebe b b enes 397
26.6.12 Parameter, SPECPATAINccuveeveerieerureerieerieesteeteesteesseesseessteesssesseeseesssesseessseenseesseesns 398
26.6.13 Primitive, Prim teIMN........ccveivieierieeiestieerestieeesteeeeessesaessesssessesssessesssesseessessesseessessaessens 399
26.6.14 UDP ..ottt et a et be et ettt et et et et eneebeeneeaeenan 400
26.6.15 Module path, path term.........cceeiiiieiieiee e 401
26.6.16 Intermodule Pathi........ccccoiiiiiiiee e 401
26.6.17 TIMING CHECK ...ovieiieiieiieiieieceeet ettt ettt ettt e steeneesseeneesseenaensennsens 402
26.6.18 Task, function deCIaration..............coooviiieviiiuiee et e e e eaeeean 402
26.6.19 Task/function Callccociiiiiiiirineieeecce e e 403
26.0.20 FTAMES.....eeutiitieiiitieeett ettt ettt et s b et st et bt b e ettt en et eaeenbeenee 404
26.6.21 Delay terminalsccooeiieiiiiieieiee ettt st 405
26.6.22 Net drivers and 10adSccvieciieiiiiiieiece ettt e re et b e aeeseaeens 405
26.6.23 Reg drivers and LOadS..........cevieiierieiieieiecee ettt 406
26.6.24 CONtINUOUS ASSIZNIMEIILcuvieveeiieeierieetesteetesteestesteessesseessesseessesseessesseessesssessesssessensenns 406
26.6.25 SIMPIE CXPIESSIONS ...vvivireierieiierreeierieettestietesseestessesssessesssesseessessesseessesseessesseessesssessens 407
20.0.20 EXPIESSIONS ..eeuvrereiiiiieriieeieeiieesteesteestteesteestaesseeseessseeseesseesssessssesssesnseesssesssessssesssesses 408
26.6.27 Process, block, statement, eVent Stat€mMeENtccceeevivieviieeiiiiiieeeeeieeeeeeeeeieeeeee e 409
26.6.28 ASSIZIIMEGILeeieiieieitieieete et ettete et e e s st etesteetesteesee st eneeeseeneeaseeneesseeseeseeneenseeneenseens 410
26.6.29 DeElay CONIOL......eeiiiieieieiieieciieiee ettt ettt ettt e st e s e st eseesseeneesseenaessesnnesenseens 410
26.6.30 EVENE CONLIOL.....couiiiiiiiiiiitiiiieieeee ettt sttt st ebe s 410
26.6.31 ReEPEAL CONLIOL.....iiuiiiiiieiieiieiieeeie ettt et ettt et ete e b e eseessessaessessaessessnessanseans 411
26.6.32 WHhIle, TEPEAt, WAILeeecueeiieiieeiiesieeieeeee ettt e ste e e eeeebeesteessaesteessaeesseeseesnseenseesens 411
206.60.33 FOT .ttt ettt ettt a et ae e h ekt be et et et ettt eneeneeaeeaeenan 411
26.60.34 FOT@VETviiieiiie ettt ettt e ettt e et ee e tbeeeate e s nsaeesnseaeansaeesnsseesnsseeasseesansaeeanseaans 411
26.6.35 Tf, TE@ISC ettt ettt 412
26.60.30 CASC..c.vevemieneeiietieieeteete sttt ettt ettt et et b e bt b sttt st et ae bt bt et enen 412
26.6.37 Assign statement, deassign, fOrce, releasecoovvvirvierieiieniniienie e 413
26.6.38 DISADICouiiiiiiee e et sttt ettt a b ae e anan 413
26.6.39 CalIDACK ..ottt sttt a b ae e enan 414
260.6.40 TIME QUEUC ...veeueeeieteetieieeteesteeteeteeteesteeseetesieeste st eenseeseeeeeseenteeseensesneensesneensesneensenneans 414
26.6.41 Active time FOTMALceiieiiiiieiecieieet ettt ettt aesseenaesneennens 414
20.6.42 ATTIDULES ..o.vievieieeieeieeieeie et ete et e st e et e e s eestesete b e eseesseessenseeneenseeneeseensessesnnensensenns 415
260.6.43 TERIATOT ...c..eetiiieieiiertect ettt ettt sttt ettt ettt et ettt bttt st eaeenn et eas 416
26.0.44 GENEIALESevveuiieiieniieiieteeite sttt et et e st st e s bttt e bt eat et e et ee bt saeenaeebee bt satenbesbeenbesbeenseebeenee 417

27. VPI1outine defiNitiONS.c..eeiirtiiiiiieiiieees ettt ettt st st bt et sbeeat et et e e eae 418
B R 4o ¢ 1 34 (o) (SO STTRPSRS 418
27.2 VPL_COMPATE ODJECES().uvrrrerrirrreerrurerteeienteetesteetenseeeesseessesseensesseensesseesessaensesnsenseensesseensensesnnes 420
g T 4 oY I 7o) 1L o) [PR STS 420
274 VDL ATUSI() ettt 421
27.5 VPI_1T€E ODJECL()cuvrerurriiieeiiiiieeie et ette et ettt eteertte s ae et e st e ebeesteesnbeessaeenseensaeesaeenseenseensseenses 421
27,0 VDT ZEL() - eeueemeemeeneetiettete ettt ete st e et et et e s ettt ekt b e he et et et et n e en e ea e Rt h e e Rt eh e eh e teebe et et et eneeneeneebeetenaen 422
R 4 Y (< A o o T ¥ Lo () T TSRS 422
I T 4 Y (< A 1 () TSRS 423
R Y (< A (o) T SRS 424
2710 VPL_ZEE SEI() trererurerreeieriieiesteetesteete st etesteessesseessesseesseaseessesseessesssessesssessessaessenssensenseensesssensessees 426
27.11 vpi_get SYStE INFO() . cviiiiiiiiieiieieii ettt ettt et st eete b et raennesneas 427
2712 VPL_@EE TIMC()-eeveenteeutenieeiieeteetteete ettt ettt et sh e et e e et e st e eb e bt sae e bt e seesbeebte b e es e bt eneenaeseeenaesaean 428
27.13 VPL_@et USEIAALA() .eeuverieiietietietieete et iete et et st e ettt et e et et e es e stesae et e e ne e bees e et e s eete et eneeneenneenean 429
2714 VPI_ZEE VAIUE() +ueeveeueetieieetee ettt ettt ettt ettt ettt et e s e bt s at e et e st e be e s e et e e s e te et enneeneenneenean 429
27.15 vPi_get VIOZ INTO() wovereieiieieiieieeit ettt ettt et ettt st s et re et e st e enesnean 435
27.16 VPI_NANALE() 1eevviiiiiieiieiieieeie ettt sttt ettt ess e e bt esbesae e b e sae b e eta e b et b ebeeseenaeeraenaenneas 436
Xvi Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

27.17 vpi_handle DY INAEX() ..eerveereeriieierieiei ettt ettt ettt sttt e e et aeenean 437

27.18 vpi_handle by multi iNdeX().....cceeverririeriirieieriere ettt sae sttt eneeneas 438
27.19 vpi_handle DY NAME() ..ecverierieieieeieie sttt e ettt et e st et sbeesae s e ensenseenseseensensesnean 438
27.20 vpi_handle MUILI()....c.coieriiiieiieiee ettt ste st sb e e b s beesae b e sbesseesaesessaensesneas 439
2721 VPI_TEETALE() cvveuveeereireeeiesieeteeteeteeteete st esaeseessesseessesssesseessesseesseseassasseessesseessesaessensasseansesssensesses 439
27.22 VPI_INCA_ CLOSE()--eeutetieniieiiettett ettt ettt ettt et ettt e e et et s bt e be s b et b et et e et saeenaesaean 440
27.23 VPI_MCA_FTUSH() .ottt ettt ee e e aeenean 441
27.24 VPI_IMCA_NAME() +e.vtenerenietieieeieeie st ettt e e st et ete e e eaee st eseesbeeneesaeeneeaseensasseenseeseenseeseeneesneenneenean 441
27.25 VPI_INCA_OPEIN() vrvienrieuieiieieeteeite st estesteete st eteeteenseeseeseeseesseensesseessesseensenseensesseensesseansesnsensesneen 442
27.26 VPI_MCA_PIINEE) 1eoviiiieiiiciieiieie ettt ettt ettt ettt e sbe et esaeesaesteesbesseesseessensesseensesssensessnas 443
27.27 vPI_MCA_ VPIINEI() ceririeiiiitieieie ettt ettt et et esae e e e te e b e seesbessaenseeseensesseensesenas 444
2728 VPI_PIINEI() 1ottt ettt ettt ettt a st a et be e be et et et en e neeneeaeeneeaen 444
27.29 VPL_PUL AEA() c+eneeteeiieieeie ettt ettt sttt et e et e et s et e s ae et e s e e be st et e s e teeneeneeeneenneenean 445
27.30 VPL_PUL ACIAYS() -veveeneetieieeiietiett ettt ettt ettt e et et este et et e et esbe s ee b en e st et e eeeeneenneenean 447
27.31 VPL_PUL_USETAALA() veevverrienreerietieiieieeeeie st este st eteeaeteeseesseeseesesseesseenaessessaensesssenseensasesneensesneen 450
27.32 VPL_PUL_VAIUC() tevveiveeireiieieeiietiett et e et ete st estesteebeesaeseeseesseessessesssessesssessesssessenssenseessansesssensesses 450
27.33 VPI_TEZISLET _CD() .eevierieiieieeiieiietieie ettt ettt et et et e eteess e eseebesaeessessaesbeesaessaessenseessansesssensessnas 453
27.33.1 Simulation event Callbackscccceviiiiriiiiiiieeee e 454
27.33.2 Simulation time Callbackscccoeiiiiriiiieieii e 458
27.33.3 Simulator action or feature callbacks...........ccooiriiiiiiiiiiiieeeee e 460
27.34 VPI_TEZISLET SYSEI() eeverrieriieiieiieiett ettt ettt sttt ettt e aesneenesnean 461
27.34.1 System task/function callbDacks............ccueviecienieiiniiieiecieece e 462
27.34.2 Initializing VPI system task/function callbacks............cecerieviineirieneecienieieseeieieens 463
27.34.3 Registering multiple system tasks and functions...........cccceeeveeveeereenciieneenie e 464

27.35 VPI_TEMOVE CD() cuvieriiiuiieiiieiiieriieeieetteeteeteestteeteesteessbeesseessseenseesseeanseesseessseenssessseenseenseenssennses 465
B T 4 oY T s [PSSR 465
B A 4 oY I 04 11 (SRR 466
28. Protected NVEIOPESeecveiiieeietieieee ettt ettt et e sttt et eeae et e re et e nreeteenaeteentenseenes 467
281 GOINETAL.....itiiiiit ittt ettt h bbbt ettt a et e b e bbb 467
28.2 Processing protected ENVEIOPESiecvieeieriieiierieeieeste ettt ete et eeae et e s aeeaeessneenseeseenees 467
I B 251167 o 013 10§ FO USSP 468
28.2.2 DECIYPHION .ttt ettt ettt et ettt este st e st e et e bt e st e teesee et eseentesneeseeneenseeneensesneans 469

28.3 Protect pragma diFCCTIVES.c.erueruerterieiiieieeterterie ettt ettt et bttt sttt se et et se et ebeebesbenaens 469
28.4 Protect pragma KEYWOTAS.couerveriiieiiiiieniinienie sttt ettt ettt sttt eae v e 471
B N 1< 4 1 FO USSP SRRPRSTRPPt 471
28.4.2 @Ittt be et et ettt ae bt et eaeanan 471
28.4.3 DEGIN_ PrOtECLEA. ... eetieiiiiiiiieitt ettt ettt sttt ebe e 471
28.4.4 €N _PrOtECtEA.....eeiiieieieiiiee ettt ettt sae e eens 472
28.4.5 AULNOT ..ouiiiiiiiet ettt ettt 472
28.4.6 AULNOT INTO....c.iiiiiiieciieiee ettt ettt sbe e neeneens 473
28.4.7 ENCTYPL AZENE.cuuiiiiieiiiieiieitieeieertee sttt eriee sttt ebeesttesbeesabeeabeesseeesbeeseessseeseesssesnseenssesnsenns 473
28.4.8 encrypt agent N0cooceeiiiiiiiiiieie e e e 473
28.4.9 ENCOAINEZ...cuiiiiiieiieiit ettt etee et e e st eete et e st eesbeessbe e beesseesnbeesseessaeensaesseeenseesssaenseenses 474
28.4.10 data KEYOWIIET .. .eouiiieieiieieeie ettt ettt ettt ettt et e st et e st e neeene e seeneesaeeneeseeneens 475
28.4.11 data MEthOd.....cceiieieeee ettt 475
28.4.12 data KEYNAIMEeeveieieieciieieciieie ettt ettt e st et et tesae st esbesseessenseensesseensesseensesseensens 476
28.4.13 data PUDIIC KEY .eviiiiiiiiiieiecieeeet ettt ettt sbe e nnens 477
28.4.14 data deCTYPt KEY ..viiieiiiieiiciieieettete ettt ettt ettt ste e ste et esseessesseesaesaeensessannsens 477
28.4.15 data DIOCK ...c..eeiiiieiieee e e e 478
28.4.16 diESt KEYOWIICTeetieiieiieiie ettt ettt ettt ettt ettt e e e st e beeeesbeeneeseeneens 478
28.4.17 digest_ key mMethodcooeiiiiiiiiii e 478
28.4.18 diZESt KEYNAIME ...euvevieieiiieieeiieieett ettt ettt ettt e st e et eseesseensesseensesseensesseensens 479
28.4.19 digest PUDLIC KEY ..viiiiiiiiieiiciieiecieteettet ettt esb et besae e sne s 479
Copyright © 2006 IEEE. All rights reserved. Xvil

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

28.4.20 digest deCrYPL KEY ...eeeeieieiieiieieet ettt ettt st 480

28.4.21 digest MEthO......cceiieieiieie ettt sre e sneennens 480
28.4.22 diESt DIOCKeeiieieceieieceee ettt sreenaenennaens 481
28.4.23 KCY KCYOWINETueeuiiiviiiieitieiiecteete sttt ettt te st esaestaesaesbeesbesseessesseessesseessesseessesseessens 482
28.4.24 KeY MELHOM......cciiiiiiieieciicie ettt ettt et esbeess e seesaesbeesaesseeneens 482
28.4.25 KEY KEYNAIMIE ..c..eeuiiiieiiiiieieeicee ettt sttt st b e s b et 482
28.4.26 KEY PUDLIC KCY . eiiuiiiiiiieiieiee ettt ettt ettt 483
28.4.27 KEY _DLOCK ...ttt ettt ettt eneeneeneens 483
28.4.28 dCCTYPL TICENSE ..ueeuviiieieiiieie ettt ettt ettt ettt et e st e st e sseeneesesnnessesnnesesnaens 484
28.4.29 TUNLIME LICENSE ...eeuviivieieitieeieitieiesteete et et e et eeesteessessaessesseessesseessesseessesseessesseessessesssens 484
28.4.30 COMIMENL....c..iriiiiiiiiiiitieteett ettt ettt ettt sttt et st eatesbeestesbeente s bt ensesbeesnenbeens 485
284,31 TESCE ..eutentieuieieeiteet ettt ettt sttt b e bt b et h et sh et s he et bt et bt et e bt ente bt eaeenbeenee 485
28.4.32 VIEWPOIL ..ottt ettt ettt et ettt ettt ete st e stess e et e es e e eeese et e eneeseeneenseeneenseeneesenneens 486
Annex A (normative) Formal syntax definitioncccocorioiiiiiiie e 487
AT SOUICE TEXL ettt ettt st et sttt et et sttt et e et saeesse s e esnesueesnenaeeas 487
AL LT LiDIary SOUICE TEXL ..ccuveruirrieiierieiierieteeeesteseessesesessesseesseeseessesseessesssessesseessenseens 487

A 1.2 VErilog SOUICE tEXE ..ovirieriieeiertieiestieiesteeeesteeeresteesesseessesseesaesseessessesssessesssensenns 487

A.1.3 Module parameters and POILScccveerreerieeirieriieeieerieeeieerreesveesseeseesseesseessnes 487

AL.4A MOQUIC TEEIMSeeeiieiieeiieeieesite et eette et e et eebeesteesteebeeesbeesseessbeenseessseenseesseesnsens 488

A.1.5 Configuration SOUICE tEXLEeeurerureiertreierteeierteeienteeteeteeeesteeeeeeeseeeseeseeeaesneens 489

A2 DECLATALIONSeviviiiiiietiitertet ettt sttt ettt ettt sb e s bbbt eberen 489
A2.1 DeEClaration tYPES.....cccverveerierieeierieerierieseesieseessessessesseesseeseessesseessesssessesssessenseens 489

A.2.2 Declaration data tyPEeScc.eeverieeieriieierieeeentesie e serete et sse e esreeae e esae e aeneaas 490

A.23 Declaration LiStS.......cooeiiriiiiiienieieee e 491
A.2.4 Declaration asSINMENTS.........cveeveerieeriueerieerreesreeneesseeseesseesseessseesseesssessseessnes 491

A.2.5 Declaration TanGES.......ccceeouerierierieieetiereeeteeste et ee et e et ene e et ee e eneenee e eneas 492

A.2.6 Function declarationsccceeieieriieiienieeienieeesieeeei et esteeeeeeeseessesseeseeneens 492

A.2.7 Task deClarations..........cceeeeieriesieeeieie st eree st ettt ettt eeae st e e st esesseenaesneens 492

A.2.8 Block item declarations..........c.cceererierienienieieieieiie ettt 493

A3 Primitive INSTANCES ..cuvevieuiieiieiieiieie ettt sttt ettt ettt e e st e e sbeeseesbeebesbeesnenbeens 493
A.3.1 Primitive instantiation and iNStANCESccceveeriirieriniineeie e 493

A32 Primitive StrENGLhS.....ccoviiiiiiiieiieee e 494

A.3.3 Primitive terminalsccoccueiieiiriieiit ettt 494

A.3.4 Primitive gate and SWItCh tYPES.......eccveririierieierieieeieieee et 494

A.4 Module instantiation and geNnerate CONSIIUCEc.evverririerieeieriinreerteseesreseessesnessenseens 495
A4l Module InStantiation.......cccueririeriieieniieiene ettt 495

A42 GENEIate CONSLIUC...cc.uirtiriiiiiriientiettetteite ettt ete st et et et e st eate et eaeesbeesaenaeennens 495

A.5 UDP declaration and inStantiationc.eccueereeeieeiieesieesieenieeereeseeereeseeeseesseessneenseees 496
A.S5.1 UDP deClarationcccueeeeieriiesieeeieiesieesiesteete st eeeseeesee e eeesseensesseesesseensesseens 496
AS52 UDP POItS .cuiiiiiiiiieieniteieetete ettt ettt ettt et st naeens 496

A5.3 UDP DOAY .ttt 496
A.54 UDP INStANTIATION t.uteutiiiietieiieetiete ettt ettt et s e st e e b e nbeens 497

A6 Behavioral STAtCIMENTScouiiiiriieieiieiete ettt et ettt s 497
A.6.1 Continuous assignment StAtCMENLS.cc.eeruerreerteeierieieeeeeie e eeeseeeeesieesaeneeens 497

A.6.2 Procedural blocks and assignments............cecceeiererierieniesieeeeieecee e 497

A.6.3 Parallel and sequential BlOCKSccuecueiririniininiicccccee e 497

A 6.4 SHAEIMENLSeouiiiiiiiiieeiteicetete ettt ettt ettt ettt et sttt s sieens 498

A.6.5 Timing cONtrol StACMENLSceevveerieierieeieieeeeeie et eeesreeae e eeee e esaesseesseseens 498

A.6.6 Conditional StAtEIMENTScccuiruieieiiiiertieierte ettt et st see e 499
YN T A O TN ¥ 1153 40 1<) L SRR 499
A.6.8 LoOPING StALCIMENLS ...eoueiiieiieiieieetieie sttt ettt ettt et seeeee st eseesseeneeneens 499

A.6.9 Task enable StatemMENtS.........coccveviieiirieiere e 499

AT SPECIEY SECHIOM .. .eeiiieieiiiiieieetteteettete ettt e e et e se et esbe e b e teeseeeseessesseeseesseessessesssensesssenseens 500
xviil Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

A.7.1 Specify block declarationcoeceeoieiierieiieiieee et 500

A.7.2 Specify path declarationscoceeviererieneeiere et 500

A.7.3 Specify block terminalSccevieiiriieiierieieriiee ettt 500

A.7.4 Specify path delays.......cccccevieiiiieiieiee et 500

A.7.5 System tiMing CHECKSccviiiiiriiiiieieeit et 502

A8 EXPIESSIONS ..ueitieiieitieieitiete et et ettt et e e st e e st e ste st e en b e e st e eeeseenteeseensesneenseeneenseeneeneeneens 504

AL8.1 CONCAENALIONS ...evvieeieeerieiiesireesteesteereesteeereeseeeseesseessseesseessseeseesssssseesseensses 504

A8.2 FUNCHON CAIIS ..ottt 504

A 8.3 EXPIESSIONS...ccueiiiiieieiieiieiietieteetesteertesteeseessesssesseessesseessesseeseesseessesseessessesssansenns 504

ALBA PIIMATIES. c..eueeuieiiiiiiieetieteit ettt ettt ettt ettt ettt eaeebesbe b 505

A.8.5 Expression left-side ValUes.......cccceeciierieeiiieiieeieeie ettt 506

ALB.O OPETALOTS ..ttt ettt ettt ettt ettt et e bt et e sbe e st e sbt e et e baesneebee s 506

AT INUIMDETS ..ttt sttt st b 506

ALB.8 SHIINES . cuiiiieieiiesteeiee ettt ettt et ettt e sttt et e et e et e st enaeene e s e sneebesreeneenaens 507

ALD GONETAL....eiiiit et bbbttt eaeeren 507

AL AIIDULES ..ottt ettt ettt et sttt bt nbeene 507

ALD.2 COMMENES.....utiiieiiieeiiieeiieeeiteeeiteeette e et e e st eeestbeesessaeesnseaeenseeeensseeeanseeensseeeanes 508

A3 TAENETIETS Leovviieiiieiii ettt et te et ebeeebe e teeeaseesseesebeesseenssen 508

A9 4 WHRILE SPACE ..eveeiieiieieeiieiieiett ettt e st et e st et et e e e steenseeseensesneensesneensesseensensaens 509

Annex B (normative) List 0f KEYWOIASccveiiiiiriiiiieiieiesie ettt esee s ens 510
Annex C (informative) System tasks and fUNCLIONSceevvieiciiiriiiiieiiece e 511
C.l SCOUNLATIVELS ..uvviniviieiieieieeteie ettt ettt sttt ettt ettt et et et esassesessesesesesesannas 511

C.2 BEOLPALLEIT ..ottt ettt ettt et e e st se st eteeseese b e beese e e s enseneeneeneen 512

C.3 BINPUL ettt ettt sb et sa e st teete et et e e beebe b e b et e st esbenseneesseteeseeneeseben 513

C.d BKey ANd SNOKEY ...oveieieieiieiieiieietieie ettt ettt et et be bbb e b e s st esaeseeseeseers 513

5 BliSt ittt ettt sttt b ettt et sttt ettt e st et eneeteneas 513

C.60 $10Z AN FN0L0OZ ...cvevieieeeiieieictiete ettt ettt ettt et 514

C.7 S$reset, $reset_count, and $reset VAIUEooveieieieiiiiieeseee e 514

C.8 $save, Srestart, and SINCSAVE.......cooouiiiieiiieeieeeeee ettt e e s e eeae e 515

C.L0 BSCANE .ttt b sttt ettt et 516

CLT0 $SCOPE wevveteieieeeieiet ettt ettt ettt sttt a et ettt st e st s e esesbese b es e b esestesesbe st stenesseneeteneas 516

C.l1 SSNOWSCOPES ..vvvevinierinietirieterieie sttt ettt ste et sttt sttt ae st sbe e ssesesseseesesessesesseneesensesensesensesaneas 516

CL12 SSNOWVALS ..oevviieiiietiieteetete ettt sttt sttt ettt et ssesesbeseebese b eseeseneetensesensesansesaneas 516

C.13 $sreadmemb and $sreadmembi............ccoviiiiiiieiiiiiciceeceee e 517

Annex D (informative) COmMPIler dir@CHIVEScuveuirieiereerieeieiteeieeteeieete et eteseeeee et etesseensesseensesseensanseens 518
D.1 “default decay tiMe.......ccoccieriieiieriiiieriieieiceeee ettt ettt b et enb e re e s ens 518

D.2 “default trireg StreN@thccccieiiieieieiieie e et es 518

D.3 ‘delay mode diStribUtedccceeviieiiieiieiiiiiieie ettt ere e s ens 519

D4 “delay mode path.......cocooiiiiiiiiiiee e 519

D.5 delay mMOde UMMt ...cccooiuiiiiiieiiieeee ettt st 519

D.6 'delay MOAE ZETO....c..coiriiriiiiiiicieiiete ettt 519

Annex E (normative) acc_user.h (deprecated)......c.ooiviiririeriieieniieierie ettt ere e 520
Annex F (normative) veriuser.h (deprecated).......ccevieiiieiieriiiiiieeieeiee ettt see e stae e ees 521
ANNEX G (NOIMALIVE) VPI USET.H ..ouiiiiiiiiiciiciiece ettt ettt ettt st e eaeesebe e seeesseesteessaeensaenes 522
Annex H (informative) Encryption/decryption floWc.ccooiriiiiiiinieieeee e 537
H.1 Tool vendor secret key encryption SYStEIMcceeeerveruierieriieieniieieneeeeeeseeeee e senesseennens 537

H.1.1 ENCIYPHON INPUL...viitieiiieieiiiieie st ettt sttt eteeaeste e sseeae e esaesreessesseensenseenns 537

Copyright © 2006 IEEE. All rights reserved. XixX

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

H.1.2 ENCryption OULPUL.......cccieieiieieie ettt e s s 538

H.2 1P author secret key encryption SYStEIMc.eeveeuieiirieierieeiieieetieie et et eeee e seeeee e 538

H.2.1 ENCIYPtON INPUL....otieiiieieieeiiee ettt sttt eee e 538

H.2.2 ENCryption OULPUL.......coiiieiieieie ettt ettt st ene s 539

H.3 Digital @NVELIOPES ...eeeueeiieieiiee ettt ettt ettt ettt sne et eneeas 539

H.3.1 ENCIYPtiON INPUL.....oouieiieiieieiieie ettt s eee e 540

H.3.2 ENCryption OULPUL.......ccieieiiiieie ettt eee e 541

Annex I (informative) BiblIOGIraphyc.coieiiiiiiiieee ettt st 542
INAEX ettt ettt h e s h e b ettt et e at et be e e nen 543
XX Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

List of Figures

Figure 4-1—Simulation values of a trireg and itS dIIVETc.cccveierierieriieierie et 28
Figure 4-2—Simulation results of @ capacitive NEtWOTKcccvvieririiiiiiieieeieeee e 29
Figure 4-3—Simulation results of charge sharing.............cccocoviiieniiieiice e 30
Figure 7-1—Schematic diagram of interconnections in array of iNStances..........oceecerverieeeereseeneseeeennens 80
Figure 7-2—Scale of Stren@RSooviiiieii ettt 88
Figure 7-3—Combining unequal Strengths..........ccooieiiiiiiiiiinii e 89
Figure 7-4—Combination of signals of equal strength and opposite values..........c.ccceecveviievierieceeneseeienenn 89
Figure 7-5—Weak X Signal Stren@th..........ccccoviiiiiiiiieiicieie ettt ste et ebeebeesaesseeaesreessesaees 89
Figure 7-6—Bufifs with control iNPULS OF Xccveiuiiieiieiee ettt neesne s 90
Figure 7-7T—Strong H range 0f VAIUES........ccoocveriiiiiiiieeeeieee ettt sttt eaesreenseeneas 90
Figure 7-8—Strong L 1ange Of VAlUEScooiiiriiiiiieeee ettt s 90
Figure 7-9—Combined signals of ambiguous strengthcoocoeiiiiiiiiiniieeeee e 91
Figure 7-10—Range of strengths for an unknown signal............coccooiiiiniiininiiee e 91
Figure 7-11—Ambiguous strengths from switch NetwWorks...........ccocvvviiiiiciiniiiicice e 91
Figure 7-12—Range of two strengths of a defined value..........ccoocveviiiiiiiiiiiiceeceeee e 92
Figure 7-13—Range of three strengths of a defined value............coovrieiiiceiiee e 92
Figure 7-14—Unknown value with a range of strengths............cooceoiriieriiienieeeeee e 92
Figure 7-15—Strong X TANZEecueeuieiieeieeeeeieee ettt ettt et e e e et eteseeente s bt eneeebeenseeseeneeeseenseeneesesneeneesnean 93
Figure 7-16—Ambiguous strength from Satescoeouirieiiiiiniiee e e 93
Figure 7-17—Ambiguous strength signal from a gateccoeerviiiiiiiiiiiieeeeeee e 93
FIGUIE 7-18—WEAK 0 ..oviiiiiiieii ettt ettt ettt et ete et eeaeesaesaaesbesseessesssenseeseessesssensesseensesseessensens 94
Figure 7-19—Ambiguous strength in combined gate Signalsccccevievieriecieniecieneeieeeee e 94
Figure 7-20—Elimination of Strength 16VElSc.oocieiiiiiiiieiereceeee et 95
Figure 7-21—Result showing a range and the elimination of strength levels of two valuesc.cc......... 95
Figure 7-22—Result showing a range and the elimination of strength levels of one value...............c......... 96
Figure 7-23—A range of Both VAlUEScoouiiiiiiiiie e 97
Figure 7-24—Wired logic with unambiguous strength signalsc.ccoverieiiriiniiieneeee e 98
Figure 7-25—Wired logic and ambiguous Strengthisc.occeviiieriiiieriicieceeeseeeese e 99
Figure 7-26—Trireg net With CaAPACILANCEccvevieriiriieie sttt sr e e esaeneenseens 104
Figure 8-1—Module schematic and simulation times of initial value propagationccccceecververvvenne. 113
Figure 9-1—Repeat event control utilizing a clock €dgecoovvieiirieiiiiet e 139
Figure 12-1—Hierarchy in @ MOdel..........ccoiiiiiiiiiiiee et 193
Figure 12-2—Hierarchical path names in @ model...........cocoiiiiiiiiiiiniii e 193
Figure 12-3—Scopes available to upward name referenCing...........cceevevverieviereerieiinieseeeeseeve e eeeeveenns 196
Figure 14-1—Module path delaysccuevuieieriiiieiiiieie sttt ettt saeeae e essesseeseensenseenns 212
Figure 14-2—Difference between parallel and full connection paths.........c.cccceceverininininineneiciecnene, 219
Figure 14-3—Module path delays longer than distributed delays..........cccoecerireieniniieneiieeceeeee e 226
Figure 14-4—Module path delays shorter than distributed delays...........coceverieiiiinieiieeeee e 226
Figure 14-5—Legal and illegal module pathscccoiiiiiiiiie e 226
Figure 14-6—Illegal module Pathscccooiiiiiiii e e 227
Figure 14-7—Legal MOAUIE PANSccvieiiiieiieiecieiecee ettt s se s ereenes 227
Figure 14-8—Example of pulSe flltering........ccoccieviirieieriiiesii ettt ere e 228
Figure 14-9—On-detect VEIrSUS ON-CVENL.......ceerueeieriirierierientesteeiesetestesseesesseessesseessesseensesseensesseessessessesnes 231
Figure 14-10—Current event cancellation problem and COITeCtionc.ceoveveeerererineneneneneieeeeeeenes 233
Figure 14-11—NAND gate with nearly simultaneous input switching where one event is scheduled prior to
another that has N0t MATUIEdc.ooiiiiie ettt et seeens 234
Figure 14-12—NAND gate with nearly simultaneous input switching with output event scheduled at same

157001 OO OO OO SOOI 235
Figure 15-1—Sample SUMESKEWcoviiuiiiiiiiiiieiiree ettt 251
Figure 15-2—Sample $timeskew with remain_active flag Set..........covvevievieiiieiiiiiieiceceeeeeeeeeeveeene 252
Figure 15-3—Sample STULISKEWcooiiiiiiie et 254
Copyright © 2006 IEEE. All rights reserved. Xxi

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Figure 15-4—Timing check violation WINAOWSccueiiriiiieieiieie et 264

Figure 15-5—Data constraint interval, positive setup/hold............coceiieiiririiiiee e 267
Figure 15-6—Data constraint interval, negative setup/hold...........coooveiiriiiiiniiiieee e 268
Figure 18-1—Creating the four-state VCD file.........coocuiiiiiiiiiieeeeeeee e 325
Figure 18-2—Creating the extended VCD file.........ccooiiiiiiiiieeeeeeeee e 338
Figure 26-1—Example of object relationships diagram............cccoveroiiiieiiiieierieee e 378
Figure 26-2—Accessing a class of 0bJects USING tAZSccuevueerueruieieiiieieetiee et 379
Figure 27-1—s_vpi_error_info structure definitioncceoeeieriieienieeriee e 419
Figure 27-2—s_cb_data structure definitionooeeiieieiieieiee e 423
Figure 27-3—s_vpi_delay structure definition.............coceeieiieiinieert e 424
Figure 27-4—s_vpi_time structure definitionccccoeieiiiienieiee e e 424
Figure 27-5—s_vpi_systf data structure definitionccoceeeiiiieiirieieecee e 427
Figure 27-6—s_vpi_time structure definitionccccoeieiirieiiniee e 428
Figure 27-7—s_vpi_value structure definition.............cooieiiiieiiiiee e 430
Figure 27-8—s_vpi_vecval structure definitioncceeieiieiinieiere e 430
Figure 27-9—s_vpi_strengthval structure definition............cccoeeeiiieiinieieiiee e 430
Figure 27-10—s_vpi_vlog_info structure definitionccuerieieriirieneeieeeeee e 436
Figure 27-11—s_vpi_delay structure definition...........cceeieiieiiinieieee e 448
Figure 27-12—s_vpi_time Structure definitionc.cueiuieierieienieiese ettt 448
Figure 27-13—s_vpi_value structure definition..........coceeieiieiieniieieee e 452
Figure 27-14—s_vpi_time Structure definitioncccueiieierieieieeieee ettt 453
Figure 27-15—s_vpi_vecval structure definitionocieeerieienieiese et 453
Figure 27-16—s_vpi_strengthval structure definition..........coeeieriieierieeeeee e 453
Figure 27-17—s_cb_data structure definitioncecveiuieierieieiieie st 454
Figure 27-18—s_vpi_systf data structure definitionc.coeceiuieiiirieiiniee e 462
xXii Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

List of Tables

Table 3-1—Specifying special Characters in StrNGcccccvervievieriieiienieeiere st esreeteste e este e esseeseessesseessesaeas 14
I o) (o B A 741U P 26
Table 4-2—Truth table for Wire and tr NELScceeoieiiieieeieie ettt ettt see e eaeas 27
Table 4-3—Truth table for wand and triand NELSccoeoieiiriiieie e 27
Table 4-4—Truth table for Wor and triOr NScceouiiiiiiiiiii et 27
Table 4-5—Truth table fOr tr10 NMELcccerieieiiieeee ettt st snene 31
Table 4-6—Truth table fOr tri] NMEtcccoveiiiiiiiiiett ettt s 31
Table 4-7—Differences between specparams and PAramMEterSc.evveeeeruereeriereereseereeeeeseeeeesseseeessesnens 38
Table 5-1—Operators in Verilog HDLcccooiiiiii ettt sttt 42
Table 5-2—Legal operators for use in real EXPreSSIONScceecuerieriirieriirieie ettt ettt seenaeas 43
Table 5-3—Operators not allowed for real EXPreSSIONScevveriieriieriieriiereerie et ereeseeeseeseesaeeeeesneseees 43
Table 5-4—Precedence rules fOr OPEIAtOrS..........ccviiieriieierieeerie et ste et ste et esteessesseesesseessesreessenaees 44
Table 5-5—Arithmetic operators definedcccvevveriieierieiere ettt ene s 45
Table 5-6—Power operator rule eXaMPLESc.coviiieiirieiieiere ettt ettt sneeseeseeeneeaneas 46
Table 5-7—Unary operators definedcoocoereiiiiieiiee ettt 46
Table 5-8—Examples of modulus and pOWET OPETALOTScccveriieriienieeiienieeieesreeeeeieesreereeseeeeseeseae s 46
Table 5-9—Data type interpretation by arithmetic OPEratorscccvevuereeriereeriesieeieeeeeeeteereeee e sreesseseees 47
Table 5-10—Definitions of relational OPEIALOLSc.cccveriieieriiieriiiie it etere e ere et ste et e ereeaesreeaesreessesaees 48
Table 5-11—Definitions of eqUAlity OPETALOTS.........ccuerierieriieierieeieeieeteteee et ste st e sre et esaeseeseeseensesneas 49
Table 5-12—Bitwise binary and OPEratOrcccoeieiiirieiie ittt ettt e ste st e et esee e seeeeeseeseeneesneas 50
Table 5-13—BitWiSe DINAIY OF OPEIALOTcvieriieriieeieeieertieiieesteesteeteeseeereesseessseessaessseenseesseesseessseessesnseens 50
Table 5-14—Bitwise bInary eXClUSIVE OF OPETALOTc.eervieiiieriierieeitieseeereeseesreestresseeeseesseesseessseesseesseens 51
Table 5-15—Bitwise binary eXClUSIVE NOT OPETALOTc.ccieriirieieereerieeeesieseesseseesseeeesseeseessesseessesseessesses 51
Table 5-16—Bitwise UNary NeZation OPCIALOT..........ccueruieruerteeterieeeesteeteseetesseeeesseseessessaessesssensesseaseensessees 51
Table 5-17—Reduction Unary and OPETALOLccueiuirierieiere ettt ettt et et eee st et e seeeeeeneeneeseeeneesneas 52
Table 5-18—Reduction UNAry OF OPEIALOLccveruieierieeiesteetieie et et etteteeeeseeeseesse st esseeseenteeseeseeseeseeneesaens 52
Table 5-19—Reduction Unary eXClUSIVE OF OPEIALOT.......ccuveiiierreerreetieeeeeteeseesreestresseenseesseesseessseesseessees 52
Table 5-20—Results of unary reduction OPEIAtIONSccveeverririerrieierieeterieetesteeresreesesseesesseessesseessenses 52
Table 5-21—Ambiguous condition results for conditional OPEratorccceeeveecierierienierieseeeeseeveneens 54
Table 5-22—Bit lengths resulting from self-determined eXpressionsccoevererereneerieriereeenenenesennenne 63
Table 6-1—Legal left-hand forms in assignment StAtEMENtScceereeiererriereeiese e 68
Table 7-1—DBuilt-in gates and SWITCHEScccuiiiiriiiiiieee e 76
Table 7-2—Valid gate types for strength specificationsc.cocereiiiiriiiiiiiineeee e 76
Table 7-3—Truth tables for multiple INPUt IOZIC ZALESeevvieeeriiiieieeierie ettt seeesveeeees 81
Table 7-4—Truth tables for multiple output 10ZIC GALESveevervirieiieiereeee e e 82
Table 7-5—Truth tables for three-state loZIC ZAtESvevveeiierieieri et 83
Table 7-6—Truth tables for MOS SWItCRES.......ceeiiiiiiiiee et ere e 84
Table 7-7—Strength levels for scalar net signal valuescocoriiiiiiiiiiinieeeee e 87
Table 7-8—Strength redUuCtiON TUIES.......cc.ecvieiiriieiieiieiert ettt ettt ere e saeesaesreess e besseessesseens 100
Table 7-9—Rules for propagation dElayS..........cccciecirieriieierieieiieie sttt ettt e st eesesteeseesseens 101
Table 8-1—UDP table SYMDOIScc.eecieriieiiiieierit ettt ettt et s sae st e e sseesesseenseseeneenseenes 108
Table 8-2—Initial statements in UDPs and modules............cccoeoiiiriirieneniee e 111
Table 8-3—Mixing of level-sensitive and edge-Sensitive ENLIIesccoceevverierierieienenieneeeee e 115
Table 9-1—Detecting posedge and NEZEAZEcceeruiriiriiiie ettt 133
Table 9-2—Intra-assignment timing coONtrol @qUIVAIENCEc.ccverierieriiriiiere et ere s 138
Table 12-1—Net types resulting from dissimilar port CONNECIONS..........co.evereriirienenenierieieeeeeeee e 180
Table 14-1—List of valid operators in state-dependent path delay expression...........ccceeeeveeeerenieninenenne. 215
Table 14-2—Associating path delay expressions With tranSitionscceceerereeriereeresiereseee e 223
Table 14-3—Calculating delays for X transitionscccceeeeeeriiriineiieieeeeeee e 224
Table 15-1—8SCtUP ATZUMENLSceoveuirieiereiieieieieieie ettt ettt ettt te e teseeteseeseeesessesenesseneeseneas 241
Table 15-2—38h0ld argUMENTScccceoiviiieiiieieieeiee ettt ettt ettt be s se e saeneeseneas 242
Copyright © 2006 IEEE. All rights reserved. Xxiil

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Table 15-3—S8setuphold argUMENLScceeierieieieieieie ettt ettt e et st sbe s e see s eseeseeseeseeean 243

Table 15-4—38removal ArGUIMENTSceoveuirietirieiirieteriet ettt eb st sttt s et eseste et e et neeneeas 245
Table 15-5—8reCOVEIY argUIMENLSceoveviiriiieiiieieieteeet ettt et sttt sttt b et seesesaesesesteneeaeneas 246
Table 15-6—S8reCcrem ArGUIMIEIILSc.cceeirirtirtirterierteietet ettt ettt ettt sttt be st e et et et e st et eaeebeebesbeseeenen 247
Table 15-7—8SKEW ArZUIMENTSccoeveirieietiieieieieieietetet ettt ettt ete st te e te e ete st eseseesessesenesseneeseneas 249
Table 15-8—StiMeSKEW AIrZUIMENLSc.eiuiitiitiitiieieieiieiiet ettt sttt ettt ebe b see st e stesee e e e eseebeseeeeeaean 250
Table 15-9—SfullSKEW ArgUMENLS.cteieiriiititiieieie ettt sttt st e et et eseeseeseeseesesseseeneeseeseenes 253
Table 15-10—8Width argUMENLSccciiirieieieieeeeet ettt ettt ete et e stesse s e seneeseeseeseeean 255
Table 15-11—3Period arGUMEINLScoeovruiirieirieiriecrtetetee ettt ettt ettt et et eebe e sesesseseeaeneas 256
Table 15-12—3$N0Change ArGUIMENLSccoueiriererieieieteietere ettt ete st eteseetestesesaesessesessesesseseseeseseesenens 257
Table 15-13—Notifier value responses to timing VIOIAtionscccccvevverieviereeriereeienieeeeseeseseeeeesseenns 260
Table 16-1—Mapping of SDF delay constructs to Verilog declarationscccceeecveevivencieeciienieesieennenns 269
Table 16-2—Mapping of SDF timing check constructs to Verilog.........cceceveriererieienieenieeeeeee 271
Table 16-3—SDF annotation of interconnect delaysccoccveeeririerieieniee et 273
Table 16-4—SDF to Verilog delay value Mappingcceeveverereeniesieiienieeieseeeeesieseeseeseeesesseeseessesssenes 276
Table 17-1—Escape sequences for printing special Characters...........ocveveeierieeeerieciene e 279
Table 17-2—Escape sequences for format SpecifiCationsccccuevveriieieriieierienieie e 279
Table 17-3—Format specifications for real NMUMDETSccccueiciiirieeiieeiiece e 281
Table 17-4—Logic value component of strength formatcceecveeeieriieciiiiie e 283
Table 17-5—Mnemonics for Strength 1eVelScooiiiiiiiiiiiee e 284
Table 17-6—Explanation of strength fOrmatsccooieiirieiinieeceeeee e 285
Table 17-7T—Types fOr flle deSCIIPLOTS.everiirierieieeietieiete ettt ettt ae st eae e naesseensenseeneenseenes 287
Table 17-8—Mtm SPEC ATZUIMCILeeuvieeierieeieieeiietesteeieseetesteessesseesesseessesseeseesseessessesssessesssessensesssensesses 298
Table 17-9—scale tyPe arUMENT........c.cecieriiiiieiie et erieete et e eteetee st e eteesaeessbeessaeesseessaesnseenseesseesssesnsennes 298
Table 17-10—S$timeformat unitS NUMDET ArGUMENES.cc.coveieieieiietireeteee ettt eee e eae e eees 300
Table 17-11—S$timeformat default value for argumentsccoccecveiriririneneseeeeee e 301
Table 17-12—Diagnostics for $TINISHcooiiiiiiieeeee e 302
Table 17-13—PLA modeling SYStem tasKScceecveiereriienieeieieeierie ettt ae e see st ese s eaesseeseens 303
Table 17-14—Types of queues 0f $G LYPE VAIUEScvvivieeierierieiieiiiiicieeieiet ettt 307
Table 17-15—Argument values for $q_exam SyStem task..........cccoevevverieiecieiiieriereeie et 308
Table 17-16—Status COAE VAIUEScoceeririiiiiiieiieieeeeet ettt sttt st see e 308
Table 17-17—Verilog to C function Cross-liStingcceeruerieieniriere ettt 313
Table 17-18—Verilog to C real math function cross-liStingcccecveririerereeneiiee e 324
Table 18-1—Rules for left-extending VECtOr VAIUES..........ccueririeriiriere ettt 331
Table 18-2—How the VCD can Shorten ValUESccecueiriririneresieieiereetetee st eneees 331
Table 18-3—KeyWord COMMANGSccuerririeriieientieierieetestesteie e esteeseessesseessesseessesseessesseessesseessensenseenes 332
Table 19-1—Arguments Of tiME PIECISIONcveerveeriieiieeieerieeieeeee et estreeaeeteesteesaeessseesseesssesnseesssesssaenes 359
Table 19-2—IEEE 1364-1995 reserved KEYWOTAScccvieiiiiiiiiiieiieeie ettt sete e etee e eveesiveeaeesene e 362
Table 19-3—IEEE 1364-2001 reserved KEYWOIdSccoceiiereiieieriieieeieee et 363
Table 19-4—IEEE 1364-2005 reserved KEYWOTrdScccvvierierieieniieieseeiese et eneens 364
Table 26-1—VPI routines for simulation-related callbacksccccecereririnerenineninciceccceesc e 381
Table 26-2—VPI routines for system task/function callbacksceecvviriieriiriiiiiierieeceeee e 381
Table 26-3—VPI routines for traversing Verilog HDL hierarchy.........c.ccocceviriininiineniiniieenceeee 382
Table 26-4—VPI routines for accessing properties 0f ODJECTSceeeruirierirrieririerreereee e 382
Table 26-5—VPI routines for accessing objects from Properties.coeevereereereeriereerieniee e eeeeee e 382
Table 26-6—VPI routines for delay PrOCESSINGcceiirierieieriieierteterteeie e eseesresae e eaesseessesseensesseenes 382
Table 26-7—VPI routines for logic and strength value processing...........ccevereeriereriesierenieiere e 382
Table 26-8—VPI routines for simulation time ProCeSSINGcccvvveriereeruerierierreeeesseeeessesreeseseesessesseenes 382
Table 26-9—VPI routines for miscellaneous ULILILIESccceoveiriririririnere e 383
Table 27-1—Return error constants for vpi_chk error()......cceeovereirieriininiiereee e 419
Table 27-2—Size of the s_ vpi_delay->da arraycccooieieiieieieee e 425
Table 27-3—Return value field of the s_vpi_value Structure Unionccceeeeeveeeienerienenieeeeeeeeeene 431
Table 27-4—Size of the s vpi_delay->da arrayccceeieierieierieiere et 449
Table 27-5—Value format field of cb_data p->value->format...........c.cccoecveviiriievieiiiiecieeceeeee e 455
XX1V Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Table 27-6——COStMLE CAIIDACKSeeiiiiiiiiiei ettt e et e e e e et e e e e e esantaeesesnaeeeeeens 457

Table 28-1—protect pragma KEYWOIAScccooieiiiirieiieiese ettt ettt seeens 469
Table 28-2—Encoding algorithm identifiersc.coeruiiiriiiieeiiee e 474
Table 28-3—Encryption algorithm identifierscccooieiiiieiiiieeeee e 476
Table 28-4—Message digest algorithm 1dentifiers.........ccoeuerieierirene e 481
Table C.1—Argument return value for $countdriver function............ccoceeeeivirerenenereeeeeee e 512
Copyright © 2006 IEEE. All rights reserved. XXV

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

List of Syntax Boxes

Syntax 3-1—Syntax for integer and real NUMDETS.ccveiirieriiieeieiiee ettt sae e eeas 9
Syntax 3-2—Syntax for system tasks and fUNCHIONScccuerieriiriieiiirieieee e e 15
Syntax 3-3—Syntax fOr AttrIDULEScoeeiiriiieie ettt ettt et e st ene et enee e enes 16
Syntax 3-4—Syntax for module declaration attributes...........oeceverieiieiienieeee e 18
Syntax 3-5—Syntax for port declaration attribULESeecveerieiieerierie ettt ereesre e sieeeaeesbeenes 18
Syntax 3-6—Syntax for module item attribULEScc.eceeriieieriieieieeeee e ees 19
Syntax 3-7—Syntax for function port, task, and block attributesc.ccoeceeiriririnienininicceeesce 19
Syntax 3-8—Syntax for port conNEction attribULESccerirrierieieriieiene et ees 20
Syntax 3-9—Syntax for Udp attrIDULEScceeiieiiiieie et ettt 20
Syntax 4-1—Syntax for Net deCIaration.........c.ccceieriieriiiciieceeeie et e seaesbeessaeeaeebeesssessseenns 22
Syntax 4-2—Syntax for variable decClaration...........ccccuiecierieeiiienie ettt e sreere e steeebe e 23
Syntax 4-3—Syntax for integer, time, real, and realtime declarations.............cccoceevereecierierieseereeeeie e 32
Syntax 4-4—Syntax for module parameter declarationceceeeeriieienieeierieiee e 36
Syntax 4-5—Syntax for specparam declarationcooceeoueririerieiere e 38
Syntax 5-1—Syntax for conditional OPETALOLccieiiiiiieiiietieie ettt enes 53
Syntax 5-2—Syntax for Mintypmax EXPIESSIONeecueerrrerrreerrerriereeereesteesseesseessessseeseeesseesssessseesssesssesnes 61
Syntax 6-1—Syntax for CONtINUOUS @SSIZNMENL.......ccueruieriieierrierieiieeesieetesteseeaeseesseesaessesssesseessessesssensenses 69
Syntax 6-2—Syntax for variable declaration asSigNIMENL............c.ccveeeeriirieriereerierienteeeesreeeesreereeseessesaeenns 73
Syntax 7-1—Syntax for gate INSANtIAtIONc.ccvirieriiiieieeieieie ettt st seae e esaeseeeseensesnneeeees 75
Syntax 8-1—Syntax fOr UDPS.......c.cooiiiiiieet ettt ettt et ae e naeenean 106
Syntax 8-2—Syntax for UDP INSTANCES.cccverivieeiieiiieitieeiteeriesteesiee ettt esteessaeeseessseesseesseessseeseesssesssessssens 113
Syntax 9-1—Syntax for blocking asSiZNIMENTS.........cc.eeieriiiiiririeiieie ettt 118
Syntax 9-2—Syntax for nonblocking aSSIZNMENLS..........cceevvirrierierrieiiieeieseereeeeseereereeseesseeseesesseesaeennas 119
Syntax 9-3—Syntax for procedural continuOUS asSIGNMENLSceerverreerrerrerierieeeeieieereeeeeenseenesaesenes 123
Syntax 9-4—Syntax for if StAtEMENTc.eeiiiiiiiiiieee ettt 125
Syntax 9-5—Syntax for if-elSe-if CONSIIUCT..........eiiiiiieiiiiei e 126
Syntax 9-6—Syntax fOr CASE STALEIMENLcccvieiiieriieiieeiie et eeee et e ree et e st e seaeebeesbeesbeessaeesseeseessseeseenssens 127
Syntax 9-7—Syntax for [0OPING StALEIMENLSeecvirieiierieiieieie ettt eeesie st ebe et ebe e e beessesseeseesseeseessesnnes 130
Syntax 9-8—Syntax for procedural timing CONLIOLcoccvirieriirieiiiiieie ettt 132
Syntax 9-9—Syntax for event deClaration..............ccvevierieiierieieeieere et 133
Syntax 9-10—Syntax fOr EVENT tIIZEET ... eouvertieiieieierie ettt ettt et et st e te s e eeeneeneenaeenean 134
Syntax 9-11—Syntax fOr Wait STACIMENTc..ccuieeiiieieeciieeieeie st e et eette et esteeebeeseteesaeebeessbeeseessseenseenssens 136
Syntax 9-12—Syntax for intra-assignment delay and event cONtrolcccooevieniiieninienienenceeeeen 137
Syntax 9-13—Syntax for sequential DIOCKc.ccvivieriieiiiiieieie ettt e seees 140
Syntax 9-14—Syntax for parallel BIOCKccooieieiiieieiciee e e 141
Syntax 9-15—Syntax for initial CONSIITUCTc.eiuiriiiriieiieteeiee ettt e e sae e 143
Syntax 9-16—Syntax for alWays CONSIITUCEc.ooiiriirieiiiiee ettt enee e see s 144
Syntax 10-1—Syntax for task declarationccveviiiiierieniie et st e s 146
Syntax 10-2—Syntax for task-enabling StatemMENtc.ccveieriieieriiiiierie et 147
Syntax 10-3—Syntax for disable StAtEIMENT...........ccevieriirieiiiieie ettt eseesseeseesaeeeeas 150
Syntax 10-4—Syntax for function declarationccecvecierierierieiisiee et 153
Syntax 10-5—Syntax for function Callcooiiiiiieiiiieeee e 155
Syntax 12-1—Syntax fOr MOAUIEoeeiiiiiiiiiieiec ettt re e e e esebeebeesae s 164
Syntax 12-2—Syntax for module inStANtiationc.ccceerieriieerieeie et ee e ere e sre e e e see e esseesane s 165
SYNtax 12-3——SYNtAX FOT POTT....iiuieiiirieiiitieiecie et te ettt et e e esaesteessesbeesbesseessessesssenseeseensesssessesnnas 173
Syntax 12-4—Syntax for port deClarationsceccverieeierieiere ettt ettt eae st neesseeaessesneas 174
Syntax 12-5—Syntax for Zenerate CONSIITUCESceririiririereeieieetie e eeee e ste s ete st e e reeeesseeeesaeeneas 182
Syntax 12-6—Syntax for hierarchical path NAMEScccoeiiriiiiiiie e 192
Syntax 12-7—Syntax for upward Name referenCingcccevirrerieriiriieie et 194
Syntax 13-1—SyNtax fOr CEILcuiiiiiiieiiiieiece ettt te b e be b e teeseessesseesesneas 199
Syntax 13-2—Syntax for declaring library in library map file..........cccooeeevivieiiiiiieiicieiciee e 201
XXVi Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Syntax 13-3—Syntax for include command...............coooieiieiiiiiieie e 202

Syntax 13-4—Syntax for CONTIGUIAtION............ceiirieriieieeeeieeiete ettt esae e eneesesneensesneas 203
Syntax 13-5—Syntax for default ClAUSEoccieriiieri e 203
Syntax 13-6—Syntax for INStANCE CLAUSEceevvieieriieieriieieitete ettt ete b e ereebeeseesseesaessesnnas 203
Syntax 13-7—Syntax for CEIl CLAUSEccveriiiiiiiiierie ettt st e s ebeseaeaesaees 204
Syntax 13-8—Syntax for lIDliSt CLAUSEccveriiiiieeieeiieeeee et eae e e e ebe e s 204
Syntax 13-9—Syntax fOr USE CLAUSEeouieiiriieieiteee ettt sttt te e e et eeee e naeenean 204
Syntax 14-1—Syntax for SPeCify DIOCKccoviiiiiiieee e 211
Syntax 14-2—Syntax for module path declaration............ccocveierieiirieierieee e 212
Syntax 14-3—Syntax for simple module Path...........cccecverieiiiiiiiiiii e 213
Syntax 14-4—Syntax for edge-sensitive path declaration............c.ecvveveriecieriiiiene et 214
Syntax 14-5—Syntax for state-dependent Paths.........ccccverciieiieiiieiiene e 215
Syntax 14-6—Syntax for path delay Valueccooeiieiiiiiiee e 222
Syntax 14-7—Syntax for PATHPULSES pulSe CONtrol........ccocevieieieiieieiresieeesie e 229
Syntax 14-8—Syntax for pulse style declarations.............cecveeverieiirieiereeereee et 231
Syntax 14-9—Syntax for showcancelled declarationscceecveeuirierieierieiere e 232
Syntax 15-1—Syntax for system timing CheCKS.........ccccvriiriirieriieieiicee et 238
Syntax 15-2—Syntax for check time conditions and timing check eventsc.ccccevvvievieencieeciieneeeieenenn 239
Syntax 15-3—Syntax fOr SELUPecvevirieirieiieiieieee ettt a e b s b et ebe e seaens 241
Syntax 15-4—Syntax for FHOLAoooiiiiiiiee ettt 242
Syntax 15-5—Syntax for $SEUPNOLA........ccveiiiriiriiieieieietet ettt ese s e 243
Syntax 15-6—Syntax for STEMOVALc.ccuviiiiiiiriiiieieieiete ettt ettt ese b besbe e eseese s s 245
Syntax 15-7—Syntax fOr SIECOVEIYooveiriiirieiiieieieire ettt 246
Syntax 15-8—Syntax fOr SIECIEIMc.vvuiiriiiiiiieiiietciet ettt ettt be e es s s esens 247
Syntax 15-9—Syntax fOr FSKEWc.cirieirieirieiiieieee ettt b et be e aees 249
Syntax 15-10—Syntax for SHMESKEWcoeciiiiiiiieeeee ettt s e e ee 250
Syntax 15-11—Syntax for STULISKEWc.ooiiieiiiiie e 252
Syntax 15-12—Syntax for SWIAthc.ccveeiiiiiiiiiiceeeee et 255
Syntax 15-13—Syntax for $PEriodceriruiireiriiiriieeeeee ettt 256
Syntax 15-14—Syntax for $N0CRANEEc.eirieirieirieieeeeee et 257
Syntax 15-15—Syntax for edge-control SPECITIETcccvierciieeiieiiieieerie et 258
Syntax 15-16—Syntax for controlled timing check eVent............coocieiiiiriiiieiireeeeeee e 265
Syntax 17-1—Syntax for $display and $write system tasks..........cccooerieeieiriiiniine e 278
Syntax 17-2—Syntax for $Srobe SYStEmM taSKSccvecviieieiiiiieieiesiesteiee ettt ettt eee s e 285
Syntax 17-3—Syntax for $Monitor SYStEM tasksc.cceeviviirierieiiieieieeee ettt 286
Syntax 17-4—Syntax for $fopen and $fclose System tasks.........c.ecvevieveieiiiiieineriiiei e 287
Syntax 17-5—Syntax for file output SYStem tasKS........cccveriieiiieiiieieecii et 288
Syntax 17-6—Syntax for formatting data tasks..........ccecieriiieiieiiieieee e 289
Syntax 17-7—Syntax for memory 1oad SyStem taskscccoeiereriiiiiieie e 296
Syntax 17-8—Syntax for $sdf annotate SyStem taskcccevvevieieiiiiieiieiiiiiieeeeie et 297
Syntax 17-9—Syntax for $Printtimescale.........c.eovieriiiiiiiiiriiieiiieeee e 299
Syntax 17-10—Syntax for $UMEOrMALcceoviviieiieieiiciiee et saeseees 300
Syntax 17-11—Syntax for $IINISHc.ecirieiieiieie ettt 302
Syntax 17-12—SYNtAX O SSTOP...cuerverirreirreirieirteietee ettt ettt ettt be st e e s s e s eseneeseeesensens 302
Syntax 17-13 —Syntax for PLA modeling system task...........cceccerieiiiirieiieeceeeeeee e 303
Syntax 17-14—Syntax fOr SHIMIEc.ceiviiiriiiieeiiteieieeet ettt ettt ettt et ebe s seens 309
Syntax 17-15—SyNtax fOr SSTIMIE........ciiviiriiriitieiiteicteect ettt ettt b e bbbt ss et ssebe s sessens 309
Syntax 17-16—Syntax for STEALIMEc.cccvriiiiiiiiere et 310
Syntax 17-17—Syntax for $IandOmcceiiiiiiiiiiee et 311
Syntax 17-18—Syntax for probabilistic distribution funCtions...........c.cceevcvercieeriercieeiierie e 312
Syntax 18-1—Syntax for $AUMPTILE tASKceeiiiiiriiiiieeee e 325
Syntax 18-2—Syntax for flleNamec.oooiriiiiiiie e 326
Syntax 18-3—Syntax for $AUMPVATLS tasKccevuiiriiiiiiiee e 326
Syntax 18-4—Syntax for $dumpoff and SAUMPON tasks.........cceeeverieiiiiiriiiicieceeceee e 327
Copyright © 2006 IEEE. All rights reserved. XXVil

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

Syntax 18-5—Syntax for $AUMPAIL tasK..........c.cceriririiiiiieieeeee et 328

Syntax 18-6—Syntax for SAUMPIMIt tASKccooiiiiiiiiiieeeeeeee e 328
Syntax 18-7—Syntax for $SAumMpPiIush task........c.ccoeoieiiiiiiiieeee e 328
Syntax 18-8—Syntax for output four-state VCD flle.........occuiriiiiiiiiiieeeeeeeeee e 330
Syntax 18-9—Syntax for $COMMENt SECHOMecvirueieieieieieeiete ettt es et eee e tebeseeenseaeese s 332
Syntax 18-10—Syntax for $Aate SECLIONcceiuiriiriiiiieieee et 332
Syntax 18-11—Syntax for $enddefinitions SECHIONccerverierierieieieieieeee e 333
Syntax 18-12—Syntax fOr $SCOPE SECHIOMcuveuiruieeieiiiiteieeterie ettt ettt ettt sttt neese s s 333
Syntax 18-13—Syntax for $HMESCALEcc.ocviiiiiiie et 334
Syntax 18-14—Syntax for SUPSCOPE SECLIOMeuiruiriirerriirtirieriesieietet ettt et et ete st te b e eeeeseeseeneeseesesenes 334
Syntax 18-15—Syntax for $VAr SECIOMNccviiiuiriiiieieietee ettt 334
Syntax 18-16—Syntax for SVErsion SECHIOMNeceruirtirierieieieieieietee ettt ettt ene et e seeeeeee s 335
Syntax 18-17—Syntax for $dumpall KeyWOordcceviiriiiirieieieeeeeee e 335
Syntax 18-18—Syntax for SAumpoff KeyWordccooiriiiiiieeeee e 336
Syntax 18-19—Syntax for $AumMpon KEYWOrdoceviiriiiiiieieieeeeeee e 336
Syntax 18-20—Syntax for $Adumpvars KEYWOrdccooeeiieiierieieieieee e 336
Syntax 18-21—Syntax for SAUMPPOTtS task.........ccceririiiiiieeeee e 338
Syntax 18-22—Syntax for $dumpportsoff and $dumpportson system taskscoeceveveeeciecincinrnennnne 339
Syntax 18-23—Syntax for $dumpportsall SyStem task...........coccereriirierieiieieieieeee e 340
Syntax 18-24—Syntax for Sdumpportslimit SYStem taskccceeieeierieiieirieieieee e 340
Syntax 18-25—Syntax for $dumpportsflush System task..........cccceeeeeierieiieirinieire e 341
Syntax 18-26—Syntax for $vedelose KeyWordco.oouiviiiiiieieiei e 341
Syntax 18-27—Syntax for output extended VCD file........cccorieiiiiiiiiiieeeeee e 343
Syntax 18-28—Syntax for extended VCD node information.............ccooceeieiieiienieiinieiescee e 344
Syntax 18-29—Syntax for value change SECTIONceveiieiiriieiere ettt 346
Syntax 19-1—Syntax for default nettype compiler dir€Ctiveoocvroeeierierieieieeieeeee e 350
Syntax 19-2—Syntax for text macro definition...........oecverieiirieieiieereee e 350
Syntax 19-3—Syntax for teXt MACIO USAZEeeuverurrueerieeiierieeierteeieeteeee et eee et eesaeeeesseeseesbeeneesseeneenaenseenean 351
Syntax 19-4—Syntax for undef compiler direCtiVecceeiirieiiiieeee e 352
Syntax 19-5—Syntax for conditional compilation dir€CtiVes...........eeruireeierieriinieeeeieieee e 353
Syntax 19-6—Syntax for include compiler dir€CtiVec.eiuiriiriieiiiiee et e 356
Syntax 19-7—Syntax for line compiler dir€CtiVeccuiruieiiriieereieeseee e 357
Syntax 19-8—Syntax for timescale compiler dir€CtiVecc.eeuieririeiiriee e 358
Syntax 19-9—Syntax for pragma compiler dir€CtiVeooueiirieiiiiee et 360
Syntax 19-10—Syntax for begin keywords and end keywords compiler directives...........ceceevvrvereenennee. 361
XXViil Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard for Verilog®
Hardware Description Language

1. Overview

1.1 Scope

Verilog is a hardware description language (HDL) that was standardized as IEEE Std 1364™-1995 and first
revised as IEEE Std 1364-2001. This revision corrects and clarifies features ambiguously described in the
1995 and 2001 editions. It also resolves incompatibilities and inconsistencies of IEEE 1364-2001 with IEEE
Std 1800™-2005.

The intent of this standard is to serve as a complete specification of the Verilog HDL. This standard contains
the following:

— The formal syntax and semantics of all Verilog HDL constructs

— The formal syntax and semantics of standard delay format (SDF) constructs

— Simulation system tasks and functions, such as text output display commands

— Compiler directives, such as text substitution macros and simulation time scaling
— The programming language interface (PLI) binding mechanism

— The formal syntax and semantics of the Verilog procedural interface (VPI)

— Informative usage examples

— Informative delay model for SDF

— The VPI header file

1.2 Conventions used in this standard

This standard is organized into clauses, each of which focuses on a specific area of the language. There are
subclauses within each clause to discuss individual constructs and concepts. The discussion begins with an
introduction and an optional rationale for the construct or the concept, followed by syntax and semantic
descriptions, followed by some examples and notes.

The term shall is used throughout this standard to indicate mandatory requirements, whereas the term may is
used to indicate optional features. These terms denote different meanings to different readers of this
standard:

Copyright © 2006 IEEE. All rights reserved. 1

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

a) To the developers of tools that process the Verilog HDL, the term shall denotes a requirement that
the standard imposes. The resulting implementation is required to enforce the requirements and to
issue an error if the requirement is not met by the input.

b) To the Verilog HDL model developer, the term shall denotes that the characteristics of the Verilog
HDL are natural consequences of the language definition. The model developer is required to adhere
to the constraint implied by the characteristic. The term may denotes optional features that the model
developer can exercise at discretion. If such features are used, however, the model developer is
required to follow the requirements set forth by the language definition.

¢) To the Verilog HDL model user, the term shall denotes that the characteristics of the models are nat-
ural consequences of the language definition. The model user can depend on the characteristics of
the model implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following
conventions are used:

— Lowercase words, some containing embedded underscores, are used to denote syntactic categories.
For example:

module declaration

— Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. For example:

module => ;

— A vertical bar separates alternative items unless it appears in boldface, in which case it stands for
itself. For example:

unary_operator ::=
-~ &) ~&] [A2~ A

— Square brackets enclose optional items. For example:

input_declaration ::= input [range] list_of variables ;

— Braces ({}) enclose a repeated item unless it appears in boldface, in which case it stands for itself.
The item may appear zero or more times; the repetitions occur from left to right as with an
equivalent left-recursive rule. Thus, the following two rules are equivalent:

list of param assignments ::= param_assignment {, param_assignment }
list of param_assignments ::=
param_assignment
| list of param assignment, param_assignment

— If the name of any category starts with an italicized part, it is equivalent to the category name
without the italicized part. The italicized part is intended to convey some semantic information. For

example, “msb_index” and “/sh_index” are equivalent to “index.”

The main text uses italicized font when a term is being defined and uses constant-width font for
examples, file names, and constants, especially 0, 1, x, and z values.

2 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

1.4 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. Color is used to show cross
references that are hyperlinked to other portions of this standard. These hyperlinked cross references are
shown in underlined-blue text (hyperlinking works when this standard is viewed interactively as a PDF file).

1.5 Contents of this standard

A synopsis of the clauses and annexes is presented as a quick reference. There are 28 clauses and 9 annexes.
All clauses, as well as Annex A, Annex B, and Annex G, are normative parts of this standard. Annex C,
Annex D, Annex H, and Annex I are included for informative purposes only.

IEEE Std 1364-2005 has deprecated the task/function (TF) and access (ACC) routines, which were specified
previously in Clause 21 through Clause 25, Annex E, and Annex F of IEEE Std 1364-2001 I Clause 20 has
been modified to reflect this change. The text of deprecated clauses and annexes has been removed from this
version of the standard, but the clause headings have been retained. See the corresponding clauses in IEEE
Std 1364-2001 for the deprecated text.

Clause 1 discusses the conventions used in this standard and its contents.

Clause 2 lists references to other publications that are required in order to implement this standard.

Clause 3 describes the lexical tokens used in Verilog HDL source text and their conventions. It describes
how to specify and interpret the lexical tokens.

Clause 4 describes net and variable data types. This clause also discusses the parameter data type for
constant values and describes drive and charge strength of the values on nets.

Clause 5 describes the operators and operands that can be used in expressions.

Clause 6 compares the two main types of assignment statements in the Verilog HDL—continuous
assignments and procedural assignments. It describes the continuous assignment statement that drives values
onto nets.

Clause 7 describes the gate- and switch-level primitives and logic strength modeling.

Clause 8 describes how a primitive can be defined in the Verilog HDL and how these primitives are
included in Verilog HDL models.

Clause 9 describes procedural assignments, procedural continuous assignments, and behavioral language
statements.

Clause 10 describes tasks and functions—procedures that can be called from more than one place in a
behavioral model. It describes how tasks can be used like subroutines and how functions can be used to
define new operators. The clause describes how to disable the execution of a task and a named block of

statements.

Clause 11 describes the scheduling semantics of the Verilog HDL.

IFor information on references, see Clause 2.
Copyright © 2006 IEEE. All rights reserved. 3

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Clause 12 describes how hierarchies are created in the Verilog HDL and how parameter values declared in a
module can be overridden. It describes how generated constructs can be used to do conditional or multiple
instantiations in a design.

Clause 13 describes how to configure the contents of a design.

Clause 14 describes how to specify timing relationships between input and output ports of a module.

Clause 15 describes how timing checks are used in specify blocks to determine whether signals obey the
timing constraints.

Clause 16 describes syntax and semantics of SDF constructs.
Clause 17 describes the system tasks and functions.

Clause 18 describes the system tasks associated with value change dump (VCD) file and the format of the
file.

Clause 19 describes the compiler directives.

Clause 20 previews the C language procedural interface standard (i.e., PLI) and interface mechanisms that
are part of the Verilog HDL.

Clause 21 has been deprecated. See IEEE Std 1364-2001 for the contents of this clause.
Clause 22 has been deprecated. See IEEE Std 1364-2001 for the contents of this clause.
Clause 23 has been deprecated. See IEEE Std 1364-2001 for the contents of this clause.
Clause 24 has been deprecated. See IEEE Std 1364-2001 for the contents of this clause.
Clause 25 has been deprecated. See IEEE Std 1364-2001 for the contents of this clause.
Clause 26 provides an overview of the types of operations that are done with the VPI routines.
Clause 27 describes the VPI routines.

Clause 28 describes encryption and decryption of source text regions.

Annex A (normative) describes, using BNF, the syntax of the Verilog HDL.

Annex B (normative) lists the Verilog HDL keywords.

Annex C (informative) describes system tasks and functions that are frequently used, but that are not part of
this standard.

Annex D (informative) describes compiler directives that are frequently used, but that are not part of this
standard.

Annex E has been deprecated. See I[EEE Std 1364-2001 for the contents of this annex.
Annex F has been deprecated. See IEEE Std 1364-2001 for the contents of this annex.

Annex G (normative) provides a listing of the contents of the vpi_user.h file.

4 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Annex H (informative) describes the various scenarios that can be used for intellectual property (IP)
protection, and it also shows how the relevant pragmas will be used to achieve the desired effect of securely
protecting, distributing, and decrypting the model.

Annex [(informative) contains bibliographic entries pertaining to this standard.

1.6 Deprecated clauses

IEEE Std 1364-2005 deprecates the Verilog PLI TF and ACC routines that were contained in previous
versions of this standard. These routines were described in Clause 21 through Clause 25, Annex E, and
Annex F. The text of these clauses and annexes have been removed from this version of the standard. The
text of these deprecated clauses and annexes can be found in IEEE Std 1364-2001.

1.7 Header file listings

The header file listings included in Annex G for vpi_user.h are a normative part of this standard. All
compliant software tools should use the same function declarations, constant definitions, and structure
definitions contained in these header file listings.

1.8 Examples
Several small examples in the Verilog HDL and the C programming language are shown throughout this

standard. These examples are informative. They are intended to illustrate the usage of Verilog HDL
constructs and PLI functions in a simple context and do not define the full syntax.

1.9 Prerequisites

Clause 20, Clause 26, Clause 27, and Annex G presuppose a working knowledge of the C programming
language.

Copyright © 2006 IEEE. All rights reserved. 5

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

2. Normative references

The following referenced documents are indispensable for the application of this standard. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

Anderson, R., Biham, E., and Knudsen, L. “Serpent: A Proposal for the Advanced Encryption Standard,”
NIST AES Proposal, 1998, http://www.cl.cam.ac.uk/ftp/users/rjal4/serpent.tar.gz.

ANSI Std X9.52-1998, American National Standard for Financial Services—Triple Data Encryption Algo-
rithm Modes of Operation.2

ElGamal, T., “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” I[EEE
Transactions on Information Theory, vol. IT-31, no. 4, pp. 469472, July 1985.

FIPS 46-3 (October 1999), Data Encryption Standard (DES).3

FIPS 180-2 (August 2002), Secure Hash Standard (SHS).

FIPS 197 (November 2001), Advanced Encryption Standard (AES).

IEEE Std 754™.-1985, IEEE Standard for Binary Floating-Point Arithmetic.* >

IEEE Std 1003.1™, [EEE Standard for Information Technology—Portable Operating System Interface
(POSIX®).

IEEE Std 1364™-2001, IEEE Standard for Verilog® Hardware Description Language.
IETF RFC 1319 (April 1992), The MD2 Message-Digest Algorithm.6
IETF RFC 1321 (April 1992), The MD5 Message-Digest Algorithm.

IETF RFC 2045 (November 1996), Multipurpose Internet Mail Extensions (MIME), Part One: Format of
Internet Message Bodies.

IETF RFC 2144 (May 1997), The CAST-128 Encryption Algorithm.
IETF RFC 2437 (October 1998), PKCS #1: RSA Cryptography Specifications, Version 2.0.

IETF RFC 2440 (November 1998), OpenPGP Message Format.

2ANSI publications are available from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor,
New York, NY 10036, USA (http://www.ansi.org/).

3FIPS publications are available from the National Technical Information Service (NTIS), U. S. Dept. of Commerce, 5285 Port Royal
Rd., Springfield, VA 22161 (http://www.ntis.org/).

“IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
SIETF requests for comments (RFCs) are available from the Internet Engineering Task Force (http:/www.ieft.org).

6 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

ISO/IEC 10118-3:2004, Information technology—Security techniques—Hash-functions—Part 3: Dedicated
hash-functions.’

Schneier, B., “Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish),” Fast Software
Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191—
204.

Schneier, B., et al, The Twofish Encryption Algorithm: A 128-Bit Block Cipher, 1st ed., Wiley, 1999.

"ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States
from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).

Copyright © 2006 IEEE. All rights reserved. 7

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

3. Lexical conventions

This clause describes the lexical tokens used in Verilog HDL source text and their conventions.

3.1 Lexical tokens

Verilog HDL source text files shall be a stream of lexical tokens. A lexical token shall consist of one or more
characters. The layout of tokens in a source file shall be free format; that is, spaces and newlines shall not be
syntactically significant other than being token separators, except for escaped identifiers (see 3.7.1).

The types of lexical tokens in the language are as follows:

— White space
— Comment
— Operator

— Number

— String

— Identifier
— Keyword

3.2 White space
White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be

ignored except when they serve to separate other lexical tokens. However, blanks and tabs shall be
considered significant characters in strings (see 3.6).

3.3 Comments
The Verilog HDL has two forms to introduce comments. A one-line comment shall start with the two
characters // and end with a newline. A block comment shall start with /* and end with */. Block

comments shall not be nested. The one-line comment token // shall not have any special meaning in a block
comment.

3.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Clause 5 discusses
the use of operators in expressions.

Unary operators shall appear to the left of their operand. Binary operators shall appear between their
operands. A conditional operator shall have two operator characters that separate three operands.

8 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

3.5 Numbers

Constant numbers can be specified as integer constants (defined in 3.5.1) or real constants.

number ::= (From A.8.7)
decimal number
| octal number
| binary number
| hex number
| real number
real_number?® ::=
unsigned number . unsigned number
| unsigned number [. unsigned number] exp [sign] unsigned number
exp::=e|E
decimal number ::=
unsigned _number
| [size] decimal base unsigned number
| [size] decimal base x_digit { _}
| [size] decimal base z_digit { _}
binary number ::=
[size] binary base binary value

octal number ::=
[size] octal base octal value

hex number ::=
[size] hex_base hex_value

sign ==+ -
size ::=non_zero unsigned number
non_zero_unsigned number? ::= non_zero decimal digit { | decimal digit}
unsigned_number? ::= decimal_digit { _| decimal_digit }
binary value? ::= binary digit { | binary_digit }
octal_value? ::= octal_digit { _| octal digit }
hex value? ::= hex digit { _|hex_digit }
decimal_base? ::="[s|S]d | '[s|S]D
binary base? ::= "[s|S]b | '[s|S]B
octal_base?::="[s|S]o | '[s|S]O
hex_base? ::="[s|STh | '[s|S]TH
non_zero decimal digit::=1]2[3(4|5|6|7|8]|9
decimal digit::=0]1|2|3|4|5|/6|7|8]9
binary digit ::=x_digit | z_digit| 0|1
octal digit ::=x_digit|z digit|0|1|2|3|4|5|6|7
hex_digit ::=
x_digit |z digit|0]1]2]3|4|5/6]7|8]9
la|blc|d[e[f[A[B[C|D|E[F
x_digit :==x|X
z digit::=z|Z|?

2Embedded spaces are illegal.

Syntax 3-1—Syntax for integer and real numbers

Copyright © 2006 IEEE. All rights reserved. 9

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

3.5.1 Integer constants
Integer constants can be specified in decimal, hexadecimal, octal, or binary format.

There are two forms to express integer constants. The first form is a simple decimal number, which shall be
specified as a sequence of digits 0 through 9, optionally starting with a plus or minus unary operator. The
second form specifies a based constant, which shall be composed of up to three tokens—an optional size
constant, an apostrophe character (', ASCII 0x27) followed by a base format character, and the digits
representing the value of the number. It shall be legal to macro-substitute these three tokens.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It
shall be specified as a nonzero unsigned decimal number. For example, the size specification for two
hexadecimal digits is 8 because one hexadecimal digit requires 4 bits.

The second token, a base format, shall consist of a case-insensitive letter specifying the base for the
number, optionally preceded by the single character s (or S) to indicate a signed quantity, preceded by the
apostrophe character. Legal base specifications are d, D, h, H, o, O, b, or B for the bases decimal,
hexadecimal, octal, and binary, respectively.

The apostrophe character and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token shall immediately follow the base format, optionally preceded by white space. The
hexadecimal digits a to £ shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the
numbers specified with the base format shall be treated as signed integers if the s designator is included or
as unsigned integers if the base format only is used. The s designator does not affect the bit pattern
specified, only its interpretation.

A plus or minus operator preceding the size constant is a unary plus or minus operator. A plus or minus
operator between the base format and the number is an illegal syntax.

Negative numbers shall be represented in twos-complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-
impedance value. See 4.1 for a discussion of the Verilog HDL value set. An x shall set 4 bits to unknown in
the hexadecimal base, 3 bits in the octal base, and 1 bit in the binary base. Similarly, a z shall set 4 bits,
3 bits, and 1 bit, respectively, to the high-impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number
shall be padded to the left with zeros. If the leftmost bit in the unsigned number is an x or a z, then an x or a
z shall be used to pad to the left, respectively. If the size of the unsigned number is larger than the size
specified for the constant, the unsigned number shall be truncated from the left.

The number of bits that make up an unsized number (which is a simple decimal number or a number without
the size specification) shall be at least 32. Unsized unsigned constants where the high-order bit is unknown

(X or x) or three-state (z or z) shall be extended to the size of the expression containing the constant.

NOTE—In IEEE Std 1364-1995, in unsized constants where the high-order bit is unknown or three-state, the x or z was
only extended to 32 bits.

The use of x and z in defining the value of a number is case insensitive.

10 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

When used in a number, the question-mark (?) character is a Verilog HDL alternative for the z character. It
sets 4 bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The
question mark can be used to enhance readability in cases where the high-impedance value is a do-not-care
condition. See the discussion of casez and casex in 9.5.1. The question-mark character is also used in user-
defined primitive (UDP) state tables. See Table 8-1 in 8.1.6.

In a decimal constant, the unsigned number token shall not contain any x, z, or ? digits, unless there is
exactly one digit in the token, indicating that every bit in the decimal constant is x or z.

The underscore character () shall be legal anywhere in a number except as the first character. The
underscore character is ignored. This feature can be used to break up long numbers for readability purposes.

For example:

Example 1—Unsized constant numbers

659 // is a decimal number

'h 837FF // is a hexadecimal number

'07460 // is an octal number

4af // is illegal (hexadecimal format requires 'h)

Example 2—Sized constant numbers

4'b1001 // 1s a 4-bit binary number

5 'D 3 // is a 5-bit decimal number

3'b01x // i1s a 3-bit number with the least
// significant bit unknown

12'hx // 1is a 12-bit unknown number

16'hz // is a 16-bit high-impedance number

Example 3—Using sign with constant numbers

8 'd -6 // this is illegal syntax

-8 'd 6 // this defines the two's complement of 6,
// held in 8 bits—equivalent to -(8'd 6)

4 'shf // this denotes the 4-bit number '1111', to

// be interpreted as a 2's complement number,
// or '-1'. This is equivalent to -4'h 1
-4 'sdls // this is equivalent to -(-4'd 1), or '0001'
16'sd? // the same as 16'sbz

Example 4—Automatic left padding

reg [11:0] a, b, ¢, d;
initial begin

a = "'h x; // yields xxx
b = 'h 3x; // yields 03x
c = 'h z3; // yields zz3
d = 'h 0z3; // yields 0z3

end

reg [84:0] e, £, g;
e = 'h5; // yields {82{1'b0},3'b101}
f = 'hx; // yields {85{1'hx}}
g = 'hz; // yields {85{1'hz}}

Copyright © 2006 IEEE. All rights reserved. 11

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 5—Using underscore character in numbers

27_195 000
16'b0011_0101_0001_1111
32 'h 12ab_f001

Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a
reg data type, regardless of whether the reg itself is signed.

The default length of x and z is the same as the default length of an integer.
3.5.2 Real constants

The real constant numbers shall be represented as described by IEEE Std 754-1985, an IEEE standard for
double-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for
example, 39¢8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a
decimal point shall have at least one digit on each side of the decimal point.

For example:

1.2

0.1

2394 .26331

1.2E12 (the exponent symbol can be e or E)
1.30e-2

0.1le-0

23E10

29E-2

236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of
the decimal point:

.12
9.
4.E3
.2e-7
3.5.3 Conversion
Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than
by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. The ties
shall be rounded away from zero. For example:
— The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

— Converting —1.5 to integer yields —2, converting 1.5 to integer yields 2.

3.6 Strings

A string is a sequence of characters enclosed by double quotes ("'") and contained on a single line. Strings
used as operands in expressions and assignments shall be treated as unsigned integer constants represented
by a sequence of 8-bit ASCII values, with one 8-bit ASCII value representing one character.

12 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

3.6.1 String variable declaration

String variables are variables of reg type (see 4.2) with width equal to the number of characters in the string
multiplied by 8.

For example:
To store the 12-character string "Hello world!" requires a reg 8 * 12, or 96 bits wide.
reg [8*12:1] stringvar;
initial begin
stringvar = "Hello world!";
end

3.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operator
is the sequence of 8-bit ASCII values.

For example:
module string test;

reg [8*14:1] stringvar;
initial begin

stringvar = "Hello world";
$display ("%s is stored as %h", stringvar,stringvar) ;
stringvar = {stringvar,"!!!"};
$Sdisplay ("%s is stored as %h", stringvar,stringvar) ;
end
endmodule

The output is as follows:

Hello world is stored as 00000048656c6c6f£20776£726c64
Hello world!!! is stored as 48656c6c6f20776£726c64212121

When a variable is larger than required to hold a string value being assigned, the value is right-justified, and
the leftmost bits are .padded with zeros, as is done with nonstring values. If a string is larger than the
destination string variable, the string is right-justified, and the leftmost characters are truncated.

3.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character called an escape

character. Table 3-1 lists these characters in the right-hand column, with the escape sequence that represents
the character in the left-hand column.

Copyright © 2006 IEEE. All rights reserved. 13

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 3-1—Specifying special characters in string

Escape string Character produced by escape string

\n Newline character

\t Tab character

\ \ character

\" " character

\ddd A character specified in 1-3 octal digits (0 <d < 7).
If less than three characters are used, the following character shall not be an octal digit.
Implementations may issue an error if the character represented is greater than \377.

3.7 Identifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An identifier is either a simple
identifier or an escaped identifier (see 3.7.1). A simple identifier shall be any sequence of letters, digits,
dollar signs (%), and underscore characters ().

The first character of a simple identifier shall not be a digit or $; it can be a letter or an underscore.
Identifiers shall be case sensitive.

For example:

shiftreg a
busa_index
error condition
merge ab

_bus3

n$e657

Implementations may set a limit on the maximum length of identifiers, but the limit shall be at least
1024 characters. If an identifier exceeds the implementation-specified length limit, an error shall be
reported.

3.7.1 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
newline). They provide a means of including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the
identifier. Therefore, an escaped identifier \cpu3 is treated the same as a nonescaped identifier cpu3s.

For example:

\busa+index

\-clock
error-condition
\netl/\net2

\{a,b}

\a* (b+c)

14 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

3.7.2 Keywords

Keywords are predefined nonescaped identifiers that are used to define the language constructs. A Verilog
HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all defined keywords.

3.7.3 System tasks and functions

The dollar sign (8$) introduces a language construct that enables development of user-defined system tasks
and functions. System constructs are not design semantics, but refer to simulator functionality. A name

following the $ is interpreted as a system task or a system function.

The syntax for a system task/function is given in Syntax 3-2.

system_task enable ::= (From A.6.9)

system_task identifier [([expression] {, [expression]})];
system_function_call ::= (From A.8.2)

system_function_identifier [(expression { , expression })]
system_function_identifier® ::= (From A.9.3)

$[a-zA-Z0-9_S$]{ [a-zA-Z0-9_$] }
system_task identifier? ::=

$[a-zA-Z0-9_$ 1{ [a-zA-Z0-9_$] }

%The dollar sign ($) in a system_function_identifier or system_task_identifier shall not be followed by white
space. A system_function_identifier or system_task identifier shall not be escaped.

Syntax 3-2—Syntax for system tasks and functions

The S$identifier system task/function can be defined in three places:

— A standard set of $identifier system tasks and functions, as defined in Clause 17 and Clause 18.

— Additional $identifier system tasks and functions defined using the PLI, as described in Clause 20.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
system task/function name. The system tasks and functions described in Clause 17 and Clause 18 are part of
this standard. Additional system tasks and functions with the $identifier construct are not part of this
standard.

For example:

$display ("display a message");
$finish ;

3.7.4 Compiler directives

The ~ character (the ASCII value 0x60, called grave accent) introduces a language construct used to
implement compiler directives. The compiler behavior dictated by a compiler directive shall take effect as
soon as the compiler reads the directive. The directive shall remain in effect for the rest of the compilation

unless a different compiler directive specifies otherwise. A compiler directive in one description file can,
therefore, control compilation behavior in multiple description files.

Copyright © 2006 IEEE. All rights reserved. 15

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The “identifier compiler directive construct can be defined in two places:

— A standard set of “identifier compiler directives defined in Clause 19.

— Additional ‘identifier compiler directives defined by software implementations.
Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
compiler directive name. The compiler directives described in Clause 19 are part of this standard. Additional
compiler directives with the ‘identifier construct are not part of this standard.

For example:

“define wordsize 8

3.8 Attributes

With the proliferation of tools other than simulators that use Verilog HDL as their source, a mechanism is
included for specifying properties about objects, statements, and groups of statements in the HDL source
that can be used by various tools, including simulators, to control the operation or behavior of the tool.
These properties shall be referred to as attributes. This subclause specifies the syntactic mechanism that
shall be used for specifying attributes, without standardizing on any particular attributes.

The syntax for specifying an attribute is shown in Syntax 3-3.

attribute instance ::= (From A.9.1
(* attr_spec {, attr_spec } *)
attr_spec ::=
attr name [= constant_expression |
attr_name ::=
identifier

Syntax 3-3—Syntax for attributes

An attribute instance can appear in the Verilog description as a prefix attached to a declaration, a
module item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog function
name in an expression.

If a value is not specifically assigned to the attribute, then its value shall be 1. If the same attribute name is
defined more than once for the same language element, the last attribute value shall be used; and a tool can
give a warning that a duplicate attribute specification has occurred.

Nesting of attribute instances is disallowed. It shall be illegal to specify the value of an attribute with a
constant expression that contains an attribute instance.

3.8.1 Examples
Example I—The following example shows how to attach attributes to a case statement:

(* full case, parallel case *)
case (foo)
<rest of case statements>

or

16 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

(* full case=1 *)
(* parallel case=1 *) // Multiple attribute instances also OK
case (foo)
<rest of case statements>
or
(* full_case, // no value assigned
parallel_case=1 *)
case (foo)
<rest_of case_statement>
Example 2—To attach the full case attribute, but not the parallel case attribute:
(* full case *) // parallel_case not specified
case (foo)
<rest_of case statement>
or
(* full case=1, parallel case = 0 *)
case (foo)
<rest_of case_statement>

Example 3—To attach an attribute to a module definition:

(* optimize power *)
module modl (<port lists);

or
(* optimize power=1 *)
module modl (<port lists);
Example 4—To attach an attribute to a module instantiation:
(* optimize power=0 *)
modl synthl (<port lists>);
Example 5—To attach an attribute to a reg declaration:
(* fsm _state *) reg [7:0] statel;
(* fsm _state=1 *) reg [3:0] state2, state3;

reg [3:0] regl; // this reg does NOT have fsm state set
(* fsm_state=0 *) reg [3:0] reg2; // nor does this one

Example 6—To attach an attribute to an operator:
a =Db + (* mode = "cla" *) c;

This sets the value for the attribute mode to be the string cla.

Copyright © 2006 IEEE. All rights reserved. 17

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 7—To attach an attribute to a Verilog function call:

a = add (* mode = "cla" *) (b, c);

Example 8—To attach an attribute to a conditional operator:

a =b ? (¥ no glitch *) ¢ : d;

3.8.2 Syntax

The syntax for legal statements with attributes is shown in Syntax 3-4 through Syntax 3-9.

The syntax for module declaration attributes is given in Syntax 3-4.

module_declaration ::= (From A.1.2)
{ attribute_instance } module keyword module_identifier
[module parameter port list] list of ports ;
{ module_item }
endmodule

| { attribute_instance } module keyword module identifier
[module parameter port list] [list_of port declarations] ;
{ non_port module item }
endmodule

Syntax 3-4—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 3-5.

port_declaration ::= (From A.1.3)
{attribute_instance} inout declaration
| {attribute instance} input_declaration
| {attribute instance} output declaration

Syntax 3-6—Syntax for port declaration attributes

18 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The syntax for module item attributes is given in Syntax 3-6.

module_item ::= (From A.1.4)
port_declaration ;
| non_port module item
module or generate item ::=
{ attribute instance } module or generate item declaration
| { attribute instance } local parameter declaration ;
| { attribute_instance } parameter_override
| { attribute instance } continuous_assign
| { attribute_instance } gate instantiation
| { attribute_instance } udp_instantiation
| { attribute instance } module instantiation
| { attribute instance } initial construct
| { attribute_instance } always_construct
| { attribute_instance } loop generate construct
| { attribute instance } conditional generate construct
non_port_module item ::=
module or generate item
| generate region
| specify_block
| { attribute instance } parameter declaration ;
| { attribute_instance } specparam_declaration

Syntax 3-6—Syntax for module item attributes

The syntax for function port, task, and block attributes is given in Syntax 3-7.

function_port_list ::= (From A.2.6)
{attribute_instance} input declaration {, {attribute instance } input declaration}
task item_declaration ::= (From A.2.7)
block item declaration
| { attribute_instance } input_declaration ;
| { attribute_instance } output declaration ;
| { attribute instance } inout_declaration ;
task port item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output declaration
| { attribute_instance } inout_declaration
block item_declaration ::= (From A.2.8)
{ attribute_instance } reg [signed][range] list_of block variable identifiers ;
| { attribute instance } integer list of block variable identifiers ;
| { attribute_instance } time list_of block variable identifiers ;
| { attribute_instance } real list_of block real identifiers ;
| { attribute_instance } realtime list of block real identifiers ;
| { attribute_instance } event declaration
| { attribute_instance } local parameter declaration ;
| { attribute instance } parameter declaration ;

Syntax 3-7—Syntax for function port, task, and block attributes

Copyright © 2006 IEEE. All rights reserved. 19

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The syntax for port connection attributes is given in Syntax 3-8.

ordered port connection ::= (From A.4.1)
{ attribute_instance } [expression]

named_port connection ::=
{ attribute_instance } . port_identifier ([expression])

Syntax 3-8—Syntax for port connection attributes

The syntax for udp attributes is given in Syntax 3-9.

udp_declaration ::= (From A.5.1)
{ attribute_instance } primitive udp_identifier (udp_port list) ;
udp_port_declaration { udp port declaration }
udp_body
endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;
udp_body
endprimitive
udp_output declaration ::= (From A.5.2)
{ attribute_instance } output port_identifier
| { attribute_instance } output reg port_identifier [= constant_expression]
udp_input_declaration ::=
{ attribute_instance } input list_of port identifiers
udp_reg declaration ::=
{ attribute_instance } reg variable_identifier

Syntax 3-9—Syntax for udp attributes

20 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

4. Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found
in digital hardware.

4.1 Value set
The Verilog HDL value set consists of four basic values:

- represents a logic zero, or a false condition
represents a logic one, or a true condition

- represents an unknown logic wvalue

- represents a high-impedance state

N X B O
I

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate or when it is encountered in an expression, the effect is
usually the same as an x value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives,
which can pass the z value.

Almost all of the data types in the Verilog HDL store all four basic values. Exceptions are the event type
(see 9.7.3), which has no storage, and the real type (see 4.8). All bits of vectors can be independently set to
one of the four basic values.

The language includes strength information in addition to the basic value information for net variables. This
is described in detail in Clause 7.

4.2 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups
differ in the way that they are assigned and hold values. They also represent different hardware structures.

4.2.1 Net declarations

The net data types can represent physical connections between structural entities, such as gates. A net shall
not store a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers,
such as a continuous assignment or a gate. See Clause 6 and Clause 7 for definitions of these constructs. If
no driver is connected to a net, its value shall be high-impedance (z) unless the net is a trireg, in which case
it shall hold the previously driven value. It is illegal to redeclare a name already declared by a net,
parameter, or variable declaration (see 4.11).

Copyright © 2006 IEEE. All rights reserved. 21

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The syntax for net declarations is given in Syntax 4-1.

net_declaration ::= (From A.2.1.3)

net _type [signed]
[delay3] list of net identifiers ;

| net_type [drive strength] [signed]
[delay3] list of net decl assignments ;

| net_type [vectored | scalared] [signed]
range [delay3] list_of net identifiers ;

| net_type [drive_strength] [vectored | scalared] [signed]
range [delay3] list_of net decl assignments ;

| trireg [charge strength] [signed]
[delay3] list_of net_identifiers

| trireg [drive_strength] [signed]
[delay3] list of net decl assignments ;

| trireg [charge strength | [vectored | scalared] [signed]
range [delay3] list of net identifiers ;

| trireg [drive_strength | [vectored | scalared] [signed]
range [delay3] list_of net decl assignments ;

net_type ::= (From A.2.2.1)
supply0 | supplyl
| tri | triand | trior | tri0 | tril | uwire | wire | wand | wor
drive_strength ::= (From A.2.2.2)
(strengthO , strengthl)
| (strengthl , strengthO)
| (strengthO , highz1)
| (strengthl , highz0)
| (highz0 , strengthl)
| (highzl , strengthO)
strengthO ::= supply0 | strong0 | pull0 | weak(
strengthl ::= supply1 | strongl | pulll | weakl

charge strength ::= (small) | (medium) | (large)

delay3 ::= (From A.2.2.3)
delay value
| # (mintypmax_expression [, mintypmax_expression [, mintypmax_expression] |)
delay2 ::=
delay_value
| # (mintypmax_expression [, mintypmax_expression |)
delay value ::=
unsigned number
| real number
| identifier
list_of net decl assignments ::= (From A.2.3)
net_decl assignment {, net _decl assignment }
list_of net_identifiers ::=
net_identifier { dimension }
{, net_identifier { dimension } }
net_decl assignment ::= (From A.2.4)
net_identifier = expression
dimension ::= (From A.2.5)
[dimension_constant_expression : dimension constant_expression]
range ;==
[msb_constant_expression : Isb_constant_expression]

Syntax 4-1—Syntax for net declaration

22 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The first two forms of net declaration are described in this subclause. The third form, called net assignment,
is described in Clause 6.

The default initialization value for a net shall be the value z. Nets with drivers shall assume the output value
of their drivers. The trireg net is an exception. The trireg net shall default to the value x, with the strength
specified in the net declaration (small, medium, or large).

4.2.2 Variable declarations

A variable is an abstraction of a data storage element. A variable shall store a value from one assignment to
the next. An assignment statement in a procedure acts as a trigger that changes the value in the data storage
element. The initialization value for reg, time, and integer data types shall be the unknown value, x. The
default initialization value for real and realtime variable data types shall be 0. 0. If a variable declaration
assignment is used (see 6.2.1), the variable shall take this value as if the assignment occurred in a blocking
assignment in an initial construct. It is illegal to redeclare a name already declared by a net, parameter, or
variable declaration.

NOTE—In previous versions of this standard, the term register was used to encompass the reg, integer, time, real, and
realtime types, but that term is no longer used as a Verilog data type.

The syntax for variable declarations is given in Syntax 4-2.

integer declaration ::= (From A.2.1.3)

integer list of variable identifiers ;
real_declaration ::=

real list of real identifiers ;
realtime declaration ::=

realtime list of real identifiers ;
reg_declaration ::=

reg [signed | [range] list_of variable_ identifiers ;
time_declaration ::=

time list_of variable identifiers ;
real_type ::= (From A.2.2.1)

real_identifier { dimension }

| real identifier = constant_expression

variable type ::=
variable identifier { dimension }

| variable identifier = constant expression
list_of real identifiers ::= (From A.2.3)

real_type {,real type }
list_of variable identifiers ::=

variable_type {, variable type }
dimension ::= (From A.2.5)

[dimension_constant_expression : dimension _constant_expression |
range =

[msb_constant_expression : Isb_constant_expression |

Syntax 4-2—Syntax for variable declaration

If a set of nets or variables share the same characteristics, they can be declared in the same declaration
statement.

8Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement this standard.
Copyright © 2006 IEEE. All rights reserved. 23

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

CAUTION

Nets and variables can be assigned negative values, but only integer, real,
realtime, and signed reg variables and signed nets shall retain the significance
of the sign. Time and unsigned reg variables and unsigned nets shall treat the
value assigned to them as an unsigned value. See 5.1.6 for a description of
how signed and unsigned nets and variables are treated by certain Verilog
operators.

4.3 Vectors

A net or reg declaration without a range specification shall be considered 1 bit wide and is known as a
scalar. Multibit net and reg data types shall be declared by specifying a range, which is known as a vector.

4.3.1 Specifying vectors

The range specification gives addresses to the individual bits in a multibit net or reg. The most significant
bit specified by the msb constant expression is the left-hand value in the range, and the least significant bit
specified by the Isb constant expression is the right-hand value in the range.

Both the msb constant expression and the Isb constant expression shall be constant integer expressions. The
msb and Isb constant expressions may be any integer value — positive, negative, or zero. The Isb value may
be greater than, equal to, or less than the msb value.

Vector nets and regs shall obey laws of arithmetic modulo-2 to the power n (2"), where n is the number of
bits in the vector. Vector nets and regs shall be treated as unsigned quantities, unless the net or reg is

declared to be signed or is connected to a port that is declared to be signed (see 12.2.3).

For example:

wand w; // a scalar net of type "wand"

tri [15:0] busa; // a three-state 16-bit bus

trireg (small) storeit; // a charge storage node of strength small

reg a; // a scalar reg

reg(3:0] v; // a 4-bit vector reg made up of (from most to
// least significant)v([3], vI[2], v[1], and v[0]

reg signed [3:0] signed reg; // a 4-bit vector in range -8 to 7

reg [-1:4] Db; // a 6-bit vector reg

wire wil, w2; // declares two wires

reg [4:0] x, y, z; // declares three 5-bit regs

Implementations may set a limit on the maximum length of a vector, but the limit shall be at least
65536 (219) bits.

Implementations are not required to detect overflow of integer operations.

4.3.2 Vector net accessibility

Vectored and scalared shall be optional advisory keywords to be used in vector net or reg declaration. If
these keywords are implemented, certain operations on vectors may be restricted. If the keyword vectored is
used, bit-selects and part-selects and strength specifications may not be permitted, and the PLI may consider

the object unexpanded. If the keyword scalared is used, bit-selects and part-selects of the object shall be
permitted, and the PLI shall consider the object expanded.

24 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

For example:

tril scalared [63:0] busé64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

4.4 Strengths

Two types of strengths can be specified in a net declaration as follows:

— Charge strength shall only be used when declaring a net of type trireg.

— Drive strength shall only be used when placing a continuous assignment on a net in the same
statement that declares the net.

Gate declarations can also specify a drive strength. See Clause 7 for more information on gates and for
information on strengths.

4.4.1 Charge strength

The charge strength specification shall be used only with trireg nets. A trireg net shall be used to model
charge storage; charge strength shall specify the relative size of the capacitance indicated by one of the
following keywords:

— small
— medium

— large
The default charge strength of a trireg net shall be medium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a
charge decay shall be specified in the delay specification for the trireg net (see 7.14.2).

For example:
trireg a; // trireg net of charge strength medium
trireg (large) #(0,0,50) capl; // trireg net of charge strength large
// with charge decay time 50 time units
trireg (small)signed [3:0] cap2; // signed 4-bit trireg vector of
// charge strength small
4.4.2 Drive strength
The drive strength specification allows a continuous assignment to be placed on a net in the same statement

that declares that net. See Clause 6 for more details. Net strength properties are described in detail in
Clause 7.

4.5 Implicit declarations

The syntax shown in 4.2 shall be used to declare nets and variables explicitly. In the absence of an explicit
declaration, an implicit net of default net type shall be assumed in the following circumstances:

Copyright © 2006 IEEE. All rights reserved. 25

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

— If an identifier is used in a port expression declaration, then an implicit net of default net type shall
be assumed, with the vector width of the port expression declaration. See 12.3.3 for a discussion of
port expression declarations.

— If an identifier is used in the terminal list of a primitive instance or a module instance, and that
identifier has not been declared previously in the scope where the instantiation appears or in any
scope whose declarations can be directly referenced from the scope where the instantiation appears
(see 12.7), then an implicit scalar net of default net type shall be assumed.

— If an identifier appears on the left-hand side of a continuous assignment statement, and that identifier
has not been declared previously in the scope where the continuous assignment statement appears or
in any scope whose declarations can be directly referenced from the scope where the continuous
assignment statement appears (see 12.7), then an implicit scalar net of default net type shall be
assumed. See 6.1.2 for a discussion of continuous assignment statements.

The implicit net declaration belongs to the scope in which the net reference appears. For example, if the
implicit net is declared by a reference in a generate block, then the net is implicitly declared only in that
generate block. Subsequent references to the net from outside the generate block or in another generate
block within the same module either would be illegal or would create another implicit declaration of a
different net (depending on whether the reference meets the above criteria). See 12.4 for information about
generate blocks.

See 19.2 for a discussion of control of the type for implicitly declared nets with the “default_nettype
compiler directive.

4.6 Net types

There are several distinct types of nets, as shown in Table 4-1.

Table 4-1—Net types

wire tri tri0 supply0
wand triand tril supplyl
wor trior trireg uwire

4.6.1 Wire and tri nets

The wire and tri nets connect elements. The net types wire and tri shall be identical in their syntax and
functions; two names are provided so that the name of a net can indicate the purpose of the net in that model.
A wire net can be used for nets that are driven by a single gate or continuous assignment. The tri net type

can be used where multiple drivers drive a net.

Logical conflicts from multiple sources of the same strength on a wire or a tri net result in x (unknown)
values.

Table 4-2 is a truth table for resolving multiple drivers on wire and tri nets. It assumes equal strengths for
both drivers. See 7.9 for a discussion of logic strength modeling.

26 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 4-2—Truth table for wire and tri nets

wire/tri | 0 1 X z

1 x |1 | x |1
X X [X | X | X
z 0 1 X |z

4.6.2 Wired nets

Wired nets are of type wor, wand, trior, and friand and are used to model wired logic configurations. Wired
nets use different truth tables to resolve the conflicts that result when multiple drivers drive the same net.
The wor and trior nets shall create wired or configurations so that when any of the drivers is 1, the resulting
value of the net is 1. The wand and triand nets shall create wired and configurations so that if any driver is

0, the value of the net is 0.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and
triand shall be identical in their syntax and functionality. Table 4-3 and Table 4-4 give the truth tables for
wired nets, assuming equal strengths for both drivers. See 7.9 for a discussion of logic strength modeling.

Table 4-3—Truth table for wand and triand nets

wand/triand | 0 | 1 | x | z
0 00 |0]O
1 0|1 |x |1
X 0 | x | x |x
7 0 1 X |z

Table 4-4—Truth table for wor and trior nets

wor/trior 0|1 | x|z
0 0|1 [x |0
1 I {1 |1 |1
X x |1 | x |x
z 0|1 |x |z

Copyright © 2006 IEEE. All rights reserved. 27

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

4.6.3 Trireg net

The trireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two
states:

Driven state When at least one driver of a trireg net has a value of 1, 0, or %, the resolved
value propagates into the trireg net and is the driven value of the trireg net.

Capacitive state When all the drivers of a trireg net are at the high-impedance value (z), the
trireg net retains its last driven value; the high-impedance value does not propa-
gate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state can be small, medium, or large, depending
on the size specified in the declaration of the trireg net. The strength of a trireg net in the driven state can be
supply, strong, pull, or weak, depending on the strength of the driver.

For example:

Figure 4-1 shows a schematic that includes a trireg net whose size is medium, its driver, and the simulation

results.
wire a wire b
—_— \ wire c
R — / nmosl nmos?2
- 2 T trireg d
simulation time wire a wire b wire c trireg d
0 1 1 strong 1 strong 1
10 0 1 HiZ medium 1

Figure 4-1—Simulation values of a trireg and its driver

a) Atsimulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong strength prop-
agates from the and gate through the nmos switches connected to each other by wire c into trireg
net d.

b) At simulation time 10, wire a changes value to 0, disconnecting wire ¢ from the and gate. When
wire c is no longer connected to the and gate, the value of wire ¢ changes to HiZ. The value of wire
b remains 1 so wire c remains connected to trireg net d through the nmos2 switch. The HiZz value
does not propagate from wire c into trireg net d. Instead, trireg net d enters the capacitive state, stor-
ing its last driven value of 1. It stores the 1 with a medium strength.

4.6.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg
nets are in the capacitive state, logic and strength values can propagate between trireg nets.

For example:

Figure 4-2 shows a capacitive network in which the logic value of some trireg nets change the logic value of
other trireg nets of equal or smaller size.

28 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
wire a
wire b
wire c r___w r———w
nmos_1 tranifl 1
5 T ~— T
— - trifeg_la trirég_sm

wire d ,—\ ,—|
nmos_ 2 | eranifi2 |
- T ~— T

trirég_mel trireg me2
S|mtiurLaet|on wirea wireb wirec wired trireg_la trireg_sm trireg_me1 trireg_me2
0 1 1 1 1 1 1 1 1
10 1 [0] 1 1 1 1 1 1
20 1 o [0 1 [0] 1 1 1
30 1 0 o [o 0 1 (o] 1
40 [0] 0 0 0 0 1 0 1
50 0 0 0 0 (o]

Figure 4-2—Simulation results of a capacitive network

In Figure 4-2, the capacitive strength of trireg_ la net is large, trireg mel and trireg me2 are
medium, and trireg smis small. Simulation reports the following sequence of events:

a) At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value of 1 into
trireg laand trireg sm; wire d drives a value of 1 into trireg mel and trireg me2.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg sm and
trireg me2 from their drivers. These trireg nets enter the capacitive state and store the value 1,
their last driven value.

c) Atsimulation time 20, wire c drives a value of 0 into trireg la.

d) At simulation time 30, wire d drives a value of 0 into trireg mel.

e) At simulation time 40, the value of wire a changes to 0, disconnecting trireg la and
trireg mel from their drivers. These trireg nets enter the capacitive state and store the value 0.

f) At simulation time 50, the value of wire b changes to 1.

This change of value in wire b connects trireg smto trireg la; these trireg nets have different
sizes and stored different values. This connection causes the smaller trireg net to store the value of
the larger trireg net, and trireg sm now stores a value of 0.

This change of value in wire b also connects trireg mel to trireg_me2; these trireg nets have
the same size and stored different values. The connection causes both trireg mel and
trireg me2 to change value to x.

Copyright © 2006 IEEE. All rights reserved. 29

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 4-3
shows a capacitive network and its simulation results.

wire b wire c

| |

tranifl 1 tranifl 2
«— 1 < 1

[™ trireg la trireg sm

sirr][iurlna;ion wire a wire b wire c trireg_la trireg_sm
0 strong 1 1 1 strong 1 strong 1
10 strong 1 0 1 large 1 large 1
20 strong 1 0 0 large 1 small 1
30 strong 1 0 1 large 1 large 1
40 strong 1 0 0 large 1 small 1

Figure 4-3—Simulation results of charge sharing

In Figure 4-3, the capacitive strength of trireg la is large, and the capacitive strength of trireg smis
small. Simulation reports the following results:

a) At simulation time 0, the values of wire a, wire b, and wire ¢ are 1, and wire a drives a strong 1
into trireg laand trireg sm.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg la and trireg sm
from wire a. The trireg la and trireg sm nets enter the capacitive state. Both trireg nets share
the large charge of trireg_la because they remain connected through tranif1 2.

c) At simulation time 20, the value of wire ¢ changes to 0, disconnecting trireg sm from
trireg la.The trireg smno longer shares large charge of trireg la and now stores a small
charge.

d) At simulation time 30, the value of wire ¢ changes to 1, connecting the two trireg nets. These trireg
nets now share the same charge.

e) At simulation time 40, the value of wire ¢ changes again to 0, disconnecting trireg sm from
trireg la. Once again, trireg_sm no longer shares the large charge of trireg la and now
stores a small charge.

4.6.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely, or its charge can decay over time. The simulation time of charge
decay is specified in the delay specification of the trireg net. See 7.14.2 for charge decay explanation.

30 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

4.6.4 Tri0 and tri1 nets

The #i0 and #ril nets model nets with resistive pulldown and resistive pullup devices on them. A tri0 net is
equivalent to a wire net with a continuous 0 value of pull strength driving it. A tril net is equivalent to a
wire net with a continuous 1 value of pull strength driving it.

When no driver drives a tri0 net, its value is 0 with strength pull. When no driver drives a tril net, its value
is 1 with strength pull. When there are drivers on a tri0 or tril net, the drivers combine with the strength
pull value implicitly driven on the net to determine the net’s value. See 7.9 for a discussion of logic strength

modeling.

Table 4-5 and Table 4-6 are truth tables for modeling multiple drivers of strength strong on triQ and tril
nets. The resulting value on the net has strength strong, unless both drivers are z, in which case the net has

strength pull.

Table 4-5—Truth table for tri0 net

tri0 0|1 |x |z
0 0 [x |x |0
1 x |1 | x |1
X X | x | x | x
z 0|1 |x |0

Table 4-6—Truth table for tri1 net

tril 0|1 |x |z
0 0 |x |x |0
1 X 1 X 1
X X | x | x | X
z 0 1 X 1

4.6.5 Unresolved nets

The uwire net is an unresolved or unidriver wire and is used to model nets that allow only a single driver.
The uwire type can be used to enforce this restriction. It shall be an error to connect any bit of a uwire net to
more than one driver. It shall be an error to connect a uwire net to a bidirectional terminal of a bidirectional

pass switch.

The port connection rule in 12.3.9.3 ensures that an implementation enforces this restriction across the net
hierarchy or gives a warning if it does not.

Copyright © 2006 IEEE. All rights reserved. 31

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

4.6.6 Supply nets

The supply0 and supplyl nets can be used to model the power supplies in a circuit. These nets shall have
supply strengths.

4.7 Regs

Assignments to a reg are made by procedural assignments (see 6.2 and 9.2). Because the reg holds a value
between assignments, it can be used to model hardware registers. Edge-sensitive (i.e., flip-flops) and level-
sensitive (i.e., reset-set and transparent latches) storage elements can be modeled. A reg need not represent a
hardware storage element because it can also be used to represent combinatorial logic.

4.8 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for variables in an HDL model. Although reg
variables can be used for general purposes such as counting the number of times a particular net changes
value, the integer and time variable data types are provided for convenience and to make the description
more self-documenting.

The syntax for declaring integer, time, real, and realtime variables is given in Syntax 4-3 (from
Syntax 4-2).

integer declaration ::= (From A.2.1.3)

integer list of variable identifiers ;
real_declaration ::=

real list of real identifiers ;
realtime declaration ::=

realtime list of real identifiers ;
time_declaration ::=

time list_of variable identifiers ;
real_type ::= (From A.2.2.1)

real_identifier { dimension }

| real identifier = constant_expression

variable type ::=
variable identifier { dimension }

| variable identifier = constant expression
list_of real identifiers ::= (From A.2.3)

real_type {,real type }
list_of variable identifiers ::=

variable_type {, variable type }
dimension ::= (From A.2.5)

[dimension_constant_expression : dimension _constant_expression |

Syntax 4-3—Syntax for integer, time, real, and realtime declarations

The syntax for a list of reg variables is defined in 4.2.2.

An integer is a general-purpose variable used for manipulating quantities that are not regarded as hardware
registers.

32 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

A time variable is used for storing and manipulating simulation time quantities in situations where timing
checks are required and for diagnostics and debugging purposes. This data type is typically used in
conjunction with the $time system function (see 17.7.1).

The integer and time variables shall be assigned values in the same manner as reg. Procedural assignments
shall be used to trigger their value changes.

The time variables shall behave the same as a reg of at least 64 bits, with the least significant bit being bit 0.
They shall be unsigned quantities, and unsigned arithmetic shall be performed on them. In contrast, integer
variables shall be treated as signed regs with the least significant bit being zero. Arithmetic operations
performed on integer variables shall produce twos-complement results.

Bit-selects and part-selects of vector regs, integer variables, and time variables shall be allowed (see 5.2).
Implementations may limit the maximum size of integer variables, but it shall be at least 32 bits.

The Verilog HDL supports real number constants and real variable data types in addition to integer and time
variable data types. Except for the following restrictions, variables declared as real can be used in the same

places that integer and time variables are used:

— Not all Verilog HDL operators can be used with real number values. See Table 5-2 and Table 5-3 for
lists of valid and invalid operators for real numbers and real variables.

Real variables shall not use range in the declaration.

— Real variables shall default to an initial value of zero.

The realtime declarations shall be treated synonymously with real declarations and can be used
interchangeably.

For example:

integer a; // integer value

time last chng; // time value

real float ; // a variable to store a real value

realtime rtime ; // a variable to store time as a real value

4.8.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a single-bit scalar
value. Not all Verilog HDL operators can be used with expressions involving real numbers and real
variables. Table 5-2 lists the valid operators for use with real numbers and real variables. Real number
constants and real variables are also prohibited in the following cases:

Edge descriptors (posedge, negedge) applied to real variables

— Bit-select or part-select references of variables declared as real

Real number index expressions of bit-select or part-select references of vectors
4.8.2 Conversion
Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than

by truncating it. Implicit conversion shall take place when a real number is assigned to an integer. If the
fractional part of the real number is exactly 0.5, it shall be rounded away from zero.

Copyright © 2006 IEEE. All rights reserved. 33

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that are x or z in
the net or the variable shall be treated as zero upon conversion.

See 17.8 for a discussion of system tasks that perform explicit conversion.

4.9 Arrays

An array declaration for a net or a variable declares an element type that is either scalar or vector (see 4.3).
For example:

Declaration Element type
reg x[11:0]; scalar reg
wire [0:7] y[5:0]; 8-bit-wide vector wire indexed from 0 to 7
reg [31:0] x [127:0]; 32-bit-wide reg

NOTE—Array size does not affect the element size.

Arrays can be used to group elements of the declared element type into multidimensional objects. Arrays
shall be declared by specifying the element address range(s) after the declared identifier. Each dimension
shall be represented by an address range. See 4.2.1 and 4.2.2 for net and variable declarations. The
expressions that specify the indices of the array shall be constant integer expressions. The value of the
constant expression can be a positive integer, a negative integer, or zero.

One declaration statement can be used for declaring both arrays and elements of the declared data type. This
ability makes it convenient to declare both arrays and elements that match the element vector width in the
same declaration statement.

An element can be assigned a value in a single assignment, but complete or partial array dimensions cannot.
Nor can complete or partial array dimensions be used to provide a value to an expression. To assign a value
to an element of an array, an index for every dimension shall be specified. The index can be an expression.
This option provides a mechanism to reference different array elements depending on the value of other
variables and nets in the circuit. For example, a program counter reg can be used to index into a random

access memory (RAM).

Implementations may limit the maximum size of an array, but they shall allow at Ieast
16 777 216 (2**) elements.

4.9.1 Net arrays

Elements of net arrays can be used in the same fashion as a scalar or vector net. They are useful for
connecting to ports of module instances inside loop generate constructs (see 12.4.1).

4.9.2 reg and variable arrays

Arrays for all variables types (reg, integer, time, real, realtime) shall be possible.

34 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

4.9.3 Memories

A one-dimensional array with elements of type reg is also called a memory. These memories can be used to
model read-only memories (ROMs), random access memories (RAMs), and reg files. Each reg in the array
is known as an element or word and is addressed by a single array index.

An n-bit reg can be assigned a value in a single assignment, but a complete memory cannot. To assign a
value to a memory word, an index shall be specified. The index can be an expression. This option provides a
mechanism to reference different memory words, depending on the value of other variables and nets in the
circuit. For example, a program counter reg could be used to index into a RAM.

4.9.3.1 Array examples

4.9.3.1.1 Array declarations

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
// registers. The indices are 0 to 255

reg arrayb[7:0] [0:255]; // declare a two-dimensional array of
// one bit registers

wire w_array[7:0] [5:0]; // declare array of wires

integer intal[1:64]; // an array of 64 integer values

time chng hist[1:1000] // an array of 1000 time values

integer t index;
4.9.3.1.2 Assignment to array elements
The assignment statements in this subclause assume the presence of the declarations in 4.9.3.1.1.

mema = 0; // Illegal syntax- Attempt to write to entire array
arrayb[1l] = 0; // Illegal Syntax - Attempt to write to elements
// [1110]1..1[1][255]
arrayb[1] [12:31] = 0; // Illegal Syntax - Attempt to write to
// elements [1][12]..[1][31]

mema [1] = 0; // Assigns 0 to the second element of mema
arrayb[1] [0] = 0; // Assigns 0 to the bit referenced by indices

// [1]110]
inta[4] = 33559; // Assign decimal number to integer in array
chng hist [t _index] = $time; // Assign current simulation time to

// element addressed by integer index
4.9.3.1.3 Memory differences
A memory of n 1-bit regs is different from an n-bit vector reg.

reg [1:n] rega; // An n-bit register is not the same
reg mema [l:n]; // as a memory of n 1-bit registers

4.10 Parameters

Verilog HDL parameters do not belong to either the variable or the net group. Parameters are not variables;
they are constants. There are two types of parameters: module parameters and specify parameters. It is
illegal to redeclare a name already declared by a net, parameter, or variable declaration.

Copyright © 2006 IEEE. All rights reserved. 35

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Both types of parameters accept a range specification. By default, parameters and specparams shall be as
wide as necessary to contain the value of the constant, except when a range specification is present.

4.10.1 Module parameters

The syntax for module parameter declarations is given in Syntax 4-4.

local_parameter declaration ::= (From A.2.1.1)
localparam [signed] [range] list of param_assignments
| localparam parameter type list of param_assignments
parameter_declaration ::=
parameter [signed] [range] list_ of param_assignments
| parameter parameter type list of param assignments
parameter type ::=
integer | real | realtime | time
list of param assignments ::= (From A.2.3)
param_assignment { , param_assignment }
param_assignment ::= (From A.2.4)
parameter identifier = constant mintypmax_expression
range ::= (From A.2.5)
[msb_constant_expression : Isb_constant_expression |

Syntax 4-4—Syntax for module parameter declaration

The list of param_assignments shall be a comma-separated list of assignments, where the right-hand side
of the assignment shall be a constant expression, that is, an expression containing only constant numbers and
previously defined parameters (see Clause 5).

The list of param_assignments can appear in a module as a set of module items or in the module
declaration in the module parameter port list (see 12.1). If any param assignments appear in a
module_parameter_port_list, then any param_assignments that appear in the module become local
parameters and shall not be overridden by any method.

Parameters represent constants; hence, it is illegal to modify their value at run time. However, module
parameters can be modified at compilation time to have values that are different from those specified in the
declaration assignment. This allows customization of module instances. A parameter can be modified with
the defparam statement or in the module instance statement. Typical uses of parameters are to specify
delays and width of variables. See 12.2 for details on parameter value assignment.

A module parameter can have a #ype specification and a range specification. The type and range of module
parameters shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final value assigned to the parameter, after any value overrides have been applied.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. The sign and range shall not be affected by value
overrides.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
A signed parameter shall default to the range of the final value assigned to the parameter, after any
value overrides have been applied.

— A parameter with a signed type specification and with a range specification shall be signed and shall
be the range of its declaration. The sign and range shall not be affected by value overrides.

36 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

— A parameter with no range specification and with either a signed type specification or no type
specification shall have an implied range with an /sb equal to 0 and an msb equal to one less than the
size of the final value assigned to the parameter.

— A parameter with no range specification, with either a signed type specification or no type
specification, and for which the final value assigned to it is unsized shall have an implied range with
an /sb equal to 0 and an msb equal to an implementation-dependent value of at least 31.
The conversion rules between real and integer values described in 4.8.2 apply to parameters as well.

Bit-selects and part-selects of parameters that are not of type real shall be allowed (see 5.2).

For example:

parameter msb = 7; // defines msb as a constant value 7
parameter e = 25, £ = 9; // defines two constant numbers
parameter r = 5.7; // declares r as a real parameter

parameter byte size = 8,
byte mask = byte size - 1;
parameter average delay = (r + f) / 2;

parameter signed [3:0] mux selector = 0;
parameter real r1 = 3.5el7;
parameter pl = 13'h7e;

parameter [31:0] dec _const = 1'bl; // value converted to 32 bits
parameter newconst = 3'h4; // implied range of [2:0]
parameter newconst = 4; // implied range of at least [31:0]

4.10.2 Local parameters (localparam)

Verilog HDL local parameters are identical to parameters except that they cannot directly be modified by
defparam statements (see 12.2.1) or module instance parameter value assignments (see 12.2.2). Local
parameters can be assigned constant expressions containing parameters, which can be modified with
defparam statements or module instance parameter value assignments.

Bit-selects and part-selects of local parameters that are not of type real shall be allowed (see 5.2).

The syntax for local parameter declarations is given in Syntax 4-4.

Copyright © 2006 IEEE. All rights reserved. 37

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

4.10.3 Specify parameters

The syntax for declaring specify parameters is shown in Syntax 4-5.

specparam_declaration ::= (From A.2.1.1)
specparam [range] list of specparam_assignments ;
list of specparam_assignments ::= (From A.2.3)
specparam_assignment { , specparam_assignment }
specparam_assignment ::= (From A.2.4)
specparam_identifier = constant_mintypmax_expression
| pulse_control specparam
pulse control_specparam ::=
PATHPULSES = (reject limit value [, error_limit_value])
| PATHPULSESspecify input terminal descriptor$specify output terminal descriptor
= (reject_limit_value [, error_limit_value])
error_limit value ::=
limit_value
reject limit value ::=
limit_value
limit value ::=
constant_mintypmax_expression
range ::= (From A.2.5)
[msb_constant_expression : Isb_constant_expression |

Syntax 4-5—Syntax for specparam declaration

The keyword specparam declares a special type of parameter that is intended only for providing timing and
delay values, but can appear in any expression that is not assigned to a parameter and is not part of the range
specification of a declaration. Specify parameters (also called specparams) are permitted both within the
specify block (see Clause 14) and in the main module body.

A specify parameter declared outside a specify block shall be declared before it is referenced. The value
assigned to a specify parameter can be any constant expression. A specify parameter can be used as part of a
constant expression for a subsequent specify parameter declaration. Unlike a module parameter, a specify
parameter cannot be modified from within the language, but it can be modified through SDF annotation (see
Clause 16).

Specify parameters and module parameters are not interchangeable. In addition, module parameters shall not
be assigned a constant expression that includes any specify parameters. Table 4-7 summarizes the
differences between the two types of parameter declarations.

Table 4-7—Differences between specparams and parameters

Specparams (specify parameter) Parameters (module parameter)

Use keyword specparam Use keyword parameter

Shall be declared inside a module or specify block Shall be declared outside specify blocks

May only be used inside a module or specify block May not be used inside specify blocks

May be assigned specparams and parameters May not be assigned specparams

Use SDF annotation to override values Use defparam or instance declaration parame-
ter value passing to override values

38 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

A specify parameter can have a range specification. The range of specify parameters shall be in accordance
with the following rules:

— A specparam declaration with no range specification shall default to the range of the final value
assigned to the parameter, after any value overrides have been applied.

— A specparam with a range specification shall be the range of the parameter declaration. The range
shall not be affected by value overrides.

Bit-selects and part-selects of specify parameters that are not of type real shall be allowed (see 5.2).
For example:

specify
specparam tRise clk g = 150, tFall clk g = 200;
specparam tRise control = 40, tFall control = 50;
endspecify

The lines between the keywords specify and endspecify declare four specify parameters. The first line
declares specify parameters called tRise clk g and tFall clk g with values 150 and 200,
respectively; the second line declares tRise control and tFall control specify parameters with
values 40 and 50, respectively.

For example:

module RAM16GEN (output [7:0] DOUT, input [7:0] DIN, input [5:0] ADR,
input WE, CE);
specparam dhold = 1.0;
specparam ddly = 1.0;
parameter width = 1;
parameter regsize = dhold + 1.0; // Illegal - cannot assign
// specparams to parameters
endmodule

4.11 Name spaces

In Verilog HDL, there are several name spaces; two are global and the rest are local. The global name spaces
are definitions and text macros. The definitions name space unifies all the module (see 12.1) and primitive
(see 8.1) definitions. Once a name is used to define a module or primitive, the name shall not be used again
to declare another module or primitive.

The text macro name space is global. Because text macro names are introduced and used with a leading
* character, they remain unambiguous with any other name space (see 19.3). The text macro names are
defined in the linear order of appearance in the set of input files that make up the description of the design
unit. Subsequent definitions of the same name override the previous definitions for the balance of the input
files.

The local name spaces are block, module, generate block, port, specify block, and attribute. Once a name is
defined within the block, module, port, generate block, or specify block name space, it shall not be defined
again in that space (with the same or a different type). As described in 3.8, it is legal to redefine names

within the attribute name space.

The block name space is introduced by the named block (see 9.8), function (see 10.4), and task (see 10.2)
constructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events, and

Copyright © 2006 IEEE. All rights reserved. 39

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

variable type of declaration (see 4.2.2). The variable type of declaration includes the reg, integer, time,
real, and realtime declarations.

The module name space is introduced by the module and primitive constructs. It unifies the definition of
functions, tasks, named blocks, module instances, generate blocks, parameters, named events, genvars, net
type of declaration, and variable type of declaration. The net type of declaration includes wire, wor, wand,
tri, trior, triand, tri0, tril, trireg, uwire, supply0, and supply1 (see 4.6).

The generate block name space is introduced by generate constructs (see 12.4). It unifies the definition of
functions, tasks, named blocks, module instances, generate blocks, local parameters, named events, genvars,
net type of declaration, and variable type of declaration.

The port name space is introduced by the module, primitive, function, and task constructs. It provides a
means of structurally defining connections between two objects that are in two different name spaces. The
connection can be unidirectional (either input or output) or bidirectional (inout). The port name space
overlaps the module and the block name spaces. Essentially, the port name space specifies the type of
connection between names in different name spaces. The port type of declarations include input, output,
and inout (see 12.3). A port name introduced in the port name space may be reintroduced in the module
name space by declaring a variable or a wire with the same name as the port name.

The specify block name space is introduced by the specify construct (see 14.2).
The attribute name space is enclosed by the (* and *) constructs attached to a language element (see 3.8).

An attribute name can be defined and used only in the attribute name space. Any other type of name cannot
be defined in this name space.

40 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

5. Expressions

This clause describes the operators and operands available in the Verilog HDL and how to use them to form
expressions.

An expression is a construct that combines operands with operators to produce a result that is a function of
the values of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-
select, without any operator is considered an expression. Wherever a value is needed in a Verilog HDL
statement, an expression can be used.

Some statement constructs require an expression to be a constant expression. The operands of a constant
expression consist of constant numbers, strings, parameters, constant bit-selects and part-selects of
parameters, constant function calls (see 10.4.5), and constant system function calls only; but they can use
any of the operators defined in Table 5-1.

Constant system function calls are calls to certain built-in system functions where the arguments are constant
expressions. When used in constant expressions, these function calls shall be evaluated at elaboration time.
The system functions that may be used in constant system function calls are pure functions, i.e., those whose
value depends only on their input arguments and which have no side effects. Specifically, the system
functions allowed in constant expressions are the conversion system functions listed in 17.8 and the
mathematical system functions listed in 17.11.

The data types reg, integer, time, real, and realtime are all variable data types. Descriptions pertaining to
variable usage apply to all of these data types.

An operand can be one of the following:

— Constant number (including real) or string

— Parameter (including local and specify parameters)

— Parameter (not real) bit-select or part-select (including local and specify parameters)
— Net

— Net bit-select or part-select

— reg, integer, or time variable

— reg, integer, or time variable bit-select or part-select

— real or realtime variable

— Array element

— Array element (not real) bit-select or part-select

— A call to a user-defined function or system-defined function that returns any of the above

5.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 5-1
lists these operators.

Copyright © 2006 IEEE. All rights reserved. 41

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 5-1—Operators in Verilog HDL

{3 {3} Concatenation, replication
unary +unary - | Unary operators

+ -k kF Arithmetic

% Modulus

> >= < <= Relational

! Logical negation

&& Logical and

I Logical or

= Logical equality

1= Logical inequality

=== Case equality

I= Case inequality

~ Bitwise negation

& Bitwise and

| Bitwise inclusive or

A Bitwise exclusive or
A~ or ~N Bitwise equivalence
& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

" Reduction xor

~"or "~ Reduction xnor

<< Logical left shift

>> Logical right shift
<<< Arithmetic left shift
>>> Arithmetic right shift
?: Conditional

5.1.1 Operators with real operands

The operators shown in Table 5-2 shall be legal when applied to real operands. All other operators shall be
considered illegal when used with real operands.

The result of using logical or relational operators on real numbers is a single-bit scalar value.

42 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 5-2—Legal operators for use in real expressions

unary + unary - | Unary operators
+ -k k% Arithmetic

> >= < <= Relational

I && || Logical

= 1= Logical equality
7 Conditional

Table 5-3 lists operators that shall not be used to operate on real numbers.

Table 5-3—Operators not allowed for real expressions

Bty Concatenate, replicate
% Modulus

== == Case equality

~ & | Bitwise

A AL A

A A~ A Reduction

& ~& | ~

<< B> << >>> Shift

See 4.8.1 for more information on use of real numbers.
5.1.2 Operator precedence
The precedence order of the Verilog operators is shown in Table 5-4.
Operators shown on the same row in Table 5-4 shall have the same precedence. Rows are arranged in order
of decreasing precedence for the operators. For example, *,/, and % all have the same precedence, which is
higher than that of the binary + and — operators.
All operators shall associate left to right with the exception of the conditional operator, which shall associate
right to left. Associativity refers to the order in which the operators having the same precedence are
evaluated. Thus, in the following example, B is added to &, and then C is subtracted from the result of A+B.
A+B-C
When operators differ in precedence, the operators with higher precedence shall associate first. In the
following example, B is divided by ¢ (division has higher precedence than addition), and then the result is
added to a.
A+B/C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

Copyright © 2006 IEEE. All rights reserved. 43

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 5-4—Precedence rules for operators

+-!~&~& |~ "~""~ (unary) | Highest precedence

3k

*1 %

+ - (binary)

<< > <L >>>

< <= > >=

= |= === |==

& (binary)

A A~ ~ (binary) v
| (binary)
&&

l

?: (conditional operator)

U Lowest precedence

5.1.3 Using integer numbers in expressions
Integer numbers can be used as operands in expressions. An integer number can be expressed as

— An unsized, unbased integer (e.g., 12)

— An unsized, based integer (e.g., 'd12, 'sd12)

— A sized, based integer (e.g., 16'd12, 16 'sd12)
A negative value for an integer with no base specifier shall be interpreted differently from an integer with a
base specifier. An integer with no base specifier shall be interpreted as a signed value in twos-complement

form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

For example:
This example shows four ways to write the expression “minus 12 divided by 3.” Note that -12 and - 'd12
both evaluate to the same twos-complement bit pattern, but, in an expression, the - 'd12 loses its identity as

a signed negative number.

integer IntA;

IntA = -12 / 3; // The result is -4.

IntA = -'d 12 / 3; // The result is 1431655761.

IntA = -'sd 12 / 3; // The result is -4.

IntA = -4'sd 12 / 3; // -4'sdl2 is the negative of the 4-bit
// quantity 1100, which is -4. -(-4) = 4.

// The result is 1.

44 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

5.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 5.1.2.
However, if the final result of an expression can be determined early, the entire expression need not be
evaluated. This is called short-circuiting an expression evaluation.

For example:

reg reghA, regB, regC, result ;
result = regA & (regB | regC) ;

If rega is known to be zero, the result of the expression can be determined as zero without evaluating the
subexpression regB | regC.

5.1.5 Arithmetic operators

The binary arithmetic operators are given in Table 5-5.

Table 5-5—Arithmetic operators defined

atb aplusb

a-b a minus b

a*b a multiplied by b (or a times b)
a/b a divided by b

a%b amodulo b

a**h a to the power of b

The integer division shall truncate any fractional part toward zero. For the division or modulus operators, if
the second operand is a zero, then the entire result value shall be x. The modulus operator (for example,
vy % z) gives the remainder when the first operand is divided by the second and thus is zero when z divides
y exactly. The result of a modulus operation shall take the sign of the first operand.

If either operand of the power operator is real, then the result type shall be real. The result of the power
operator is unspecified if the first operand is zero and the second operand is nonpositive or if the first
operand is negative and the second operand is not an integral value.

If neither operand of the power operator is real, then the result type shall be determined as outlined in 5.4.1
and 5.5.1. The result value is 'bx if the first operand is zero and the second operand is negative. The result
value is 1 if the second operand is zero.

In all cases, the second operand of the power operator shall be treated as self-determined.

These statements are illustrated in Table 5-6.

Copyright © 2006 IEEE. All rights reserved. 45

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 5-6—Power operator rules

gg ; :: negative < -1 -1 zero 1 positive > 1
iti op2 is odd -> -1
posiive opl ** op2 ng s even > | 0 1 opl ** op2
Zero 1 1 1 1 1
negative 0 op2 is odd -> -1 bx | 0
op2 is even > 1

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are
given in Table 5-7.

Table 5-7—Unary operators defined

+m Unary plus m (same as m)

-m Unary minus m

For the arithmetic operators, if any operand bit value is the unknown value x or the high-impedance value z,
then the entire result value shall be x.

For example:

Table 5-8 gives examples of some modulus and power operations.

Table 5-8—Examples of modulus and power operators

Expression Result Comments
10% 3 1 10/3 yields a remainder of 1.
11%3 2 11/3 yields a remainder of 2.
12%3 0 12/3 yields no remainder.
-10%3 -1 The result takes the sign of the first operand.
11 % -3 2 The result takes the sign of the first operand
—4'd12% 3 1 —4'd12 is seen as a large positive number that leaves a remainder of 1 when divided by 3.
32 9 3*%3
2%%3 8 2%2%2
2 *% 0 1 Anything to the zero exponent is 1.
0**0 1 Zero to the zero exponent is also 1.
2.0 ** —3'sbl 0.5 2.0 is real, giving real reciprocal.
2 ** _3'shl 0 2 ** _1 = 1/2. Integer division truncates to zero.
46 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 5-8—Examples of modulus and power operators (continued)

Expression Result Comments
0 **—1 'bx 0 ** —1 = 1/0. Integer division by zero is 'bx.
9 **0.5 3.0 Real square root.
9.0 ** (1/2) 1.0 Integer division truncates exponent to zero.
-3.0 %% 2.0 9.0 Defined because real 2.0 is still integral value.

5.1.6 Arithmetic expressions with regs and integers

A value assigned to a reg variable or a net shall be treated as an unsigned value unless the reg variable or net
has been explicitly declared to be signed. A value assigned to an integer, real or realtime variable shall be
treated as signed. A value assigned to a time variable shall be treated as unsigned. Signed values, except for
those assigned to real and realtime variables, shall use a twos-complement representation. Values assigned
to real and realtime variables shall use a floating-point representation. Conversions between signed and
unsigned values shall keep the same bit representation; only the interpretation changes.

Table 5-9 lists how arithmetic operators interpret each data type.

Table 5-9—Data type interpretation by arithmetic operators

Data type Interpretation

unsigned net | Unsigned

signed net Signed, twos complement

unsigned reg | Unsigned

signed reg Signed, twos complement
integer Signed, twos complement
time Unsigned

real, realtime | Signed, floating point

For example:

The following example shows various ways to divide “minus twelve by three”—using integer and reg data
types in expressions.

integer intA;
reg [15:0] rega;
reg signed [15:0] regS;

intA = -4'dl2;
regA = intA / 3; // expression result is -4,
// intA is an integer data type, regA is 65532
regd = -4'4dl2; // regA is 65524
intA = regA / 3; // expression result is 21841,
Copyright © 2006 IEEE. All rights reserved. 47

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

// regA is a reg data type

intA = -4'dl2 / 3; // expression result is 1431655761.
// -4'd12 is effectively a 32-bit reg data type
regA = -12 / 3; // expression result is -4, -12 is effectively
// an integer data type. regA is 65532
regsS = -12 / 3; // expression result is -4. regS is a signed reg
regS = -4'sdl2 / 3; // expression result is 1. -4'sdl2 is actually 4.

// The rules for integer division yield 4/3==1.
5.1.7 Relational operators

Table 5-10 lists and defines the relational operators.

Table 5-10—Definitions of relational operators

a<b a less than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using these relational operators shall yield the scalar value o if the specified relation is false
or the value 1 if it is true. If either operand of a relational operator contains an unknown (x) or high-
impedance (z) value, then the result shall be a 1-bit unknown value (x).

When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a
comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be
zero-extended to the size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger

operand.

If either operand is a real operand, then the other operand shall be converted to an equivalent real value and
the expression shall be interpreted as a comparison between real values.

All the relational operators shall have the same precedence. Relational operators shall have lower
precedence than arithmetic operators.

For example:

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression
48 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

When foo - (1 < a) evaluates, the relational expression evaluates first, and then either zero or one is
subtracted from foo. When foo - 1 < a evaluates, the value of foo operand is reduced by one and then
compared with a.

5.1.8 Equality operators

The equality operators shall rank lower in precedence than the relational operators. Table 5-11 lists and
defines the equality operators.

Table 5-11—Definitions of equality operators

a=—= a equal to b, including x and z

al== anot equal to b, including x and z
a==>b a equal to b, result can be unknown
al=b a not equal to b, result can be unknown

All four equality operators shall have the same precedence. These four operators compare operands bit for
bit. As with the relational operators, the result shall be 0 if comparison fails and 1 if it succeeds.

If the operands are of unequal bit lengths and if one or both operands are unsigned, the smaller operand shall
be zero-extended to the size of the larger operand. If both operands are signed, the smaller operand shall be
sign-extended to the size of the larger operand.

If either operand is a real operand, then the other operand shall be converted to an equivalent real value, and
the expression shall be interpreted as a comparison between real values.

For the logical equality and logical inequality operators (== and ! =), if, due to unknown or high-impedance
bits in the operands, the relation is ambiguous, then the result shall be a 1-bit unknown value (x).

For the case equality and case inequality operators (=== and ! ==), the comparison shall be done just as it is
in the procedural case statement (see 9.5). Bits that are x or z shall be included in the comparison and shall
match for the result to be considered equal. The result of these operators shall always be a known value,
either 1 or 0.

5.1.9 Logical operators

The operators logical and (&&) and logical or (]|) are logical connectives. The result of the evaluation of a
logical comparison shall be 1 (defined as true), 0 (defined as false), or, if the result is ambiguous, the
unknown value (x). The precedence of && is greater than that of | |, and both are lower than relational and

equality operators.

A third logical operator is the unary logical negation operator (!). The negation operator converts a
nonzero or true operand into 0 and a zero or false operand into 1. An ambiguous truth value remains as x.

For example:

Example 1—If reg alpha holds the integer value 237 and beta holds the value zero, then the following
examples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1
Copyright © 2006 IEEE. All rights reserved. 49

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 2—The following expression performs a logical and of three subexpressions without needing any
parentheses:

a < size-1 && b != ¢ && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very clearly the
precedence intended, as in the following rewrite of this example:

(a < size-1) && (b != c) && (index != lastone)
Example 3—A common use of ! is in constructions like the following:
if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent
construct:

if (inword == 0)
5.1.10 Bitwise operators
The bitwise operators shall perform bitwise manipulations on the operands; that is, the operator shall

combine a bit in one operand with its corresponding bit in the other operand to calculate 1 bit for the result.
Logic Table 5-12 through Table 5-16 show the results for each possible calculation.

Table 5-12—Bitwise binary and operator

& 0| 1| x|z
0 00 |0]O
1 0 1 X | x
x 0 | x | x |X
z 0 | x | x |x

| 01| x | z
0 0 1 X | x
1 1111
x x |1 | x |x
z x |1 | x |x
50 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 5-14—Bitwise binary exclusive or operator

n 01| x| z
0 0 1 X | x
1 1 0 | x |x
x X | X | x |[X
z X | X | x | X

:: 0 1 X z
0 1 10 | x |x
1 0 |1 |x |x
X X [x | x | x
z X | x | x | X

Table 5-16—Bitwise unary negation operator

0 1
1 0
X X
z X

When the operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit
positions.

5.1.11 Reduction operators

The unary reduction operators shall perform a bitwise operation on a single operand to produce a single-bit
result. For reduction and, reduction or, and reduction xor operators, the first step of the operation shall apply
the operator between the first bit of the operand and the second using logic Table 5-17 through Table 5-19.
The second and subsequent steps shall apply the operator between the 1-bit result of the prior step and the
next bit of the operand using the same logic table. For reduction nand, reduction nor, and reduction xnor
operators, the result shall be computed by inverting the result of the reduction and, reduction or, and
reduction xor operation, respectively.

Copyright © 2006 IEEE. All rights reserved. 51

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 5-17—Reduction unary and operator

& 0| 1| x|z
0 00 |0]O
1 0 1 X | x
X 0 | x | x |X
z 0 | x | x |x

| 01| x | z
0 0 1 X | x
1 1|1 |1 |1
X x |1 | x |x
z x |1 | x |x

A 0| 1| x|z
0 0 1 X | x
1 1 0 | x | x
X X | X | x |X
z X | X | x | X

For example:

Table 5-20 shows the results of applying reduction operators on different operands.

Table 5-20—Results of unary reduction operations

Operand | & | ~& | ~| n ~N Comments
400000 0 1 0 1 0 1 No bits set
4bl1111 1 0 1 0 0 1 All bits set
400110 0 1 1 0 0 1 Even number of bits set
4'b1000 0 1 1 0 1 0 Odd number of bits set
52 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

5.1.12 Shift operators

There are two types of shift operators: the logical shift operators, << and >>, and the arithmetic shift
operators, <<< and >>>. The left shift operators, << and <<<, shall shift their left operand to the left by the
number by the number of bit positions given by the right operand. In both cases, the vacated bit positions
shall be filled with zeroes. The right shift operators, >> and >>>, shall shift their left operand to the right by
the number of bit positions given by the right operand. The logical right shift shall fill the vacated bit
positions with zeroes. The arithmetic right shift shall fill the vacated bit positions with zeroes if the result
type is unsigned. It shall fill the vacated bit positions with the value of the most significant (i.e., sign) bit of
the left operand if the result type is signed. If the right operand has an x or z value, then the result shall be
unknown. The right operand is always treated as an unsigned number and has no effect on the signedness of
the result. The result signedness is determined by the left-hand operand and the remainder of the expression,
as outlined in 5.5.1.

For example:

Example 1—In this example, the reg result is assigned the binary value 0100, which is 0001 shifted to the
left two positions and zero-filled.

module shift;
reg [3:0] start, result;
initial begin

start = 1;

result = (start << 2);
end
endmodule

Example 2—In this example, the reg result is assigned the binary value 1110, which is 1000 shifted to the
right two positions and sign-filled.

module ashift;
reg signed [3:0] start, result;
initial begin

start = 4'b1000;

result = (start >>> 2);
end
endmodule

5.1.13 Conditional operator

The conditional operator, also known as ternary operator, shall be right associative and shall be constructed
using three operands separated by two operators in the format given in Syntax 5-1.

conditional expression ::= (From A.8.3)
expressionl ? { attribute instance } expression2 : expression3
expressionl ::=
expression
expression2 ::=
expression
expression3 ::=
expression

Syntax 5-1—Syntax for conditional operator

Copyright © 2006 IEEE. All rights reserved. 53

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The evaluation of a conditional operator shall begin with a logical equality comparison (see 5.1.8) of
expressionl with zero, termed the condition. If the condition evaluates to false (0), then expression3 shall be
evaluated and used as the result of the conditional expression. If the condition evaluates to true (1), then
expression? is evaluated and used as the result. If the condition evaluates to an ambiguous value (x or z),
then both expression2 and expression3 shall be evaluated; and their results shall be combined, bit by bit,
using Table 5-21 to calculate the final result unless expression2 or expression3 is real, in which case the
result shall be 0. If the lengths of expression2 and expression3 are different, the shorter operand shall be
lengthened to match the longer and zero-filled from the left (the high-order end).

Table 5-21—Ambiguous condition results for conditional operator

? 0|1 | x|z
0 0 | x | x |x
1 x |1 | x |x
x X | x [x | x
z X | x [x | x

For example:
The following example of a three-state output bus illustrates a common use of the conditional operator:
wire [15:0] busa = drive busa ? data : 16'bz;

The bus called data is driven onto busa when drive busa is 1. If drive busa is unknown, then an
unknown value is driven onto busa. Otherwise, busa is not driven.

5.1.14 Concatenations
A concatenation is the result of the joining together of bits resulting from one or more expressions. The
concatenation shall be expressed using the brace characters { and }, with commas separating the expressions

within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in
the concatenation is needed to calculate the complete size of the concatenation.

For example:
This example concatenates four expressions:
{a, p[3:0], w, 3'bl01}
It is equivalent to the following example:
{a, b[3], bl[2], bI1], b[0], w, 1'bl, 1'b0, 1'bl}
An operator that can be applied only to concatenations is replication, which is expressed by a concatenation

preceded by a non-negative, non-x and non-z constant expression, called a replication constant, enclosed
together within brace characters, and which indicates a joining together of that many copies of the

54 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

concatenation. Unlike regular concatenations, expressions containing replications shall not appear on the
left-hand side of an assignment and shall not be connected to output or inout ports.

This example replicates w four times.
{4{w}} // This yields the same value as {w, w, w, w}
The following examples show illegal replications:

{1'bz{1'b0}} // illegal
{1'bx{1'b0}} // illegal

The next example illustrates a replication nested within a concatenation:

{b, {3{a, b}}} // This yields the same value as
// {b, a, b, a, b, a, b}

A replication operation may have a replication constant with a value of zero. This is useful in parameterized
code. A replication with a zero replication constant is considered to have a size of zero and is ignored. Such
a replication shall appear only within a concatenation in which at least one of the operands of the
concatenation has a positive size.

For example:
parameter P = 32;
// The following is legal for all P from 1 to 32
assign b[31:0] = { {32-p{1'b1}}, a[P-1:0] } ;

// The following is illegal for P=32 because the zero
// replication appears alone within a concatenation

assign c[31:0] = { {{32-P{1'’b1}}}, al[P-1:0] }
// The following is illegal for P=32

initial
$displayb ({32-P{1'b1}}, a[P-1:0]);

When a replication expression is evaluated, the operands shall be evaluated exactly once, even if the
replication constant is zero. For example:

result = {4{func(w)}} ;
would be computed as

y = func(w) ;
result = {y, Y, Y Y} i

5.2 Operands

There are several types of operands that can be specified in expressions. The simplest type is a reference to a
net, variable, or parameter in its complete form; that is, just the name of the net, variable, or parameter is

Copyright © 2006 IEEE. All rights reserved. 55

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

given. In this case, all of the bits making up the net, variable, or parameter value shall be used as the
operand.

If a single bit of a vector net, vector reg, integer, or time variable, or parameter is required, then a bit-select
operand shall be used. A part-select operand shall be used to reference a group of adjacent bits in a vector
net, vector reg, integer, or time variable, or parameter.

An array element or a bit-select or part-select of an array element can be referenced as an operand.
A concatenation of other operands (including nested concatenations) can be specified as an operand. A
function call is an operand.

5.2.1 Vector bit-select and part-select addressing

Bit-selects extract a particular bit from a vector net, vector reg, integer, or time variable, or parameter. The
bit can be addressed using an expression. If the bit-select is out of the address bounds or the bit-select is x or
z, then the value returned by the reference shall be x. A bit-select or part-select of a scalar, or of a variable or
parameter of type real or realtime, shall be illegal.

Several contiguous bits in a vector net, vector reg, integer, or time variable, or parameter can be addressed
and are known as part-selects. There are two types of part-selects, a constant part-select and an indexed part-
select. A constant part-select of a vector reg or net is given with the following syntax:

vect [msb_expr:1lsb expr]

Both msb_expr and 1sb_expr shall be constant integer expressions. The first expression has to address a
more significant bit than the second expression.

An indexed part-select of a vector net, vector reg, integer, or time variable, or parameter is given with the
following syntax:

reg [15:0] big vect;
reg [0:15] little vect;

big vect[lsb_base expr +: width_ expr]
little vect[msb_base expr +: width expr]

big vect [msb base expr -: width expr]
little vect[lsb base expr -: width expr]

The msb_base expr and 1sb_base expr shall be integer expressions, and the width expr shall be a
positive constant integer expression. The 1sb_base expr and msb_base expr can vary at run time. The
first two examples select bits starting at the base and ascending the bit range. The number of bits selected is
equal to the width expression. The second two examples select bits starting at the base and descending the
bit range.

A part-select of any type that addresses a range of bits that are completely out of the address bounds of the
net, reg, integer, time variable, or parameter or a part-select that is x or z shall yield the value x when read
and shall have no effect on the data stored when written. Part-selects that are partially out of range shall,
when read, return x for the bits that are out of range and shall, when written, only affect the bits that are in
range.
For example:

reg [31: 0] big vect;

reg [0 :31] little vect;

56 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

reg [63: 0] dword;
integer sel;

big vect[0 +: 8] // == big vect[7 : 0]
big vect[15 -: 8] // == big vect[15 : 8]

little vect[0 +: 8] // == little vect[0 : 7]
little vect[15 -: 8] // == little vect([8 :15]
dword [8*sel +: 8] // variable part-select with fixed width

For example:

Example 1—The following example specifies the single bit of acc vector that is addressed by the operand
index:

acc [index]

The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For instance,
each of the declarations of acc shown in the next example causes a particular value of index to access a
different bit:

reg [15:0] acc;
reg [2:17] acc

Example 2—The next example and the bullet items that follow it illustrate the principles of bit addressing.
The code declares an 8-bit reg called vect and initializes it to a value of 4. The list describes how the
separate bits of that vector can be addressed.

reg [7:0] vect;
vect = 4; // fills vect with the pattern 00000100
// msb is bit 7, 1lsb is bit 0

— If the value of addr is 2, then vect [addr] returns 1.
— If the value of addr is out of bounds, then vect [addr] returns x.
— Ifaddris 0, 1, or 3 through 7, vect [addr] returns 0.
— vect [3:0] returns the bits 0100.
— vect [5:1] returns the bits 00010.
— vect [expression that returns x] returns x .
— vect [expression that returns z] returns x.
— Ifany bit of addr is x or z, then the value of addr is x.
NOTE 1—Part-select indices that evaluate to x or z may be flagged as a compile time error.

NOTE 2—Bit-select or part-select indices that are outside of the declared range may be flagged as a compile time error.

5.2.2 Array and memory addressing

Declaration of arrays and memories (one-dimensional arrays of reg) are discussed in 4.9. This subclause
discusses array addressing.

For example:

The next example declares a memory of 1024 eight-bit words:

Copyright © 2006 IEEE. All rights reserved. 57

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

reg [7:0] mem name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address,
specified with the following format:

mem_name [addr expr]

The addr_expr can be any integer expression; therefore, memory indirections can be specified in a single
expression. The next example illustrates memory indirection:

mem_name [mem name [3]]

In this example, mem name [3]addresses word three of the memory called mem name. The value at word
three is the index into mem_name that is used by the memory address mem name [mem name [3]]. As with
bit-selects, the address bounds given in the declaration of the memory determine the effect of the address
expression. If the index is out of the address bounds or if any bit in the address is x or z, then the value of the
reference shall be x.

For example:

The next example declares an array of 256-by-256 eight-bit elements and an array 256-by-256-by-8 one-bit
elements:

reg [(7:0] twod array[0:255] [0:255];
wire threed array[0:255] [0:255] [0:7] ;

The syntax for access to the array shall consist of the name of the memory or array and an integer expression
for each addressed dimension:

twod_array[addr expr] [addr_ expr]
threed arrayladdr expr] [addr expr] [addr expr]

As before, the addr_expr can be any integer expression. The array twod_array accesses a whole 8-bit
vector, while the array threed array accesses a single bit of the three-dimensional array.

To express bit-selects or part-selects of array elements, the desired word shall first be selected by supplying
an address for each dimension. Once selected, bit-selects and part-selects shall be addressed in the same

manner as net and reg bit-selects and part-selects (see 5.2.1).

For example:

twod array[14] [1] [3:0] // access lower 4 bits of word
twod _array[1] [3] [6] // access bit 6 of word
twod_array[1] [3] [sel] // use variable bit-select
threed_array[14] [1] [3:0] // Illegal

5.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per
character. Any Verilog HDL operator can manipulate string operands. The operator shall behave as though
the entire string were a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment
shall be padded on the left with zeros. This is consistent with the padding that occurs during assignment of
nonstring values.

58 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

For example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to it.
The example then manipulates the string using the concatenation operator.

module string test;
reg [8*14:1] stringvar;

initial begin

stringvar = "Hello world";
$display ("%s is stored as %h", stringvar, stringvar);
stringvar = {stringvar,"!!i"};
$display ("%s is stored as %h", stringvar, stringvar);
end
endmodule

The result of simulating the above description is

Hello world is stored as 00000048656c6c6f20776£726c64
Hello world!!! is stored as 48656c6c6f20776£726c64212121

5.2.3.1 String operations
The common string operations copy, concatenate, and compare are supported by Verilog HDL operators.
Copy is provided by simple assignment. Concatenation is provided by the concatenation operator.

Comparison is provided by the equality operators.

When manipulating string values in vector regs, the regs should be at least 8 *n bits (where n is the number
of ASCII characters) in order to preserve the 8-bit ASCII code.

5.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can
affect the results of comparison and concatenation operations. The comparison and concatenation operators
shall not distinguish between zeros resulting from padding and the original string characters (\0, ASCII
NUL).

For example:

The following example illustrates the potential problem:

reg [8*10:1] sl, s2;
initial begin

sl = "Hello";
s2 = " world!";
if ({s1,s2} == "Hello world!")

Sdisplay ("strings are equal");
end

The comparison in this example fails because during the assignment the string variables are padded as
illustrated in the next example:

sl 000000000048656c6c6E
s2 = 00000020776£726c6421

Copyright © 2006 IEEE. All rights reserved. 59

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The concatenation of s1 and s2 includes the zero padding, resulting in the following value:
000000000048656c6c6£00000020776£726c6421

Because the string “Hello world!” contains no zero padding, the comparison fails, as shown in the following
example:

(sl IS s2 IR
000000000048656c6c6£00000020776£726Cc6421
48656c6c6£20776£726c6421

J J
"Hello" " world!™"

This comparison yields a result of zero, which is equivalent to false.
5.2.3.3 Null string handling

The null string (" ") shall be considered equivalent to the ASCII NUL ("\o0"), which has a value zero (0),
which is different from a string "0".

60 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

5.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons and enclosed by
parentheses. This is intended to represent minimum, typical, and maximum values—in that order. The
syntax is given in Syntax 5-2.

constant_expression ::= (From A.8.3)
constant_primary
| unary operator { attribute instance } constant primary
| constant_expression binary operator { attribute instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression
constant_expression
constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant expression : constant expression
expression ::=
primary
| unary operator { attribute _instance } primary
| expression binary operator { attribute instance } expression
| conditional expression
mintypmax_expression ::=
expression
| expression : expression : expression
constant_primary ::= (From A.8.4)
number
| parameter_identifier [[constant range expression | |
| specparam_identifier [[constant range expression |]
| constant_concatenation
| constant_multiple concatenation
| constant_function_call
| constant_system_function_call
| (constant mintypmax_expression)
| string
primary ::=
number
| hierarchical identifier [{ [expression] } [range expression |]
| concatenation
| multiple concatenation
| function_call
| system_function_call
| (mintypmax_expression)
| string

Syntax 5-2—Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to
be tested with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used
wherever expressions can appear.

For example:

Example 1—This example shows an expression that defines a single triplet of delay values. The minimum
value is the sum of a+d; the typical value is b+e; the maximum value is c+£, as follows:

Copyright © 2006 IEEE. All rights reserved. 61

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

(a:b:c) + (d:e:f)

Example 2—The next example shows a typical expression that is used to specify min:typ:max format
values:

val - (32'd 50: 32'd 75: 32'd 100)

5.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are to
be achieved. Some situations have a simple solution; for example, if a bitwise and operation is specified on
two 16-bit regs, then the result is a 16-bit value. However, in some situations, it is not obvious how many
bits are used to evaluate an expression or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should
the evaluation use 17 bits in order to allow for a possible carry overflow? The answer depends on the type of
device being modeled and whether that device handles carry overflow. The Verilog HDL uses the bit length
of the operands to determine how many bits to use while evaluating an expression. The bit length rules are
given in 5.4.1. In the case of the addition operator, the bit length of the largest operand, including the left-
hand side of an assignment, shall be used.

For example:
reg [15:0] a, b; // 1le6-bit regs
reg [15:0] sumA; // 1l6-bit reg

reg [16:0] sumB; // 17-bit reg

Suma a + b; // expression evaluates using 16 bits
sumB = a + b; // expression evaluates using 17 bits

5.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a
natural solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the
operands involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by the
expression itself—for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the bit length
of the expression and by the fact that it is part of another expression. For example, the bit size of the right-
hand expression of an assignment depends on itself and the size of the left-hand side.

Table 5-22 shows how the form of an expression shall determine the bit lengths of the results of the
expression. In Table 5-22, i, j, and k represent expressions of an operand, and L (i) represents the bit

length of the operand represented by i.

Multiplication may be performed without losing any overflow bits by assigning the result to something wide
enough to hold it.

62 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 5-22—Bit lengths resulting from self-determined expressions

Expression Bit length Comments
Unsized constant number® Same as integer
Sized constant number As given
iop j, where op is: max(L(1),L(G))
+_*/%&|A/\NNA
op i, where op is: L(i)
+ -~
iop j, where op is: 1 bit Operands are sized to max(L(i),L(j))
=== l== == = > >= < <=
iop j, where op is: 1 bit All operands are self-determined
&& ||
op i, where op is: 1 bit All operands are self-determined

& ~& | ~| N~ A~

iop j, where op is: L) j is self-determined
S>> << RE S>> <<

i?j:k max(L(j),L(k)) iis self-determined
{1,eeij } L@)+..+LG) All operands are self-determined
{i{j,...k} } i* (LG)+..tL(k)) All operands are self-determined

%1f an unsized constant is part of an expression that is longer than 32 bits and if the most significant bit
is unknown (X or x) or three-state (Z or z), the most significant bit is extended up to the size of the
expression. Otherwise, signed constants are sign-extended and unsigned constants are zero-extended.

5.4.2 Example of expression bit-length problem
During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an
assignment, this also includes the left-hand side). Care has to be taken to prevent loss of a significant bit
during expression evaluation. The example below describes how the bit lengths of the operands could result
in the loss of a significant bit.
Given the following declarations:

reg [15:0] a, b, answer; // 1l6-bit regs
the intent is to evaluate the expression

answer = (a + b) >> 1; //will not work properly

where a and b are to be added, which can result in an overflow, and then shifted right by 1 bit to preserve the
carry bit in the 16-bit answer.

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the
expression (a + b) produces an interim result that is only 16 bits wide, thus losing the carry bit before the
evaluation performs the 1-bit right shift operation.

Copyright © 2006 IEEE. All rights reserved. 63

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The solution is to force the expression (a + b) to evaluate using at least 17 bits. For example, adding an
integer value of 0 to the expression will cause the evaluation to be performed using the bit size of integers.
The following example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly
In the following example:

module bitlength() ;
reg [3:0] a,b,c;
reg [4:0] d;

initial begin
a = 9;
b = 8;
c =1;
$Sdisplay ("answer = %b", c ? (a&b) : 4d);
end
endmodule

the $display statement will display
answer = 01000

By itself, the expression a&b would have the bit length 4, but because it is in the context of the conditional
expression, which uses the maximum bit length, the expression a&b actually has length 5, the length of d.

5.4.3 Example of self-determined expressions
reg [3:0] a;
reg [5:0] Db;

reg [15:0] c;

initial begin

a = 4'hF;
b = 6'hA;
$display ("a*b=%h", a*b);// expression size is self-determined
c = {a**b}; // expression a**b is self-determined

// due to concatenation operator {}
Sdisplay ("a**b=%h", c);
c = a**b; // expression size is determined by c
$Sdisplay ("c=%h", c);
end

Simulator output for this example:

a*b=16 // 'h96 was truncated to 'hlé since expression size is 6
a**b=1 // expression size is 4 bits (size of a)
c=ac6l // expression size is 16 bits (size of c)

5.5 Signed expressions

Controlling the sign of an expression is important if consistent results are to be achieved. In addition to the
rules outlined in 5.5.1 through 5.5.4, two system functions shall be used to handle type casting on
expressions: $signed() and $unsigned(). These functions shall evaluate the input expression and return a
value with the same size and value of the input expression and the type defined by the function:

64 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

$signed - returned value is signed
Sunsigned - returned value is unsigned

For example:

reg [7:0] regA, regB;
reg signed [7:0] regs;

regA Sunsigned (-4) ; // regA = 8'b11111100
regB = Sunsigned (-4'sd4); // regB = 8'b00001100
regs $signed (4'b1100); // regs -4

5.5.1 Rules for expression types
The following are the rules for determining the resulting type of an expression:

— Expression type depends only on the operands. It does not depend on the left-hand side (if any).

— Decimal numbers are signed.

— Based numbers are unsigned, except where the s notation is used in the base specifier (as in
"415d12").

— Bit-select results are unsigned, regardless of the operands.

— Part-select results are unsigned, regardless of the operands even if the part-select specifies the entire
vector.

reg [15:0] a;
reg signed [7:0] Db;

initial
a = b[7:0]; // b[7:0] is unsigned and therefore zero-extended

— Concatenate results are unsigned, regardless of the operands.
— Comparison results (1, 0) are unsigned, regardless of the operands.
— Reals converted to integers by type coercion are signed

— The sign and size of any self-determined operand are determined by the operand itself and
independent of the remainder of the expression.

— For nonself-determined operands, the following rules apply:
— If any operand is real, the result is real.
— Ifany operand is unsigned, the result is unsigned, regardless of the operator.

— If all operands are signed, the result will be signed, regardless of operator, except when
specified otherwise.

5.5.2 Steps for evaluating an expression
The following are the steps for evaluating an expression:

— Determine the expression size based upon the standard rules of expression size determination.
— Determine the sign of the expression using the rules outlined in 5.5.1.

— Propagate the type and size of the expression (or self-determined subexpression) back down to the
context-determined operands of the expression. In general, any context-determined operand of an
operator shall be the same type and size as the result of the operator. However, there are two
exceptions:

Copyright © 2006 IEEE. All rights reserved. 65

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

— If the result type of the operator is real and if it has a context-determined operand that is not
real, that operand shall be treated as if it were self-determined and then converted to real just
before the operator is applied.

— The relational and equality operators have operands that are neither fully self-determined nor
fully context-determined. The operands shall affect each other as if they were context-deter-
mined operands with a result type and size (maximum of the two operand sizes) determined
from them. However, the actual result type shall always be 1 bit unsigned. The type and size of
the operand shall be independent of the rest of the expression and vice versa.

— When propagation reaches a simple operand as defined in 5.2 (a primary as defined in A.8.4), then
that operand shall be converted to the propagated type and size. If the operand must be extended,
then it shall be sign-extended only if the propagated type is signed.

5.5.3 Steps for evaluating an assignment
The following are the steps for evaluating an assignment:

— Determine the size of the right-hand side by the standard assignment size determination rules (see
5.4).

— If needed, extend the size of the right-hand side, performing sign extension if, and only if, the type
of the right-hand side is signed.

5.5.4 Handling X and Z in signed expressions

If a signed operand is to be resized to a larger signed width and the value of the sign bit is X, the resulting
value shall be bit-filled with xs. If the sign bit of the value is z, then the resulting value shall be bit-filled
with zs. If any bit of a signed value is X or z, then any nonlogical operation involving the value shall result
in the entire resultant value being an X and the type consistent with the expression’s type.

5.6 Assignments and truncation

If the width of the right-hand expression is larger than the width of the left-hand side in an assignment, the
MSBs of the right-hand expression will always be discarded to match the size of the left-hand side.
Implementations are not required to warn or report any errors related to assignment size mismatch or
truncation. Truncating the sign bit of a signed expression may change the sign of the result.

For example:

reg [5:0] a;
reg signed [4:0] b;

initial begin

a = 8'hff; // After the assignment, a = 6'h3f
b = 8'hff; // After the assignment, b = 5'hlf
end
For example:
reg [0:5] a;
reg signed [0:4] b, c;
initial begin
a = 8'sh8f; // After the assignment, a = 6'hO0f
b = 8'sh8f; // After the assignment, b = 5'hOf
c = -113; // After the assignment, ¢ = 15
66 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
// 1000 1111 = (-'h71 = -113) truncates to ('hOF = 15)
end

For example:

reg [7:0] a;
reg signed [7:0] b;
reg signed [5:0] c, d;

initial begin

a = 8'hff;
c = a; // After the assignment, c¢ = 6'h3f
b = -113;
d = b; // After the assignment, d = 6'hOf
end
Copyright © 2006 IEEE. All rights reserved. 67

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

6. Assignments

The assignment is the basic mechanism for placing values into nets and variables. There are two basic forms
of assignments:

— The continuous assignment, which assigns values to nets

The procedural assignment, which assigns values to variables

There are two additional forms of assignments, assign/deassign and force/release, which are called
procedural continuous assignments, described in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equals (=)
character; or, in the case of nonblocking procedural assignment, the less-than-equals (<= character pair.
The right-hand side can be any expression that evaluates to a value. The left-hand side indicates the variable
to which the right-hand side value is to be assigned. The left-hand side can take one of the forms given in
Table 6-1, depending on whether the assignment is a continuous assignment or a procedural assignment.

Table 6-1—Legal left-hand forms in assignment statements

Statement type Left-hand side

Continuous assignment Net (vector or scalar)

Constant bit-select of a vector net

Constant part-select of a vector net

Constant indexed part-select of a vector net

Concatenation or nested concatenation of any of the above left-hand side

Procedural assignment Variables (vector or scalar)

Bit-select of a vector reg, integer, or time variable

Constant part-select of a vector reg, integer, or time variable

Indexed part-select of a vector reg, integer, or time variable

Memory word

Concatenation or nested concatenation of any of the above left-hand side

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur
whenever the value of the right-hand side changes. Continuous assignments provide a way to model
combinational logic without specifying an interconnection of gates. Instead, the model specifies the logical
expression that drives the net.

68 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The syntax for continuous assignments is given in Syntax 6-1.

net_declaration ::= (From A.2.1.3)
net _type [signed]
[delay3] list of net identifiers ;
| net_type [drive strength] [signed]
[delay3] list of net decl assignments ;
| net_type [vectored | scalared] [signed]
range [delay3] list of net identifiers ;
| net_type [drive_strength] [vectored | scalared] [signed]
range [delay3] list_of net decl assignments ;
| trireg [charge strength] [signed]
[delay3] list of net identifiers ;
| trireg [drive_strength] [signed]
[delay3] list of net decl assignments ;
| trireg [charge strength] [vectored | scalared] [signed]
range [delay3] list of net identifiers ;
| trireg [drive_strength] [vectored | scalared] [signed]
range [delay3] list_ of net decl assignments ;
list of net decl assignments ::= (From A.2.3)
net_decl assignment { , net decl assignment }
net_decl assignment ::= (From A.2.4)
net_identifier = expression
continuous_assign ::= (From A.6.1)
assign [drive_strength][delay3] list of net assignments ;
list of net assignments ::=
net_assignment { , net_assignment }
net_assignment ::=
net_lvalue = expression

Syntax 6-1—Syntax for continuous assignment

6.1.1 The net declaration assignment

The first two alternatives in the net declaration are discussed in 4.2. The third alternative, the net declaration
assignment, allows a continuous assignment to be placed on a net in the same statement that declares the net.

For example:
The following is an example of the net declaration form of a continuous assignment:

wire (strongl, pull)) mynet = enable ;

NOTE—Because a net can be declared only once, only one net declaration assignment can be made for a particular net.
This contrasts with the continuous assignment statement; one net can receive multiple assignments of the continuous
assignment form.

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net data type. The net may be
explicitly declared or may inherit an implicit declaration in accordance with the implicit declaration rules
defined in 4.5.

Copyright © 2006 IEEE. All rights reserved. 69

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Assignments on nets shall be continuous and automatic. In other words, whenever an operand in the right-
hand expression changes value, the whole right-hand side shall be evaluated. If the new value is different
from the previous value, then the new value shall be assigned to the left-hand side.

For example:

Example 1—The following is an example of a continuous assignment to a net that has been previously
declared:

wire mynet ;
assign (strongl, pull)) mynet = enable ;

Example 2—The following is an example of the use of a continuous assignment to model a 4-bit adder with
carry. The assignment could not be specified directly in the declaration of the nets because it requires a
concatenation on the left-hand side.

module adder (sum out, carry out, carry in, ina, inb);
output [3:0] sum out;

output carry out;

input [3:0] ina, inb;

input carry in;

wire carry out, carry in;

wire [3:0] sum out, ina, inb;

assign {carry out, sum out} = ina + inb + carry in;
endmodule

Example 3—The following example describes a module with one 16-bit output bus. It selects between one of
four input busses and connects the selected bus to the output bus.

module select bus (busout, bus0, busl, bus2, bus3, enable, s);
parameter n = 16;

parameter Zee = 16'bz;

output [1:n] busout;

input [1:n] busO, busl, bus2, bus3;

input enable;

input [1:2] s;

tri [1:n] data; // net declaration

// net declaration with continuous assignment

tri [1:n] busout = enable ? data : Zee;

// assignment statement with four continuous assignments

assign
data = (s == 0) ? bus0 : Zee,
data = (s == 1) ? busl : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;
endmodule

The following sequence of events is experienced during simulation of this example:

a) The value of s, a bus selector input variable, is checked in the assign statement. Based on the value
of s, the net data receives the data from one of the four input buses.

b) The setting of data net triggers the continuous assignment in the net declaration for busout. If
enable is set, the contents of data are assigned to busout; if enable is 0, the contents of zee are
assigned to busout.

70 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand operand
value change and the assignment made to the left-hand side. If the left-hand references a scalar net, then the
delay shall be treated in the same way as for gate delays; that is, different delays can be given for the output
rising, falling, and changing to high impedance (see Clause 7).

If the left-hand references a vector net, then up to three delays can be applied. The following rules determine
which delay controls the assignment:

— If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.
— If the right-hand side makes a transition to z, then the turn-off delay shall be used.

— For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differently
from specifying a net delay and then making a continuous assignment to the net. A delay value can be
applied to a net in a net declaration, as in the following example:

wire #10 wireA;

This syntax, called a net delay, means that any value change that is to be applied to wireA by some other
statement shall be delayed for ten time units before it takes effect. When there is a continuous assignment in
a declaration, the delay is part of the continuous assignment and is not a net delay. Thus, it shall not be added
to the delay of other drivers on the net. Furthermore, if the assignment is to a vector net, then the rising and
falling delays shall not be applied to the individual bits if the assignment is included in the declaration.

In situations where a right-hand operand changes before a previous change has had time to propagate to the
left-hand side, then the following steps are taken:

a) The value of the right-hand expression is evaluated.

b) If this right-hand side value differs from the value currently scheduled to propagate to the left-hand
side, then the currently scheduled propagation event is descheduled.

¢) If the new right-hand side value equals the current left-hand side value, no event is scheduled.

d) If the new right-hand side value differs from the current left-hand side value, a delay is calculated in
the standard way using the current value of the left-hand side, the newly calculated value of the
right-hand side, and the delays indicated on the statement; a new propagation event is then sched-
uled to occur delay time units in the future.

6.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to
assignments to scalar nets of the following types:

wire tri trireg
wand triand tri0
wor trior tril

Continuous assignments driving strengths can be specified either in a net declaration or in a stand-alone
assignment, using the assign keyword. The strength specification, if provided, shall immediately follow the
keyword (either the keyword for the net type or assign) and precede any delay specified. Whenever the
continuous assignment drives the net, the strength of the value shall be simulated as specified.

Copyright © 2006 IEEE. All rights reserved. 71

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

A drive strength specification shall contain one strength value that applies when the value being assigned to
the net is 1 and a second strength value that applies when the assigned value is 0. The following keywords
shall specify the strength value for an assignment of 1:

supplyl strongl pulll weakl highz1
The following keywords shall specify the strength value for an assignment of 0:
supply0 strong(pullo weak(highz0

The order of the two strength specifications shall be arbitrary. The following two rules shall constrain the
use of drive strength specifications:

— The strength specifications (highzl, highz0) and (highz0, highzl) shall be treated as illegal
constructs.

— If drive strength is not specified, it shall default to (strongl, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this
clause highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The
expression on the right-hand side can be thought of as a combinatorial circuit that drives the net
continuously. In contrast, procedural assignments put values in variables. The assignment does not have
duration; instead, the variable holds the value of the assignment until the next procedural assignment to that
variable.

Procedural assignments occur within procedures such as always, initial (see 9.9), task, and function (see
Clause 10) and can be thought of as “triggered” assignments. The trigger occurs when the flow of execution
in the simulation reaches an assignment within a procedure. Reaching the assignment can be controlled by
conditional statements. Event controls, delay controls, if statements, case statements, and looping statements
can all be used to control whether assignments are evaluated. Clause 9 gives details and examples.

6.2.1 Variable declaration assignment

The variable declaration assignment is a special case of procedural assignment as it assigns a value to a
variable. It allows an initial value to be placed in a variable in the same statement that declares the variable.
The assignment shall be to a constant expression. The assignment does not have duration; instead, the
variable holds the value until the next assignment to that variable. Variable declaration assignments to an
array are not allowed. Variable declaration assignments are only allowed at the module level. If the same
variable is assigned different values both in an initial block and in a variable declaration assignment, the
order of the evaluation is undefined.

For example:

Example I—Declare a 4-bit reg and assign it the value 4.

reg(3:0] a = 4'h4;

This is equivalent to writing

reg(3:0] a;
initial a = 4'h4;

72 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Example 2—The following example is not legal:
reg [3:0] array [3:0] = 0;

Example 3—Declare two integers; the first is assigned the value of 0.
integer i = 0, j;

Example 4—Declare two real variables, assigned to the values 2.5 and 300,000.
real r1 = 2.5, n300k = 3E6;

Example 5—Declare a time variable and realtime variable with initial values.

time t1 = 25;
realtime rt1 = 2.5;

6.2.2 Variable declaration syntax

The syntax for variable declaration assignments is given in Syntax 6-2.

integer declaration ::= (From A.2.1.3)

integer list of variable identifiers ;
real declaration ::=

real list of real identifiers ;
realtime declaration ::=

realtime list of real identifiers ;
reg_declaration ::=

reg [signed | [range] list_of variable_ identifiers ;
time_declaration ::=

time list_of variable identifiers ;
real_type ::= (From A.2.2.1)

real_identifier { dimension }

| real identifier = constant expression

variable type ::=
variable identifier { dimension }

| variable identifier = constant expression
list of real identifiers ::= (From A.2.3)

real_type {,real type }
list_of variable identifiers ::=

variable_type {, variable type }

Syntax 6-2—Syntax for variable declaration assignment

Copyright © 2006 IEEE. All rights reserved. 73

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

7. Gate- and switch-level modeling

This clause describes the syntax and semantics of the built-in primitives of gate- and switch-level modeling
and how a hardware design can be described using these primitives.

There are 14 logic gates and 12 switches predefined in the Verilog HDL to provide the gate- and switch-
level modeling facility. Modeling with logic gates and switches has the following advantages:

— Gates provide a much closer one-to-one mapping between the actual circuit and the model.

There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax
Syntax 7-1 shows the gate and switch declaration syntax.
A gate or a switch instance declaration shall have the following specifications:

The keyword that names the type of gate or switch primitive
— An optional drive strength

An optional propagation delay

— An optional identifier that names each gate or switch instance
An optional range for array of instances

— The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. All
such instances shall have the same drive strength and delay specification.

74 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

gate_instantiation ::= (From A.3.1)
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } 3
| enable gatetype [drive strength] [delay3] enable gate instance {, enable gate instance } ;
| mos_switchtype [delay3] mos_switch instance { , mos_switch_instance } ;
|n_input_gatetype [drive_strength] [delay2] n_input gate instance {,n_input gate instance };
| n_output gatetype [drive strength] [delay2] n_output gate instance
{,n_output gate instance } ;
| pass_en_switchtype [delay2] pass_enable switch_instance {, pass_enable switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pulldown [pulldown_strength] pull gate instance {, pull gate instance } ;
| pullup [pullup_strength] pull gate instance {, pull gate instance } ;

cmos_switch_instance ::= [name_of gate instance |
(output_terminal , input_terminal , ncontrol terminal , pcontrol terminal)

enable gate instance ::=[name of gate instance]
(output_terminal , input_terminal , enable terminal)

mos_switch_instance ::= [name_of gate instance |
(output_terminal , input_terminal , enable terminal)
n_input gate instance ::=[name of gate instance]
(output_terminal , input_terminal { , input_terminal })
n_output gate instance ::= [name_of gate instance]
(output_terminal {, output_terminal } , input_terminal)
pass_switch _instance ::= [name of gate instance | (inout terminal , inout terminal)

pass_enable switch instance ::= [name_of gate instance]
(inout terminal , inout terminal , enable terminal)

pull gate instance ::=[name of gate instance] (output terminal)
name of gate instance ::= gate instance identifier [range]

pulldown_strength ::= (From A.3.2)
(strengthO , strengthl)
| (strengthl , strengthO)
| (strengthO0)

pullup_strength ::= (strengthO , strengthl)
| (strengthl , strengthO)
| (strengthl)

enable terminal ::= (From A.3.3)
expression

inout terminal ::=net lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output terminal ::=net_lvalue
pcontrol_terminal ::= expression

cmos_switchtype ::= (From A.3.4)
cmos | rcmos

enable gatetype ::= bufif0 | bufifl | notif0 | notifl
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not

pass_en_switchtype ::= tranif0 | tranifl | rtranifl | rtranif0
pass_switchtype ::= tran | rtran

Syntax 7-1—Syntax for gate instantiation

Copyright © 2006 IEEE. All rights reserved. 75

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005

7.1.1 The gate type specification

IEEE STANDARD FOR VERILOG®

A gate or switch instance declaration shall begin with the keyword that specifies the gate or switch primitive
being used by the instances that follow in the declaration. Table 7-1 lists the keywords that shall begin a gate
or a switch instance declaration.

Table 7-1—Built-in gates and switches

n_input gates n_output gates Th;z-::ate Pull gates MOS switches Bi‘:vi:iiztlfz:al
and buf bufif0 pulldown cmos rtran
nand not bufifl pullup nmos rtranif(
nor notif0 pmos rtranifl
or notifl rcmos tran
xnor rnmos tranif(
xor rpmos tranifl

Explanations of the built-in gates and switches shown in Table 7-1 begin in 7.2.

7.1.2 The drive strength specification

An optional drive strength specification shall specify the strength of the logic values on the output terminals
of the gate instance. Only the instances of the gate primitives shown in Table 7-2 can have the drive strength

specification.
Table 7-2—Valid gate types for strength specifications
and nand buf not pulldown
or nor bufif0 notif0 pullup
xor xnor bufifl notifl

The drive strength specification for a gate instance, with the exception of pullup and pulldown, shall have a
strengthl specification and a strength0 specification. The strengthl specification shall specify the strength
of signals with a logic value 1, and the strength0 specification shall specify the strength of signals with a
logic value 0. The strength specification shall follow the gate type keyword and precede any delay
specification. The strength(specification can precede or follow the strengthl specification. The strengthl
and strength0 specifications shall be separated by a comma and enclosed within a pair of parentheses.

The pullup gate can have only a strengthl specification; a strength(specification shall be optional. The
pulldown gate can have only a strength(specification; a strengthl specification shall be optional. See 7.8
for more details.

The strengthl specification shall be one of the following keywords:

weakl

strongl pulll

supplyl

76 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The strength0 specification shall be one of the following keywords:
supply0 strong(pull0 weak0
Specifying highzl as strengthl shall cause the gate or switch to output a logic value z in place of a 1.
Specifying highz0 shall cause the gate to output a logic value z in place of a 0. The strength specifications
(highz0, highz1) and (highz1, highz0) shall be considered invalid.
In the absence of a strength specification, the instances shall have the default strengths strongl and strong0.
For example:
The following example shows a drive strength specification in a declaration of an open collector nor gate:
nor (highzl,strong0) nl (outl,inl, in2);
In this example, the nor gate outputs a z in place of a 1.
Logic strength modeling is discussed in more detail in 7.9 through 7.13.
7.1.3 The delay specification
An optional delay specification shall specify the propagation delay through the gates and switches in a
declaration. Gates and switches in declarations with no delay specification shall have no propagation delay.
A delay specification can contain up to three delay values, depending on the gate type. The pullup and
pulldown instance declarations shall not include delay specifications. Delays are discussed in more detail in
7.14.

7.1.4 The primitive instance identifier

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of
instances, an identifier shall be used to name the instances.

7.1.5 The range specification

There are many situations when repetitive instances are required. These instances shall differ from each
other only by the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range specification. The
range shall be specified by two constant expressions, left-hand index (1hi) and right-hand index (rhi),
separated by a colon and enclosed within a pair of square brackets. A [1hi:rhi] range specification shall
represent an array of abs (1hi-rhi) +1 instances. Neither of the two constant expressions are required to be
zero, and 1hi is not required to be larger than rhi. If both constant expressions are equal, only one instance
shall be generated.

An array of instances shall have a continuous range. One instance identifier shall be associated with only
one range to declare an array of instances.

The range specification shall be optional. If no range specification is given, a single instance shall be
created.

For example:

The declaration shown below is illegal:

Copyright © 2006 IEEE. All rights reserved. 77

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

nand #2 t nand[0:3] (...), t nand[4:7] (...);

It could be declared correctly as one array of eight instances or as two arrays with unique names of four
elements each:

nand #2 t_nand[0:7] (...);
nand #2 x nand[0:3] (...), y nand[4:7] (...);

7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type
can limit these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals
shall be separated by commas. The output or bidirectional terminals shall always come first in the terminal
list, followed by the input terminals.

The terminal connections for an array of instances shall follow these rules:

— The bit length of each port expression in the declared instance-array shall be compared with the bit
length of each single-instance port or terminal in the instantiated module or primitive.

— For each port or terminal where the bit length of the instance-array port expression is the same as the
bit length of the single-instance port, the instance-array port expression shall be connected to each
single-instance port.

— If bit lengths are different, each instance shall get a part-select of the port expression as specified in
the range, starting with the right-hand index.

— Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an
element of an array of regs.

For example:

Example 1—The following declaration of nand_array declares four instances that can be referenced by
nand array[l],nand array([2],nand array[3],and nand array[4], respectively.

nand #2 nand array[1:4](...) ;

Example 2—The two module descriptions that follow are equivalent except for indexed instance names, and
they demonstrate the range specification and connection rules for declaring an array of instances:

module driver (in, out, en);
input [3:0] in;

output [3:0] out;

input en;

bufif0 ar[3:0] (out, in, en); // array of three-state buffers
endmodule

module driver equiv (in, out, en);

input [3:0] in;

output [3:0] out;

input en;

bufif0 ar3 (out([3], in([3], en); // each buffer declared separately
bufif0 ar2 (out([2], in[2], en);

78 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

bufif0 ar1 (out[1], in[1], en);
bufif0 ar0 (out[0], in[0], en);

endmodule

Example 3—The two module descriptions that follow are equivalent except for indexed instance names, and
they demonstrate how different instances within an array of instances are connected when the port sizes do
not match:

module busdriver (busin, bushigh, buslow, enh, enl);
input [15:0] busin;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh([3:0], enh);
driver busarl (busin[7:4], buslow[7:4], enl);
driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver equiv (busin, bushigh, buslow, enh, enl);
input [15:0] busin;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar[3:0] (.out ({bushigh, buslow}), .in(busin),
.en({enh, enh, enl, enl}));
endmodule

Example 4—This example demonstrates how a series of modules can be chained together. Figure 7-1 shows
an equivalent schematic interconnection of DFF instances.

module dffn (g, d, clk);
parameter bits = 1;

input [bits-1:0] d;
output [bits-1:0] g;
input clk ;

DFF dff [bits-1:0]1 (g, d, clk); // create a row of D flip-flops
endmodule

module MxN pipeline (in, out, clk);

parameter M = 3, N = 4; // M=width, N=depth

input [M-1:0] in;

output [M-1:0] out;

input clk;

wire [M* (N-1):1] t;

// #(M) redefines the bits parameter for dffn
// create p[l:N] columns of dffn rows (pipeline)

dffn #M) pl1:N] ({out, t}, {t, in}, clk);

endmodule

Copyright © 2006 IEEE. All rights reserved. 79

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1364-2005 IEEE STANDARD FOR VERILOG®
pl[4] pl[3] pl2] p[1]
t[3] t[6] t[9] out[2]
in[2] |
dff[2] dff[2] dff[2] dff[2]
in[2:0] t[2] t[5] t[8]
I out[2:0]
L gep dffT1] dffT1] dfT1] | Tout]
clk
in[0] t[1] t[4] t[7]
Bl out[0]
dffl0] dff[0] dff[0] dff[o]

Figure 7-1—Schematic diagram of interconnections in array of instances

7.2 and, nand, nor, or, xor, and xnor gates
The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor xnor
The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first
delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the
smaller of the two delays shall apply to output transitions to x. If only one delay is specified, it shall specify
both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay
through the gate.

These six logic gates shall have one output and one or more inputs. The first terminal in the terminal list
shall connect to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 7-3.

80 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 7-3—Truth tables for multiple input logic gates

and | 0 | 1| x| z or 0|1]| x|z xor | 0| 1] x|z
0 0J1]0]0]O 0 011 |x]x 0 011 |x|x
1 0O]1 |x|x 1 L j1r|1j]1 1 110 |x|x
e 0]lx|x|x X x |1 |x]x e x | x| x|x
z 0]x|x|x z x |1 | x|x z x | x | x|x
nand || 0 | 1 | x | z nor |0 |1 | x|z xnor [0 | 1] x| z
0 Ijrf1rji1 0 110 |x|x 0 110 |x|x
1 110 |x|x 1 01]0]J01]O 1 011 |x|x
e I I x|x|x X x |0 |x|x e x| x| x|x
z 1 1x]x]x z x |0 |x|x z x | x| x|x

Versions of these six logic gates having more than two inputs shall have a natural extension, but the number
of inputs shall not alter propagation delays.

For example:
The following example declares a two-input and gate:
and al (out, inl, in2);

The inputs are in1 and in2. The output is out. The instance name is al.

7.3 buf and not gates

The instance declaration of a multiple output logic gate shall begin with one of the following keywords:
buf not

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first

delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the

smaller of the two delays shall apply to output transitions to x. If only one delay is specified, it shall specify

both the rise delay and the fall delay. If there is no delay specification, there shall be no propagation delay

through the gate.

These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list
shall connect to the input of the logic gate, and the other terminals shall connect to the outputs of the logic
gate.

Copyright © 2006 IEEE. All rights reserved. 81

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Truth tables for these logic gates with one input and one output are shown in Table 7-4.

Table 7-4—Truth tables for multiple output logic gates

buf not
input output input output
0 0 0 1
1 1 1 0
X X X X
z X V/ X

For example:
The following example declares a two-output buf:
buf bl (outl, out2, in);

The input is in. The outputs are out1 and out2. The instance name is b1l.

7.4 bufif1, bufif0, notif1, and notif0 gates

The instance declaration of these three-state logic gates shall begin with one of the following keywords:
bufif0 bufifl notifl notif

These four logic gates model three-state drivers. In addition to logic values 1 and 0, these gates can output z.

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to x. If the specification contains two delays, the first delay shall determine the output
rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall
apply to output transitions to x and z. If only one delay is specified, it shall specify the delay for all output
transitions. If there is no delay specification, there shall be no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of
two values, without a preference for either value (see 7.10.2). These logic tables for these gates include two
symbols representing such unknown results. The symbol L shall represent a result that has a value 0 or z.
The symbol H shall represent a result that has a value 1 or z. Delays on transitions to H or L shall be treated
the same as delays on transitions to x.

These four logic gates shall have one output, one data input, and one control input. The first terminal in the
terminal list shall connect to the output, the second terminal shall connect to the data input, and the third
terminal shall connect to the control input.

82 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 7-5 presents the logic tables for these gates.

Table 7-5—Truth tables for three-state logic gates

CONTROL CONTROL
bufif0 bufifl
0|1]x]z 0|1]| x|z
D 0101z D 0z]O
A 1 1 lz]H|H A 1|z 1 |H|H
T Xx(x]z|]x|]x T x|z |x|]x|x
A z |x |z |x|x A z |z | x|x|x

CONTROL CONTROL
notif(notifl
0]l]1]|x]z 0]l]1]|x]z
D 0|1]z]|H|H D 0| z 1 |H|H
A 10z]|L]|L A 1z]0
T x(Ix]z|x|x T x(lz |x]|x]|x
A z |x |z |x|x A z |z | x|x]|x

For example:
The following example declares an instance of bufif1:
bufifl bfl (outw, inw, controlw) ;

The output is outw, the input is inw, and the control is controlw. The instance name is bf1.

7.5 MOS switches

The instance declaration of a MOS switch shall begin with one of the following keywords:
cmos nmos pmos rcmos rnmos rpmos

The cmos and remos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor and the nmos
keyword stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors
have relatively low impedance between their sources and drains when they conduct. The rpmos keyword
stands for resistive PMOS transistor and the rnmos keyword stands for resistive NMOS transistor. Resistive
PMOS and resistive NMOS transistors have significantly higher impedance between their sources and
drains when they conduct than PMOS and NMOS transistors have. The load devices in static MOS networks
are examples of rpmos and rnmos transistors. These four switches are unidirectional channels for data
similar to the bufif gates.

Copyright © 2006 IEEE. All rights reserved. 83

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to x. If the specification contains two delays, the first delay shall determine the output
rise delay, the second delay shall determine the output fall delay, and the smaller of the two delays shall
apply to output transitions to x and z. If only one delay is specified, it shall specify the delay for all output
transitions. If there is no delay specification, there shall be no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of
two values, without a preference for either value. The logic tables for these switches include two symbols
representing such unknown results. The symbol L represents a result that has a value 0 or z. The symbol H
represents a result that has a value 1 or z. Delays on transitions to H and L shall be the same as delays on
transitions to x.

These four switches shall have one output, one data input, and one control input. The first terminal in the
terminal list shall connect to the output, the second terminal shall connect to the data input, and the third
terminal shall connect to the control input.

The nmos and pmos switches shall pass signals from their inputs and through their outputs with a change in
the strength of the signal in only one case, as discussed in 7.11. The rnmos and rpmos switches shall reduce

the strength of signals that propagate through them, as discussed in 7.12.

Table 7-6 presents the logic tables for these switches.

Table 7-6—Truth tables for MOS switches

CONTROL CONTROL
pmos nmos
rpmos ol1l+1, rnmos ol 1] «!2
D 00z]|]L]|L D 0Oflz]|]OoO|JL]|L
A 1 1]z |H]|H A 1|zl |H|H
T x|x |z |x]|x T x|z |x|x|x
A z |z |z|lz]|z A z |z |lz|lz]|z

For example:
The following example declares a pmos switch:
pmos pl (out, data, control);

The output is out, the data input is data, and the control input is control. The instance name is p1.

7.6 Bidirectional pass switches
The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranifl tranif(
rtran rtranifl rtranif(

84 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The bidirectional pass switches shall not delay signals propagating through them. When tranif0, tranifl,
rtranif0, or rtranifl devices are turned off, they shall block signals; and when they are turned on, they shall
pass signals. The tran and rtran devices cannot be turned off, and they shall always pass signals.

The delay specifications for tranifl, tranif0, rtranifl, and rtranif0 devices shall be zero, one, or two
delays. If the specification contains two delays, the first delay shall determine the turn-on delay, the second
delay shall determine the turn-off delay, and the smaller of the two delays shall apply to output transitions to
x and z. If only one delay is specified, it shall specify both the turn-on and the turn-off delays. If there is no
delay specification, there shall be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switches tran and rtran shall not accept delay specification.

The tranifl, tranif0, rtranifl, and rtranif0 devices shall have three items in their terminal lists. The first
two shall be bidirectional terminals that conduct signals to and from the devices, and the third terminal shall
connect to a control input. The tran and rtran devices shall have terminal lists containing two bidirectional
terminals. Both bidirectional terminals shall unconditionally conduct signals to and from the devices,
allowing signals to pass in either direction through the devices. The bidirectional terminals of all six devices
shall be connected only to scalar nets or bit-selects of vector nets.

The tran, tranif0, and tranifl devices shall pass signals with an alteration in their strength in only one case,
as discussed in 7.11. The rtran, rtranif0, and rtranifl devices shall reduce the strength of the signals
passing through them according to rules discussed in 7.12.

For example:
The following example declares an instance of tranifl:
tranifl t1 (inout1l, inout2, control) ;

The bidirectional terminals are inoutl and inout2. The control input is control. The instance name is
tl.

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:
cmos rcmos

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three
delays, the first delay shall determine the rise delay, the second delay shall determine the fall delay, the third
delay shall determine the delay of transitions to z, and the smallest of the three delays shall determine the
delay of transitions to x. Delays in transitions to H or L are the same as delays in transitions to x. If the
specification contains two delays, the first delay shall determine the output rise delay, the second delay shall
determine the output fall delay, and the smaller of the two delays shall apply to output transitions to x and z.
If only one delay is specified, it shall specify the delay for all output transitions. If there is no delay
specification, there shall be no propagation delay through the switch.

The cmos and remos switches shall have a data input, a data output, and two control inputs. In the terminal
list, the first terminal shall connect to the data output, the second terminal shall connect to the data input, the

third terminal shall connect to the n-channel control input, and the last terminal shall connect to the p-
channel control input.

Copyright © 2006 IEEE. All rights reserved. 85

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The ecmos gate shall pass signals with an alteration in their strength in only one case, as discussed in 7.11.
The remos gate shall reduce the strength of signals passing through it according to rules described in 7.12.

The cmos switch shall be treated as the combination of a pmes switch and an nmos switch. The remos
switch shall be treated as the combination of an rpmos switch and an rnmos switch. The combined switches
in these configurations shall share data input and data output terminals, but they shall have separate control
inputs.

For example:

The equivalence of the cmos gate to the pairing of an nmes gate and a pmos gate is shown in the following
example:

cmos (w, datain, ncontrol, pcontrol) ; neontrol

J— nmos
is equivalent to: | .
w —| |— datain
\—‘ pmos
O
nmos (w, datain, ncontrol) ; ‘
pmos (w, datain, pcontrol) ; pcontrol

7.8 pullup and pulldown sources
The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:
pullup pulldown

A pullup source shall place a logic value 1 on the nets connected in its terminal list. A pulldown source
shall place a logic value 0 on the nets connected in its terminal list.

The signals that these sources place on nets shall have pull strength in the absence of a strength
specification. If there is a strengthl specification on a pullup source or a strength(Q specification on a
pulldown source, the signals shall have the strength specified. A strength0 specification on a pullup source
and a strengthl specification on a pulldown source shall be ignored.

There shall be no delay specifications for these sources.

For example:

The following example declares two pullup instances:

pullup (strongl) pl (neta), p2 (netb);

In this example, the p1 instance drives neta and the p2 instance drives netb with strong strength.

7.9 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive
MOS devices, dynamic MOS, charge sharing, and other technology-dependent network configurations by

86 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

allowing scalar net signal values to have a full range of unknown values and different levels of strength or
combinations of levels of strength. This multiple-level logic strength modeling resolves combinations of
signals into known or unknown values to represent the behavior of hardware with improved accuracy.
A strength specification shall have two components:
a) The strength of the 0 portion of the net value, called strength0, designated as one of the following:
supply0 strong(pullo weak(highz0
b) The strength of the 1 portion of the net value, called strengthl, designated as one of the following:
supplyl strongl pulll weakl highz1

The combinations (highz0, highz1) and (highz1, highz0) shall be considered illegal.

Despite this division of the strength specification, it is helpful to consider strength as a property occupying
regions of a continuum in order to predict the results of combinations of signals.

Table 7-7 demonstrates the continuum of strengths. The left column lists the keywords used in specifying
strengths. The right column gives correlated strength levels.

Table 7-7—Strength levels for scalar net signal values

Strength name Strength level
supply0 7
strong(6
pull0 5
large0 4
weak0 3
medium0 2
small0 1
highz0 0
highz1 0
smalll 1
mediuml1 2
weakl 3
largel 4
pulll 5
strongl 6
supplyl 7
Copyright © 2006 IEEE. All rights reserved. 87

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

In Table 7-7, there are four driving strengths:
supply strong pull weak
Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.
In Table 7-7, there are three charge storage strengths:
large medium small
Signals with the charge storage strengths shall originate in the trireg net type.

It is possible to think of the strengths of signals in Table 7-7 as locations on the scale in Figure 7-2.

strength0 strength1
7/6|5|4|3/2|1/0(0(1]2|3|4|5|6/|7

Su0 [St0 | PuO | La0 | WeO | MeO | Sm0 |HiZO[HiZ1 Sml| Mel| Wel| Lal| Pul| St1| Sul

Figure 7-2—Scale of strengths
Discussions of signal combinations later in this clause employ graphics similar to those used in Figure 7-2.

If the signal value of a net is known, all of its strength levels shall be in either the strength0 part of the scale
represented by Figure 7-2, or all strength levels shall be in its strengthl part. If the signal value of a net is
unknown, it shall have strength levels in both the strength0 and the strengthl parts. A net with a signal value
z shall have a strength level only in one of the 0 subdivisions of the parts of the scale.

7.10 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous
strength consisting of more than one level. When signals combine, their strengths and values shall determine
the strength and value of the resulting signal in accordance with the principles in 7.10.1 through 7.10.4.

7.10.1 Combined signals of unambiguous strength

This subclause deals with combinations of signals in which each signal has a known value and a single
strength level.

If two or more signals of unequal strength combine in a wired net configuration, the stronger signal shall
dominate all the weaker drivers and determine the result. The combination of two or more signals of like
value shall result in the same value with the greater of all the strengths. The combination of signals identical
in strength and value shall result in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two of
the results occur in the presence of wired logic, and the third occurs in its absence. Wired logic is discussed
in 7.10.4. The result in the absence of wired logic is the subject of Figure 7-4 (in 7.10.2).

For example:

In Figure 7-3, the numbers in parentheses indicate the relative strengths of the signals. The combination of a
pulll and a strong0 results in a strong0, which is the stronger of the two signals.

88 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
Pul (5)
Sto(6)
Sto(6)
Sul (7)
Sul (7)
Lal (4)

Figure 7-3—Combining unequal strengths

7.10.2 Ambiguous strengths: sources and combinations
There are several classifications of signals possessing ambiguous strengths:

— Signals with known values and multiple strength levels

— Signals with a value x, which have strength levels consisting of subdivisions of both the strengthl
and the strength0 parts of the scale of strengths in Figure 7-2

— Signals with a value L, which have strength levels that consist of high impedance joined with
strength levels in the strength0 part of the scale of strengths in Figure 7-2

— Signals with a value H, which have strength levels that consist of high impedance joined with
strength levels in the strengthl part of the scale of strengths in Figure 7-2

Many configurations can produce signals of ambiguous strength. When two signals of equal strength and
opposite value combine, the result shall be a value x, along with the strength levels of both signals and all
the smaller strength levels.

For example:

Figure 7-4 shows the combination of a weak signal with a value 1 and a weak signal with a value 0 yielding
a signal with weak strength and a value x.

Wel

WeX

WeO

Figure 7-4—Combination of signals of equal strength and opposite values

This output signal is described in Figure 7-5.

strength0 strength1
7/16/5|4(3|2(1|]0/0|1|23|4|5|6|7

Sul [St0 | PuO | La0 | WeO | MeO | Sm0 |HiZ0[HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

- L

Figure 7-5—Weak x signal strength

Copyright © 2006 IEEE. All rights reserved. 89

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

An ambiguous signal strength can be a range of possible values. An example is the strength of the output
from the three-state drivers with unknown control inputs as shown in Figure 7-6.

X

bufifl
St1 StH

bufif(
Wel StL

Figure 7-6—Bufifs with control inputs of x

The output of the bufifl in Figure 7-6 is a strong H, composed of the range of values described in
Figure 7-7.

strength0 strength1
7,654 /3|2(1|]0|0|1|23|4|5|6/|7

Sul | St0 | Pul [La0 |WeO [MeO | SmO [HiZ0|HiZl Sml| Mel| Wel| Lal| Pul| Stl| Sul

Figure 7-7—Strong H range of values

The output of the bufif0 in Figure 7-6 is a strong L, composed of the range of values described in
Figure 7-8.

strength0 strength1
71654 (32|10 |0|123|4|5|6|7

Su0l [St0 | PuO | La0 | WeO | MeO | Sm0 |[HiZ0[|HiZ1l Sml | Mel| Wel| Lal| Pul| St1| Sul

- -

Figure 7-8—Strong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The
resulting signal shall have a range of strength levels that includes the strength levels in its component
signals. The combination of outputs from two three-state drivers with unknown control inputs, shown in
Figure 7-9, is an example.

90 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
X
PuH
Pul
X
35X
WeO
WeL

Figure 7-9—Combined signals of ambiguous strength

In Figure 7-9, the combination of signals of ambiguous strengths produces a range that includes the
extremes of the signals and all the strengths between them, as described in Figure 7-10.

strength0 strength1
71654 (3|2(1|]0/0|1|2 3|4 |5|6|7

Sul [St0 | PuO | La0 | WeO | MeO | Sm0 |[HiZ0[|HiZ1 Sml | Mel| Wel| Lal| Pul| St1l| Sul

- L.
Figure 7-10—Range of strengths for an unknown signal

The result is a value x because its range includes the values 1 and 0. The number 35, which precedes the x,
is a concatenation of two digits. The first is the digit 3, which corresponds to the highest strength0 level for
the result. The second digit, 5, corresponds to the highest strengthl level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper and
lower configurations in Figure 7-11.

regb =x Vcc pullup

B Pu1 (5)
rega =1 (6)] | | 051

reg g =x | ex
Pu0 (5) B
530
regd =0 |__|
and WeO (3
l rege =0 [€0 (3)

pulldown ground

Figure 7-11—Ambiguous strengths from switch networks

Copyright © 2006 IEEE. All rights reserved. 91

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

In Figure 7-11, the upper combination of a reg, a gate controlled by a reg of unspecified value, and a pullup
produces a signal with a value of 1 and a range of strengths (651) described in Figure 7-12.

strength0 strength1
7/6|5|4/3/2(1/0|0({1]2[3|4,5|6]7

Su0 | St0 | Pul |Lal [WeO |MeO | Sm0 |[HiZ0|HiZ1l Sml | Mel| Wel| Lal| Pul| St1l| Sul

|—P|

Figure 7-12—Range of two strengths of a defined value

In Figure 7-11, the lower combination of a pulldown, a gate controlled by a reg of unspecified value, and an
and gate produces a signal with a value 0 and a range of strengths (530) described in Figure 7-13.

strength0 strength1
7/16/5|/4(3|2(1|]0/0|12 3|4 |5|6|7

Sul [St0 | Pu0 | La0 | WeO | MeO | SmO [HiZ0|HiZ1 Sml| Mel| Wel| Lal| Pul| Stl| Sul

———— P

Figure 7-13—Range of three strengths of a defined value

When the signals from the upper and lower configurations in Figure 7-11 combine, the result is an unknown
with a range (56x) determined by the extremes of the two signals shown in Figure 7-14.

strength0 strength1
716543210012 [3|4|5|6/|7

Su0 [St0 | PuO | La0 | WeO | MeO | Sm0 |HiZO|HiZ1] Sml | Mel| Wel| Lal| Pul| St1l| Sul

- L

Figure 7-14—Unknown value with a range of strengths

In Figure 7-11, replacing the pulldown in the lower configuration with a supply0 would change the range of
the result to the range (StX) described in Figure 7-15.

The range in Figure 7-15 is strong x because it is unknown and the extremes of both its components are
strong. The extreme of the output of the lower configuration is strong because the lower pmos reduces the
strength of the supply0 signal. This modeling feature is discussed in 7.11.

92 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

strength0 strength1
7/6,5/4|3|2 (1|0, 0|1|2[3|4,5|6]7

Su0 | St0 | Pul [La0 |WeO [MeO | SmO [HiZ0|HiZl Sml| Mel| Wel| Lal| Pul| Stl| Sul

Figure 7-15—Strong X range

Logic gates produce results with ambiguous strengths as well as three-state drivers. Such a case appears in
Figure 7-16. The and gate N1 is declared with highz0 strength, and N2 is declared with weak0 strength.

a=1 StH and (strongl,highz0) N1(a,b);
N1 and (strongl, weak0) N2(c,d);
b=X
36X
c=0 —
N2
d=0 — We0

Figure 7-16—Ambiguous strength from gates

In Figure 7-16, reg b has an unspecified value; therefore, input to the upper and gate is strong x. The upper
and gate has a strength specification including highz0. The signal from the upper and gate is a strong H
composed of the values as described in Figure 7-17.

strength0 strength1
7/6 54|32 (1|/0|0|1]|2|3|4|5]|6]7

Su0 | St0 | PuO | LaO | WeO | MeO | Sm0 |[HiZO|HiZ1 Sml| Mel| Wel| Lal| Pul| St1l| Sul

g -

Figure 7-177—Ambiguous strength signal from a gate

HiZz0 is part of the result because the strength specification for the gate in question specified that strength for
an output with a value 0. A strength specification other than high impedance for the 0 value output results in
a gate output value x. The output of the lower and gate is a weak 0 as described in Figure 7-18.

Copyright © 2006 IEEE. All rights reserved. 93

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

strength0 strength1
7/16/5|4(3|2(1|0|0|1)23|4|5|6|7

Sul [St0 | Pul | La0 | WeO | MeO | Sm0 |HiZ0|HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

-

Figure 7-18—Weak 0

When the signals combine, the result is the range (36x) as described in Figure 7-19.

strength0 strength1

7|16 /54/3|2(1|0/0|1)23|4|5|6|7

Su0l [St0 | PuO | La0 | WeO | MeO | Sm0 |HiZ0|HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

g -

Figure 7-19—Ambiguous strength in combined gate signals

Figure 7-19 presents the combination of an ambiguous signal and an unambiguous signal. Such
combinations are the topic of 7.10.3.

7.10.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous
strength presents several possible cases. To understand a set of rules governing this type of combination, it is
necessary to consider the strength levels of the ambiguous strength signal separately from each other and
relative to the unambiguous strength signal. When a signal of known value and unambiguous strength
combines with a component of a signal of ambiguous strength, these shall be the rules:

a) The strength levels of the ambiguous strength signal that are greater than the strength level of the
unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength
level of the unambiguous signal shall disappear from the result, subject to rule c.

c¢) Ifthe operation of rule a and rule b results in a gap in strength levels because the signals are of oppo-
site value, the signals in the gap shall be part of the result.

The following figures show some applications of the rules.

In Figure 7-20, the strength levels in the ambiguous strength signal that are smaller than or equal to the
strength level of the unambiguous strength signal disappear from the result, demonstrating rule b.

In Figure 7-21, rule a, rule b, and rule ¢ apply. The strength levels of the ambiguous strength signal that are
of opposite value and lesser strength than the unambiguous strength signal disappear from the result. The
strength levels in the ambiguous strength signal that are less than the strength level of the unambiguous
strength signal, and of the same value, disappear from the result. The strength level of the unambiguous
strength signal and the greater extreme of the ambiguous strength signal define a range in the result.

94 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

HARDWARE DESCRIPTION LANGUAGE

IEEE

Std 1364-2005

strength0 strength1
7.6 543|210 |0|1(2|3|4,5|6)7
Su0 | St0 | Pul [La0 |We0 |MeO | Sm0 [HiZO0|HiZ1| Sml| Mel| Wel| Lal| Pull| St1| sul
- >
strength0 strength1
7.6 (54 |13|2|{1|]0|0|1]|2|3|4|,5|6]/|7
Su0 | St0 | Pul [La0 |We0 |MeO | Sm0 [HiZO0|HiZ1| Sml| Mel| Wel| Lal| Pull| St1| sul
|
Combining the two signals above results in the following signal:
strength0 strength1
7/6|5(4/3|21(0|]0|1|2|3|4|5|6)7
Su0 | St0 | Pu0 [La0 |WeO |MeO | SmO [HiZ0|HiZ1| Sml| Mel| Wel| Lal| Pul| St1| Sul
]
Figure 7-20—Elimination of strength levels
strength0 strength1
7/6 (54|13, 2|{1]0|0|1|2|3|4,5,6]/|7
Su0 | St0|Pul | La0 |We0 | MeO | SmO |[HiZ0|HiZ1| Sml| Mel| Wel| Lal| Pul| St1| sul
| -
strength0 strength1
7/6 (54|13, 2{1|]0|0|1|2|3|4,5|6]/7
Su0 [St0 | Pul | La0 |WeO | MeO | SmO [HiZ0|HiZ1| Sml| Mel| Wel| Lal| Pul| St1| Sul
]
Combining the two signals above results in the following signal:
strength0 strength1
7.6 54 /3|2(1/0|0|1(2|3|4|,5|6/|7
Su0 [St0 | Pul | La0 |WeO | MeO | SmO [HiZ0|HiZ1| Sml| Mel| Wel| Lal| Pul| St1| Sul
R

Figure 7-21—Result showing a range and the elimination of strength levels of two values

Copyright © 2006 IEEE. All rights reserved.

95

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1364-2005 IEEE STANDARD FOR VERILOG®

In Figure 7-22, rule a and rule b apply. The strength levels in the ambiguous strength signal that are less than
the strength level of the unambiguous strength signal disappear from the result. The strength level of the

unambiguous strength signal and the strength level at the greater extreme of the ambiguous strength signal
define a range in the result.

strength0 strength1
7165 4|3/ 2({1|0]0|1|2|3|4,5|6]/7

Sul| St0 | Pul| Lal | WeO |MeO | Sm0 [HiZ0[HiZ1 Sml| Mel| Wel| Lal| Pul| St1l

Sul

strength0 strength1
7165413, 2{1|]0(0(1/2|3|4|5|6|7

Sul| St0 | Pul| La0 |Wel|MeO | SmO [HiZ0|HiZl Sml| Mel| Wel| Lal| Pul| St1l

|

Combining the two signals above results in the following signal:

Sul

strength0 strength1
716543, 2{1|]0(0(1/2|3|4|5|6|7

Su0| St0 | Pul| Lal | WeO |MeO | Sm0 [HiZ0[HiZ1] Sml| Mel| Wel| Lal| Pul| St1l

-+

Sul

Figure 7-22—Result showing a range and the elimination of strength levels of one value

96 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

In Figure 7-23, rule a, rule b, and rule c apply. The greater extreme of the range of strengths for the
ambiguous strength signal is larger than the strength level of the unambiguous strength signal. The result is a

range defined by the greatest strength in the range of the ambiguous strength signal and by the strength level
of the unambiguous strength signal.

strengthO strength1
7.6 /5(4,/3|2|1|/0|0|1]2|3|4|5|6/|7

Sul [St0 | Pul | La0 | WeO | MeO | Sm0 [HiZ0|HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

strengthO0 strength1
7.6 /5(4,/3|2|1|]0|0|1]2|3|4|5|6/|7

Su0l [St0 | Pul | La0 | WeO | MeO | Sm0 [HiZ0|HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

-

Combining the two signals above results in the following signal:

strengthO strength1
7.6 (5(4,/3|2|1|]0|0|1]2|3|4|5|6/|7

Sul [St0 | Pul | La0 |WeO | MeO | Sm0 [HiZ0|HiZ1l Sml| Mel| Wel| Lal| Pul| St1l| Sul

|- -

Figure 7-23—A range of both values

Copyright © 2006 IEEE. All rights reserved. 97

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

7.10.4 Wired logic net types

The net types triand, wand, trior, and wor shall resolve conflicts when multiple drivers have the same
strength. These net types shall resolve signal values by treating signals as inputs of logic functions.

For example:

Consider the combination of two signals of unambiguous strength in Figure 7-24.

strength0 strength1
71654 /3|]2|1/0|0(1]2|3,4/,5|6]|7

Su0 | St0|Pul| La0 |WelO|MeO |SmO |[HiZ0O|HiZl Sml| Mel| Wel| Lal| Pul| St1l| Sul

||

strength0 strength1
71654 /3|]2|1/0|0(1]2|3,4/,5|6]|7

Su0l [St0 | Pul | Lal [WeO | MeO | Sm0 [HiZ0|HiZ1 Sml| Mel| Wel| Lal| Pul| Stl| Sul

wired AND logic value result: 0
wired OR 1logic value result: 1

Figure 7-24—Wired logic with unambiguous strength signals

The combination of the signals in Figure 7-24, using wired and logic, produces a result with the same value
as the result produced by an and gate with the value of the two signals as its inputs. The combination of
signals using wired or logic produces a result with the same value as the result produced by an or gate with
the values of the two signals as its inputs. The strength of the result is the same as the strength of the
combined signals in both cases. If the value of the upper signal changes so that both signals in Figure 7-24
possess a value 1, then the results of both types of logic have a value 1.

98 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all

combinations of each of the strength levels in the first signal with each of the strength levels in the second
signal, as shown in Figure 7-25.

strength0 strength1
716|514 /3[]2|1/0/0(1]2|3, 4/,5|6]|7

Sul [St0 | Pul | La0 [WeO |MeO | Sm0 [HiZ0|HiZ1 Sml| Mel| Wel| Lal| Pul| Stl]| Sul

Signal 1

strength0 strength1
7/,6(5| 4|3 2,1, 0] 0| 1] 2| 3| 4| 5| 6| 7

Sul [St0 | Pul | La0 [WeO |MeO | Sm0 [HiZ0|HiZ] Sml| Mel| Wel| Lal| Pul| Stl]| Sul

Signal 2

The combinations of strength levels for and logic appear in the
following chart:

signall signal2 result

strength | value strength value strength value

5 0 5 1 5 0

6 0 5 1 6 0

The result is the following signal:

strength0 strength1
7,654 (32100123 4|5|6]|7

Sul | St0 | Pul | La0 [WeO | MeO | Sm0 [HiZ0|HiZ1 Sml| Mel| Wel| Lal| Pul| St1l| Sul

l—»]

The combinations of strength levels for or logic appear in the
following chart:

signall signal2 result

strength | value | strength | value strength value

5 0 5 1 5 1

6 0 5 1 6 0

The result is the following signal:

strength0 strength1
7116|5432 |1/0|0(1]2|3,4/,5|6]7

Su0 | St0|Pul| La0|WeO|MeO |SmO |[HiZO0|HiZ]1] Sml| Mel| Wel| Lal| Pul| Stl| Sul
|

Figure 7-25—Wired logic and ambiguous strengths

Copyright © 2006 IEEE. All rights reserved. 99

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

7.11 Strength reduction by nonresistive devices

The nmos, pmos, and cmos switches shall pass the strength from the data input to the output, except that a
supply strength shall be reduced to a strong strength.

The tran, tranif0, and tranifl switches shall not affect signal strength across the bidirectional terminals,
except that a supply strength shall be reduced to a strong strength.

7.12 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran, rtranifl, and rtranif0 devices shall reduce the strength of signals that
pass through them according to Table 7-8.

Table 7-8—Strength reduction rules

Input strength Reduced strength
Supply drive Pull drive
Strong drive Pull drive
Pull drive Weak drive
Large capacitor Medium capacitor
Weak drive Medium capacitor
Medium capacitor Small capacitor
Small capacitor Small capacitor
High impedance High impedance

7.13 Strengths of net types

The tri0, tril, supply0, and supplyl net types shall generate signals with specific strength levels. The trireg
declaration can specify either of two signal strength levels other than a default strength level.

7.13.1 tri0 and tri1 net strengths

The tri0 net type models a net connected to a resistive pulldown device. In the absence of an overriding
source, such a signal shall have a value 0 and a pull strength. The tril net type models a net connected to a
resistive pullup device. In the absence of an overriding source, such a signal shall have a value 1 and a pull
strength.

7.13.2 trireg strength

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg net that is
in the charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of
these three strengths: large, medium, or small. The specific strength associated with a particular trireg net

shall be specified by the user in the net declaration. The default shall be medium. The syntax of this
specification is described in 4.4.1.

100 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

7.13.3 supply0 and supply1 net strengths

The supply0 net type models ground connections. The supplyl net type models connections to power
supplies. The supply0 and supply1 net types shall have supply driving strengths.

7.14 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a circuit. The gate delays
specify the signal propagation delay from any gate input to the gate output. Up to three values per output
representing rise, fall, and turn-off delays can be specified (see 7.2 through 7.8).

Net delays refer to the time it takes from any driver on the net changing value to the time when the net value
is updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, the default delay shall be zero when no delay specification is given. When one delay
value is given, then this value shall be used for all propagation delays associated with the gate or the net.
When two delays are given, the first delay shall specify the rise delay, and the second delay shall specify the
fall delay. The delay when the signal changes to high impedance or to unknown shall be the lesser of the two
delay values.

For a three-delay specification,

— The first delay refers to the transition to the 1 value (rise delay).
— The second delay refers to the transition to the 0 value (fall delay).
— The third delay refers to the transition to the high-impedance value.

When a value changes to the unknown (x) value, the delay is the smallest of the three delays. The strength of
the input signal shall not affect the propagation delay from an input to an output.

Table 7-9 summarizes the from-to propagation delay choice for the two- and three-delay specifications.

Table 7-9—Rules for propagation delays

Delay used if there are
From value: To value:
2 delays 3 delays
0 1 dl dl
0 X min(d1, d2) min(d1, d2, d3)
0 z min(dl, d2) d3
1 0 d2 d2
1 X min(d1, d2) min(d1, d2, d3)
1 z min(dl, d2) d3
X 0 d2 d2
X 1 dl dl
X z min(d1, d2) d3
z 0 d2 d2
Copyright © 2006 IEEE. All rights reserved. 101

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 7-9—Rules for propagation delays (continued)

Delay used if there are
From value: To value:
2 delays 3 delays
z 1 dl dl
z X min(d1, d2) min(d1, d2, d3)

For example:
Example 1—The following is an example of a delay specification with one, two, and three delays:

and #(10) al (out, inl, in2); // only one delay
and #(10,12) a2 (out, inl, in2); // rise and fall delays
bufif0 #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2—The following example specifies a simple latch module with three-state outputs, where
individual delays are given to the gates. The propagation delay from the primary inputs to the outputs of the
module will be cumulative, and it depends on the signal path through the network.

module tri latch (gout, ngout, clock, data, enable);
output gout, ngout;

input clock, data, enable;

tri gout, ngout;

not #5 nl (ndata, data);
nand #(3,5) n2 (wa, data, clock),
n3 (wb, ndata, clock);
nand #(12,15) n4 (g, ng, wa),
n5 (ng, gq, wb);
bufifl #(3,7,13) g drive (gout, g, enable),

ng drive (ngout, ng, enable);

endmodule
7.14.1 min:typ:max delays
The syntax for delays on gate primitives (including UDPs; see Clause 8), nets, and continuous assignments
shall allow three values each for the rising, falling, and turn-off delays. The minimum, typical, and
maximum values for each delay shall be specified as expressions separated by colons. There shall be no
required relation (e.g., min < typ < max) between the expressions for minimum, typical, and maximum
delays. These can be any three expressions.
For example:
The following example shows min: typ :max values for rising, falling, and turn-off delays:

module iobuf (iol, io2, dir);

bufif0 #(5:7:9, 8:10:12, 15:18:21) bl (iol, io2, dir);
bufifl #(6:8:10, 5:7:9, 13:17:19) b2 (io2, iol, dir);

endmodule

102 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and
maximum values. These are specified by expressions separated by colons. The following example illustrates
this concept.

parameter min hi = 97, typ hi = 100, max_hi = 107;
reg clk;

always begin
#(95:100:105) clk = 1;
#(min_hi:typ hi:max hi) clk = 0;
end

7.14.2 trireg net charge decay

Like all nets, the delay specification in a trireg net declaration can contain up to three delays. The first two
delays shall specify the delay for transition to the 1 and 0 logic states when the trireg net is driven to these
states by a driver. The third delay shall specify the charge decay time instead of the delay in a transition to
the z logic state. The charge decay time specifies the delay between when the drivers of a trireg net turn off
and when its stored charge can no longer be determined.

A trireg net does not need a turn-off delay specification because a trireg net never makes a transition to the
z logic state. When the drivers of a trireg net make transitions from the 1, 0, or x logic states to off, the
trireg net shall retain the previous 1, 0, or x logic state that was on its drivers. The z value shall not
propagate from the drivers of a trireg net to a trireg net. A trireg net can only hold a z logic state when z is
the initial logic state of the trireg net or when the trireg net is forced to the z state with a force statement
(see 9.3.2).

A delay specification for charge decay models a charge storage node that is not ideal, i.e., a charge storage
node whose charge leaks out through its surrounding devices and connections.

The charge decay process and the delay specification for charge decay are described in 7.14.2.1 and
7.14.2.2, respectively.

7.14.2.1 Charge decay process
Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg net to an unknown value (x) after
a specified delay. The charge decay process shall begin when the drivers of the trireg net turn off and the
trireg net starts to hold charge. The charge decay process shall end under the following two conditions:
a) The delay specified by charge decay time elapses, and the trireg net makes a transition from 1 or 0
to x.
b) The drivers of trireg net turn on and propagate a 1, 0, or x into the trireg net.

7.14.2.2 Delay specification for charge decay time

The third delay in a trireg net declaration shall specify the charge decay time. A three-valued delay
specification in a trireg net declaration shall have the following form:

#(d1, 42, d3) // (rise_delay, fall delay, charge decay time)

The charge decay time specification in a trireg net declaration shall be preceded by a rise and a fall delay
specification.

Copyright © 2006 IEEE. All rights reserved. 103

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

For example:

Example 1—The following example shows a specification of the charge decay time in a trireg net
declaration:

trireg (large) #(0,0,50) capl;

This example declares a trireg net named capl. This trireg net stores a large charge. The delay
specifications for the rise delay is 0, the fall delay is 0, and the charge decay time specification is 50 time
units.

Example 2—The next example presents a source description file that contains a trireg net declaration with a
charge decay time specification. Figure 7-26 shows an equivalent schematic for the source description.

module capacitor;
reg data, gate;

// trireg declaration with a charge decay time of 50 time units
trireg (large) #(0,0,50) capl;

nmos nmosl (capl, data, gate); // nmos that drives the trireg

initial begin
$monitor ("$0d data=%v gate=%v capl=%v", S$time, data, gate, capl);

data = 1;
// Toggle the driver of the control input to the nmos switch
gate = 1;
#10 gate = 0;
#30 gate = 1;
#10 gate = 0;
#100 $finish;
end
endmodule
gate
data
nmosl J_ ,
jj trireg
Figure 7-26—Trireg net with capacitance
104 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

8. User-defined primitives (UDPs)

This clause describes a modeling technique to augment the set of predefined gate primitives by designing
and specifying new primitive elements called UDPs. Instances of these new UDPs can be used in exactly the
same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a UDP:

a) Combinational—modeled by a combinational UDP
b) Sequential—modeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential
UDP uses the value of its inputs and the current value of its output to determine the value of its output.
Sequential UDPs provide a way to model sequential circuits such as flip-flops and latches. A sequential

UDP can model both level-sensitive and edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three states: 0, 1, or x. The three-state value z is
not supported. In sequential UDPs, the output always has the same value as the internal state.

The z values passed to UDP inputs shall be treated the same as x values.

8.1 UDP definition
UDP definitions are independent of modules; they are at the same level as module definitions in the syntax
hierarchy. They can appear anywhere in the source text, either before or after they are instantiated inside a

module. They shall not appear between the keywords module and endmodule.

Implementations may limit the maximum number of UDP definitions in a model, but they shall allow at
least 256.

The formal syntax of the UDP definition is given in Syntax 8-1.

Copyright © 2006 IEEE. All rights reserved. 105

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

udp_declaration ::= (From A.5.1)
{ attribute_instance } primitive udp_identifier (udp port list) ;
udp_port declaration { udp port declaration }
udp_body
endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port list) ;
udp_body
endprimitive
udp_port_list ::= (From A.5.2)
output port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::=
udp_output declaration , udp_input_declaration { , udp input declaration }
udp port_declaration ::=
udp_output_declaration ;
| udp_input_declaration ;
| udp _reg declaration ;
udp_output declaration ::=
{ attribute_instance } output port_identifier
| { attribute_instance } output reg port_identifier [= constant_expression |
udp_input_declaration ::=
{ attribute_instance } input list_of port identifiers
udp_reg_declaration ::=
{ attribute_instance } reg variable_identifier
udp_body ::= (From A.5.3)
combinational body | sequential body
combinational body ::=
table combinational entry { combinational entry } endtable
combinational entry ::=
level input _list : output_symbol ;
sequential body ::=
[udp_initial statement] table sequential entry { sequential entry } endtable
udp_initial_statement ::=
initial output port identifier = init_val
init_val ::=1'b0 | 1'b1 | 1'bx | 1'DX | 1'BO|1'B1 |1'Bx | 1'BX |1 |0
sequential_entry ::=
seq_input_list : current_state : next_state ;
seq_input_list ::=
level input list | edge input list
level input_list ::=
level _symbol { level symbol }
edge input_list ::=
{ level symbol } edge indicator { level symbol }
edge_indicator ::=
(level_symbol level symbol) | edge symbol
current_state ::= level symbol
next_state ::=output_symbol | -
output_symbol ::=0]1|x|X
level symbol::=0|1|x|X|?|b|B
edge symbol :=r |R|f|F|p|P|n|N|*

Syntax 8-1—Syntax for UDPs

106 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

8.1.1 UDP header

A UDP definition shall have one of two alternate forms. The first form shall begin with the keyword
primitive, followed by an identifier, which shall be the name of the UDP. This in turn shall be followed by
a comma-separated list of port names enclosed in parentheses, which shall be followed by a semicolon. The
UDP definition header shall be followed by port declarations and a state table. The UDP definition shall be
terminated by the keyword endprimitive.

The second form shall begin with the keyword primitive, followed by an identifier, which shall be the name
of the UDP. This in turn shall be followed by a comma-separated list of port declarations enclosed in
parentheses, followed by a semicolon. The UDP definition header shall be followed by a state table. The
UDP definition shall be terminated by the keyword endprimitive.

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on
UDPs. All ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the first port in the port list.
8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keyword
output, followed by one output port name. The input port declaration begins with the keyword input,
followed by one or more input port names.

Sequential UDPs shall contain a reg declaration for the output port, either in addition to the output
declaration, when the UDP is declared using the first form of a UDP Header, or as part of the
output declaration. Combinational UDPs cannot contain a reg declaration. The initial value of the output
port can be specified in an initial statement in a sequential UDP (see 8.1.3).

Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs
for sequential UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement specifies the value of the output port when simulation begins. This
statement begins with the keyword initial. The statement that follows shall be an assignment statement that
assigns a single-bit literal value to the output port.

8.1.4 UDP state table

The state table defines the behavior of a UDP. It begins with the keyword table and is terminated with the
keyword endtable. Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 8-1), which indicate input values and
output state. Three states—o0, 1, and x—are supported. The z state is explicitly excluded from consideration
in UDPs. A number of special characters are defined to represent certain combinations of state possibilities.
These are described in Table 8-1.

The order of the input state fields of each row of the state table is taken directly from the port list in the UDP
definition header. It is not related to the order of the input port declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are separated
from the output field by a colon (:). Each row defines the output for a particular combination of the input
values (see 8.2).

Copyright © 2006 IEEE. All rights reserved. 107

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Sequential UDPs have an additional field inserted between the input fields and the output field. This
additional field represents the current state of the UDP and is considered equivalent to the current output
value. It is delimited by colons. Each row defines the output based on the current state, particular
combinations of input values, and at most one input transition (see 8.4). A row such as the one shown below
is illegal:

(01) (10) O : O : 1 ;

If all input values are specified as x, then the output state shall be specified as x.

It is not necessary to explicitly specify every possible input combination. All combinations of input values
that are not explicitly specified result in a default output state of x.

It is illegal to have the same combination of inputs, including edges, specified for different outputs.
8.1.5 Z values in UDP

The z value in a table entry is not supported, and it is considered illegal. The z values passed to UDP inputs
shall be treated the same as x values.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided.
Table 8-1 summarizes the meaning of all the value symbols that are valid in the table part of a UDP

definition.
Table 8-1—UDP table symbols
Symbol Interpretation Comments

0 Logic 0

1 Logic 1

X Unknown Permitted in the input and output fields of all
UDPs and in the current state field of sequen-
tial UDPs.

? Iteration of 0, 1, and x Not permitted in output field.

b Iteration of 0 and 1 Permitted in the input fields of all UDPs and
in the current state field of sequential UDPs.
Not permitted in the output field.

- No change Permitted only in the output field of a
sequential UDP.

(vw) Value change from v to w v and w can be any one of 0, 1, x, ?, or b,
and are only permitted in the input field.

* Same as (??) Any value change on input.

r Same as (01) Rising edge on input.

f Same as (10) Falling edge on input.

p Iteration of (01), (0 x) and (x1) Potential positive edge on the input.

n Iteration of (10), (1x)and (x0 Potential negative edge on the input.

108 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states.
Whenever an input state changes, the UDP is evaluated and the output state is set to the value indicated by
the row in the state table that matches all the input states. All combinations of the inputs that are not
explicitly specified will drive the output state to the unknown value x.

For example:

The following example defines a multiplexer with two data inputs and a control input:

primitive multiplexer (mux, control, datahA, dataB);

output mux;

input control, dataA, dataB;

table

// control dataA dataB mux
0 1 0 : 1 ;
0 1 1 1 ;
0 1 X 1 ;
0 0 0 0 ;
0 0 1 0 ;
0 0 X 0 ;
1 0 1 1 ;
1 1 1 1 ;
1 X 1 1 ;
1 0 0 0 ;
1 1 0 0 ;
1 X 0 0 ;
X 0 0 0 ;
X 1 1 1 ;

endtable

endprimitive

The first entry in this example can be explained as follows: when control equals 0, dataa equals 1, and
dataB equals 0, then output mux equals 1.

The input combination 0xx (control=0, dataA=x, dataB=x) is not specified. If this combination
occurs during simulation, the value of output port mux will become x.

Using 2, the description of a multiplexer can be abbreviated as follows:

primitive multiplexer (mux, control, datad, dataB);

output mux;

input control, datahA, dataB;

table

// control dataA dataB mux
0 1 ? : 1 ; // ? =0 1x
0 0 ? o ;
1 ? 1 1 ;
1 ? 0 0 ;
x 0 0 0 ;
x 1 1 1 ;

endtable

endprimitive

Copyright © 2006 IEEE. All rights reserved. 109

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the
output is declared to be of type reg and there is an additional field in each table entry. This new field
represents the current state of the UDP. The output field in a sequential UDP represents the next state.

For example:
Consider the example of a latch:
primitive latch (g, clock, data);

output g; reg g;
input clock, data;

table
// clock data ¢ g+
0 1 ? 1 ;
0 0 ? 0 ;
1 ? :?2 : - ; // - = no change
endtable
endprimitive

This description differs from a combinational UDP model in two ways. First, the output identifier g has an
additional reg declaration to indicate that there is an internal state q. The output value of the UDP is always
the same as the internal state. Second, a field for the current state, which is separated by colons from the
inputs and the output, has been added.

8.4 Edge-sensitive sequential UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine the
output value. Edge-sensitive behavior differs in that changes in the output are triggered by specific
transitions of the inputs. This makes the state table a transition table.

Each table entry can have a transition specification on at most one input. A transition is specified by a pair of
values in parentheses such as (01) or a transition symbol such as r. Entries such as the following are illegal:

(01) (01)0 : 0 : 1 ;

All transitions that do not affect the output shall be explicitly specified. Otherwise, such transitions cause the
value of the output to change to x. All unspecified transitions default to the output value x.

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be specified for all
edges of all inputs.

For example:
The following example describes a rising edge D flip-flop:
primitive d edge ff (g, clock, data);

output g; reg qg;
input clock, data;

table
// clock data q g+
// obtain output on rising edge of clock
(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
110 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

(07?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;
// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (?7?) : ? : -

endtable
endprimitive

1

The terms such as (01) represent transitions of the input values. Specifically, (01) represents a transition
from 0 to 1. The first line in the table of the preceding UDP definition is interpreted as follows: when clock
changes value from 0 to 1 and data equals 0, the output goes to 0 no matter what the current state.

The transition of clock from 0 to x with data equal to 0 and current state equal to 1 will result in the output g
going to x.

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be specified with an initial statement that
provides a procedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begins with the keyword initial. The valid
contents of initial statements in UDPs and the valid left-hand and right-hand sides of their procedural
assignment statements differ from initial statements in modules. A partial list of differences between these
two types of initial statements is described in Table 8-2.

Table 8-2—Initial statements in UDPs and modules

Initial statements in UDPs

Initial statements in modules

Contents limited to one procedural assignment
statement

Contents can be one procedural statement of any
type or a block statement that contains more than
one procedural statement

The procedural assignment statement shall assign a
value to a reg whose identifier matches the identifier
of an output terminal

Procedural assignment statements in initial state-
ments can assign values to a reg whose identifier
does not match the identifier of an output terminal

The procedural assignment statement shall assign
one of the following values: 1'b1, 1'b0, 1'bx, 1, 0

Procedural assignment statements can assign values
of any size, radix, and value

For example:

primitive srff (q, s, r);
output g; reg qg;
input s, r;

initial g = 1'b1;

table

// s r a g+
1 0 ? 1 ;
£f 0 1 ;
0 r ? 0 ;

Copyright © 2006 IEEE. All rights reserved.

Example 1—The following example shows a sequential UDP that contains an initial statement.

111

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1364-2005 IEEE STANDARD FOR VERILOG®
0o f£:0 -
1 1 : 2 0 ;
endtable
endprimitive

The output g has an initial value of 1 at the start of the simulation; a delay specification on an instantiated
UDP does not delay the simulation time of the assignment of this initial value to the output. When
simulation starts, this value is the current state in the state table. Delays are not permitted in a UDP initial
statement.

Example 2—The following example and Figure 8-1 show how values are applied in a module that
instantiates a sequential UDP with an initial statement:

primitive dff1 (g, clk, 4);
input clk, 4;

output g; reg g;

initial g = 1'b1;

table

// clk d q g+
r 0 ? 0 H
r 1 ? 1
f ? ? - ;
? * ? -

endtable

endprimitive

module dff (g, gb, clk, 4d);
input clk, 4;
output g, gb;
dff1l gl (gi, clk, 4);
buf #3 g2 (g, gi);
not #5 g3 (gb, gi);
endmodule

The UDP dff1 contains an initial statement that sets the initial value of its output to 1. The module dff
contains an instance of UDP df£1.

Figure 8-1 shows the schematic of the preceding module and the simulation propagation times of the initial
value of the UDP output.

In Figure 8-1, the fanout from the UDP output gi includes nets g and gb. At simulation time 0, gi changes
value to 1. That initial value of gi does not propagate to net g until simulation time 3, and it does not
propagate to net gb until simulation time 5.

112 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
module dff
buf g2
d | 5!
UDP dff1l g1 | #3
[not g3
clk E:>O ab
#5
. 1
qi
0
1
q
gb 1
0 3 5

simulation time

Figure 8-1—Module schematic and simulation times of initial value propagation

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax 8-2.

udp_instantiation ::= (From A.5.4)
udp_identifier [drive_strength | [delay?2]
udp_instance {, udp_instance } ;
udp_instance ::=
[name of udp instance] (output terminal , input terminal
{, input_terminal })
name of udp_ instance ::=
udp_instance_identifier [range]

Syntax 8-2—Syntax for UDP instances

Instances of UDPs are specified inside modules in the same manner as gates (see 7.1). The instance name is
optional, just as for gates. The port connection order is as specified in the UDP definition. Only two delays
may be specified because z is not supported for UDPs. An optional range may be specified for an array of
UDP instances. The port connection rules remain the same as outlined in 7.1.

Copyright © 2006 IEEE. All rights reserved. 113

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

For example:
The following example creates an instance of the D-type flip-flop d_edge f£ (defined in 8.4).

module flip;

reg clock, data;
parameter pl 10;
parameter p2 33;
parameter p3 = 12;

d_edge_ ff #p3 d_inst (g, clock, data);

initial begin

data = 1;

clock = 1;

#(20 * p1) $finish;
end
always #pl clock = ~clock;
always #p2 data = ~data;
endmodule

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table.
When the input changes, the edge-sensitive cases are processed first, followed by level-sensitive cases.
Thus, when level-sensitive and edge-sensitive cases specify different output values, the result is specified by
the level-sensitive case.

For example:

primitive jk_edge ff (g, clock, j, k, preset, clear);
output g; reg q;
input clock, j, k, preset, clear;
table
// clock Jjk pc state output/next state

? ?? 01 : ? : 1 ; // preset logic
?7? *1
?? 10
?? 1%*
00 00
00 11
01 11
10 11
11 11
11 11

?? 2?7

; // clear logic

; // normal clocking cases

ORrRr P O I B O oK

TR R RRRE W0

*?2 27 ; // J and k transition cases

VY Y PO Y Y Y O O I

o

2% 27
endtable
endprimitive

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combination is
01, the output has value 1. Similarly, whenever the preset and clear combination has value 10, the output
has value o.

114 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is sensitive
to the rising clock edge, as indicated by an r in the clock field in those entries. The insensitivity to the falling
edge of clock is indicated by a hyphen (-) in the output field (see Table 8-1) for the entry with an £ as the
value of clock. Remember that the desired output for this input transition shall be specified to avoid
unwanted x values at the output. The last two entries show that the transitions in j and k inputs do not
change the output on a steady low or high clock.

8.8 Level-sensitive dominance

Table 8-3 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or
edge-sensitive behavior, and a case of input values that each includes.

Table 8-3—Mixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior
2 7201:?:1; 0 0001:0:1; Level-sensitive
f2222:2 - f 0001:0:0; Edge-sensitive

The included cases specify opposite next state values for the same input and current state combination. The
level-sensitive included case specifies that when the inputs clock, jk, and pc values are 0, 00, and 01 and
the current state is 0, the output changes to 1. The edge-sensitive included case specifies that when clock
falls from 1 to 0, the other inputs jk and pc are 00 and 01, and the current state is 0, then the output changes
to 0.

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output changes to 1.

Copyright © 2006 IEEE. All rights reserved. 115

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

9. Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level.
Modeling a circuit with logic gates and continuous assignments reflects quite closely the logic structure of
the circuit being modeled; however, these constructs do not provide the power of abstraction necessary for
describing complex high-level aspects of a system. The procedural constructs described in this clause are
well suited to tackling problems such as describing a microprocessor or implementing complex timing
checks.

This clause starts with a brief overview of a behavioral model to provide a context for many types of
behavioral statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog behavioral models contain procedural statements that control the simulation and manipulate
variables of the data types previously described. These statements are contained within procedures. Each
procedure has an activity flow associated with it.

The activity starts at the control constructs initial and always. Each initial construct and each always
construct starts a separate activity flow. All of the activity flows are concurrent to model the inherent
concurrence of hardware. These constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

module behave;
reg [1:0] a, b;

initial begin

a = 'bl;

b = 'bo;
end
always begin

#50 a = ~a;
end

always begin
#100 b = ~b;
end

endmodule

During simulation of this model, all of the flows defined by the initial and always constructs start together at
simulation time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the reg variables a and b initialize to 1 and 0, respectively, at simulation time zero. The initial
construct is then complete and does not execute again during this simulation run. This initial construct
contains a begin-end block (also called a sequential block) of statements. In this begin-end block, a is
initialized first, followed by b.

The always constructs also start at time zero, but the values of the variables do not change until the times
specified by the delay controls (introduced by #) have elapsed. Thus, reg a inverts after 50 time units and
reg b inverts after 100 time units. Because the always constructs repeat, this model will produce two square
waves. The reg a toggles with a period of 100 time units, and reg b toggles with a period of 200 time units.
The two always constructs proceed concurrently throughout the entire simulation run.

116 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

9.2 Procedural assignments

As described in Clause 6, procedural assignments are used for updating reg, integer, time, real, realtime,
and memory data types. There is a significant difference between procedural assignments and continuous
assignments:

— Continuous assignments drive nets and are evaluated and updated whenever an input operand
changes value.

— Procedural assignments update the value of variables under the control of the procedural flow
constructs that surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-
hand side shall be a variable that receives the assignment from the right-hand side. The left-hand side of a
procedural assignment can take one of the following forms:

— reg, integer, real, realtime, or time data type: an assignment to the name reference of one of these
data types.

— Bit-select of a reg, integer, or time data type: an assignment to a single bit that leaves the other bits
untouched.

— Part-select of a reg, integer, or time data type: a part-select of one or more contiguous bits that
leaves the rest of the bits untouched.

— Memory word: a single word of a memory.

— Concatenation or nested concatenation of any of the above: a concatenation or nested concatenation
of any of the previous four forms. Such specification effectively partitions the result of the right-
hand expression and assigns the partition parts, in order, to the various parts of the concatenation or
nested concatenation.

As described in 5.4, when the right-hand side evaluates to fewer bits than the left-hand side, the right-hand
side value is padded to the size of the left-hand side. If the right-hand side is unsigned, it is padded according
to the rules specified in 5.4.1. If the right-hand side is signed, it is sign-extended.

The Verilog HDL contains two types of procedural assignment statements:

— Blocking procedural assignment statements

— Nonblocking procedural assignment statements

Blocking and nonblocking procedural assignment statements specify different procedural flows in
sequential blocks.

9.2.1 Blocking procedural assignments
A blocking procedural assignment statement shall be executed before the execution of the statements that

follow it in a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the
execution of statements that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.

Copyright © 2006 IEEE. All rights reserved. 117

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

blocking_assignment ::= (From A.6.2)
variable lvalue =[delay or event control] expression
delay_control ::= (From A.6.5)
delay value
| # (mintypmax_expression)
delay or event control ::=
delay control
| event_control
| repeat (expression) event_control
event control ::=
@ hierarchical event identifier
| @ (event_expression)
| @*
| @ (%)
event_expression ::=
expression
| posedge expression
| negedge expression
| event _expression or event _expression
| event expression , event_expression
variable lvalue ::= (From A.8.5)
hierarchical variable identifier [{ [expression] } [range expression |]
| { variable_lvalue {, variable lvalue } }

Syntax 9-1—Syntax for blocking assignments

In this syntax, variable lvalue is a data type that is valid for a procedural assignment statement, = is the
assignment operator, and delay or event control is the optional intra-assignment timing control. The
control can be either a delay control (e.g., #6) or an event control (e.g., @(posedge clk)). The
expression is the right-hand side value that shall be assigned to the left-hand side. If variable lvalue
requires an evaluation, it shall be evaluated at the time specified by the intra-assignment timing control.

The = assignment operator used by blocking procedural assignments is also used by procedural continuous
assignments and continuous assignments.

For example:

The following examples show blocking procedural assignments:

rega = 0;

regal[3] = 1; // a bit-select

rega[3:5] = 7; // a part-select

mema [address] = 8'hff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation

9.2.2 The nonblocking procedural assignment
The nonblocking procedural assignment allows assignment scheduling without blocking the procedural
flow. The nonblocking procedural assignment statement can be used whenever several variable assignments

within the same time step can be made without regard to order or dependence upon each other.

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

118 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

nonblocking assignment ::= (From A.6.2)
variable lvalue <=[delay or event control] expression
delay_control ::= (From A.6.5)
delay value
| # (mintypmax_expression)
delay or event control ::=
delay control
| event_control
| repeat (expression) event_control
event control ::=
@ hierarchical event identifier
| @ (event_expression)
| @*
| @ (*)
event_expression ::=
expression
| posedge expression
| negedge expression
| event _expression or event _expression
| event expression , event_expression
variable lvalue ::= (From A.8.5)

hierarchical variable identifier [{ [expression] } [range expression |]
| { variable_lvalue {, variable lvalue } }

Syntax 9-2—Syntax for nonblocking assignments

In this syntax, variable 1lvalue is a data type that is valid for a procedural assignment statement, <= is
the nonblocking assignment operator, and delay or event control is the optional intra-assignment
timing control. If variable 1lvalue requires an evaluation, it shall be evaluated at the same time as the
expression on the right-hand side. The order of evaluation of the variable lvalue and the expression on
the right-hand side is undefined if timing control is not specified.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator.
The interpretation shall be decided from the context in which <= appears. When <= is used in an expression,
it shall be interpreted as a relational operator; and when it is used in a nonblocking procedural assignment, it

shall be interpreted as an assignment operator.

The nonblocking procedural assignments shall be evaluated in two steps as discussed in Clause 11. These
two steps are shown in the following example:

Copyright © 2006 IEEE. All rights reserved. 119

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1364-2005 IEEE STANDARD FOR VERILOG®
Example 1
module evaluates2 (out); At posedge c, the simulator Nonblocking
;):gtp:t %ut ,c . evaluates the. right-hand sides of assignment
O, G Step 1: the nonblocking gss1gnments and schedules
initial beei schedules the assignments of the changes at
Initia - egl_ new values at the end of the i %
i ; 1 ! nonblocking assign update events 1me
- - O:- (see 11.4). a=0
end When the simulator activates the b=1
always 45 Step 2: nonblocking assign update events,
c = ~C; .
ﬂ}e simulator updates the left-hfind Assignment
always e (posedge c) begin side of each nonblocking assign- values:
a <= b; // evaluates, schedules, mentstatement.
b <= a; // and executes in two steps a=1
end —
endmodule b=0

At the end of the time step means that the nonblocking assignments are the last assignments executed in a
time step—with one exception. Nonblocking assignment events can create blocking assignment events.
These blocking assignment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the
procedural flow. The nonblocking assignment evaluates and schedules the assignment, but it does not block
the execution of subsequent statements in a begin-end block.

Example 2
//non_blockl.v
module non blockl; scheduled
reg a, b, ¢, d, e, £; changes at
time 2

//blocking assignments

initial begin
a = #10 1; // a will be assigned 1 at time 10

b=#20; // b WZ!_ll be ass;gned 0 at t}me 12 scheduled
c =#4 1; // c will be assigned 1 at time 16
end changes at
time 4

//non-blocking assignments

initial begin
d <= #10 1; // d will be assigned 1 at time 10

e <= #2 0; // e will be assigned 0 at time 2

f <= #4 1; // £ will be assigned 1 at time 4 scheduled
end changes at
endmodule time 10

d=1

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the
current time step and can perform swapping operations with the nonblocking procedural assignments.

120 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

HARDWARE DESCRIPTION LANGUAGE

Example 3

//non_blockl.v
module non blockl;
reg a, b;

initial begin

= 0;

= 1;

<= b; // evaluates, schedules, and
<= a; // executes in two steps

Step 1:

oY oo

end

initial begin
$monitor (S$time,
#100 S$finish;

,"a = %b b = 3b", a, b);

IEEE
Std 1364-2005

The simulator evaluates the right-
hand side of the nonblocking
assignments and schedules the
assignments for the end of the
current time step.

Step 2:

At the end of the current time step,
the simulator updates the left-hand

end side of each nonblocking assign-
endmodule ment statement.
assignment values: a=1
b=0

The order of the execution of distinct nonblocking assignments to a given variable shall be preserved. In
other words, if there is clear ordering of the execution of a set of nonblocking assignments, then the order of
the resulting updates of the destination of the nonblocking assignments shall be the same as the ordering of

the execution (see 11.4.1).
Example 4

module multiple;
reg a;

initial a = 1;

// The assigned value of the reg is determinate

initial begin

a <= #4 0; // schedules a = 0 at time 4

a <= #4 1; // schedules a = 1 at time 4
end // At time 4, a =1
endmodule

If the simulator executes two procedural blocks concurrently and if these procedural blocks contain
nonblocking assignment operators to the same variable, the final value of that variable is indeterminate. For
example, the value of reg a is indeterminate in the following example:

Example 5

module multiple2;
reg a;

initial a = 1;
initial a <= #4 0;
initial a <= #4 1;

// At time 4, a = ??

// schedules 0 at time 4
// schedules 1 at time 4

// The assigned value of the reg is indeterminate

endmodule

Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

121

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The fact that two nonblocking assignments targeting the same variable are in different blocks is not by itself
sufficient to make the order of assignments to a variable indeterminate. For example, the value of reg a at
the end of time cycle 16 is determinate in the following example:

Example 6

module multiple3;
reg a;

initial #8 a <= #8 1; // executed at time 8;
// schedules an update of 1 at time 16
initial #12 a <= #4 0; // executed at time 12;
// schedules an update of 0 at time 16
// Because it is determinate that the update of a to the value 1
// is scheduled before the update of a to the value 0,
// then it is determinate that a will have the value 0
// at the end of time slot 16.
endmodule

The following example shows how the value of i [0] is assigned to r1 and how the assignments are
scheduled to occur after each time delay:

Example 7
module multiple4;
reg rl;

reg [2:0] i;

initial begin
// makes assignments to rl without cancelling previous assignments

for (i = 0; i <= 5; i = i+1)
rl <= # (i1i*10) 1i[0];

end

endmodule

r1

9.3 Procedural continuous assignments

The procedural continuous assignments (using keywords assign and force) are procedural statements that
allow expressions to be driven continuously onto variables or nets. The syntax for these statements is given

in Syntax 9-3.

The left-hand side of the assignment in the assign statement shall be a variable reference or a concatenation
of variables. It shall not be a memory word (array reference) or a bit-select or a part-select of a variable.

In contrast, the left-hand side of the assignment in the force statement can be a variable reference or a net
reference. It can be a concatenation of any of the above. Bit-selects and part-selects of vector variables are
not allowed.

122 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

net_assignment ::= (From A.6.1
net_lvalue = expression

procedural continuous_assignments ::= (From A.6.2)
assign variable assignment
| deassign variable lvalue
| force variable assignment
| force net_assignment
| release variable lvalue
| release net_lvalue
variable assignment ::=
variable lvalue = expression
net lvalue ::= (From A.8.5)
hierarchical net identifier [{ [constant expression] } [constant_range expression]]
| { net_lvalue {, net lvalue } }
variable lvalue ::=
hierarchical variable identifier [{ [expression] } [range expression]]
| { variable lvalue {, variable lvalue } }

Syntax 9-3—Syntax for procedural continuous assignments
9.3.1 The assign and deassign procedural statements

The assign procedural continuous assignment statement shall override all procedural assignments to a
variable. The deassign procedural statement shall end a procedural continuous assignment to a variable. The
value of the variable shall remain the same until the variable is assigned a new value through a procedural
assignment or a procedural continuous assignment. The assign and deassign procedural statements allow, for
example, modeling of asynchronous clear/preset on a D-type edge-triggered flip-flop, where the clock is
inhibited when the clear or preset is active.

If the keyword assign is applied to a variable for which there is already a procedural continuous assignment,
then this new procedural continuous assignment shall deassign the variable before making the new
procedural continuous assignment.

For example:

The following example shows a use of the assign and deassign procedural statements in a behavioral
description of a D-type flip-flop with preset and clear inputs:

module dff (g, 4, clear, preset, clock);
output g;

input d, clear, preset, clock;

reg q;

always @(clear or preset)
if (!clear)
assign g = 0;
else if (!preset)
assign g = 1;
else
deassign qg;

always @ (posedge clock)
q=d;
endmodule

Copyright © 2006 IEEE. All rights reserved. 123

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

If either clear or preset is low, then the output g will be held continuously to the appropriate constant
value, and a positive edge on the clock will not affect g. When both the clear and preset are high, then
q is deassigned.

9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided by the force and release procedural
statements. These statements have a similar effect to the assign-deassign pair, but a force can be applied to
nets as well as to variables. The left-hand side of the assignment can be a variable, a net, a constant bit-select
of a vector net, a part-select of a vector net, or a concatenation. It cannot be a memory word (array reference)
or a bit-select or a part-select of a vector variable.

A force statement to a variable shall override a procedural assignment or an assign procedural continuous
assignment to the variable until a release procedural statement is executed on the variable. When released,
then if the variable does not currently have an active assign procedural continuous assignment, the variable
shall not immediately change value. The variable shall maintain its current value until the next procedural
assignment or procedural continuous assignment to the variable. Releasing a variable that currently has an
active assign procedural continuous assignment shall immediately reestablish that assignment.

A force procedural statement on a net shall override all drivers of the net—gate outputs, module outputs, and
continuous assignments—until a release procedural statement is executed on the net. When released, the net
shall immediately be assigned the value determined by the drivers of the net.

For example:

module test;
reg a, b, ¢, d;
wire e;

and andl (e, a, b, c¢);

initial begin
$Smonitor ("%d d=%b,e=%b", S$stime, 4, e);
assign d = a & b & ¢;
a = 1;
b = 0;
c =1;
#10;
force d = (a |
force e = (a
#10;
release 4;
release e;
#10 S$finish;
end
endmodule

b
b

Results:

N -
o O O
I
o O
(D\('D('D
OI!‘O

In this example, an and gate instance andl is “patched” to act like an or gate by a force procedural
statement that forces its output to the value of its ORed inputs, and an assign procedural statement of
ANDed values is “patched” to act like an assign statement of ORed values.

124 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The right-hand side of a procedural continuous assignment or a force statement can be an expression. This
shall be treated just as a continuous assignment; that is, if any variable on the right-hand side of the
assignment changes, the assignment shall be reevaluated while the assign or force is in effect. For example:

force a = b + f(c) ;

Here, if b changes or ¢ changes, a will be forced to the new value of the expression b+f£ (c).

9.4 Conditional statement

The conditional statement (or if-else statement) is used to make a decision about whether a statement is
executed. Formally, the syntax is given in Syntax 9-4.

conditional statement ::= (From A.6.6)
if (expression)
statement_or null [else statement or null]
| if else if statement

Syntax 9-4—Syntax for if statement

If the expression evaluates to true (that is, has a nonzero known value), the first statement shall be executed.
If it evaluates to false (that is, has a zero value or the value is x or z), the first statement shall not execute. If
there is an else statement and expression is false, the else statement shall be executed.

Because the numeric value of the if expression is tested for being zero, certain shortcuts are possible. For
example, the following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a nested if
sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the
example below, the else goes with the inner if, as shown by indentation.

if (index > 0)
if (rega > regb)
result = rega;
else // else applies to preceding if
result = regb;

If that association is not desired, a begin-end block statement shall be used to force the proper association, as
shown below.

if (index > 0) begin
if (rega > regb)
result = rega;
end
else result = regb;

Copyright © 2006 IEEE. All rights reserved. 125

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

9.4.1 If-else-if construct

The construction in Syntax 9-5 occurs so often that it is worth a brief separate discussion:

if else if statement ::= (From A.6.6)
if (expression) statement _or null
{ else if (expression) statement or null }
[else statement or null]

Syntax 9-5—Syntax for if-else-if construct

This sequence of if statements (known as an if-else-if construct) is the most general way of writing a
multiway decision. The expressions shall be evaluated in order. If any expression is true, the statement
associated with it shall be executed, and this shall terminate the whole chain. Each statement is either a
single statement or a block of statements.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the
other conditions were satisfied. Sometimes there is no explicit action for the default. In that case, the trailing
else statement can be omitted, or it can be used for error checking to catch an impossible condition.

For example:

The following module fragment uses the if-else statement to test the variable index to decide whether one
of three modify segn regs has to be added to the memory address and which increment is to be added to
the index reg. The first ten lines declare the regs and parameters.

// declare regs and parameters
reg [31:0] instruction, segment area[255:0];
reg [7:0] index;
reg [5:0] modify segl,
modify seg2,
modify seg3;

parameter
segmentl = 0, inc_segl = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

// test the index variable

if (index < segment2) begin
instruction = segment area [index + modify segl];
index = index + inc_segl;

end

else if (index < segment3) begin
instruction = segment area [index + modify seg2];
index = index + inc_seg2;

end

else if (index < data) begin
instruction = segment_area [index + modify seg3];
index = index + inc_seg3;

end

else
instruction = segment area [index];

126 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

9.5 Case statement

The case statement is a multiway decision statement that tests whether an expression matches one of a
number of other expressions and branches accordingly. The case statement has the syntax shown in

Syntax 9-6.

case_statement ::= (From A.6.7)
case (expression)
case_item { case_item } endcase
| casez (expression)
case_item { case item } endcase
| casex (expression)
case_item { case item } endcase
case_item ::=
expression { , expression } : statement_or null
| default [:] statement _or null

Syntax 9-6—Syntax for case statement

The default statement shall be optional. Use of multiple default statements in one case statement shall be
illegal.

The case expression and the case item expression can be computed at run time; neither expression is
required to be a constant expression.

For example:

A simple example of the use of the case statement is the decoding of reg rega to produce a value for
result as follows:

reg [15:0] rega;
reg [9:0] result;

case (rega)
16'd0: result = 10'b0111111111;
16'dl: result = 10'b1011111111;
16'd2: result = 10'b1101111111;
16'd3: result = 10'b1110111111;
16'd4: result = 10'b1111011111;
16'd5: result = 10'b1111101111;
16'd6: result = 10'b1111110111;
16'd7: result = 10'b1111111011;
16'd8: result = 10'b1111111101;
16'd9: result = 10'b1111111110;
default result = 'bx;

endcase

The case expression given in parentheses shall be evaluated exactly once and before any of the case item
expressions. The case item expressions shall be evaluated and compared in the exact order in which they are
given. If there is a default case item, it is ignored during this linear search. During the linear search, if one of
the case item expressions matches the case expression given in parentheses, then the statement associated
with that case item shall be executed, and the linear search shall terminate. If all comparisons fail and the
default item is given, then the default item statement shall be executed. If the default statement is not given
and all of the comparisons fail, then none of the case item statements shall be executed.

Copyright © 2006 IEEE. All rights reserved. 127

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Apart from syntax, the case statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one expres-
sion with several others, as in the case statement.
b) The case statement provides a definitive result when there are x and z values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect
to the values 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case
statement. The bit length of all the expressions shall be equal so that exact bitwise matching can be
performed. The length of all the case item expressions, as well as the case expression in the parentheses,
shall be made equal to the length of the longest case expression and case item expression. If any of these
expressions is unsigned, then all of them shall be treated as unsigned. If all of these expressions are signed,
then they shall be treated as signed.

The reason for providing a case expression comparison that handles the x and z values is that it provides a
mechanism for detecting such values and reducing the pessimism that can be generated by their presence.

For example:
Example 1—The following example illustrates the use of a case statement to handle x and z values properly:

case (select[1:2])
2'b00: result = 0;
2'b01l: result = flaga;
2'b0x,
2'b0z: result = flaga ? 'bx : 0;
2'b10: result = flagb;

2'bx0,
2'bz0: result = flagb ? 'bx : 0;
default result = 'bx;

endcase

In this example, if select [1] is 0 and £1laga is 0, then even if the value of select [2] is x or z, result
should be 0—which is resolved by the third case.

Example 2—The following example shows another way to use a case statement to detect x and z values:
case (sig)
1'bz: S$display("signal is floating");
1'bx: S$display ("signal is unknown") ;
default: $display ("signal is %b", sig);
endcase
9.5.1 Case statement with do-not-cares
Two other types of case statements are provided to allow handling of do-not-care conditions in the case
comparisons. One of these treats high-impedance values (z) as do-not-cares, and the other treats both

high-impedance and unknown (x) values as do-not-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with
keywords casez and casex, respectively.

Do-not-care values (z values for casez, z and x values for casex) in any bit of either the case expression or
the case items shall be treated as do-not-care conditions during the comparison, and that bit position shall

128 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

not be considered. The do-not-care conditions in case expression can be used to control dynamically which
bits should be compared at any time.

The syntax of literal numbers allows the use of the question mark (?) in place of z in these case statements.
This provides a convenient format for specification of do-not-care bits in case statements.

For example:

Example 1—The following is an example of the casez statement. It demonstrates an instruction decode,
where values of the most significant bits select which task should be called. If the most significant bit of ir
is a 1, then the task instructionl is called, regardless of the values of the other bits of ir.

reg [7:0] ir;

casez (ir)
8'b1???????: instructionl (ir);
8'b01??????: instruction2 (ir) ;
8'b00010???: instruction3 (ir);
8'b000001??: instruction4 (ir) ;
endcase

Example 2—The following is an example of the casex statement. It demonstrates an extreme case of how do-
not-care conditions can be dynamically controlled during simulation. In this case, if r = 8'b01100110,
then the task stat2 is called.

reg [7:0] r, mask;

mask = 8'bx0x0x0x0;
casex (r * mask)
8'b001100xx: statl;
8'b1100xx00: stat2;
8'b00xx0011: stat3;
8'bxx010100: stat4;
endcase

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be
compared against case item expressions.

For example:
The following example demonstrates the usage by modeling a 3-bit priority encoder:
reg [2:0] encode ;
case (1)
encode [2] : $display ("Select Line 2") ;
encode[1] : $display ("Select Line 1") ;
encode [0] : $display ("Select Line 0") ;
default $display ("Exrror: One of the bits expected ON") ;

endcase

In this example, the case expression is a constant expression (1). The case items are expressions (bit-selects)
and are compared against the constant expression for a match.

Copyright © 2006 IEEE. All rights reserved. 129

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

9.6 Looping statements

There are four types of looping statements. These statements provide a means of controlling the execution of
a statement zero, one, or more times.

forever Continuously executes a statement.

repeat Executes a statement a fixed number of times. If the expression evaluates to unknown or
high impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out false,
the statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a variable that controls the num-
ber of loops executed.

b) Evaluates an expression. If the result is zero, the for loop shall exit. If it is not zero,
the for loop shall execute its associated statement(s) and then perform step c). If the
expression evaluates to an unknown or high-impedance value, it shall be treated as
ZEero.

c¢) Executes an assignment normally used to modify the value of the loop-control vari-
able, then repeats step b).

Syntax 9-7 shows the syntax for various looping statements.

loop_statement ::= (From A.6.8)
forever statement
| repeat (expression) statement
| while (expression) statement
| for (variable assignment ; expression ; variable assignment)
statement

Syntax 9-7—Syntax for looping statements

The rest of this subclause presents examples for three of the looping statements. The forever loop should
only be used in conjunction with the timing controls or the disable statement; therefore, this example is
presented in 9.7.2.

For example:

Example 1—Repeat statement: In the following example of a repeat loop, add and shift operators implement
a multiplier:

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin : mult
reg [longsize:1] shift opa, shift opb;
shift opa = opa;
shift opb = opb;
result = 0;
repeat (size) begin

130 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

if (shift opb[1])
result = result + shift opa;
shift opa = shift opa << 1;
shift opb = shift opb >> 1;
end
end

Example 2—While statement: The following example counts the number of logic 1 values in rega:

begin : countils
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin
if (tempreg(o0])
count = count + 1;
tempreg = tempreg >> 1;
end
end

Example 3—For statement: The for statement accomplishes the same results as the following pseudo-code
that is based on the while loop:

begin
initial_ assignment;
while (condition) begin
statement
step assignment;
end
end

The for loop implements this logic while using only two lines, as shown in the pseudo-code below:

for (initial assignment; condition; step assignment)
statement

9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The
first type is a delay control, in which an expression specifies the time duration between initially
encountering the statement and when the statement actually executes. The delay expression can be a
dynamic function of the state of the circuit, but it can be a simple number that separates statement executions
in time. The delay control is an important feature when specifying stimulus waveform descriptions. It is
described in 9.7.1 and 9.7.7.

The second type of timing control is the event expression, which allows statement execution to be delayed
until the occurrence of some simulation event occurring in a procedure executing concurrently with this
procedure. A simulation event can be a change of value on a net or variable (an implicit event) or the
occurrence of an explicitly named event that is triggered from other procedures (an explicit event). Most
often, an event control is a positive or negative edge on a clock signal. Event control is discussed in 9.7.2
through 9.7.7.

The procedural statements encountered so far all execute without advancing simulation time. Simulation
time can advance by one of the following three methods:

Copyright © 2006 IEEE. All rights reserved. 131

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

— A delay control, which is introduced by the symbol #
— An event control, which is introduced by the symbol @

— The wait statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.

delay_control ::= (From A.6.5)
delay value
| # (mintypmax_expression)
event_control ::=
@ hierarchical event identifier
| @ (event _expression)
| @*
| @ (%)
procedural timing_control ::=
delay control
| event control
procedural timing control statement ::=
| procedural timing control statement or null

Syntax 9-8—Syntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Clause 6. The three procedural timing
control methods are discussed in 9.7.1 through 9.7.7.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the
procedural statement preceding the delay control by the specified delay. If the delay expression evaluates to
an unknown or high-impedance value, it shall be interpreted as zero delay. If the delay expression evaluates
to a negative value, it shall be interpreted as a twos-complement unsigned integer of the same size as a time
variable. Specify parameters are permitted in the delay expression. They can be overridden by SDF
annotation, in which case the expression is reevaluated.

For example:

Example 1—The following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

Example 2—The next three examples provide an expression following the number sign (#). Execution of the
assignment is delayed by the amount of simulation time specified by the value of the expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb; // delay is average of d and e
#regr regr = regr + 1; // delay is the value in regr

9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or variable or the
occurrence of a declared event. The value changes on nets and variable can be used as events to trigger
the execution of a statement. This is known as detecting an implicit event. The event can also be based on

132 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

the direction of the change, that is, toward the value 1 (posedge) or toward the value O (negedge). The
behavior of posedge and negedge events is shown in Table 9-1 and can be described as follows:

— A negedge shall be detected on the transition from 1 to x, z, or 0, and from x or z to 0

— A posedge shall be detected on the transition from 0 to x, z, or 1, and from x or z to 1

Table 9-1—Detecting posedge and negedge

To
From
0 1 X z
0 No edge | posedge | posedge | posedge
1 negedge | Noedge | negedge | negedge
x negedge | posedge | Noedge | Noedge
z negedge | posedge | Noedge | Noedge

An implicit event shall be detected on any change in the value of the expression. An edge event shall be
detected only on the least significant bit of the expression. A change of value in any operand of the
expression without a change in the result of the expression shall not be detected as an event.

For example:
The following example shows illustrations of edge-controlled statements:

@r rega = regb; // controlled by any value change in the reg r
@ (posedge clock) rega = regb; // controlled by posedge on clock
forever @ (negedge clock) rega = regb; // controlled by negative edge

9.7.3 Named events

A new data type, in addition to nets and variables, called event can be declared. An identifier declared as an
event data type is called a named event. A named event can be triggered explicitly. It can be used in an event
expression to control the execution of procedural statements in the same manner as event controls described
in 9.7.2. Named events can be made to occur from a procedure. This allows control over the enabling of
multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring
events.

event_declaration ::= (From A.2.1.3)
event list of event identifiers ;
list_of event identifiers ::= (From A.2.3)
event_identifier { dimension }
{, event identifier { dimension } }
dimension ::= (From A.2.5)
[dimension constant_expression : dimension constant_expression]

Syntax 9-9—Syntax for event declaration

Copyright © 2006 IEEE. All rights reserved. 133

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

An event shall not hold any data. The following are the characteristics of a named event:

— It can be made to occur at any particular time.
— It has no time duration.

— Its occurrence can be recognized by using the event control syntax described in 9.7.2.

A declared event is made to occur by the activation of an event triggering statement with the syntax given in
Syntax 9-10. An event is not made to occur by changing the index of an event array in an event control

expression.
event_trigger ::= (From A.6.5)
-> hierarchical event identifier { [expression | } ;
Syntax 9-10—Syntax for event trigger
An event-controlled statement (for example, @trig rega = regb;) shall cause simulation of its

containing procedure to wait until some other procedure executes the appropriate event-triggering statement
(for example, -> trig).

Named events and event control give a powerful and efficient means of describing the communication
between, and synchronization of, two or more concurrently active processes. A basic example of this is a
small waveform clock generator that synchronizes control of a synchronous circuit by signalling the
occurrence of an explicit event periodically while the circuit waits for the event to occur.

9.7.4 Event or operator

The logical or of any number of events can be expressed so that the occurrence of any one of the events
triggers the execution of the procedural statement that follows it. The keyword or or a comma character (,) is
used as an event logical or operator. A combination of these can be used in the same event expression.
Comma-separated sensitivity lists shall be synonymous to or-separated sensitivity lists.

For example:

The next two examples show the logical or of two and three events, respectively:

@(trig or enable) rega = regb; // controlled by trig or enable
@ (posedge clk a or posedge clk b or trig) rega = regb;

The following examples show the use of the comma (,) as an event logical or operator:

always e(a, b, ¢, 4, e)
always @ (posedge clk, negedge rstn)
always @(a or b, c, 4 or e)

9.7.5 Implicit event_expression list

The event expression list of an event control is a common source of bugs in register transfer level
(RTL) simulations. Users tend to forget to add some of the nets or variables read in the timing control
statement. This is often found when comparing RTL and gate-level versions of a design. The implicit
event expression, @¥, is a convenient shorthand that eliminates these problems by adding all nets and
variables that are read by the statement (which can be a statement group) of a procedural timing
control statement to the event expression.

134 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

All net and variable identifiers that appear in the statement will be automatically added to the event
expression with these exceptions:

— Identifiers that only appear in wait or event expressions.

— Identifiers that only appear as a hierarchical variable identifier in the variable lvalue of the
left-hand side of assignments.

Nets and variables that appear on the right-hand side of assignments, in function and task calls, in case and
conditional expressions, as an index variable on the left-hand side of assignments, or as variables in case
item expressions shall all be included by these rules.

For example:

Example 1

always e(*) // equivalent to @(a or b or c or d or f)
y = (a &b) | (¢ &d | myfunction(f);

Example 2

always e* begin // equivalent to @(a or b or ¢ or d or tmpl Or tmp2)
tmpl = a & b;
tmp2 = ¢ & d;
y = tmpl | tmp2;

end

Example 3

always e* begin // equivalent to @(b)
@(i) kid = b; // i is not added to @*
end

Example 4

always e* begin // equivalent to @(a or b or c or d)
x = a " b;
@* // equivalent to @(c or d)
x = ¢ ©~ d;
end

Example 5
always e@* begin // same as @(a or en)
y = 8'hff;
ylal = len;
end

Example 6

always e* begin // same as @(state or go or ws)
next = 4'b0;

case (1'bl)
state[IDLE] : if (go) next|[READ] = 1'bl;
else next [IDLE] = 1'bl;
state [READ] : next [DLY] = 1'bl;

state [DLY]: if (!ws) next [DONE] = 1'bl;

Copyright © 2006 IEEE. All rights reserved. 135

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

else next [READ] = 1'bil;
state [DONE] : next [IDLE] = 1'bl;
endcase
end

9.7.6 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is
accomplished using the wait statement, which is a special form of event control. The nature of the wait
statement is level-sensitive, as opposed to basic event control (specified by the @ character), which is edge-
sensitive.

The wait statement shall evaluate a condition; and, if it is false, the procedural statements following the wait
statement shall remain blocked until that condition becomes true before continuing. The wait statement has
the form given in Syntax 9-11.

wait_statement ::= (From A.6.5)
wait (expression) statement or null

Syntax 9-11—Syntax for wait statement

For example:

The following example shows the use of the wait statement to accomplish level-sensitive event control:

begin
wait (!enable) #10 a = b;
#10 ¢ = d;

end

If the value of enable is 1 when the block is entered, the wait statement will delay the evaluation of the next
statement (#10 a = b;) until the value of enable changes to 0. If enable is already 0 when the begin-
end block is entered, then the assignment “a = b;” is evaluated after a delay of 10 and no additional delay
occurs.

9.7.7 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In
contrast, the intra-assignment delay and event controls are contained within an assignment statement and
modify the flow of activity in a different way. This subclause describes the purpose of intra-assignment
timing controls and the repeat timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side,

but the right-hand expression shall be evaluated before the delay, instead of after the delay. The syntax for
intra-assignment delay and event control is given in Syntax 9-12.

136 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

blocking_assignment ::= (From A.6.2)
variable lvalue =[delay or event control] expression

nonblocking_assignment ::=
variable lvalue <=[delay or event control] expression

delay_control ::= (From A.6.5)
delay value
| # (mintypmax_expression)
delay or event control ::=
delay control
| event control
| repeat (expression) event_control
event_control ::=
@ hierarchical event identifier
| @ (event_expression)
| @*
| @ (*)
event_expression ::=
expression
| posedge expression
| negedge expression
| event _expression or event expression
| event expression , event_expression

Syntax 9-12—Syntax for intra-assignment delay and event control

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking
assignments. The repeat event control shall specify an intra-assignment delay of a specified number of
occurrences of an event. If the repeat count literal, or signed reg holding the repeat count, is less than or
equal to 0 at the time of evaluation, the assignment occurs as if there is no repeat construct.

For example:

repeat (-3) @ (event expression)
// will not execute event_ expression.

repeat (a) @ (event expression)
// if a is assigned -3, it will execute the event expression
// if a is declared as an unsigned reg, but not if a is signed

This construct is convenient when events have to be synchronized with counts of clock signals.
For example:

Table 9-2 illustrates the philosophy of intra-assignment timing controls by showing the code that could
accomplish the same timing effect without using intra-assignment.

Copyright © 2006 IEEE. All rights reserved. 137

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Table 9-2—Intra-assignment timing control equivalence

Intra-assignment timing control
With intra-assignment construct Without intra-assignment construct
begin
a = #5 b; temp = b;
#5 a = temp;
end
begin
a = @(posedge clk) b; temp = b;
@ (posedge clk) a = temp;
end
begin
a = repeat(3) temp = b;
@ (posedge clk) b; @ (posedge clk) ;
@ (posedge clk) ;
@ (posedge clk) a = temp;
end

The next three examples use the fork-join behavioral construct. All statements between the keywords fork
and join execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing
control:

fork
#5 a
#5 b = a;

I
o

join

The code in this example samples and sets the values of both a and b at the same simulation time, thereby
creating a race condition. The intra-assignment form of timing control used in the next example prevents this
race condition.

fork // data swap
#5 b;
b = #5 a;

@
I

join

Intra-assignment timing control works because the intra-assignment delay causes the values of a and b to be
evaluated before the delay and causes the assignments to be made after the delay. Some existing tools that
implement intra-assignment timing control use temporary storage in evaluating each expression on the right-
hand side.

Intra-assignment waiting for events is also effective. In the following example, the right-hand expressions
are evaluated when the assignment statements are encountered, but the assignments are delayed until the
rising edge of the clock signal:

fork // data shift
@ (posedge clk) b;
b = e@(posedge clk) c;

@
1]

join

138 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking
assignment:

a <= repeat(5) @(posedge clk) data;

Figure 9-1 illustrates the activities that result from this repeat event control.

* data is evaluated

clk

data

Figure 9-1—Repeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is encountered. After five occurrences
of posedge clk, a is assigned the value of data.

The following is an example of a repeat event control as the intra-assignment delay of a procedural
assignment:

a = repeat(num) @(clk) data;

In this example, the value of data is evaluated when the assignment is encountered. After the number of
transitions of c1k equals the value of num, a is assigned the value of data.

The following is an example of a repeat event control with expressions containing operations to specify both
the number of event occurrences and the event that is counted:

a <= repeat(a+b) @ (posedge phil or negedge phi2) data;
In this example, the value of data is evaluated when the assignment is encountered. After the sum of the
positive edges of phil and the negative edges of phi2 equals the sum of a and b, a is assigned the value of

data. Even if posedge phil and negedge phi2 occurred at the same simulation time, each will be
detected separately.

9.8 Block statements

The block statements are a means of grouping statements together so that they act syntactically like a single
statement. There are two types of blocks in the Verilog HDL:

— Sequential block, also called begin-end block
— Parallel block, also called fork-join block

The sequential block shall be delimited by the keywords begin and end. The procedural statements in
sequential block shall be executed sequentially in the given order.

Copyright © 2006 IEEE. All rights reserved. 139

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The parallel block shall be delimited by the keywords fork and join. The procedural statements in parallel
block shall be executed concurrently.

9.8.1 Sequential blocks
A sequential block shall have the following characteristics:

— Statements shall be executed in sequence, one after another.

— Delay values for each statement shall be treated relative to the simulation time of the execution of
the previous statement.

— Control shall pass out of the block after the last statement executes.

Syntax 9-13 gives the formal syntax for a sequential block.

seq_block ::= (From A.6.3)
begin [: block identifier
{ block item declaration }] { statement } end
block item_declaration ::= (From A.2.8)

{ attribute_instance } reg [signed | [range] list of block variable identifiers ;
| { attribute instance } integer list of block variable identifiers ;
| { attribute_instance } time list_of block variable identifiers ;
| { attribute_instance } real list_of block real identifiers ;
| { attribute_instance } realtime list of block real identifiers ;
| { attribute_instance } event declaration
| { attribute instance } local parameter declaration ;
| { attribute instance } parameter declaration ;

Syntax 9-13—Syntax for sequential block

For example:

Example I—A sequential block enables the following two assignments to have a deterministic result:

begin

areg = breg;

creg = areg; // creg stores the value of breg
end

The first assignment is performed, and areg is updated before control passes to the second assignment.

Example 2—Delay control can be used in a sequential block to separate the two assignments in time.
begin
areg = breg;
@ (posedge clock) creg = areg; // assignment delayed until
end // posedge on clock

Example 3—The following example shows how the combination of the sequential block and delay control
can be used to specify a time-sequenced waveform:

parameter d = 50; // d declared as a parameter and
reg [(7:0] r; // r declared as an 8-bit reg

begin // a waveform controlled by sequential delay

140 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
#d r = 'h35;
#d r = 'hE2;
#d r = 'h00;
#d r = 'hF7;
#d -> end wave; //trigger an event called end wave
end

9.8.2 Parallel blocks
A parallel block shall have the following characteristics:

— Statements shall execute concurrently.

— Delay values for each statement shall be considered relative to the simulation time of entering the
block.

— Delay control can be used to provide time-ordering for assignments.

— Control shall pass out of the block when the last time-ordered statement executes.

Syntax 9-14 gives the formal syntax for a parallel block.

par_block ::= (From A.6.3)
fork [: block identifier
{ block item declaration }] { statement } join

block item_declaration ::= (From A.2.8)
{ attribute_instance } reg [signed][range] list_of block variable identifiers ;
| { attribute_instance } integer list of block variable identifiers ;
| { attribute_instance } time list_of block variable identifiers ;
| { attribute instance } real list of block real identifiers ;
| { attribute instance } realtime list of block real identifiers ;
| { attribute_instance } event declaration
| { attribute instance } local parameter declaration ;
| { attribute_instance } parameter declaration ;

Syntax 9-14—Syntax for parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.
For example:

The following example codes the waveform description shown in Example 3 of 9.8.1 by using a parallel
block instead of a sequential block. The waveform produced on the reg is exactly the same for both

implementations.

fork
#50 ¥ = 'h35;
#100 r = 'hE2;
#150 r = 'h0O;
#200 r = 'hF7;
#250 -> end wave;

join

9.8.3 Block names
Both sequential and parallel blocks can be named by adding : name of block after the keywords begin
or fork. The naming of blocks serves several purposes:

Copyright © 2006 IEEE. All rights reserved. 141

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

— It allows local variables, parameters, and named events to be declared for the block.

— It allows the block to be referenced in statements such as the disable statement (see 10.3).

All variables shall be static; that is, a unique location exists for all variables, and leaving or entering blocks
shall not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation time.
9.8.4 Start and finish times

Both sequential and parallel blocks have the notion of a start and finish time. For sequential blocks, the start
time is when the first statement is executed, and the finish time is when the last statement has been executed.
For parallel blocks, the start time is the same for all the statements, and the finish time is when the last time-
ordered statement has been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures to be
expressed easily and with a high degree of structure. When blocks are embedded within each other, the
timing of when a block starts and finishes is important. Execution shall not continue to the statement
following a block until the finish time for the block has been reached, that is, until the block has completely
finished executing.

For example:

Example 1—The following example shows the statements from the example in 9.8.2 written in the reverse
order and still producing the same waveform.

fork
#250 -> end wave;
#200 r = 'hF7;
#150 r = 'h00;
#100 r = 'hE2;
#50 r = 'h35;
join

Example 2—When an assignment is to be made after two separate events have occurred, known as the
Jjoining of events, a fork-join block can be useful.

begin
fork
@Aevent;
@Bevent;
join
areg = breg;
end

The two events can occur in any order (or even at the same simulation time), the fork-join block will
complete, and the assignment will be made. In contrast, if the fork-join block was a begin-end block
and the Bevent occurred before the Aevent, then the block would be waiting for the next Bevent.

Example 3—This example shows two sequential blocks, each of which will execute when its controlling
event occurs. Because the event controls are within a fork-join block, they execute in parallel, and the
sequential blocks can, therefore, also execute in parallel.

fork

@enable_a

142 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;
end
@enable b
begin
#tb wb = 1;
#tb wb = 0;
#tbh wb = 1;
end
join

9.9 Structured procedures
All procedures in the Verilog HDL are specified within one of the following four statements:

— initial construct
— always construct
— Task

— Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall
execute only once, and its activity shall cease when the statement has finished. In contrast, the always
construct shall execute repeatedly. Its activity shall cease only when the simulation is terminated. There
shall be no implied order of execution between initial and always constructs. The initial constructs need not
be scheduled and executed before the always constructs. There shall be no limit to the number of initial and
always constructs that can be defined in a module.

Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and
functions are described in Clause 10.

9.9.1 Initial construct

The syntax for the initial construct is given in Syntax 9-15.

initial construct ::= (From A.6.2)
initial statement

Syntax 9-15—Syntax for initial construct

For example:

The following example illustrates use of the initial construct for initialization of variables at the start of
simulation.

initial begin

areg = 0; // initialize a reg
for (index = 0; index < size; index = index + 1)
memory [index] = 0; //initialize memory word
end
Copyright © 2006 IEEE. All rights reserved. 143

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Another typical usage of the initial construct is specification of waveform descriptions that execute once to
provide stimulus to the main part of the circuit being simulated.

initial begin

inputs = 'b000000; // initialize at time =zero
#10 inputs = 'b011001; // first pattern

#10 inputs = 'b011011; // second pattern

#10 inputs = 'b011000; // third pattern

#10 inputs = 'b001000; // last pattern

end
9.9.2 Always construct

The always construct repeats continuously throughout the duration of the simulation. Syntax 9-16 shows the
syntax for the always construct.

always_construct ::= (From A.6.2)
always statement

Syntax 9-16—Syntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form
of timing control. If an always construct has no control for simulation time to advance, it will create a
simulation deadlock condition.

The following code, for example, creates a zero-delay infinite loop:

always areg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the
following:

always #half period areg = ~areg;

144 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

10. Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a
description. They also provide a means of breaking up large procedures into smaller ones to make it easier to
read and debug the source descriptions. This clause discusses the differences between tasks and functions,
describes how to define and invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions
The following rules distinguish tasks from functions:

— A function shall execute in one simulation time unit; a task can contain time-controlling statements.
— A function cannot enable a task; a task can enable other tasks and functions.

— A function shall have at least one input type argument and shall not have an output or inout type
argument; a task can have zero or more arguments of any type.

— A function shall return a single value; a task shall not return a value.

The purpose of a function is to respond to an input value by returning a single value. A task can support
multiple goals and can calculate multiple result values. However, only the output or inout type arguments
pass result values back from the invocation of a task. A function is used as an operand in an expression; the
value of that operand is the value returned by the function.

For example:

Either a task or a function can be defined to switch bytes in a 16-bit word. The task would return the
switched word in an output argument; therefore, the source code to enable a task called switch bytes
could look like the following example:

switch bytes (old word, new word) ;

The task switch bytes would take the bytes in old_word, reverse their order, and place the reversed
bytes in new_word.

A word-switching function would return the switched word as the return value of the function. Thus, the
function call for the function switch bytes could look like the following example:

new _word = switch bytes (old word) ;

10.2 Tasks and task enabling

A task shall be enabled from a statement that defines the argument values to be passed to the task and the
variables that receive the results. Control shall be passed back to the enabling process after the task has
completed. Thus, if a task has timing controls inside it, then the time of enabling a task can be different from
the time at which the control is returned. A task can enable other tasks, which in turn can enable still other
tasks—with no limit on the number of tasks enabled. Regardless of how many tasks have been enabled,
control shall not return until all enabled tasks have completed.

Copyright © 2006 IEEE. All rights reserved. 145

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

10.2.1 Task declarations

The syntax for defining tasks is given in Syntax 10-1.

task declaration ::= (From A.2.7)
task [automatic] task identifier ;
{ task _item declaration }
statement_or null

endtask

| task [automatic] task identifier ([task port list]) ;
{ block item declaration }
statement _or null
endtask
task item declaration ::=

block item declaration
| { attribute instance } tf input declaration ;
| { attribute_instance } tf output declaration ;
| { attribute_instance } tf inout declaration ;

task port list ::=
task port item {, task port item }
task port item ::=

{ attribute_instance } tf input declaration
| { attribute_instance } tf output declaration
| { attribute_instance } tf inout declaration

tf_input_declaration ::=

input [reg] [signed] [range] list of port_identifiers
| input task port type list of port identifiers

tf_output declaration ::=

output [reg | [signed] [range | list of port identifiers
| output task port_type list_of port identifiers

tf inout declaration ::=

inout [reg | [signed | [range] list_of port identifiers
| inout task port type list of port identifiers

task port type ::=

integer | real | realtime | time

block item_declaration ::= (From A.2.8)
{ attribute_instance } reg [signed][range] list_of block variable identifiers
| { attribute_instance } integer list of block variable identifiers ;
| { attribute_instance } time list of block variable identifiers ;
| { attribute_instance } real list_of block real identifiers ;
| { attribute_instance } realtime list of block real identifiers ;
| { attribute instance } event declaration
| { attribute_instance } local parameter declaration ;
| { attribute_instance } parameter declaration ;
list_of block variable identifiers ::=

block wvariable type {, block variable type }
list_of block real identifiers ::=

block real type {, block real type }
block variable type ::=

variable_identifier { dimension }
block real type ::=

real_identifier { dimension }

Syntax 10-1—Syntax for task declaration

146 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

There are two alternate task declaration syntaxes.

The first syntax shall begin with the keyword task, followed by the optional keyword automatic, followed
by a name for the task and a semicolon, and ending with the keyword endtask. The keyword automatic
declares an automatic task that is reentrant, with all the task declarations allocated dynamically for each
concurrent task entry. Task item declarations can specify the following:

— Input arguments
— Output arguments
— Inout arguments

— All data types that can be declared in a procedural block

The second syntax shall begin with the keyword task, followed by a name for the task and a parenthesis-
enclosed task_port_list. The task_port list shall consist of zero or more comma separated task_port_items.
There shall be a semicolon after the close parenthesis. The task body shall follow and then the keyword
endtask.

In both syntaxes, the port declarations shall have the same syntax as defined by the ¢ input declaration,
tf output declaration, and tf inout declaration, as detailed in Syntax 10-1 above.

Tasks without the optional keyword automatic are static tasks, with all declared items being statically
allocated. These items shall be shared across all uses of the task executing concurrently. Task with the
optional keyword automatic are automatic tasks. All items declared inside automatic tasks are allocated
dynamically for each invocation. Automatic task items cannot be accessed by hierarchical references.
Automatic tasks can be invoked through use of their hierarchical name.

10.2.2 Task enabling and argument passing

The task-enabling statement shall pass arguments as a comma-separated list of expressions enclosed in
parentheses. The formal syntax of the task-enabling statement is given in Syntax 10-2.

task _enable ::= (From A.6.9)
hierarchical task identifier [(expression { , expression })] ;

Syntax 10-2—Syntax for task-enabling statement

If the task definition has no arguments, a list of arguments shall not be provided in the task-enabling
statement. Otherwise, there shall be an ordered list of expressions that matches the length and order of the
list of arguments in the task definition. A null expression shall not be used as an argument in a task-enabling
statement.

If an argument in the task is declared as an input, then the corresponding expression can be any expression.
The order of evaluation of the expressions in the argument list is undefined. If the argument is declared as an
output or an inout, then the expression shall be restricted to an expression that is valid on the left-hand side
of a procedural assignment (see 9.2). The following items satisfy this requirement:

— reg, integer, real, realtime, and time variables
— Memory references

— Concatenations of reg, integer, and time variables
— Concatenations of memory references

— Bit-selects and part-selects of reg, integer, and time variables

Copyright © 2006 IEEE. All rights reserved. 147

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The execution of the task-enabling statement shall pass input values from the expressions listed in the
enabling statement to the arguments specified within the task. Execution of the return from the task shall
pass values from the task output and inout type arguments to the corresponding variables in the task-
enabling statement. All arguments to the task shall be passed by value rather than by reference (that is, a
pointer to the value).

For example:

Example 1—The following example illustrates the basic structure of a task definition with five arguments:

task my task;

input a, b;

inout c;

output d, e;

begin

// statements that perform the work of the task

c = fool; // the assignments that initialize result regs
d = foo2;
e = foo3;

end

endtask

Or using the second form of a task declaration, the task could be defined as follows:

task my task (input a, b, inout c, output 4, e);

begin
. // statements that perform the work of the task
¢ = fool; // the assignments that initialize result regs
d = foo2;
e = foo3;

end

endtask

The following statement enables the task:
my_task (v, w, x, y, 2);
The task-enabling arguments (v, w, x, v, and z) correspond to the arguments (a, b, ¢, d, and e) defined by

the task. At task-enabling time, the input and inout type arguments (a, b, and c) receive the values passed in
v, w, and x. Thus, execution of the task-enabling call effectively causes the following assignments:

a = v;
b = w;
c = X;

As part of the processing of the task, the task definition for my task shall place the computed result values
into ¢, d, and e. When the task completes, the following assignments to return the computed values to the
calling process are performed:

X = C;
y = 4d;
zZ = e;

Example 2—The following example illustrates the use of tasks by describing a traffic light sequencer:

module traffic lights;
reg clock, red, amber, green;

148 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

parameter on = 1, off = 0, red tics = 350,
amber tics = 30, green tics = 200;

// initialize colors.
initial red = off;
initial amber = off;
initial green = off;

always begin // sequence to control the lights.
red = on; // turn red light on
light (red, red_tics); // and wait.
green = on; // turn green light on
light (green, green tics); // and wait.
amber = on; // turn amber light on
light (amber, amber tics); // and wait.
end

// task to wait for 'tics' positive edge clocks
// before turning 'color' light off.

task 1light;

output color;

input [31:0] tics;

begin
repeat (tics) @ (posedge clock) ;
color = off; // turn light off.
end
endtask
always begin // waveform for the clock.
#100 clock = 0;
#100 clock = 1;
end

endmodule // traffic lights.
10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. All variables of an automatic task shall be replicated on
each concurrent task invocation to store state specific to that invocation. All variables of a static task shall be
static in that there shall be a single variable corresponding to each declared local variable in a module
instance, regardless of the number of concurrent activations of the task. However, static tasks in different
instances of a module shall have separate storage from each other.

Variables declared in static tasks, including input, output, and inout type arguments, shall retain their
values between invocations. They shall be initialized to the default initialization value as described in 4.2.2.

Variables declared in automatic tasks, including output type arguments, shall be initialized to the default
initialization value whenever execution enters their scope. input and inout type arguments shall be
initialized to the values passed from the expressions corresponding to these arguments listed in the task-
enabling statements.

Because variables declared in automatic tasks are deallocated at the end of the task invocation, they shall not
be used in certain constructs that might refer to them after that point:

— They shall not be assigned values using nonblocking assignments or procedural continuous
assignments.

— They shall not be referenced by procedural continuous assignments or procedural force statements.

Copyright © 2006 IEEE. All rights reserved. 149

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

— They shall not be referenced in intra-assignment event controls of nonblocking assignments.

— They shall not be traced with system tasks such as $monitor and $dumpvars.

10.3 Disabling of named blocks and tasks

The disable statement provides the ability to terminate the activity associated with concurrently active
procedures, while maintaining the structured nature of Verilog HDL procedural descriptions. The disable
statement gives a mechanism for terminating a task before it executes all its statements, breaking from a
looping statement, or skipping statements in order to continue with another iteration of a looping statement.
It is useful for handling exception conditions such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 10-3.

disable statement ::= (From A.6.5)
disable hierarchical task identifier ;
| disable hierarchical block identifier

Syntax 10-3—Syntax for disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall
resume at the statement following the block or following the task-enabling statement. All activities enabled
within the named block or task shall be terminated as well. If task enable statements are nested (that is, one
task enables another, and that one enables yet another), then disabling a task within the chain shall disable all
tasks downward on the chain. If a task is enabled more than once, then disabling such a task shall disable all
activations of the task.

The results of the following activities that can be initiated by a task are not specified if the task is disabled:

— Results of output and inout arguments
— Scheduled, but not executed, nonblocking assignments

— Procedural continuous assignments (assign and force statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing
the disable statement. The disable statement can be used to disable named blocks within a function, but
cannot be used to disable functions. In cases where a disable statement within a function disables a block or
a task that called the function, the behavior is undefined. Disabling an automatic task or a block inside an
automatic task proceeds as for regular tasks for all concurrent executions of the task.

For example:

Example 1—This example illustrates how a block disables itself.

begin : block name

rega = regb;

disable block name;

regc = rega; // this assignment will never execute
end

Example 2—This example shows the disable statement being used within a named block in a manner similar

to a forward goto. The next statement executed after the disable statement is the one following the named
block.

begin : block_name

150 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

if (a == 0)
disable block name;

end // end of named block
// continue with code following named block

Example 3—This example shows the disable statement being used as an early return from a task. However, a
task disabling itself using a disable statement is not a shorthand for the return statement found in
programming languages.

task proc_a;

begin
if (a == 0)
disable proc _a; // return if true
end
endtask

Example 4—This example shows the disable statement being used in an equivalent way to the two
statements continue and break in the C programming language. The example illustrates control code that
would allow a named block to execute until a loop counter reaches n iterations or until the variable a is set to
the value of b. The named block break contains the code that executes until a == b, at which point the
disable break; statement terminates execution of that block. The named block continue contains the
code that executes for each iteration of the for loop. Each time this code executes the disable
continue; statement, the continue block terminates, and execution passes to the next iteration of the for
loop. For each iteration of the continue block, a set of statements executes if (a != 0). Another set of
statements executes if (a! = b).

begin : break
for (i = 0; i < n; i = i+1) begin : continue
@clk
if (a == 0) // "continue" loop
disable continue;
statements
statements
@clk
if (a == b) // "break" from loop
disable break;
statements
statements
end
end

Copyright © 2006 IEEE. All rights reserved. 151

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 5—This example shows the disable statement being used to disable concurrently a sequence of
timing controls and the task action when the reset event occurs. The example shows a fork-join block
within which are a named sequential block (event expr) and a disable statement that waits for occurrence
of the event reset. The sequential block and the wait for reset execute in parallel. The event expr
block waits for one occurrence of event evl and three occurrences of event trig. When these four events
have happened, plus a delay of d time units, the task action executes. When the event reset occurs,
regardless of events within the sequential block, the fork-join block terminates—including the task
action.

fork
begin : event expr
@ev1l;
repeat (3) @trig;
#d action (areg, breg);
end
@reset disable event expr;
join

Example 6—The next example is a behavioral description of a retriggerable monostable. The named event
retrig restarts the monostable time period. If retrig continues to occur within 250 time units, then g will
remain at 1.

always begin : monostable
#250 g = 0;

end
always @retrig begin
disable monostable;

q=1;
end

10.4 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause
explains how to define and use functions.

10.4.1 Function declarations

The syntax for defining a function is given in Syntax 10-4.

152 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

function_declaration ::= (From A.2.6)
function [automatic] [function range or type]
function_identifier ;
function_item_declaration { function_item_declaration }
function_statement

endfunction

| function [automatic | [function_range or_type |
function_identifier (function port list) ;
{ block item declaration }
function_statement

endfunction

function_item_declaration ::=

block item declaration

| { attribute instance } tf input declaration ;
function_port list ::=
{ attribute_instance } tf input declaration
{, { attribute_instance }tf input declaration }
tf input declaration ::=

input [reg] [signed] [range] list of port_identifiers
| input task port_type list of port identifiers

function_range or_type ::=

[signed] [range |
| integer
| real
| realtime
| time

block item_declaration ::= (From A.2.8)
{ attribute_instance } reg [signed | [range] list of block variable identifiers ;
| { attribute_instance } integer list of block variable identifiers ;
| { attribute_instance } time list of block variable identifiers ;
| { attribute_instance } real list_of block real identifiers ;
| { attribute_instance } realtime list of block real identifiers ;
| { attribute instance } event declaration
| { attribute instance } local parameter declaration ;
| { attribute_instance } parameter_declaration ;
list of block variable identifiers ::=

block wvariable type {, block variable type }
list of block real identifiers ::=

block real type {, block real type }
block variable type ::=

variable_identifier { dimension }
block real type ::=

real_identifier { dimension }

Syntax 10-4—Syntax for function declaration

A function definition shall begin with the keyword function, followed by the optional keyword automatic,
followed by an optional function _range or_type of the return value from the function, followed by the name
of the function, followed either by a semicolon or by a function port list enclosed in parentheses and then a
semicolon, and then shall end with the keyword endfunction.

The use of a function _range or_type shall be optional. A function specified without a function_range or_
type defaults to a scalar for the return value. If used, function_range_or_type shall specify that the return

value of the function is a real, an integer, a time, a realtime, or a vector (optionally signed) with a range of
[n:m] bits.

Copyright © 2006 IEEE. All rights reserved. 153

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

A function shall have at least one input declared.

The keyword automatic declares an automatic function that is reentrant, with all the function declarations
allocated dynamically for each concurrent function call. Automatic function items cannot be accessed by
hierarchical references. Automatic functions can be invoked through the use of their hierarchical name.

Function inputs shall be declared one of two ways. The first method shall have the name of the function
followed by a semicolon. After the semicolon, one or more input declarations optionally mixed with block
item declarations shall follow. After the function item declarations, there shall be a behavioral statement and
then the endfunction keyword.

The second method shall have the name of the function, followed by an open parenthesis and one or more
input declarations, separated by commas. After all the input declarations, there shall be a close parenthesis
and a semicolon. After the semicolon, there shall be zero or more block item declarations, followed by a
behavioral statement, and then the endfunction keyword.

For example:
The following example defines a function called getbyte, using a range specification:

function [7:0] getbyte;
input [15:0] address;
begin

// code to extract low-order byte from addressed word

getbyte = result expression;
end
endfunction

Or using the second form of a function declaration, the function could be defined as follows:
function [7:0] getbyte (input [15:0] address);
begin
// code to extract low-order byte from addressed word
getbyte = result expression;

end
endfunction

10.4.2 Returning a value from a function

The function definition shall implicitly declare a variable, internal to the function, with the same name as the
function. This variable either defaults to a 1-bit reg or is the same type as the type specified in the function
declaration. The function definition initializes the return value from the function by assigning the function
result to the internal variable with the same name as the function.

It is illegal to declare another object with the same name as the function in the scope where the function is
declared. Inside a function, there is an implied variable with the name of the function, which may be used in
expressions within the function. It is, therefore, also illegal to declare another object with the same name as
the function inside the function scope.

The following line from the example in 10.4.1 illustrates this concept:

getbyte = result expression;

154 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

10.4.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-5.

function_call ::= (From A.8.2)
hierarchical function_identifier{ attribute_instance } (expression { , expression })

Syntax 10-6—Syntax for function call

The order of evaluation of the arguments to a function call is undefined.
For example:

The following example creates a word by concatenating the results of two calls to the function getbyte
(defined in 10.4.1):

word = control ? {getbyte (msbyte), getbyte(lsbyte)}:0;
10.4.4 Function rules
Functions are more limited than tasks. The following rules govern their usage:

a) A function definition shall not contain any time-controlled statements, that is, any statements con-
taining #, @, or wait.

b) Functions shall not enable tasks.

¢) A function definition shall contain at least one input argument.

d) A function definition shall not have any argument declared as output or inout.

e) A function shall not have any nonblocking assignments or procedural continuous assignments.

f) A function shall not have any event triggers.

For example:

This example defines a function called factorial that returns an integer value. The factorial function
is called iteratively and the results are printed.

module tryfact;
// define the function

function automatic integer factorial;
input [31:0] operand;

integer i;
if (operand >= 2)
factorial = factorial (operand - 1) * operand;
else
factorial = 1;
endfunction

// test the function
integer result;
integer n;
initial begin
for (n = 0; n <= 7; n = n+1) begin
result = factorial(n);
Sdisplay ("$0d factorial=%0d", n, result);

Copyright © 2006 IEEE. All rights reserved. 155

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

end
end
endmodule // tryfact

The simulation results are as follows:

factorial=1
factorial=1
factorial=2
factorial=6
factorial=24
factorial=120
factorial=720
factorial=5040

o0 WP o

10.4.5 Use of constant functions

Constant function calls are used to support the building of complex calculations of values at elaboration time
(see 12.8). A constant function call shall be a function invocation of a constant function local to the calling
module where the arguments to the function are constant expressions. Constant functions are a subset of
normal Verilog functions that shall meet the following constraints:

— They shall contain no hierarchical references.

— Any function invoked within a constant function shall be a constant function local to the current
module.

— It shall be legal to call any system function that is allowed in a constant expression (see Clause 5).
Calls to other system functions shall be illegal.

— All system tasks within a constant function shall be ignored.

— All parameter values used within the function shall be defined before the use of the invoking
constant function call (i.e., any parameter use in the evaluation of a constant function call constitutes
a use of that parameter at the site of the original constant function call).

— All identifiers that are not parameters or functions shall be declared locally to the current function.

— If they use any parameter value that is affected directly or indirectly by a defparam statement (see
12.2.1), the result is undefined. This can produce an error or the constant function can return an
indeterminate value.

— They shall not be declared inside a generate block (see 12.4).

— They shall not themselves use constant functions in any context requiring a constant expression.
Constant function calls are evaluated at elaboration time. Their execution has no effect on the initial values
of the variables used either at simulation time or among multiple invocations of a function at elaboration
time. In each of these cases, the variables are initialized as they would be for normal simulation.

For example:

This example defines a function called c1ogb2 that returns an integer with the value of the ceiling of the log

base 2.
module ram model (address, write, chip select, data);
parameter data width = 8;
parameter ram depth = 256;
localparam addr width = clogb2 (ram depth) ;
input [addr width - 1:0] address;
input write, chip select;
156 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

inout [data width - 1:0] data;

//define the clogb2 function
function integer clogb2;
input [31:0] value;
begin
value = value - 1;
for (clogb2 = 0; value > 0; clogb2 = clogb2 + 1)
value = value >> 1;
end
endfunction

reg [data width - 1:0] data store[0:ram depth - 1];
//the rest of the ram model

An instance of this ram_model with parameters assigned is as follows:

ram model #(32,421) ram aO(a_addr,a _wr,a_cs,a_data);

Copyright © 2006 IEEE. All rights reserved. 157

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

11. Scheduling semantics

11.1 Execution of a model

The balance of the clauses of this standard describe the behavior of each of the elements of the language.
This clause gives an overview of the interactions between these elements, especially with respect to the
scheduling and execution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of
abstraction, of electronic hardware. An HDL has to be a parallel programming language. The execution of
certain language constructs is defined by parallel execution of blocks or processes. It is important to
understand what execution order is guaranteed to the user and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are defined for
simulation, and everything else is abstracted from this base definition.

11.2 Event simulation

The Verilog HDL is defined in terms of a discrete event execution model. The discrete event simulation is
described in more detail in this subclause to provide a context to describe the meaning and valid
interpretation of Verilog HDL constructs. These resulting definitions provide the standard Verilog reference
model for simulation, which all compliant simulators shall implement. However, there is a great deal of
choice in the definitions that follow, and differences in some details of execution are to be expected between
different simulators. In addition, Verilog HDL simulators are free to use different algorithms from those
described in this clause, provided the user-visible effect is consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be
evaluated, that may have state, and that can respond to changes on their inputs to produce outputs. Processes
include primitives, modules, initial and always procedural blocks, continuous assignments, asynchronous
tasks, and procedural assignment statements.

Every change in value of a net or variable in the circuit being simulated, as well as the named event, is
considered an update event.

Processes are sensitive to update events. When an update event is executed, all the processes that are
sensitive to that event are evaluated in an arbitrary order. The evaluation of a process is also an event, known
as an evaluation event.

In addition to events, another key aspect of a simulator is time. The term simulation time is used to refer to
the time value maintained by the simulator to model the actual time it would take for the circuit being
simulated. The term #ime is used interchangeably with simulation time in this clause.

Events can occur at different times. In order to keep track of the events and to make sure they are processed

in the correct order, the events are kept on an event queue, ordered by simulation time. Putting an event on
the queue is called scheduling an event.

11.3 The stratified event queue

The Verilog event queue is logically segmented into five different regions. Events are added to any of the
five regions, but are only removed from the active region.

158 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

a) Active events occur at the current simulation time and can be processed in any order.

b) Inactive events occur at the current simulation time, but shall be processed after all the active events
are processed.

c) Nonblocking assign update events have been evaluated during some previous simulation time, but
shall be assigned at this simulation time after all the active and inactive events are processed.

d) Monitor events shall be processed after all the active, inactive, and nonblocking assign update
events are processed.

e) Future events occur at some future simulation time. Future events are divided into future inactive
events and future nonblocking assignment update events.

The processing of all the active events is called a simulation cycle.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism
in the Verilog HDL.

An explicit zero delay (#0) requires that the process be suspended and added as an inactive event for the
current time so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for a current or
later simulation time.

The $Smonitor and $strobe system tasks (see 17.1) create monitor events for their arguments. These events
are continuously reenabled in every successive time step. The monitor events are unique in that they cannot
create any other events.

The callback procedures scheduled with PLI routines such as vpi_register_cb(cbReadWriteSynch) (see
27.33) shall be treated as inactive events.

11.4 Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event
queue, ordered by simulation time.

while (there are events) {
if (no active events) {
if (there are inactive events) {
activate all inactive events;
} else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;
} else if (there are monitor events) {
activate all monitor events;
} else {
advance T to the next event time;
activate all inactive events for time T;
H
§

E = any active event;
if (E is an update event) {
update the modified object;
add evaluation events for sensitive processes to event queue;

Copyright © 2006 IEEE. All rights reserved. 159

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

} else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;

}

11.4.1 Determinism
This standard guarantees a certain scheduling order:

a) Statements within a begin-end block shall be executed in the order in which they appear in that
begin-end block. Execution of statements in a particular begin-end block can be suspended in
favor of other processes in the model; however, in no case shall the statements in a begin-end
block be executed in any order other than that in which they appear in the source.

b) Nonblocking assignments shall be performed in the order the statements were executed (see 9.2.2).
Consider the following example:

initial begin
a <= 0;
a <= 1;
end

When this block is executed, there will be two events added to the nonblocking assign update queue.
The previous rule requires that they be entered on the queue in source order; this rule requires that
they be taken from the queue and performed in source order as well. Hence, at the end of simulation
time 0, the variable a will be assigned 0 and then 1.

11.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in any
order. Another source of nondeterminism is that statements without time-control constructs in behavioral
blocks do not have to be executed as one event. Time control statements are the # expression and @
expression constructs (see 9.7). At any time while evaluating a behavioral statement, the simulator may
suspend execution and place the partially completed event as a pending active event on the event queue. The
effect of this is to allow the interleaving of process execution, although the order of interleaved execution is
nondeterministic and not under control of the user.

11.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race conditions
are possible:

assign p = q;
initial begin

q=1;

#1 g = 0;

$display (p) ;
end

The simulator is correct in displaying either a 1 or a 0. The assignment of 0 to g enables an update event for
p. The simulator may either continue and execute the $display task or execute the update for p, followed by
the $display task.

160 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

11.6 Scheduling implication of assignments
Assignments are translated into processes and events as detailed in 11.6.1 through 11.6.7.
11.6.1 Continuous assignment

A continuous assignment statement (Clause 6) corresponds to a process, sensitive to the source elements in
the expression. When the value of the expression changes, it causes an active update event to be added to the
event queue, using current values to determine the target. A continuous assignment process is also evaluated
at time 0 to ensure that constant values are propagated. This includes implicit continuous assignments (see
11.6.6).

11.6.2 Procedural continuous assignment

A procedural continuous assignment (which is the assign or force statement; see 9.3) corresponds to a
process that is sensitive to the source elements in the expression. When the value of the expression changes,
it causes an active update event to be added to the event queue, using current values to determine the target.

A deassign or a release statement deactivates any corresponding assign or force statement(s).
11.6.3 Blocking assignment

A blocking assignment statement (see 9.2.1) with a delay computes the right-hand side value using the
current values, then causes the executing process to be suspended and scheduled as a future event. If the
delay is 0, the process is scheduled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the
assignment to the left-hand side and enables any events based upon the update of the left-hand side. The
values at the time the process resumes are used to determine the target(s). Execution may then continue with
the next sequential statement or with other active events.

11.6.4 Nonblocking assignment

A nonblocking assignment statement (see 9.2.2) always computes the updated value and schedules the
update as a nonblocking assign update event, either in this time step if the delay is zero or as a future event if
the delay is nonzero. The values in effect when the update is placed on the event queue are used to compute
both the right-hand value and the left-hand target.

11.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 11.4 depends on unidirectional signal flow and can
process each event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling.
Switches provide bidirectional signal flow and require coordinated processing of nodes connected by
switches.

The Verilog HDL source elements that model switches are various forms of transistors, called tran, tranif0,
tranifl, rtran, rtranif0, and rtranifl.

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can
determine the appropriate value for any node on the net because the inputs and outputs interact. A simulator

can do this using a relaxation technique. The simulator can process tran at any time. It can process a subset
of tran-connected events at a particular time, intermingled with the execution of other active events.

Copyright © 2006 IEEE. All rights reserved. 161

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Further refinement is required when some transistors have gate value x. A conceptually simple technique is
to solve the network repeatedly with these transistors set to all possible combinations of fully conducting
and nonconducting transistors. Any node that has a unique logic level in all cases has steady-state response
equal to this level. All other nodes have steady-state response x.

11.6.6 Port connections

Ports connect processes through implicit continuous assignment statements or implicit bidirectional
connections. Bidirectional connections are analogous to an always-enabled tran connection between the two
nets, but without any strength reduction. Port connection rules require that a value receiver be a net or a
structural net expression.

Ports can always be represented as declared objects connected as follows:

— If an input port, then a continuous assignment from an outside expression to a local (input) net
— If an output port, then a continuous assignment from a local output expression to an outside net

— If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

Primitive terminals are different from module ports. Primitive output and inout terminals shall be connected
directly to 1-bit nets or 1-bit structural net expressions (see 12.3.9.2), with no intervening process that could
alter the strength. Changes from primitive evaluations are scheduled as active update events on the
connected nets. Input terminals connected to 1-bit nets or 1-bit structural net expressions are also connected
directly, with no intervening process that could affect the strength. Input terminals connected to other kinds
of expressions are represented as implicit continuous assignments from the expression to an implicit net that
is connected to the input terminal.

11.6.7 Functions and tasks

Task/function argument passing is by value, and it copies in on invocation and copies out on return. The
copy-out-on-the-return function behaves in the same manner as does any blocking assignment.

162 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

12. Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be
embedded within other modules. Higher level modules create instances of lower level modules and
communicate with them through input, output, and bidirectional ports. These module input/output (I/O)
ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The
system would be represented as the top-level module and would create instances of modules that represent
the boards. The board modules would, in turn, create instances of modules that represent integrated circuits
(ICs), and the ICs could, in turn, create instances of modules such as flip-flops, muxes, and alus.

To describe a hierarchy of modules, the user provides textual definitions of the various modules. Each
module definition stands alone; the definitions are not nested. Statements within the module definitions
create instances of other modules, thus describing the hierarchy.

12.1 Modules

This subclause gives the formal syntax for a module definition and then gives the syntax for module
instantiation, along with an example of a module definition and a module instantiation.

A module definition shall be enclosed between the keywords module and endmodule. The identifier
following the keyword module shall be the name of the module being defined. The optional list of
parameter definitions shall specify an ordered list of the parameters for the module. The optional list of ports
or port declarations shall specify an ordered list of the ports for the module. The order used in defining the
list of parameters in the module parameter port list and in the list of ports can be significant when
instantiating the module (see 12.2.2.1 and 12.3.5). The identifiers in this list shall be declared in input,
output, and inout statements within the module definition. Ports declared in the list of port declarations shall
not be redeclared within the body of the module. The module items define what constitutes a module, and
they include many different types of declarations and definitions, many of which have already been
introduced.

The keyword macromodule can be used interchangeably with the keyword module to define a module. An
implementation may choose to treat module definitions beginning with the macromodule keyword
differently.

Copyright © 2006 IEEE. All rights reserved. 163

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

module declaration ::= (From A.1.2)
{ attribute_instance } module_keyword module_identifier [module parameter port list]
list of ports ; { module item }
endmodule
| { attribute_instance } module keyword module identifier [module parameter port_list]
[list of port declarations | ; { non_port module item }
endmodule

module keyword ::= module | macromodule

module parameter port_list ::= (From A.1.3
(parameter_declaration { , parameter declaration })

list_of ports ::=(port {, port })

list of port declarations ::= (port_declaration { , port declaration }) | ()
port ::=[port_expression] | . port_identifier ([port_expression])
port_expression ::= port_reference | { port_reference { , port_reference } }
port reference ::= port_identifier [[constant range expression | |

port declaration ::= {attribute_instance} inout declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration
module item ::= (From A.1.4)
port_declaration ;
| non_port module item
module or generate item ::=
{ attribute instance } module or generate item declaration
| { attribute instance } local parameter declaration ;
| { attribute_instance } parameter_override
| { attribute instance } continuous_assign
| { attribute instance } gate instantiation
| { attribute_instance } udp_instantiation
| { attribute instance } module instantiation
| { attribute instance } initial construct
| { attribute_instance } always_construct
| { attribute instance } loop generate construct
| { attribute instance } conditional generate construct

module or generate item_declaration ::=
net_declaration
| reg_declaration
| integer declaration
| real declaration
| time_declaration
| realtime_declaration
| event declaration
| genvar_declaration
| task declaration
| function_declaration
non_port_module item ::=
module or generate_item
| generate region
| specify_block
| { attribute_instance } parameter declaration ;
| { attribute_instance } specparam_declaration

parameter_override ::= defparam list of defparam_ assignments ;

Syntax 12-1—Syntax for module

164 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

See 12.3 for the definitions of ports.
12.1.1 Top-level modules
Top-level modules are modules that are included in the source text, but do not appear in any module

instantiation statement, as described in 12.1.2. This applies even if the module instantiation appears in a
generate block that is not itself instantiated (see 12.4). A model shall contain at least one top-level module.

12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do
not nest. In other words, one module definition shall not contain the text of another module definition within
its module-endmodule keyword pair. A module definition nests another module by instantiating it. The
module instantiation statement creates one or more named instances of a defined module.

For example, a counter module might instantiate a D flip-flop module to create multiple instances of the
flip-flop.

Syntax 12-2 gives the syntax for specifying instantiations of modules.

module_instantiation ::= (From A.4.1)

module_identifier [parameter value assignment]

module_instance { , module instance } ;

parameter value assignment ::=

(list_of parameter assignments)
list_of parameter assignments ::=

ordered parameter assignment { , ordered parameter assignment }

| named parameter assignment {,named parameter assignment }
ordered parameter assignment ::=

expression
named parameter assignment ::=

. parameter_identifier ([mintypmax_expression])
module instance ::=

name of module_instance ([list of port connections])
name of module instance ::=

module instance identifier [range]
list_of port connections ::=

ordered port connection {, ordered port connection }

| named_port_connection { , named_port_connection }
ordered port _connection ::=

{ attribute_instance } [expression]
named_port_connection ::=

{ attribute_instance } . port_identifier ([expression])

Syntax 12-2—Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be
created. The array of instances is described in 7.1. The syntax and semantics of arrays of instances defined
for gates and primitives apply for modules as well.

One or more module instances (identical copies of a module) can be specified in a single module
instantiation statement.

Copyright © 2006 IEEE. All rights reserved. 165

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The list of port connections shall be provided only for modules defined with ports. The parentheses,
however, are always required. When a list of port connections is given using the ordered port connection
method, the first element in the list shall connect to the first port declared in the module, the second to the
second port, and so on. See 12.3 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression, or a blank. An
expression can be used for supplying a value to a module input port. A blank port connection shall represent
the situation where the port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list or
by providing no expression in the parentheses [i.e., .port name ()].

For example:

Example 1—The following example illustrates a circuit (the lower level module) being driven by a simple
waveform description (the higher level module) where the circuit module is instantiated inside the waveform
module:

// Lower level module:

// module description of a nand flip-flop circuit
module ffnand (g, gbar, preset, clear);

output g, gbar; //declares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets

// declaration of two nand gates and their interconnections
nand g1 (g, gbar, preset),

g2 (gbar, g, clear);
endmodule

// Higher level module:

// a waveform description for the nand flip-flop
module ffnand wave;

wire outl, out2; //outputs from the circuit

reg inl, in2; //variables to drive the circuit
parameter d = 10;

// instantiate the circuit ffnand, name it "ff",
// and specify the IO port interconnections
ffnand ff (outl, out2, inl, in2);

// define the waveform to stimulate the circuit
initial begin
#d inl =
#d inl =
#d in2 =
#d in2 =
end
endmodule

; in2 = 1;

R ORr O

Example 2—The following example creates two instances of the flip-flop module ffnand defined in
Example 1. It connects only to the g output in one instance and only to the gbar output in the other instance.

// a waveform description for testing

// the nand flip-flop, without the output ports
module ffnand wave;

reg inl, in2; //variables to drive the circuit
parameter d = 10;

166 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

// make two copies of the circuit ffnand
// £f1l has gbar unconnected, ff2 has g unconnected

ffnand f£f1l(outl, , inl, in2),
ff2 (.gbar(out2), .clear(in2), .preset(inl), .g());
// ff3(.g(out3),.clear(inl),,,); is illegal

// define the waveform to stimulate the circuit
initial begin
#d inl =
#d inl =
#d in2 =
#d in2 =
end
endmodule

; in2 = 1;

H O K O

12.2 Overriding module parameter values

There are two different ways that parameters can be defined. The first is the module parameter port list
(see 12.1), and the second is as a module item (see 4.10). A module declaration can contain parameter
definitions of either or both types or can contain no parameter definitions.

A module parameter can have a type specification and a range specification. The effect of parameter
overrides on a parameter’s type and range shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the
final override value assigned to the parameter.

— A parameter with a range specification, but with no type specification, shall be the range of the
parameter declaration and shall be unsigned. An override value shall be converted to the type and
range of the parameter.

— A parameter with a type specification, but with no range specification, shall be of the type specified.
An override value shall be converted to the type of the parameter. A signed parameter shall default
to the range of the final override value assigned to the parameter.

— A parameter with a signed type specification and with a range specification shall be signed and shall
be the range of its declaration. An override value shall be converted to the type and range of the
parameter.

For example:

module generic_fifo
(parameter MSB=3, LSB=0, DEPTH=4)
//These parameters can be overridden
(input [MSB:LSB] in,
input clk, read, write, reset,
output [MSB:LSB] out,
output full, empty);

localparam FIFO MSB = DEPTH*MSB;

localparam FIFO LSB = LSB;
// These parameters are local, and cannot be overridden.
// They can be affected by altering the public parameters
// above, and the module will work correctly.

reg [FIFO MSB:FIFO LSB] fifo;
reg [LOG2 (DEPTH) :0] depth;

Copyright © 2006 IEEE. All rights reserved. 167

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

always @ (posedge clk or reset) begin
casex ({read,write,reset})
// implementation of fifo
endcase
end
endmodule

There are two ways to alter nonlocal parameter values: the defparam statement, which allows assignment to
parameters using their hierarchical names, and the module instance parameter value assignment, which
allows values to be assigned in line during module instantiation. If a defparam assignment conflicts with a
module instance parameter, the parameter in the module will take the value specified by the defparam. The
module instance parameter value assignment comes in two forms, by ordered list or by name. The next two
subclauses describe these two methods.

There are two kinds of parameter declarations. The first kind of parameter declaration has a type and/or
range qualification, and the second does not. When an untyped and unranged parameter’s value is
overridden, the parameter takes on the size and type of the override.

When a typed and/or ranged parameter is overridden, the new value is converted to the type and size of the
destination and assigned to that parameter.

For example:

module foo(a,b);
real ri,r2;
parameter [2:0] A = 3'h2;
parameter B = 3'h2;
initial begin

rl = A;

r2 = B;

Sdisplay ("r1 is %f r2 is %f",rl,r2);
end

endmodule // foo

module bar;
wire a,b;
defparam f1.A = 3.1415;
defparam f1.B = 3.1415;
foo fl(a,b);

endmodule // bar

Parameter 2 is a typed and/or ranged parameter; therefore, when its value is redefined, the parameter retains
its original type and sign. Therefore, the defparam of £1.A with the value 3.1415 is performed by
converting the floating point number 3.1415 into a fixed-point number 3, and then the low 3 bits of 3 are
assigned to A.

Parameter B is not a typed and/or ranged parameter; therefore, when its value is redefined, the parameter
type and range take on the type and range of the new value. Therefore, the defparam of £1 . B with the value
3.1415 replaces B’s current value of 3'h2 with the floating point number 3.1415.

12.2.1 defparam statement

Using the defparam statement, parameter values can be changed in any module instance throughout the
design using the hierarchical name of the parameter. See 12.5 for hierarchical names.

However, a defparam statement in a hierarchy in or under a generate block instance (see 12.4) or an array of
instances (see 7.1 and 12.1.2) shall not change a parameter value outside that hierarchy.

168 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Each instantiation of a generate block is considered to be a separate hierarchy scope. Therefore, this rule
implies that a defparam statement in a generate block may not target a parameter in another instantiation of
the same generate block, even when the other instantiation is created by the same loop generate construct.
For example, the following code is not allowed:

genvar 1i;

generate
for (1 = 0; 1 < 8; 1 =i + 1) begin : somename
flop my flop(in[i], inl[i], outl[i]);
defparam somename [i+1] .my flop.xyz = i ;
end
endgenerate

Similarly, a defparam statement in one instance of an array of instances may not target a parameter in
another instance of the array.

The expression on the right-hand side of the defparam assignments shall be a constant expression involving
only numbers and references to parameters. The referenced parameters (on the right-hand side of the
defparam) shall be declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments
together in one module.

In the case of multiple defparams for a single parameter, the parameter takes the value of the last defparam
statement encountered in the source text. When defparams are encountered in multiple source files, e.g.,
found by library searching, the defparam from which the parameter takes its value is undefined.

For example:

module top;
reg clk;

reg [0:4] inl;
reg [0:9] in2;
wire [0:4] ol;
wire [0:9] o2;

vdff ml (ol, inl, clk);
vdff m2 (02, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;

input clk;

output [0:size-1] out;

reg [0:size-1] out;

always e (posedge clk)
delay out = in;
endmodule

module annotate;

defparam
top.ml.size = 5,
top.ml.delay = 10,
top.m2.size = 10,

Copyright © 2006 IEEE. All rights reserved. 169

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

top.m2.delay = 20;
endmodule

The module annotate has the defparam statement, which overrides size and delay parameter values for
instances m1 and m2 in the top-level module top. The modules top and annotate would both be
considered top-level modules.

12.2.2 Module instance parameter value assignment

An alternative method for assigning values to parameters within module instances is to use one of the two
forms of module instance parameter value assignment. They are assignment by ordered list and assignment
by name. The two types of module instance parameter value assignment shall not be mixed; parameter
assignments to a particular module instance shall be entirely by order or entirely by name.

Module instance parameter value assignment by ordered list is similar in appearance to the assignment of
delay values to gate instances, and assignment by name is similar to connecting module ports by name. It
supplies values for particular instances of a module to any parameters that have been specified in the
definition of that module.

A parameter declared in a named block, task, or function can only be directly redefined using a defparam
statement. However, if the parameter value is dependent on a second parameter, then redefining the second
parameter will update the value of the first parameter as well (see 12.2.3).

12.2.2.1 Parameter value assignment by ordered list

The order of the assignments in the module instance parameter value assignment by ordered list shall follow
the order of declaration of the parameters within the module. It is not necessary to assign values to all of the
parameters within a module when using this method. However, it is not possible to skip over a parameter.
Therefore, to assign values to a subset of the parameters declared within a module, the declarations of the
parameters that make up this subset shall precede the declarations of the remaining parameters. An
alternative is to assign values to all of the parameters, but to use the default value (the same value assigned
in the declaration of the parameter within the module definition) for those parameters that do not need new
values.

For example:

Consider the following example, where the parameters within module instances mod_a, mod_c, and mod_d
are changed during instantiation:

module tbi;

wire [9:0] out_a, out d;
wire [4:0] out b, out c;
reg [9:0] in a, in d;
reg [4:0] in_ b, in c;
reg clk;

// testbench clock & stimulus generation code

// Four instances of vdff with parameter value assignment
// by ordered list

// mod_a has new parameter values size=10 and delay=15
// mod b has default parameters (size=5, delay=1)

// mod_c has one default size=5 and one new delay=12
// In order to change the value of delay,

170 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
// it is necessary to specify the (default) value of size as well.
// mod_d has a new parameter value size=10.
// delay retains its default value
vdff #(10,15) mod_a (.out(out_a), .in(in_a), .clk(clk));
vdff mod b (.out(out _b), .in(in b), .clk(clk));
vdff #(5,12) mod ¢ (.out(out _c), .in(in c), .clk(clk));
vdff #(10) mod d (.out(out _d), .in(in _d), .clk(clk));
endmodule

module vdff (out, in, clk);
parameter size=5, delay=1;
output [size-1:0] out;
input [size-1:0] in;
input clk;
reg [size-1:0] out;

always e (posedge clk)
#idelay out = in;

endmodule

Local parameters cannot be overridden; therefore, they are not considered part of the ordered list for
parameter value assignment. In the following example, addr width will be assigned the value 12, and
data_width will be assigned the value 16. mem_size will not be explicitly assigned a value due to the
ordered list, but will have the value 4096 due to its declaration expression.

module my mem (addr, data);

parameter addr width = 16;

localparam mem size = 1 << addr_width;
parameter data width = 8;

endmodule

module top;

my mem #(12, 16) m(addr,data);
endmodule

12.2.2.2 Parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and its new value. The
name of the parameter shall be the name specified in the instantiated module.

It is not necessary to assign values to all of the parameters within a module when using this method. Only
parameters that are assigned new values need to be specified.

The parameter expression is optional so that the instantiating module can document the existence of a
parameter without assigning anything to it. The parentheses are required, and in this case the parameter
retains its default value. Once a parameter is assigned a value, there shall not be another assignment to this

parameter name.

Consider the following example, where both parameters of mod_a and only one parameter of mod c and
mod_d are changed during instantiation:

Copyright © 2006 IEEE. All rights reserved. 171

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

module tb2;

wire [9:0] out_a, out d;
wire [4:0] out b, out c;
reg [9:0] in a, in d;
reg [4:0] in b, in c;
reg clk;

// testbench clock & stimulus generation code
// Four instances of vdff with parameter value assignment by name

// mod_a has new parameter values size=10 and delay=15
// mod_b has default parameters (size=5, delay=1)

// mod_c has one default size=5 and one new delay=12
// mod_d has a new parameter value size=10.

// delay retains its default value

vdff #(.size(10), .delay(15)) mod a (.out(out_a),.in(in a), .clk(clk));

vdf £ mod b (.out(out _b),.in(in b),.clk(clk));

vdff #(.delay(12)) mod ¢ (.out(out c),.in(in c), .clk(clk));

vdff #(.delay(),.size(10)) mod d (.out(out d),.in(in d),.clk(clk));
endmodule

module vdff (out, in, clk);
parameter size=5, delay=1;
output [size-1:0] out;
input [size-1:0] in;
input clk;
reg [size-1:0] out;

always e (posedge clk)
#delay out = in;

endmodule

It shall be legal to instantiate modules using different types of parameter redefinition in the same top-level
module. Consider the following example, where the parameters of mod_a are changed using parameter
redefinition by ordered list and the second parameter of mod_c is changed using parameter redefinition by
name during instantiation:

module tb3;
// declarations & code

// legal mixture of instance with positional parameters and
// another instance with named parameters

vdff #(10, 15) mod a (.out(out_a), .in(in_a), .clk(clk));

vdff mod b (.out(out _b), .in(in b), .clk(clk));

vdff #(.delay(12)) mod ¢ (.out(out _c), .in(in c¢), .clk(clk));
endmodule

It shall be illegal to instantiate any module using a mixture of parameter redefinitions by order and by name
as shown in the instantiation of mod_a below:

172 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

// mod_a instance with ILLEGAL mixture of parameter assignments
vdff #(10, .delay(15)) mod a (.out(out a), .in(in _a), .clk(clk));

12.2.3 Parameter dependence

A parameter (for example, memory size) can be defined with an expression containing another parameter
(for example, word_size). However, overriding a parameter, whether by a defparam statement or in a
module instantiation statement, effectively replaces the parameter definition with the new expression.
Because memory size depends on the value of word size, a modification of word_size changes the
value of memory size. For example, in the following parameter declaration, an update of word_size,
whether by defparam statement or in an instantiation statement for the module that defined these
parameters, automatically updates memory size. If memory size is updated due to either a defparam or
an instantiation statement, then it will take on that value, regardless of the value of word_size.

parameter

word size = 32,
memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules and primitives. For
example, module A can instantiate module B, using port connections appropriate to module A. These port
names can differ from the names of the internal nets and variables specified in the definition of module B.

12.3.1 Port definition

The syntax for ports and a list of ports is given in Syntax 12-3.

list_of ports ::= (From A.1.3)
(port {, port })
list_of port declarations ::=
(port_declaration {, port _declaration })
1O)
port ::=
[port_expression]
| . port_identifier ([port_expression])
port_expression ::=
port_reference
| { port_reference {, port_reference } }
port_reference ::=
port_identifier [[constant range expression |]
port_declaration ::=
{attribute_instance} inout_ declaration
| {attribute instance} input declaration
| {attribute instance} output_ declaration

Syntax 12-3—Syntax for port

Copyright © 2006 IEEE. All rights reserved. 173

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

12.3.2 List of ports

The port reference for each port in the list of ports at the top of each module declaration can be one of the
following:

— A simple identifier or escaped identifier
— A bit-select of a vector declared within the module
— A part-select of a vector declared within the module

— A concatenation of any of the above

The port expression is optional because ports can be defined that do not connect to anything internal to the
module. Once a port has been defined, there shall not be another port definition with this same name.

The first type of module port, with only a port expression, is an implicit port. The second type is the
explicit port. This explicitly specifies the port _identifier used for connecting module instance ports by
name (see 12.3.6) and the port expression that contains identifiers declared inside the module as
described in 12.3.3. Named port connections shall not be used for implicit ports unless the
port_expression is a simple identifier or escaped identifier, which shall be used as the port name.

12.3.3 Port declarations

Each port _identifier in a port_expression in the list of ports for the module declaration shall also be declared
in the body of the module as one of the following port declarations: input, output, or inout (bidirectional).
This is in addition to any other data type declaration for a particular port— for example, a reg or wire. The
syntax for port declarations is given in Syntax 12-4.

inout declaration ::= (From A.2.1.2)
inout [net_type | [signed] [range] list_of port identifiers
input_declaration ::=
input [net_type] [signed] [range] list of port_identifiers
output_declaration ::=
output [net_type | [signed] [range |
list_of port_identifiers
| output reg [signed] [range]
list of variable port identifiers
| output output_variable type
list of variable port identifiers
list of port identifiers ::= (From A.2.3)
port_identifier {, port identifier }

Syntax 12-4—Syntax for port declarations

If a port declaration includes a net or variable type, then the port is considered completely declared, and it is
an error for the port to be declared again in a variable or net data type declaration. Because of this, all other
aspects of the port shall be declared in such a port declaration, including the signed and range definitions if
needed.

If a port declaration does not include a net or variable type, then the port can be again declared in a net or
variable declaration. If the net or variable is declared as a vector, the range specification between the two

declarations of a port shall be identical. Once a name is used in a port declaration, it shall not be declared
again in another port declaration or in a data type declaration.

174 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Implementations may limit the maximum number of ports in a module definition, but the limit shall be at
least 256.

For example:

input aport; // First declaration - okay.
input aport; // Error - multiple declaration, port declaration
output aport; // Error - multiple declaration, port declaration

The signed attribute can be attached either to a port declaration or the corresponding net or reg declaration
or to both. If either the port or the net/reg is declared as signed, then the other shall also be considered
signed.

Implicit nets shall be considered unsigned. Nets connected to ports without an explicit net declaration shall
be considered unsigned, unless the port is declared as signed.

For example:

module test(a,b,c,d,e,f,g,h);

input [7:0] a; // no explicit declaration - net is unsigned
input [7:0] b;

input signed [7:0] c;

input signed [7:0] d; // no explicit net declaration - net is signed
output [7:0] e; // no explicit declaration - net is unsigned
output [7:0] f;

output signed [7:0] g;

output signed [7:0] h; // no explicit net declaration - net is signed

wire signed [7:0] b; // port b inherits signed attribute from net decl.
wire [7:0] c; // net ¢ inherits signed attribute from port
reg signed [7:0] £; // port f inherits signed attribute from reg decl.
reg [7:0] g; // reg g inherits signed attribute from port

endmodule

module complex ports ({c,d}, .e(f));
// Nets {c,d} receive the first port bits.
// Name 'f' is declared inside the module.
// Name 'e' is defined outside the module.
// Can't use named port connections of first port.

module split ports (al[7:4], al[3:0]);
// First port is upper 4 bits of 'a'.
// Second port is lower 4 bits of 'a'.
// Can't use named port connections because
// of part-select port 'a'.

module same port (.a(i), .b(i));
// Name 'i' is declared inside the module as an inout port.
// Names 'a' and 'b' are defined for port connections.
module renamed concat (.a({b,c}), £, .g(hl1l]));
// Names 'b', 'c', 'f', 'h' are defined inside the module.
// Names 'a', 'f', 'g' are defined for port connections.

// Can use named port connections.

module same input (a,a);

Copyright © 2006 IEEE. All rights reserved. 175

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

input a; // This is legal. The inputs are tied together.

module mixed direction (.p({a, e}));
input a; // p contains both input and output directions.
output e;

12.3.4 List of ports declarations

An alternate syntax that minimizes the duplication of data can be used to specify the ports of a module. Each
module shall be declared either entirely with the list of ports syntax as described in 12.3.2 or entirely using
the list_of port_declarations as described in this subclause.

Each declared port provides the complete information about the port. The port’s direction, width, net, or
variable type and whether the port is signed or unsigned are completely described. The same syntax for
input, inout, and output declarations is used in the module header as would be used for the list of port style
declaration, except the list of port declarations is included in the module header rather than separately
(after the ; that terminates the module header).

For example:

As an example, the module named test given in the previous example could alternatively be declared as
follows:

module test (
input [7:0] a,
input signed [7:0] b, c, d, // Multiple ports that share all
// attributes can be declared together.
output [7:0] e, // Every attribute of the declaration
// must be in the one declaration.
output reg signed [7:0] £, g,
output signed [7:0] h) ;
// It is illegal to redeclare any ports of
// the module in the body of the module.
endmodule

The port_reference type of module port declaration shall not be done using list of port _declarations style
of module declarations. Also ports declared using the list of port declarations shall only be simple
identifiers or escaped identifiers. They shall not be bit-selects, part-selects, or concatenations (as in the
example complex ports); nor can ports be split (as in the example split_ports); nor can they be named
ports (as in the example same_port).

Designs may freely mix modules declared using each syntax; hence implementations desiring the above
special cases of port declaration can be done using the first 1ist of ports syntax.

12.3.5 Connecting module instance ports by ordered list
One method of making the connection between the port expressions listed in a module instantiation and the
ports declared within the instantiated module is the ordered list; that is, the port expressions listed for the

module instance shall be in the same order as the ports listed in the module declaration.

For example:

The following example illustrates a top-level module (topmod) that instantiates a second module (modB).
Module modB has ports that are connected by an ordered list. The connections made are as follows:

176 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

— Port wa in the modB definition connects to the bit-select v [0] in the topmod module.
— Port wb connects to v [3].
— Port ¢ connects to w.

— Port d connects to v [4].

In the modB definition, ports wa and wb are declared as inouts while ports ¢ and d are declared as input.

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB bl (vI[0], vI[3], w, vI[4]);
endmodule

module modB (wa, wb, c, 4);
inout wa, wb;

input ¢, d;

tranifl gl (wa, wb, cinvert);

not #(2, 6) nl (cinvert, int);

and #(6, 5) g2 (int, c, 4);
endmodule

During simulation of the b1 instance of modb, the and gate g2 activates first to produce a value on int. This
value triggers the not gate n1 to produce output on cinvert, which then activates the tranifl gate g1.

12.3.6 Connecting module instance ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the
connection: the port declaration name from the module declaration to the expression, i.e., the name used in
the module declaration, followed by the name used in the instantiating module. This compound name is then
placed in the list of module connections. The port name shall be the name specified in the module
declaration. The port name cannot be a bit-select, a part-select, or a concatenation of ports. If the module
port declaration was implicit, the port expression shall be a simple identifier or escaped identifier,
which shall be used as the port name. If the module port declaration was explicit, the explicit name is used as
the name of port.

The port expression can be any valid expression.

The port expression is optional so that the instantiating module can document the existence of the port
without connecting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular module
instance shall be all by order or all by name.

For example:
Example 1—In the following example, the instantiating module connects its signals topa and topB to the

ports In1 and out defined by the module ALPHA. At least one port provided by ALPHA is unused; it is named
In2. There could be other unused ports not mentioned in the instantiation.

ALPHA instancel (.Out (topB),.Inl(topA),.In2());

Example 2—This example defines the modules modB and topmod, and then topmod instantiates modB using
ports connected by name.

Copyright © 2006 IEEE. All rights reserved. 177

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB bl (.wb(vI[3]),.wa(v[0]),.d(vI[4]),.c(w));
endmodule

module modB (wa, wb, c, d);
inout wa, wb;

input ¢, d;

tranifl gl(wa, wb, cinvert) ;

not #(6, 2) nl (cinvert, int);

and #(5, 6) g2(int, c, 4d);
endmodule

Because these connections are made by name, the order in which they appear is irrelevant.
Multiple module instance port connections are not allowed, e.g., the following example is illegal:

Example 3—This example shows illegal port connections.

module test;

a ia (.1 (a), .i (b), // illegal connection of input port twice.

.0 (¢), .o (d), // illegal connection of output port twice.

.e (e), .e (f)); // illegal connection of inout port twice.
endmodule

12.3.7 Real numbers in port connections

The real data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the
following example. The system functions $realtobits and $bitstoreal shall be used for passing the bit
patterns across module ports. (See 17.8 for a description of these system tasks.)

For example:

module driver (net r);

output net r;

real r;

wire [64:1] net_r = Srealtobits(r) ;
endmodule

module receiver (net r);

input net r;

wire [64:1] net r;

real r;

initial assign r = Sbitstoreal (net_r) ;
endmodule

12.3.8 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (e.g., nets, regs,
expressions)—one internal to the module instance and one external to the module instance.

178 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Examination of the port connection rules described in 12.3.9 will show that the item receiving the value
through the port (the internal item for inputs, the external item for outputs) shall be a structural net
expression. The item that provides the value can be any expression.

A port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not
coerced to inout, a warning has to be issued.

12.3.9 Port connection rules

The rules in 12.3.9.1 through 12.3.9.3 shall govern the way module ports are declared and the way they are
interconnected.

12.3.9.1 Rule 1
An input or inout port shall be of type net.

12.3.9.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be
a signal source and the other shall be a signal sink. The assignment shall be a continuous assignment from
source to sink for input or output ports. The assignment is a nonstrength reducing transistor connection for
inout ports. Only nets or structural net expressions shall be the sinks in an assignment.

A structural net expression is a port expression whose operands can be the following:

— A scalar net

— A vector net

— A constant bit-select of a vector net
— A part-select of a vector net

— A concatenation of structural net expressions
The following external items shall not be connected to the output or inout ports of modules:

— Variables
— Expressions other than the following:
— A scalar net
— A vector net
— A constant bit-select of a vector net
— A part-select of a vector net

— A concatenation of the expressions listed above
12.3.9.3 Rule 3

If the net on either side of a port has the net type uwire, a warning shall be issued if the nets are not merged
into a single net, as described in 12.3.10.

12.3.10 Net types resulting from dissimilar port connections
When different net types are connected through a module port, the nets on both sides of the port can take on

the same type. The resulting net type can be determined as shown in Table 12-1. In the table, external net
means the net specified in the module instantiation, and internal net means the net specified in the module

Copyright © 2006 IEEE. All rights reserved. 179

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

definition. The net whose type is used is said to be the dominating net. The net whose type is changed is said
to be the dominated net. 1t is permissible to merge the dominating and dominated nets into a single net,
whose type shall be that of the dominating net. The resulting net is called the simulated net, and the
dominated net is called a collapsed net.

The simulated net shall take the delay specified for the dominating net. If the dominating net is of the type
trireg, any strength value specified for the trireg net shall apply to the simulated net.

Table 12-1—Net types resulting from dissimilar port connections

External net
Internal
net wire, wand, wor,
tri triand trior trireg tri0 tril uwire | supply0 | supplyl
wire, tri ext ext ext ext ext ext ext ext ext
wand, triand | int ext ext ext ext ext ext ext ext
warn warn warn warn warn
wor, trior int ext ext ext ext ext ext ext ext
warn warn warn warn warn
trireg int ext ext ext ext ext ext ext ext
warn warn warn
tri0 int ext ext int ext ext ext ext ext
warn warn warn warn
tril int ext ext int ext ext ext ext ext
warn warn warn warn
uwire int int int int int int ext ext ext
warn warn warn warn warn
supply0 int int int int int int int ext ext warn
supply1 int int int int int int int ext warn | ext
KEY:
ext = The external net type shall be used.
int = The internal net type shall be used.
warn = A warning shall be issued.

12.3.10.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one
of the following:

— The dominating net type if one of the two nets is dominating, or

— The net type external to the module
When a dominating net type does not exist, the external net type shall be used.
12.3.10.2 Net type table

Table 12-1 shows the net type dictated by net type resolution rule.

180 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

The simulated net shall take the net type specified in the table and the delay specified for that net. If the
simulated net selected is a trireg, any strength value specified for the trireg net applies to the simulated net.

12.3.11 Connecting signed values via ports

The sign attribute shall not cross hierarchy. In order to have the signed type cross hierarchy, the signed
keyword must be used in the object’s declaration at the different levels of hierarchy. Any expressions on a
port shall be treated as any other expression in an assignment. It shall be typed, sized, and evaluated, and the
resulting value assigned to the object on the other side of the port using the same rules as an assignment.

12.4 Generate constructs

Generate constructs are used to either conditionally or multiply instantiate generate blocks into a model. A
generate block is a collection of one or more module items. A generate block may not contain port
declarations, parameter declarations, specify blocks, or specparam declarations. All other module items,
including other generate constructs, are allowed in a generate block. Generate constructs provide the ability
for parameter values to affect the structure of the model. They also allow for modules with repetitive
structure to be described more concisely, and they make recursive module instantiation possible.

There are two kinds of generate constructs: loops and conditionals. Loop generate constructs allow a single
generate block to be instantiated into a model multiple times. Conditional generate constructs, which
include if-generate and case-generate constructs, instantiate at most one generate block from a set of
alternative generate blocks. The term generate scheme refers to the method for determining which or how
many generate blocks are instantiated. It includes the conditional expressions, case alternatives, and loop
control statements that appear in a generate construct.

Generate schemes are evaluated during elaboration of the model. Elaboration occurs after parsing the HDL
and before simulation; and it involves expanding module instantiations, computing parameter values,
resolving hierarchical names (see 12.5), establishing net connectivity and in general preparing the model for
simulation. Although generate schemes use syntax that is similar to behavioral statements, it is important to
recognize that they do not execute at simulation time. They are evaluated at elaboration time, and the result
is determined before simulation begins. Therefore, all expressions in generate schemes shall be constant
expressions, deterministic at elaboration time. For more details on elaboration, see 12.8.

The elaboration of a generate construct results in zero or more instances of a generate block. An instance of
a generate block is similar in some ways to an instance of a module. It creates a new level of hierarchy. It
brings the objects, behavioral constructs, and module instances within the block into existence. These
constructs act the same as they would if they were in a module brought into existence with a module
instantiation, except that object declarations from the enclosing scope can be referenced directly (see 12.7).
Names in instantiated named generate blocks can be referenced hierarchically as described in 12.5.

The keywords generate and endgenerate may be used in a module to define a generate region. A generate
region is a textual span in the module description where generate constructs may appear. Use of generate
regions is optional. There is no semantic difference in the module when a generate region is used. A parser
may choose to recognize the generate region to produce different error messages for misused generate
construct keywords. Generate regions do not nest, and they may only occur directly within a module. If the
generate keyword is used, it shall be matched by an endgenerate keyword.

The syntax for generate constructs is given in Syntax 12-5.

Copyright © 2006 IEEE. All rights reserved. 181

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

module or generate item ::= (From A.1.4)
{ attribute_instance } module or generate item_declaration

| { attribute instance } local parameter declaration ;

| { attribute instance } parameter override

| { attribute_instance } continuous_assign

| { attribute_instance } gate instantiation

| { attribute instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute instance } initial construct

| { attribute instance } always construct

| { attribute_instance } loop_generate construct

| { attribute instance } conditional generate construct
generate_region ::= (From A.4.2)

generate { module or generate item } endgenerate

genvar_declaration ::=
genvar list of genvar identifiers ;
list_of genvar identifiers ::=
genvar_identifier { , genvar_identifier }
loop_generate _construct ::=
for (genvar _initialization ; genvar_expression j genvar_iteration)
generate_block
genvar_initialization ::=
genvar_identifier = constant_expression
genvar_expression ::=
genvar_primary
| unary operator { attribute_instance } genvar primary
| genvar expression binary operator { attribute instance } genvar expression
| genvar_expression ? { attribute instance } genvar expression : genvar_expression
genvar iteration ::=
genvar identifier = genvar_expression
genvar primary ::=
constant_primary
| genvar_identifier
conditional generate construct ::=
if generate construct
| case generate_construct

if generate construct ::=
if (constant_expression) generate block or null
[else generate block or null]

case generate construct ::=
case (constant_expression)
case_generate item { case generate item } endcase
case_generate item ::=
constant_expression { , constant_expression } : generate_block or null
| default [:] generate block or null
generate block ::=
module or generate item
| begin [: generate block identifier | { module or generate item } end
generate_block or null ::=
generate block | 3

Syntax 12-5—Syntax for generate constructs

182 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

12.4.1 Loop generate constructs

A loop generate construct permits a generate block to be instantiated multiple times using syntax that is
similar to a for loop statement. The loop index variable shall be declared in a genvar declaration prior to its
use in a loop generate scheme.

The genvar is used as an integer during elaboration to evaluate the generate loop and create instances of the
generate block, but it does not exist at simulation time. A genvar shall not be referenced anywhere other
than in a loop generate scheme.

Both the initialization and iteration assignments in the loop generate scheme shall assign to the same
genvar. The initialization assignment shall not reference the loop index variable on the right-hand side.

Within the generate block of a loop generate construct, there is an implicit localparam declaration. This is
an integer parameter that has the same name and type as the loop index variable, and its value within each
instance of the generate block is the value of the index variable at the time the instance was elaborated. This
parameter can be used anywhere within the generate block that a normal parameter with an integer value can
be used. It can be referenced with a hierarchical name.

Because this implicit localparam has the same name as the genvar, any reference to this name inside the
loop generate block will be a reference to the localparam, not to the genvar. As a consequence, it is not
possible to have two nested loop generate constructs that use the same genvar.

Generate blocks in loop generate constructs can be named or unnamed, and they can consist of only one
item, which need not be surrounded by begin/end keywords. Even if the begin/end keywords are absent, it
is still a generate block, which, like all generate blocks, comprises a separate scope and a new level of
hierarchy when it is instantiated.

If the generate block is named, it is a declaration of an array of generate block instances. The index values in
this array are the values assumed by the genvar during elaboration. This can be a sparse array because the
genvar values do not have to form a contiguous range of integers. The array is considered to be declared
even if the loop generate scheme resulted in no instances of the generate block. If the generate block is not
named, the declarations within it cannot be referenced using hierarchical names other than from within the
hierarchy instantiated by the generate block itself.

It shall be an error if the name of a generate block instance array conflicts with any other declaration,
including any other generate block instance array. It shall be an error if the loop generate scheme does not
terminate. It shall be an error if a genvar value is repeated during the evaluation of the loop generate
scheme. It shall be an error if any bit of the genvar is set to x or z during the evaluation of the loop generate
scheme.

For example:

Example I—Examples of legal and illegal generate loops

module mod_a;
genvar i;

// "generate", "endgenerate" keywords are not required

for (i=0; i<5; i=i+1) begin:a

for (i=0; i<5; i=i+1) begin:b
// error -- using "i" as loop index for
// two nested generate loops

end
end

Copyright © 2006 IEEE. All rights reserved. 183

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

endmodule

module mod_b;
genvar i;
reg a;

for (i=1; i<0; i=i+1) begin: a
. // error -- "a" conflicts with name of reg "a"
end

endmodule

module mod_c;
genvar i;

for (i=1; i<5; i=i+1) begin: a
end
for (i=10; i<15; i=i+1) begin: a
// error -- "a" conflicts with name of previous

.. // loop even though indices are unique
end

endmodule

Example 2—A parameterized gray-code—to—binary-code converter module using a loop to generate
continuous assignments

module gray2binl (bin, gray);
parameter SIZE = 8§; // this module is parameterizable
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;

genvar i;
generate
for (i=0; i<SIZE; i=i+1) begin:bit
assign bin[i] = “gray[SIZE-1:1i];
// 1 refers to the implicitly defined localparam whose
// value in each instance of the generate block is
// the value of the genvar when it was elaborated.
end
endgenerate
endmodule

The models in Example 3 and Example 4 are parameterized modules of ripple adders using a loop to
generate Verilog gate primitives. Example 3 uses a two-dimensional net declaration outside of the generate
loop to make the connections between the gate primitives while Example 4 makes the net declaration inside

of the generate loop to generate the wires needed to connect the gate primitives for each iteration of the loop.

Example 3—Generated ripple adder with two-dimensional net declaration outside of the generate loop

184 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

module addergenl (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;

output co;
input [SIZE-1:0] a, b;
input ci;

wire [SIZE :0] c;

wire [SIZE-1:0] t [1:3];
genvar i;
assign c[0] = ci;

// Hierarchical gate instance names are:
// xor gates: bit[0].gl bit[1].g1l bit[2] .91l bit[3].gl

// bit [0] .g2 bit[1].g2 bit[2].92 bit[3].g2
// and gates: bit[0].g3 bit[1].g3 bit[2] .93 bit[3].g3
// bit [0].g4 bit[1].g4 bit[2].g4 bit[3].g4

// or gates: bit[0].g5 bit[1].g5 bit[2].g95 bit[3].g5
// Generated instances are connected with

// multidimensional nets t[1][3:0] t[2][3:0] t[3][3:0]
// (12 nets total)

for (i=0; i<SIZE; i=i+1) begin:bit

xor gl (t[1]I[i], alil, b[il);

xor g2 (sum[i], t([1][i], cl[il);

and g3 (t[2][1i], alil, b[il);

and g4 (t[3][i], t[1]I[i], cl[il);

or g5 (cli+l], t[2]I[i], tI[3][i]);
end

assign co = c[SIZE];
endmodule

Example 4—Generated ripple adder with net declaration inside of the generate loop
module addergenl (co, sum, a, b, ci);

parameter SIZE = 4;
output [SIZE-1:0] sum;

output co;
input [SIZE-1:0] a, b;
input ci;
wire [SIZE :0] c;
genvar i;

assign c[0] = ci;

// Hierarchical gate instance names are:
// xor gates: bit[0].gl bit[1].gl bit[2].gl bit[3].gl
// bit[0] .92 bit[1].92 bit[2].92 bit[3].g92
// and gates: bit[0].g3 bit[1].g3 bit[2] .93 bit[3].g3
[[
[[

// bit[0] .g4 bit[1].g4 bit[2].g4 bit[3].g4
// or gates: bit[0].g5 bit[1].g5 bit[2].g95 bit[3].g5
// Gate instances are connected with nets named:
// bit[0].t1 bit[1].t1 bit[2].tl bit[3].t1l
// bit[0].t2 bit[1].t2 bit[2].t2 bit[3].t2
// bit [0].t3 bit[1].t3 bit[2].t3 bit[3].t3
Copyright © 2006 IEEE. All rights reserved. 185

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

for (i=0; 1<SIZE; i=i+1) begin:bit
wire tl, t2, t3;

xor gl (t1l, alil, blil);

Xor g2 (sum[i], tl, clil);

and g3 (t2, alil, blil);

and g4 (t3, t1l, clil);

or g5 (cl[i+1], t2, t3);
end

assign co = c[SIZE];
endmodule

The hierarchical generate block instance names in a multilevel generate loop are shown in Example 5. For
each block instance created by the generate loop, the generate block identifier for the loop is indexed by
adding the “[genvar value]” to the end of the generate block identifier. These names can be used in
hierarchical path names (see 12.5).

Example 5—A multilevel generate loop

parameter SIZE = 2;
genvar i, j, k, m;

generate
for (i=0; i<SIZE; i=i+1) begin:B1 // scope B1[i]
M1 N1(); // instantiates B1[i] .N1
for (j=0; j<SIZE; j=j+1) begin:B2 // scope B1[i] .B2[j]
M2 N2 () ; // instantiates B1[i].B2[j].N2
for (k=0; k<SIZE; k=k+1) begin:B3 // scope B1[i] .B2[j].B3 [k]
M3 N3 () ; // instantiates B1[i].B2[j].B3[k].N3
end
end
if (i>0) begin:B4 // scope B1l[i] .B4
for (m=0; m<SIZE; m=m+1) begin:B5 // scope B1l[i].B4.B5[m]
M4 N4 () ; // instantiates B1[i] .B4.B5[m] .N4
end
end
end
endgenerate

// Some examples of hierarchical names for the module instances:
// B1[0].N1 B1[1].N1

// B1[0].B2[0].N2 B1[0] .B2[1] .N2

// B1[0].B2[0].B3[0].N3 B1[0].B2[0].B3[1].N3

// B1[0].B2[1].B3[0].N3

// B1[1].B4.B5[0] .N4 B1[1] .B4.B5[1] .N4

12.4.2 Conditional generate constructs

The conditional generate constructs, if-generate and case-generate, select at most one generate block from a
set of alternative generate blocks based on constant expressions evaluated during elaboration. The selected
generate block, if any, is instantiated into the model.

Generate blocks in conditional generate constructs can be named or unnamed, and they may consist of only
one item, which need not be surrounded by begin/end keywords. Even if the begin/end keywords are

absent, it is still a generate block, which, like all generate blocks, comprises a separate scope and a new level
of hierarchy when it is instantiated.

186 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Because at most one of the alternative generate blocks is instantiated, it is permissible for there to be more
than one block with the same name within a single conditional generate construct. It is not permissible for
any of the named generate blocks to have the same name as generate blocks in any other conditional or loop
generate construct in the same scope, even if the blocks with the same name are not selected for
instantiation. It is not permissible for any of the named generate blocks to have the same name as any other
declaration in the same scope, even if that block is not selected for instantiation.

If the generate block selected for instantiation is named, then this name declares a generate block instance
and is the name for the scope it creates. Normal rules for hierarchical naming apply. If the generate block
selected for instantiation is not named, it still creates a scope; but the declarations within it cannot be
referenced using hierarchical names other than from within the hierarchy instantiated by the generate block
itself.

If a generate block in a conditional generate construct consists of only one item that is itself a conditional
generate construct and if that item is not surrounded by begin/end keywords, then this generate block is not
treated as a separate scope. The generate construct within this block is said to be directly nested. The
generate blocks of the directly nested construct are treated as if they belong to the outer construct. Therefore,
they can have the same name as the generate blocks of the outer construct, and they cannot have the same
name as any declaration in the scope enclosing the outer construct (including other generate blocks in other
generate constructs in that scope). This allows complex conditional generate schemes to be expressed
without creating unnecessary levels of generate block hierarchy.

The most common use of this would be to create an if-else-if generate scheme with any number of else-if
clauses, all of which can have generate blocks with the same name because only one will be selected for
instantiation. It is permissible to combine if-generate and case-generate constructs in the same complex
generate scheme. Direct nesting applies only to conditional generate constructs nested in conditional
generate constructs. It does not apply in any way to loop generate constructs.

Example 1

module test;
parameter p = 0, g = 0;
wire a, b, c;

// Code to either generate a ul.gl instance or no instance.
// The ul.gl instance of one of the following gates:
// (and, or, xor, xnor) is generated if

// {p.,a} == {1,0}, {1,2}, {2,0}, {2,1}, {2,2}, {2, default}
T
if (p == 1)
if (g == 0)
begin : ul // 1f p==1 and g==0, then instantiate
and gl(a, b, c); // AND with hierarchical name test.ul.gl
end
else if (g == 2)
begin : ul // 1f p==1 and g==2, then instantiate
or gl(a, b, ¢); // OR with hierarchical name test.ul.gl
end
// "else" added to end "if (g == 2)" statement
else ; // If p==1 and g!=0 or 2, then no instantiation
else if (p == 2)
case (q)
0o, 1, 2:
begin : ul // If p==2 and g==0,1, or 2, then instantiate
Copyright © 2006 IEEE. All rights reserved. 187

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Xor gl(a, b, c¢);// XOR with hierarchical name test.ul.gl
end
default:
begin : ul // If p==2 and gq!=0,1, or 2, then instantiate
xXnor gl(a, b, c¢);// XNOR with hierarchical name test.ul.gl
end
endcase

endmodule

This generate construct will select at most one of the generate blocks named ul. The hierarchical name of
the gate instantiation in that block would be test.ul.gl. When nesting if-generate constructs, the else
always belongs to the nearest if construct.

NOTE—As in the example above, an else with a null generate block can be inserted to make a subsequent else belong to
an outer if construct. begin/end keywords can also be used to disambiguate. However, this would violate the criteria for
direct nesting, and an extra level of generate block hierarchy would be created.

Conditional generate constructs make it possible for a module to contain an instantiation of itself. The same
can be said of loop generate constructs, but it is more easily done with conditional generates. With proper
use of parameters, the resulting recursion can be made to terminate, resulting in a legitimate model
hierarchy. Because of the rules for determining top-level modules, a module containing an instantiation of
itself will not be a top-level module.

Example 2—An implementation of a parameterized multiplier module

module multiplier (a,b,product) ;

parameter a width = 8, b _width = 8;

localparam product width = a_width+b width;
// cannot be modified directly with the defparam
// statement or the module instance statement #

input [a_width-1:0] a;

input [b width-1:0] b;

output [product width-1:0] product;

generate
if((a_width < 8) || (b_width < 8)) begin: mult
CLA multiplier #(a_width,b width) ul(a, b, product);
// instantiate a CLA multiplier
end
else begin: mult
WALLACE multiplier #(a_width,b _width) ul(a, b, product) ;
// instantiate a Wallace-tree multiplier
end
endgenerate
// The hierarchical instance name is mult.ul

endmodule

Example 3—Generate with a case to handle widths less than 3

generate
case (WIDTH)
1: begin: adder // 1-bit adder implementation
adder 1lbit x1l(co, sum, a, b, ci);
end
2: begin: adder // 2-bit adder implementation
188 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

adder 2bit xl(co, sum, a, b, ci);

end
default:
begin: adder // others - carry look-ahead adder
adder cla #(WIDTH) x1(co, sum, a, b, ci);
end
endcase

// The hierarchical instance name is adder.xl
endgenerate
Example 4—A module of memory dimm

module dimm(addr, ba, rasx, casx, csx, wex, cke, clk, dgm, data, dev_id);
parameter [31:0] MEM WIDTH = 16, MEM SIZE = 8; // in mbytes
input [10:0] addr;
input ba, rasx, casx, csx, wex, cke, clk;
input [7:0] dagm;
inout [63:0] data;
input [4:0] dev_id;
genvar i;

case ({MEM SIZE, MEM WIDTH})
{32'ds, 32'di6}: // 8Meg x 16 bits wide

begin: memory
for (i=0; i<4; i=i+1) begin:word

sms_08b216t0 p(.clk(clk), .csb(csx), .cke(cke), .ba(ba),
.addr (addr), .rasb(rasx), .casb(casx),
.web (wex), .udgm(dgm[2*i+1]), .ldgm(dgm[2*i]),
.dgi (data[15+16*i:16*1]), .dev_id(dev_id)) ;

// The hierarchical instance names are memory.word[3].p,
// memory.word[2] .p, memory.word[l] .p, memory.word[0].p,
// and the task memory.read mem
end
task read mem;

input [31:0] address;

output [63:0] data;

begin // call read mem in sms module

word [3] .p.read mem(address, datal[63:48]);
word[2] .p.read mem(address, datal[47:32]);
word[1l] .p.read _mem(address, data[31:16]);
word [0] .p.read _mem(address, data[l5: 0]);
end
endtask

end

{32'd16, 32'd8}: // 1l6Meg x 8 bits wide
begin: memory
for (i=0; i<8; i=i+1) begin:byte

sms_16b208t0 p(.clk(clk), .csb(csx), .cke(cke), .ba(ba),
.addr (addr), .rasb(rasx), .casb(casx),
.web (wex), .dgm(dgm[il),
.dgi (data[7+8*1:8*1i]), .dev_id(dev_id));
// The hierarchical instance names are memory.bytel[7].p,
// memory.bytel[6].p, ... , memory.byte[l].p, memory.bytel[0].p,
Copyright © 2006 IEEE. All rights reserved. 189

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

// and the task memory.read mem
end
task read mem;
input [31:0] address;
output [63:0] data;
begin // call read mem in sms module

byte[7] .p.read mem(address, datal[63:56]);
byte[6] .p.read mem(address, data[55:48]);
byte[5] .p.read mem(address, datal[47:40]);
byte[4] .p.read mem(address, data[39:32]);
byte[3] .p.read _mem(address, data[31:24]);
byte[2] .p.read _mem(address, data[23:16]);
byte[l] .p.read mem(address, data[l5: 8]);
byte[0] .p.read mem(address, datal 7: 0]);
end
endtask
end
// Other memory cases
endcase
endmodule

12.4.3 External names for unnamed generate blocks

Although an unnamed generate block has no name that can be used in a hierarchical name, it needs to have a
name by which external interfaces can refer to it. A name will be assigned for this purpose to each unnamed
generate block as described in the next paragraph.

Each generate construct in a given scope is assigned a number. The number will be 1 for the construct that
appears textually first in that scope and will increase by 1 for each subsequent generate construct in that
scope. All unnamed generate blocks will be given the name “genblk<n>" where <n> is the number assigned
to its enclosing generate construct. If such a name would conflict with an explicitly declared name, then
leading zeroes are added in front of the number until the name does not conflict.

NOTE—Each generate construct is assigned its number as described in the previous paragraph even if it does not
contain any unnamed generate bocks.

For example:
module top;

parameter genblk2 = 0;
genvar i;

// The following generate block is implicitly named genblkl

if (genblk2) reg a; // top.genblkl.a
else reg b; // top.genblkl.b

// The following generate block is implicitly named genblk02
// as genblk2 is already a declared identifier

if (genblk2) reg a; // top.genblk02.a
else reg b; // top.genblk02.b

// The following generate block would have been named genblk3
// but is explicitly named gl

190 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

for (i = 0; i <1; 1 =1 + 1) begin : g1 // block name
// The following generate block is implicitly named genblkl
// as the first nested scope inside of gl
if (1) reg a; // top.gll[0].genblkl.a

end

// The following generate block is implicitly named genblk4 since
// it belongs to the fourth generate construct in scope "top".

// The previous generate block would have been

// named genblk3 if it had not been explicitly named gl

for (1 =0; 1 <1; 1 =1+ 1)
// The following generate block is implicitly named genblkl
// as the first nested generate block in genblk4
if (1) reg a; // top.genblk4[0].genblkl.a

// The following generate block is implicitly named genblk5
if (1) reg a; // top.genblk5.a

endmodule

12.5 Hierarchical names

Every identifier in a Verilog HDL description shall have a unique hierarchical path name. The hierarchy of
modules and the definition of items such as tasks and named blocks within the modules shall define these
names. The hierarchy of names can be viewed as a tree structure, where each module instance, generate
block instance, task, function, or named begin-end or fork-join block defines a new hierarchical level, or
scope, in a particular branch of the tree.

A design description contains one or more top-level modules (see 12.1.1). Each such module forms the top
of a name hierarchy. This root or these parallel root modules make up one or more hierarchies in a design
description or description. Inside any module, each module instance (including an arrayed instance),
generate block instance, task definition, function definition, and named begin-end or fork-join block shall
define a new branch of the hierarchy. Named blocks within named blocks and within tasks and functions
shall create new branches. Unnamed generate blocks are exceptions. They create branches that are visible
only from within the block and within any hierarchy instantiated by the block. See 12.4.3 for a discussion of
unnamed generate blocks.

Each node in the hierarchical name tree shall be a separate scope with respect to identifiers. A particular
identifier can be declared at most once in any scope. See 12.7 for a discussion of scope rules and 4.11 for a
discussion of name spaces.

Any named Verilog object or hierarchical name reference can be referenced uniquely in its full form by
concatenating the names of the modules, module instance names, generate blocks, tasks, functions, or
named blocks that contain it. The period character shall be used to separate each of the names in the
hierarchy, except for escaped identifiers embedded in the hierarchical name reference, which are followed
by separators composed of white space and a period-character. The complete path name to any object shall
start at a top-level (root) module. This path name can be used from any level in the hierarchy or from a
parallel hierarchy. The first node name in a path name can also be the top of a hierarchy that starts at the
level where the path is being used (which allows and enables downward referencing of items). Objects
declared in automatic tasks and functions are exceptions and cannot be accessed by hierarchical name
references. Objects declared in unnamed generate blocks are also exceptions. They can be referenced by
hierarchical names only from within the block and within any hierarchy instantiated by the block.

Copyright © 2006 IEEE. All rights reserved. 191

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Names in a hierarchical path name that refer to instance arrays or loop generate blocks may be followed
immediately by a constant expression in square brackets. This expression selects a particular instance of the
array and is, therefore, called an instance select. The expression shall evaluate to one of the legal index
values of the array. If the array name is not the last path element in the hierarchical name, the instance select
expression is required.

The syntax for hierarchical path names is given in Syntax 12-6.

escaped_identifier ::= (From A.9.3)
\ {Any_ASCII character _except white_space} white space
hierarchical identifier ::=
{ identifier [[constant_expression |] . } identifier
identifier ::=
simple_identifier
| escaped_identifier
simple identifier® ::= [a-zA-Z_] {[a-zA-Z0-9 $]}
white_space ::= (From A.9.4)
space | tab | newline | cof®

8A simple identifier shall start with an alpha or underscore (_) character, shall have at least one character,
and shall not have any spaces.
PEnd of file.

Syntax 12-6—Syntax for hierarchical path names

For example:

Example 1—The code in this example defines a hierarchy of module instances and named blocks.

module mod (in) ; module cct (stiml, stim2);

input in; input stiml, stim2;

always @ (posedge in) begin : keep // instantiate mod

reg hold; mod amod (stiml), bmod(stim2) ;
hold = in; endmodule

end

endmodule

module wave;
reg stiml, stim2;

cct a(stiml, stim2); // instantiate cct

initial begin :wavel
#100 fork :innerwave

reg hold;
join
#150 begin
stiml = 0;
end
end
endmodule

Figure 12-1 illustrates the hierarchy implicit in this Verilog code.

192 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE

HARDWARE DESCRIPTION LANGUAGE Std 1364-2005
wave
|
| |
a wave1l

\' |
amod bmod iInnerwave
keep keep

Figure 12-1—Hierarchy in a model

Figure 12-2 is a list of the hierarchical forms of the names of all the objects defined in the code.

wave wave.a.bmod

wave.stiml wave.a.bmod.in

wave.stim2 wave.a.bmod.keep

wave.a wave.a.bmod.keep.hold
wave.a.stiml wave.wavel

wave.a.stim2 wave.wavel.innerwave
wave.a.amod wave.wavel.innerwave.hold
wave.a.amod. in

wave.a.amod.keep

wave.a.amod.keep.hold

Figure 12-2—Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the
unique hierarchical path name of an item is known, its value can be sampled or changed from anywhere
within the description.

Example 2—The next example shows how a pair of named blocks can refer to items declared within each
other.

begin
fork :mod_1
reg x;
mod_2.x
join
fork :mod 2
reg x;
mod_1.x
join
end

1]
=

I}
o

12.6 Upwards name referencing

The name of a module or module instance is sufficient to identify the module and its location in the
hierarchy. A lower level module can reference items in a module above it in the hierarchy. Variables can be

Copyright © 2006 IEEE. All rights reserved. 193

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

referenced if the name of the higher level module or its instance name is known. For tasks, functions, named
blocks, and generate blocks, Verilog shall look in the enclosing module for the name until it is found or until
the root of the hierarchy is reached. It shall only search in higher enclosing modules for the name, not
instances.

The syntax for an upward reference is given in Syntax 12-7.

upward_name_reference ::=

module_identifier.item_name
item_name ::=

function_identifier

| block identifier

| net_identifier

| parameter_identifier

| port_identifier

| task identifier

| variable identifier

Syntax 12-7—Syntax for upward name referencing

Upward name references can also be done with names of the form
scope_name.item_ name

where scope_name is either a module instance name or a generate block name. A name of this form shall be
resolved as follows:

a) Look in the current scope for a scope named scope_name. If not found and the current scope is not
the module scope, look for the name in the enclosing scope, repeating as necessary until the name is
found or the module scope is reached. If still not found, proceed to step b). Otherwise, this name ref-
erence shall be treated as a downward reference from the scope in which the name is found.

b) Look in the parent module’s outermost scope for a scope named scope name. If found, the item
name shall be resolved from that scope.

c¢) Repeat step b), going up the hierarchy.

There is an exception to these rules for hierarchical names on the left-hand side of defparam statements.
See 12.8 for details.

For example:

In this example, there are four modules, a, b, ¢, and d. Each module contains an integer i. The highest level
modules in this segment of a model hierarchy are a and d. There are two copies of module b because module
a and 4 instantiate b. There are four copies of c. 1 because each of the two copies of b instantiates c twice.

module a;
integer i;

b a bl();

endmodule

194 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

HARDWARE DESCRIPTION LANGUAGE

module b;
integer i;
c b_cl(), b_c2();
initial //
#10 b c1.i = 2; //
endmodule
module c;
integer i;
initial begin //
i=1; //
//
b.i =1; //
//
end
endmodule
module 4;
integer i;
b dbl();

initial begin
a.i 1;
a.a bl.i = 2;
a.a bl.b cl.i
a.a bl.b c2.1 4;
end

endmodule

12.7 Scope rules

IEEE
Std 1364-2005

downward path references two copies of i:
a.a bl.b cl.i, d.d bl.b cl.i

local name references four

a.a_bl.b cl.
d.d bl.b cl.
upward path
a.a bl.i, d.

The following elements define a new scope in Verilog:

Modules
Tasks
Functions
Named blocks

Generate blocks

Q. 0 o

i, a.a bl.b c2

i, d.d bl.b c2.

references two
d bl.i

i=75;

d bl.i = 6;
d bl.b cl1.1i =
d bl.b c2.1 =

copies of
.i,
i
copies of

// full path name references each copy of i
d.

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare
two or more variables that have the same name, or to name a task the same as a variable within the same
module, or to give a gate instance the same name as the name of the net connected to its output. For generate
blocks, this rule applies regardless of whether the generate block is instantiated. An exception to this is made
for generate blocks in a conditional generate construct. See 12.4.3 for a discussion of naming conditional

generate blocks.

Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

195

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

If an identifier is referenced directly (without a hierarchical path) within a task, function, named block, or
generate block, it shall be declared either within the task, function, named block, or generate block locally or
within a module, task, function, named block, or generate block that is higher in the same branch of the
name tree that contains the task, function, named block, or generate block. If it is declared locally, then the
local item shall be used; if not, the search shall continue upward until an item by that name is found or until
a module boundary is encountered. If the item is a variable, it shall stop at a module boundarys; if the item is
a task, function, named block, or generate block, it continues to search higher level modules until found.
This fact means that tasks and functions can use and modify the variables within the containing module by
name, without going through their ports.

If an identifier is referenced with a hierarchical name, the path can start with a module name, instance name,
task, function, named block, or named generate block. The names shall be searched first at the current level
and then in higher level modules until found. Because both module names and instance names can be used,
precedence is given to instance names if there is a module named the same as an instance name.

Because of the upward searching, path names that are not strictly on a downward path can be used.
For example:
Example 1—In Figure 12-3, each rectangle represents a local scope. The scope available to upward

searching extends outward to all containing rectangles—with the boundary of the module A as the outer
limit. Thus block G can directly reference identifiers in F, E, and A; it cannot directly reference identifiers in

H, B, C, and D.
module A
AN
task E ~)
Scopes not block B > _
available to Hig B Scopes available
block G block F«1 to block G
Ay #
task block G
N
\ block H
func D

Figure 12-3—Scopes available to upward name referencing

Example 2—The following example shows how variables can be accessed directly or with hierarchical

names:
task t;
reg s;
begin : b
reg r;
196 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

t.b.r 0;// These three lines access the same variable r
r

o

’

r = 0;

t.s = 0;// These two lines access the same variable s
s = 0;

end

endtask

12.8 Elaboration

Elaboration is the process that occurs between parsing and simulation. It binds modules to module
instances, builds the model hierarchy, computes parameter values, resolves hierarchical names, establishes
net connectivit, and prepares all of this for simulation. With the addition of generate constructs, the order in
which these tasks occur becomes significant.

12.8.1 Order of elaboration

Because of generate constructs, the model hierarchy can depend on parameter values. Because defparam
statements can alter parameter values from almost anywhere in the hierarchy, the result of elaboration can be
ambiguous when generate constructs are involved. The final model hierarchy can depend on the order in
which defparams and generate constructs are evaluated.

The following algorithm defines an order that produces the correct hierarchy:

a) A list of starting points is initialized with the list of top-level modules.

b) The hierarchy below each starting point is expanded as much as possible without elaborating gener-
ate constructs. All parameters encountered during this expansion are given their final values by
applying initial values, parameter overrides, and defparam statements.

In other words, any defparam statement whose target can be resolved within the hierarchy elabo-
rated so far must have its target resolved and its value applied. defparam statements whose target
cannot be resolved are deferred until the next iteration of this step. Because no defparam inside the
hierarchy below a generate construct is allowed to refer to a parameter outside the generate con-
struct, it is possible for parameters to get their final values before going to step c).

¢) Each generate construct encountered in step b) is revisited, and the generate scheme is evaluated.
The resulting generate block instantiations make up the new list of starting points. If the new list of
starting points is not empty, go to step b).

12.8.2 Early resolution of hierarchical names

In order to comply with this algorithm, hierarchical names in some defparam statements will need to be
resolved prior to the full elaboration of the hierarchy. It is possible that when elaboration is complete, rules
for name resolution would dictate that a hierarchical name in a defparam statement would have resolved
differently had early resolution not been required. This could result in a situation where an identical
hierarchical name in some other statement in the same scope would resolve differently from the one in the
defparam statement. Below is an example of a design that has this problem:

module m;
ml n();
endmodule
module m1;
parameter p = 2;

Copyright © 2006 IEEE. All rights reserved. 197

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

defparam m.n.p = 1;
initial $display (m.n.p) ;

generate
if (p == 1) begin : m
m2 n();
end
endgenerate
endmodule

module m2;
parameter p = 3;
endmodule

In this example, the defparam must be evaluated before the conditional generate is elaborated. At this point
in elaboration, the name resolves to parameter p in module mid1, and this parameter is used in the generate
scheme. The result of the defparam is to set that parameter to 1; therefore, the generate condition is true.
After the hierarchy below the generate construct is elaborated, the rules for hierarchical name resolution
would dictate that the name should have resolved to parameter p in module mid2. In fact, the identical
name in the $display statement will resove to that other parameter.

It shall be an error if a hierarchical name in a defparam is resolved before the hierarchy is completely
elaborated and that name would resolve differently once the model is completely elaborated.

This situation will occur very rarely. In order to cause the error, there has to be a named generate block that
has the same name as one of the scopes in its full hierarchical name. Furthermore, there have to be two
instances with the same name, one in the generate block and one in the other scope with the same name as
the generate block. Then, inside these instances there have to be parameters with the same name. If this
problem occurs, it can be easily fixed by changing the name of the generate block.

198 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

13. Configuring the contents of a design

13.1 Introduction

To facilitate both the sharing of Verilog designs between designers and/or design groups and the
repeatability of the exact contents of a given simulation (or other tool) session, the concept of configurations
is used in the Verilog language. A configuration is simply an explicit set of rules to specify the exact source
description to be used to represent each instance in a design. The operation of selecting a source
representation for an instance is referred to as binding the instance.

The example below shows a simple configuration problem.

For example:

file top.v file adder.v file adder.vg
module top () ; module adder(...); module adder(...);
adder al(...); // rtl adder // gate-level adder
adder a2(...); // description // description
endmodule R ...

endmodule endmodule

Consider using the rt1 adder description in adder.v for instance al in module top and the gate-level
adder description in adder .vg for instance a2. In order to specify this particular set of instance bindings
and to avoid having to change the source description to specify a new set, a configuration can be used.

config cfgl; // specify rtl adder for top.al, gate-level adder for top.a2
design rt1Lib. top;
default liblist rt1Lib;
instance top.a2 liblist gateLib;

endconfig

The elements of a config are explained in subsequent subclauses, but this simple example illustrates some
important points about configs. As evidenced by the config-endconfig syntax, the config is a design
element, similar to a module, which exists in the Verilog name space. The config contains a set of rules that
are applied when searching for a source description to bind to a particular instance of the design.

A Verilog design description starts with a top-level module (or modules) (see 12.1.1). From this module’s
source description, the instantiated modules (or children) are found, then the source descriptions for the
module definitions of these subinstances shall be located, and so on until every instance in the design is
mapped to a source description.

13.1.1 Library notation

In order to map a Verilog instance to a source description, the concept of a symbolic library, which is simply
a logical collection of design elements (such as modules, primitives, or configs), can be used. These design
elements can be referred to as cells. The cell name shall be the same as the name of the module/primitive/
config being processed. Syntax 13-1 specifies a cell from a given library.

library cell ::=
[library identifier.]cell identifier[:config]

Syntax 13-1—Syntax for cell

Copyright © 2006 IEEE. All rights reserved. 199

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

This notation gives a symbolic method of referring to source descriptions; the method of mapping source
descriptions into libraries is shown in greater detail in 13.2.1. The optional : config extension shall be used
explicitly to refer to a config in the case where a config has the same name as a module/primitive.

For the purposes of this example, suppose the files top.v and adder.v (i.e., the RTL descriptions) have
been mapped into the library rt1Lib and the file adder.vg (i.e., the gate-level description of the adder)
has been mapped into the library gateLib. The actual mechanism for mapping source descriptions to
libraries is detailed in 13.2.

13.1.2 Basic configuration elements

The design statement in config cfgl of the first example of 13.1 specifies the top-level module in the
design and what source description is to be used. In this example, the rt1Lib. top notation indicates the
top-level module description shall be taken from rt1Lib. Because top.v and adder.v were mapped to
this library, the actual description for the module is known to come from top.v.

The default statement coupled with the liblist clause specifies, by default, all subinstances of top (i.e.,
top.al and top.a2) shall be taken from rt1Lib, which means the descriptions in top.v and adder.v,
which were mapped to this library, shall be used. For a basic design, which can be completely rt1, this can
be sufficient to specify completely the binding for the entire design. However, here the top.a2 instance of
adder to the gate-level description shall be bound.

The instance statement specifies, for the particular instance top.a2, the source description shall be taken
from gateLib. The instance statement overrides the default rule for this particular instance. Because
adder.vg was mapped to gateLib, this statement dictates the gate-level description in adder .vg be used
for instance top.az2.

13.2 Libraries

As mentioned in the previous subclause, a library is a logical collection of cells that are mapped to particular
source description files. The symbolic /ib.cell[: config] notation supports the separate compilation of
source files by providing a file-system-independent name to refer to source descriptions when instances in a
design are bound. It also allows multiple tools, which can have different invocation use models, to share the
same configuration.

13.2.1 Specifying libraries—the library map file

When parsing a source description file (or files), the parser shall first read the library mapping information
from a predefined file prior to reading any source files. The name of this file and the mechanism for reading
it shall be tool-specific, but all compliant tools shall provide a mechanism to specify one or more library
map files to be used for a particular invocation of the tool. If multiple map files are specified, then they shall
be read in the order in which they are specified.

For the purposes of this discussion, assume the existence of a file named 1ib.map in the current working
directory, which is automatically read by the parser prior to parsing any source files specified on the
command line. The syntax for declaring a library in the library map file is shown in Syntax 13-2.

200 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

library text ::= (From A.1.1)

{ library_description }
library _description ::=

library declaration

| include_statement

| config_declaration
library declaration ::=

library library identifier file path spec| {, file path spec }]

[-incdir file path spec {, file path spec } |;

include statement ::=

include file path spec ;

Syntax 13-2—Syntax for declaring library in library map file

Library map file details

1—file path_spec uses file-system-specific notation to specify an absolute or relative path to a particular file or set of
files. The following shortcuts/wildcards can be used:

z single character wildcard (matches any single character)

* multiple character wildcard (matches any number of characters in a directory/file name)
hierarchical wildcard (matches any number of hierarchical directories)
specifies the parent directory
specifies the directory containing the 1ib.map

Paths that end in / shall include all files in the specified directory. Identical to /*.
Paths that do not begin with / are relative to the directory in which the current lib.map file is located.

2—The paths ./*.v and *.v are identical, and both specify all files with a .v suffix in the current directory.

Any file encountered by the compiler that does not match any library’s file path spec shall by default be
compiled into a library named work.

To perform the library mapping discussed in the example in 13.1, use the following library definitions in the
lib.map file:

library rt1Lib *.v; // matches all files in the current directory with a . v suffix

library gateLib ./*.vg; // matches all files in the current directory with a .vg suffix
13.2.1.1 File path resolution

If a file name potentially matches multiple file path specifications, the path specifications shall be resolved
in the following order:

a) File path specifications that end with an explicit filename
b) File path specifications that end with a wildcarded filename

c) File path specifications that end with a directory

If a file name matches path specifications in multiple library definitions (after the above resolution rules
have been applied), it shall be an error.

Using these rules with the library definitions in the 1ib.map file, all source files encountered by the parser/
compiler can be mapped to a unique library. Once the source descriptions have been mapped to libraries, the
cells defined in those libraries are available for binding.

Copyright © 2006 IEEE. All rights reserved. 201

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

NOTE—Tool implementers may find it convenient to provide a command-line argument to explicitly specify the library
into which the file being parsed is to be mapped, which shall override any library definitions in the 1ib.map file. If these
libraries do not exist in the 1ib.map file, they can only be accessed via an explicit config.

If multiple cells with the same name map to the same library, then the LAST cell encountered shall be written
to the library. This is to support a “separate-compile” use model (see 13.4.3), where it is assumed that
encountering a cell after it has previously been compiled is intended to be a recompiling of the cell. In the
case where multiple modules with the same name are mapped to the same library in a single invocation of
the compiler, then a warning message shall be issued.

13.2.2 Using multiple library map files

In addition to specifying library mapping information, a 1ib.map file can also include references to other
lib.map files. The include command is used to insert the entire contents of a library map file in another file
during parsing. The result is as though the contents of the included map file appear in place of the include
command.

The syntax of a 1ib.map file is limited to library specifications, include statements, and standard Verilog
comment syntax. Syntax 13-3 shows the syntax for the include command.

include statement ::= (From A.1.1)
include file path spec ;

Syntax 13-3—Syntax for include command

If the file path specification, whether in an include or library statement, describes a relative path, it shall be
relative to the location of the file that contains the file path. Library providers shall include a local library
map file in addition to the source contents of the library. Individual users can then simply include the
provider’s library map file in their own map file to gain access to the contents of the provided library.
13.2.3 Mapping source files to libraries

For each cell definition encountered during parsing/compiling, the name of the source file being parsed is

compared to the file path specifications of the library declarations in all of the library map files being used.
The cell is mapped into the library whose file path specification matches the source file name.

13.3 Configurations

As mentioned in the introduction of this clause, a configuration is simply a set of rules to apply when
searching for library cells to which to bind instances. The syntax for configurations is shown in 13.3.1.

13.3.1 Basic configuration syntax

The configuration syntax is shown in Syntax 13-4.

13.3.1.1 Design statement

The design statement names the library and cell of the top-level module or modules in the design hierarchy
configured by the config. There shall be one and only one design statement, but multiple top-level modules
can be listed in the design statement. The cell or cells identified cannot be configurations themselves. It is

possible the design identified can have the same name as configs, however.

The design statement shall appear before any config rule statements in the config.

202 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

config_declaration ::= (From A.1.5)
config config identifier ;
design_statement
{config_rule statement}
endconfig

design_statement ::=
design { [library identifier.]cell identifier } ;

config_rule statement ::=

default clause liblist clause ;
| inst_clause liblist clause ;
| inst_clause use clause ;
| cell clause liblist clause ;
| cell clause use clause ;

Syntax 13-4—Syntax for configuration

If the library identifier is omitted, then the library that contains the config shall be used to search for the cell.
13.3.1.2 The default clause

The syntax for the default clause is specified in Syntax 13-5.

default clause ::= (From A.1.5)
default

Syntax 13-5—Syntax for default clause

The default clause selects all instances that do not match a more specific selection clause. The use
expansion clause (see 13.3.1.6) cannot be used with a default selection clause. For other expansion clauses,
there cannot be more than one default clause that specifies the expansion clause.

For simple design configurations, it might be sufficient to specify a default /iblist (see 13.3.1.5).

13.3.1.3 The instance clause

The instance clause is used to specify the specific instance to which the expansion clause shall apply. The
syntax for the instance clause is specified in Syntax 13-6.

inst_clause ::= (From A.1.5)
instance inst name

inst_ name ::=
topmodule_identifier{.instance_identifier}

Syntax 13-6—Syntax for instance clause

The instance name associated with the instance clause is a Verilog hierarchical name, starting at the top-
level module of the config (i.e., the name of the cell in the design statement).

Copyright © 2006 IEEE. All rights reserved. 203

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

13.3.1.4 The cell clause

The cell selection clause names the cell to which it applies. The syntax for the cell clause is specified in
Syntax 13-7.

cell clause ::= (From A.1.5)
cell [library _identifier.]cell identifier

Syntax 13-7—Syntax for cell clause

If the optional library name is specified, then the selection rule applies to any instance that is bound or is
under consideration for being bound to the selected library and cell. It is an error if a library name is
included in a cell selection clause and the corresponding expansion clause is a library list expansion clause.

13.3.1.5 The liblist clause

The liblist clause defines an ordered set of libraries to be searched to find the current instance. The syntax
for the liblist clause is specified in Syntax 13-8.

liblist_clause ::= (From A.1.5)
liblist { library_identifier }

Syntax 13-8—Syntax for liblist clause

liblists are inherited hierarchically downward as instances are bound. When searching for a cell to bind to
the current unbound instance, and in the absence of an applicable binding expansion clause, the specified
library list is searched in the specified order.

The current library list is selected by the selection clauses. If no library list clause is selected or if the
selected library list is empty, then the library list contains the single name that is the library in which the cell
containing the unbound instance is found (i.e., the parent cell’s library).

13.3.1.6 The use clause

The use clause specifies a specific binding for the selected cell. The syntax for the use clause is specified in
Syntax 13-9.

use_clause ::= (From A.1.5)
use [library_identifier.]cell identifier[:config]

Syntax 13-9—Syntax for use clause

A use clause can only be used in conjunction with an instance or cell selection clause. It specifies the exact
library and cell to which a selected cell or instance is bound.

The use clause has no effect on the current value of the library list. It can be common in practice to specify
multiple config rule statements, one of which specifies a binding and the other of which specifies a library
list.

204 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

If the lib.cell to which the use clause refers is a config that has the same name as a module/primitive in the
same library, then the optional :config suffix can be added to the 1ib.cell to specify the config
explicitly.

If the library name is omitted, the library shall be inherited from the parent cell.

NOTE—The binding statement can create situations where the unbound instance’s module name and the cell name to
which it is bound are different.

13.3.2 Hierarchical configurations

For situations where it is desirable to specify a special set of configuration rules for a subsection of a design,
it is possible to bind a particular instance directly to a configuration using the binding clause:

instance top.al.foo use libl.foo:config;
// bind to the config foo in library libl

specifies the instance top.al. foo is to be replaced with the design hierarchy specified by the configuration
libl.foo:config. The design statement in 1ib1l.foo:config shall specify the actual binding for the
instance top.al.foo, and the rules specified in the config shall determine the configuration of all other
subinstances under top.al. foo.

It shall be an error for an instance clause to specify a hierarchical path to an instance that occurs within a
hierarchy specified by another config.

config bot;
design 1ibl.bot;
default liblist 1ib1l 1ib2;
instance bot.al liblist 1ib3;
endconfig

config top;

design 1ibl.top;

default liblist 1ib2 1ib1;

instance top.bot use libl.bot:config;

instance top.bot.al liblist 1ib4;

// ERROR - cannot set liblist for top.bot.al from this config
endconfig

13.4 Using libraries and configs

This subclause describes potential use models for referencing configs on the command line. It is included for
clarification purposes.

The traditional Verilog simulation use model takes a file-based approach, where the source descriptions for
all cells in the design are specified on the command line for each invocation of the tool. With the advent of
compiled-code simulators, the configuration mechanism shall also support a use model that allows for the
source files to be precompiled and then for the precompiled design objects to be referenced on the command
line. This subclause explains how configurations can be used in both of these scenarios.

13.4.1 Precompiling in a single-pass use model
The single-pass use model is the traditional use model with which most users are familiar. In this use model,

all of the source description files shall be provided to the simulator via the command line, and only these
source descriptions can be used to bind cell instances in the current design. A precompiling strategy in this

Copyright © 2006 IEEE. All rights reserved. 205

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

scenario actually parses every cell description provided on the command line and maps it into the library
without regard to whether the cell actually is used in the design. The tool can optionally check to see
whether the cell already exists in the library and, if it is up-to-date (i.e., the source description has not
changed since the last time the cell was compiled), can skip recompiling the cell. After all cells on the
command line have been compiled, then the tool can locate the top-level cell (discussed in Clause 12) and
proceed down the hierarchy, binding each instance as it is encountered in the hierarchy.

NOTE—With this use model, it is not necessary for library objects to persist from one tool invocation to another
(although for performance considerations it is recommended they do).

13.4.2 Elaboration-time compiling in a single-pass use model

An alternate strategy that can be used with a single-pass tool is to parse the source files only to find the top-
level module(s), without actually compiling anything into the library during this scanning process. Once the
top-level module(s) has been found, then it can be compiled into the library, and the tool can proceed down
the hierarchy, only compiling the source descriptions necessary to bind the design successfully. Based on the
binding rules in place, only the source files that match the current library specification need to be parsed to
find the current cell’s source description to compile. As with the precompiled single-pass use model, it is not
necessary for library cells to persist from one invocation to another using this strategy.

13.4.3 Precompiling using a separate compilation tool

When using a separate compilation tool, it is essential that library cells persist, and the compiled forms shall,
therefore, exist somewhere in the file system. The exact format and location for holding these compiled
forms shall be vendor- or tool-specific. Using this separate compiler strategy, the source descriptions shall
be parsed and compiled into the library using one or more invocations of the compiler tool. The only
restriction is that all cells in a design shall be precompiled prior to binding the design (typically via an
invocation of a separate tool). Using this strategy, the tool that actually does the binding only needs to be
told the top-level module(s) of the design to be bound, and then it shall use the precompiled form of the cell
description(s) from the library to determine the subinstances and descend hierarchically down the design,
binding each cell as it is located.

13.4.4 Command line considerations

In each of the three preceding strategies, either the binding rules can be specified via a config, or the default
rules (from the library map file) can be used. In the single-pass use models, the config can be specified by
including its source description file on the command line. In the case where the config includes a design
statement, then the specified cell shall be the top-level module, regardless of the presence of any
uninstantiated cells in the rest of the source files. When using a separate compilation tool, the tool that
actually does the binding only needs to be given the /ib.cell specification for the top-level cell(s) and/or the
config to be used. In this strategy, the config itself shall also be precompiled.

13.5 Configuration examples

Consider the following set of source descriptions:

file top.v file adder.v file adder.vg file lib.map
module top(...); module adder(...); module adder(...); library rtlLib top.v;
.. // rtl ... // gate-level library aLib adder.*;
adder al(...); foo £1(...); foo £1(...); library gateLib
adder a2(...); foo £2(...); foo f2(...); adder.vg;
endmodule endmodule endmodule
module foo(...); module foo(...); module foo(...);
. // rtl ... // rtl ... // gate-level
endmodule endmodule endmodule

206 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

All of the examples in this subclause shall assume the top.v, adder.v and adder.vg files get compiled
with the given 1ib.map file. This yields the following library structure:

rtlLib.top // from top.v
rtlLib.foo // from top.v
alLib.adder // from adder.v
alLib.foo // rtl from adder.v
gateLib.adder // from adder.vg
gateLib.foo // from adder.vg

13.5.1 Default configuration from library map file

With no configuration, the libraries are searched according to the library declaration order in the library map
file. In other words, all instances of module adder shall use aLib.adder (because aLib is the first library
specified that contains a cell named adder), and all instances of module foo shall use rtlLib.foo
(because rt1Lib is the first library that contains £oo).

13.5.2 Using default clause
To always use the foo definition from file adder . v, use the following simple configuration:

config cfgl;
design rtlLib.top;
default liblist aLib rtlLib;
endconfig

The default liblist statement overrides the library search order in the 1ib.map file; therefore, aLib is
always searched before rt1Lib. Because the gateLib library is not included in the 1iblist, the gate-
level descriptions of adder and foo shall not be used.

To use the gate-level representations of adder and foo, add to the config as follows:

config cfg2;

design rtlLib.top;

default liblist gateLib aLib rtlLib;
endconfig

This shall cause the gate representation always to be taken before the rt1 representation, using the module
definitions for adder and foo from adder.vg. The rt1 view of top shall be taken because there is no gate
representation available.

13.5.3 Using cell clause

To modify the config to use the rt1 view of adder and the gate-level representation of foo from gateLib,
use the following:
config cfg3;
design rtlLib.top;
default liblist aLib rtlLib;
cell foo use gatelLib.foo;
endconfig

The cell clause selects all cells named foo and explicitly binds them to the gate representation in gateLib.

Copyright © 2006 IEEE. All rights reserved. 207

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

13.5.4 Using instance clause

To modify the config so the top.al adder (and its descendants) use the gate representation and the
top.a2 adder (and its descendants), use the rt1 representation from aLib:

config cfg4
design rtlLib.top;
default liblist gatelLib rtlLib;
instance top.a2 liblist aLib;
endconfig

Because the liblist is inherited, all of the descendants of top . a2 inherit its liblist from the instance selection
clause.

13.5.5 Using hierarchical config

Now suppose all this work has only been on the adder module by itself and a config that uses the
rtlLib. foo cell for £1, and the gateLib.foo cell for £2 has already been developed. Then use the
following:

config cfgs5;
design alib.adder;
default liblist gateLib aLib;
instance adder.f1 liblist rtlLib;
endconfig

To use this configuration c£gs for the top.a2 instance of adder and take the full default aL.ib adder for
the top.al instance, use the following config:

config cfg6;

design rtlLib.top;

default liblist aLib rtlLib;

instance top.a2 use work.cfg5:config;
endconfig

The binding clause specifies the work.c£fg5: config configuration is to be used to resolve the bindings of
instance top.a2 and its descendants. It is the design statement in config c£g5 that defines the exact binding
for the top. a2 instance itself. The rest of c£g5 defines the rules to bind the descendants of top.a2. Notice
the instance clause in c£g5 is relative to its own top-level module, adder.

13.6 Displaying library binding information

It shall be possible to display the actual library binding information for module instances during simulation.
The format specifier $1 or %L shall print out the 1ibrary.cell binding information for the module
instance containing the display (or other textual output) command. This is similar to the $m format specifier,
which prints out the hierarchical path name of the module containing it.

It shall also be able to use VPI to display the binding information. The following VPI properties shall exist
for objects of type vpiModule:

— vpiLibrary—the library name into which the module was compiled
— vpiCell—the name of the cell bound to the module instance

— vpiConfig—the library.cell name of the config controlling the binding of the module
instance

208 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

These properties shall be of string type, similar to the vpiName and vpiFullName properties.

13.7 Library mapping examples

In the absence of a configuration, it is possible to perform basic control of the library searching order when
binding a design.

When a config is used, the config overrides the rules specified in this subclause.
13.7.1 Using the command line to control library searching
In the absence of a configuration, it shall be necessary for all compliant tools to provide a mechanism of
specifying a library search order on the command line that overrides the default order from the library map
file. This mechanism shall include specification of library names only, with the definitions of these libraries
to be taken from the library map file.
NOTE—It is recommended all compliant tools use “-L <library_name>" to specify this search order.
13.7.2 File path specification examples
For example:
Given the following set of files:
/proj/libl/rtl/a.v
/proj/lib2/gates/a.v
/proj/libl/rtl/b.v
/proj/lib2/gates/b.v
From the /proj library, the following absolute file path specs are resolved as shown:
/proj/lib*/*/a.v =/proj/libl/rtl/a.v, /proj/lib2/gates/a.v
.../a.v =/proj/libl/rtl/a.v, /proj/lib2/gates/a.v
/proj/.../b.v =/proj/libl/rtl/b.v, /proj/lib2/gates/b.v
.../rtl/*.v =/proj/libl/rtl/a.v, /proj/libl/rtl/b.v
From the /proj/1lib1 directory, the following relative file path specs are resolved as shown:
../lib2/gates/*.v = /proj/lib2/gates/a.v, /proj/lib2/gates/b.v
./rtl/?.v = /proj/libl/rtl/a.v, /proj/libl/rtl/b.v
./rtl/ = /proj/libl/rtl/a.v, /proj/libl/rtl/b.v
13.7.3 Resolving multiple path specifications
For example:
library 1libl "/proj/libl/foo*.v";
library 1ib2 "/proj/libl/foo.v";
library 1ib3 "../libl/";

library 1ib4 "/proj/libl/*ver.v";

When evaluated from the directory /proj/tb directory, the following source files shall map into the
specified library:

Copyright © 2006 IEEE. All rights reserved. 209

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

../libl/foobar.v - 1libl // potentially matches 1ib1 and 1ib3. Because 1ibl
includes a filename and 1ib3 only specifies a directory; 1ib1 takes

precedence
/proj/libl/foo.v - 1lib2 // takes precedence over 1ib1l and 1ib3 path specifications
/proj/libl/bar.v - 1ib3
/proj/libl/barver.v - lib4 //takes precedence over 1ib3 path specification
/proj/libl/foover.v - ERROR // matches 1ib1 and 1ib4
/test/tb/tb.v - work // does not match any library specifications.
210 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14. Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells.
They are as follows:

— Distributed delays, which specify the time it takes events to propagate through gates and nets inside
the module (see 7.14)

Module path delays, which describe the time it takes an event at a source (input port or inout port) to
propagate to a destination (output port or inout port)

This clause describes how paths are specified in a module and how delays are assigned to these paths.

14.1 Specify block declaration

A block statement called the specify block is the vehicle for describing paths between a source and a
destination and for assigning delays to these paths. The syntax for specify blocks is shown in Syntax 14-1.

specify_block ::= (From A.7.1)

specify { specify item } endspecify
specify item ::=

specparam_declaration

| pulsestyle declaration

| showcancelled_declaration

| path_declaration

| system_timing_check

Syntax 14-1—Syntax for specify block

The specify block shall be bounded by the keywords specify and endspecify, and it shall appear inside a
module declaration. The specify block can be used to perform the following tasks:

— Describe various paths across the module.
— Assign delays to those paths.

Perform timing checks to ensure that events occurring at the module inputs satisfy the timing
constraints of the device described by the module (see Clause 15).

The paths described in the specify block, called module paths, pair a signal source with a signal destination.
The source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to as the
module path source. Similarly, the destination may be unidirectional (an output port) or bidirectional (an
inout port) and is referred to as the module path destination.

For example:
specify
specparam tRise clk g = 150, tFall clk g = 200;
specparam tSetup = 70;

(clk => g) = (tRise_clk g, tFall clk q);

$setup (d, posedge clk, tSetup);
endspecify

Copyright © 2006 IEEE. All rights reserved. 211

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

The first two lines following the keyword specify declare specify parameters, which are discussed in 4.10.3.
The line following the declarations of specify parameters describes a module path and assigns delays to that
module path. The specify parameters determine the delay assigned to the module path. Specifying module
paths is presented in 14.2. Assigning delays to module paths is discussed in 14.3. The line preceding the
keyword endspecify instantiates one of the system timing checks, which are discussed further in Clause 15.

14.2 Module path declarations

There are two steps required to set up module path delays in a specify block:

a) Describe the module paths.
b) Assign delays to those paths (see 14.3).

The syntax of the module path declaration is described in Syntax 14-2.

path_declaration ::= (From A.7.2)
simple path declaration ;
| edge sensitive _path_declaration ;
| state_dependent_path declaration ;

Syntax 14-2—Syntax for module path declaration

A module path may be described as a simple path, an edge-sensitive path, or a state-dependent path. A
module path shall be defined inside a specify block as a connection between a source signal and a
destination signal. Module paths can connect any combination of vectors and scalars.

For example:

Figure 14-1 illustrates a circuit with module path delays. More than one source (&, B, C, and D) may have a
module path to the same destination (Q), and different delays may be specified for each input to output path.

18]
/@\ /@\ = module path delay

N
B I// MODULE PATHS:
from A to Q
Q from B to Q
C I from C to Q
D from D to Q
Figure 14-1—Module path delays
212 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14.2.1 Module path restrictions
Module paths have the following restrictions:

— The module path source shall be a net that is connected to a module input port or inout port.

— The module path destination shall be a net or variable that is connected to a module output port or
inout port.

— The module path destination shall have only one driver inside the module.
14.2.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 14-3.

simple path declaration ::= (From A.7.2)
parallel path description = path_delay value

| full path description = path delay value
parallel path_description ::=

(specify_input_terminal descriptor [polarity operator | =>

specify output_terminal descriptor)

full path_description ::=

(list_of path inputs [polarity operator] *> list of path outputs)
list of path inputs ::=

specify_input terminal descriptor {, specify input terminal descriptor }
list of path outputs ::=

specify output terminal descriptor {, specify output terminal descriptor }
specify input_terminal descriptor ::= (From A.7.3)

input_identifier [[constant range expression | |
specify_output terminal descriptor ::=

output identifier [[constant range expression | |
input_identifier ::=

input_port_identifier | inout port identifier
output_identifier ::=

output_port_identifier | inout port identifier
polarity operator ::= (From A.7.4)

+|-

Syntax 14-3—Syntax for simple module path

Simple paths can be declared in one of two forms:

— Source *> destination

— Source => destination
The symbols *> and => each represent a different kind of connection between the module path source and
the module path destination. The operator *> establishes a full connection between source and destination.

The operator => establishes a parallel connection between source and destination. See 14.2.5 for a
description of full connection and parallel connection paths.

Copyright © 2006 IEEE. All rights reserved. 213

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

For example:
The following three examples illustrate valid simple module path declarations:
(A => Q) = 10;
(B => Q) = (12);
(C, D *> Q) = 18;
14.2.3 Edge-sensitive paths
When a module path is described using an edge transition at the source, it is called an edge-sensitive path.
The edge-sensitive path construct is used to model the timing of input-to-output delays, which only occur

when a specified edge occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 14-4.

edge sensitive path_declaration ::= (From A.7.4)
parallel edge sensitive path description = path_delay value
| full edge sensitive path_ description = path_delay value
parallel edge sensitive path_description ::=
([edge identifier] specify_input terminal descriptor =>
(specify_output terminal descriptor [polarity operator | : data_source expression))
full edge sensitive path description ::=
([edge identifier] list of path inputs *>
(list_of path outputs [polarity operator] : data_source expression))
data_source expression ::=
expression
edge identifier ::=
posedge | negedge

Syntax 14-4—Syntax for edge-sensitive path declaration

The edge identifier may be one of the keywords posedge or negedge, associated with an input terminal
descriptor, which may be any input port or inout port. If a vector port is specified as the input terminal
descriptor, the edge transition shall be detected on the least significant bit. If the edge transition is not
specified, the path shall be considered active on any transition at the input terminal.

An edge-sensitive path may be specified with full connections (*>) or parallel connections (=>). For parallel
connections (=>), the destination shall be any scalar output or inout port or the bit-select of a vector output
or inout port. For full connections (*>), the destination shall be a list of one or more of the vector or scalar
output and inout ports, and bit-selects or part-selects of vector output and inout ports. See 14.2.5 for a
description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the flow of data to the
path destination. This arbitrary data path description does not affect the actual propagation of data or events
through the model; how an event at the data path source propagates to the destination depends on the internal
logic of the module. The polarity operator describes whether the data path is inverting or noninverting.

For example:
Example 1—The following example demonstrates an edge-sensitive path declaration with a positive polarity
operator:

(posedge clock => (out +: in)) = (10, 8);

214 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

In this example, at the positive edge of clock, a module path extends from clock to out using a rise delay
of 10 and a fall delay of 8. The data path is from in to out, and in is not inverted as it propagates to out.

Example 2—The following example demonstrates an edge-sensitive path declaration with a negative
polarity operator:

(negedge clock[0] => (out -: in)) = (10, 8);
In this example, at the negative edge of clock [0], a module path extends from clock [0] to out using a
rise delay of 10 and a fall delay of 8. The data path is from in to out, and in is inverted as it propagates to
out.
Example 3—The following example demonstrates an edge-sensitive path declaration with no edge identifier:
(clock => (out : in)) = (10, 8);
In this example, at any change in clock, a module path extends from clock to out.

14.2.4 State-dependent paths

A state-dependent path makes it possible to assign a delay to a module path that affects signal propagation
delay through the path only if specified conditions are true.

A state-dependent path description includes the following items:

— A conditional expression that, when evaluated true, enables the module path
— A module path description
— A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 14-5.

state_dependent path declaration ::= (From A.7.4)
if (module path expression) simple path declaration
| if (module path_expression) edge sensitive path_declaration
| ifnone simple_path_declaration

Syntax 14-5—Syntax for state-dependent paths

14.2.4.1 Conditional expression
The operands in the conditional expression shall be constructed from the following:

— Scalar or vector module input ports or inout ports or their bit-selects or part-selects
— Locally defined variables or nets or their bit-selects or part-selects

— Compile time constants (constant numbers and specify parameters)
Table 14-1 contains a list of valid operators that may be used in conditional expressions.
A conditional expression shall evaluate to true (1) for the state-dependent path to be assigned a delay value.
If the conditional expression evaluates to x or z, it shall be treated as true. If the conditional expression

evaluates to multiple bits, the least significant bit shall represent the result. The conditional expression can
have any number of operands and operators.

Copyright © 2006 IEEE. All rights reserved. 215

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005

IEEE STANDARD FOR VERILOG®

Table 14-1—List of valid operators in state-dependent path delay expression

Operator Description

Operator Description

~ bitwise negation

& reduction and

& bitwise and | reduction or

| bitwise or n reduction xor
n bitwise xor ~& reduction nand
A N bitwise xnor ~ reduction nor
== logical equality A N reduction xnor
1= logical inequality {} concatenation
&& logical and {{}} replication

| logical or IS conditional

! logical not

14.2.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is called a simple state-dependent
path. The simple path description is discussed in 14.2.2.

For example:

Example 1—The following example uses state-dependent paths to describe the timing of an XOR gate.

module XORgate (a, b, out);
input a, b;
output out;

xor x1 (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2;
specparam invertrise = 3, invertfall = 4;
if (a) (b=> out) = (invertrise, invertfall);
if (b) (a=> out) = (invertrise, invertfall);
if (~a) (b=> out) = (noninvrise, noninvfall) ;
if (~b) (a => out) = (noninvrise, noninvfall) ;

endspecify

endmodule

In this example, the first two state-dependent paths describe a pair of output rise and fall delay times when
the XOR gate (x1) inverts a changing input. The last two state-dependent paths describe another pair of
output rise and fall delay times when the XOR gate buffers a changing input.

Example 2—The following example models a partial ALU. The state-dependent paths specify different
delays for different ALU operations.

module ALU (o1, i1, i2, opcode) ;
input [7:0] i1, i2;
input [2:1] opcode;

216 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

output [7:0] ol;

//functional description omitted

specify
// add operation
if (opcode == 2'b00) (i1,i2 *> ol) = (25.0, 25.0);
// pass-through il operation
if (opcode == 2'b01) (i1 => ol) = (5.6, 8.0);
// pass-through 12 operation
if (opcode == 2'b10) (i2 => ol) = (5.6, 8.0);
// delays on opcode changes
(opcode *> ol) = (6.1, 6.5);

endspecify

endmodule

In the preceding example, the first three path declarations declare paths extending from operand inputs i1
and i2 to the o1 output. The delays on these paths are assigned to operations on the basis of the operation
specified by the inputs on opcode. The last path declaration declares a path from the opcode input to the o1
output.

14.2.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-sensitive path, then the state-dependent
path is called an edge-sensitive state-dependent path. The edge-sensitive paths are discussed in 14.2.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

— The edge, condition, or both make each declaration unique.

— The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).
For example:

Example 1

if (!reset && !clear)
(posedge clock => (out +: in)) = (10, 8) ;

In this example, if the positive edge of clock occurs when reset and clear are low, a module path
extends from clock to out using a rise delay of 10 and a fall delay of 8.

Example 2—The following example shows two edge-sensitive path declarations, each of which has a unique

edge:
specify
(posedge clk => (q[0] : data)) = (10, 5);
(megedge clk => (g[0] : data)) = (20, 12);
endspecify
Example 3—The following example shows two edge-sensitive path declarations, each of which has a unique
condition:
specify
if (reset)
(posedge clk => (g[0] : data)) = (15, 8);
if (!reset && cntrl)
(posedge clk => (g[0] : data)) = (6, 2);
endspecify
Copyright © 2006 IEEE. All rights reserved. 217

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 4—The two state-dependent path declarations shown below are not legal because even though they
have different conditions, the destinations are not specified in the same way: the first destination is a part-
select, the second is a bit-select.

specify
if (reset)
(posedge clk => (g[3:0]:data)) = (10,5);
if (!reset)
(posedge clk => (g[0]:data)) = (15,8);
endspecify

14.2.4.4 The ifnone condition

The ifnone keyword is used to specify a default state-dependent path delay when all other conditions for the
path are false. The ifnone condition shall specify the same module path source and destination as the state-
dependent module paths. The following rules apply to module paths specified with the ifnone condition:

— Only simple module paths may be described with an ifnone condition.

— The state-dependent paths that correspond to the ifnone path may be either simple module paths or
edge-sensitive paths.

— If there are no corresponding state-dependent module paths to the ifnone module path, then the
ifnone module path shall be treated the same as an unconditional simple module path.

— It is illegal to specify both an ifnone condition for a module path and an unconditional simple
module path for the same module path.

For example:

Example 1—The following are valid state-dependent path combinations:

if (c1) (IN => OUT) = (1,1);
ifnone (IN => OUT) = (2,2);

// add operation

if (opcode == 2'b00) (il1,i2 *> ol) = (25.0, 25.0);
// pass-through il operation

if (opcode == 2'b01) (il => ol) = (5.6, 8.0);

// pass-through 12 operation

if (opcode == 2'b10) (i2 => ol) = (5.6, 8.0);

// all other operations
ifnone (i2 => ol1) = (15.0, 15.0);

(posedge CLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

Example 2—The following module path description combination is illegal because it combines a state-
dependent path using an ifnone condition and an unconditional path for the same module path:

if (a) (b=> out) = (2,2);

if (b) (a=> out) = (2,2);
ifnone (a => out) = (1,1);
(a => out) = (1,1);
218 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14.2.5 Full connection and parallel connection paths

The operator *> shall be used to establish a full connection between source and destination. In a full
connection, every bit in the source shall connect to every bit in the destination. The module path source need
not have the same number of bits as the module path destination.

The full connection can handle most types of module paths because it does not restrict the size or number of
source signals and destination signals. The following situations require the use of full connections:

— To describe a module path between a vector and a scalar
— To describe a module path between vectors of different sizes

— To describe a module path with multiple sources or multiple destinations in a single statement (see
14.2.6)

The operator => shall be used to establish a parallel connection between source and destination. In a parallel
connection, each bit in the source shall connect to one corresponding bit in the destination. Parallel module
paths can be created only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one
destination, where each signal contains the same number of bits. Therefore, a parallel connection may only
be used to describe a module path between two vectors of the same size. Because scalars are 1 bit wide,
either *> or => may be used to set up bit-to-bit connections between two scalars.

For example:

Example 1—Figure 14-2 illustrates how a parallel connection differs from a full connection between two
4-bit vectors.

Parallel module path Full module path
Input bits Output bits Input bits Output bits
0 0 0
1 1 1
2 2 2
3 3 3

N = number of bits = 4

Number of paths =N = Number of paths =N * N =
Use to define path Use to define path
bit-to-bit connections bit-to-vector connections

Figure 14-2—Difference between parallel and full connection paths

Copyright © 2006 IEEE. All rights reserved. 219

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

Example 2—The following example shows module paths for a 2:1 multiplexor with two 8-bit inputs and
one 8-bit output:

module mux8 (inl, in2, s, q) ;
output [7:0] qg;
input [7:0] inl, in2;
input s;
// Functional description omitted
specify
(inl => q)
(in2 => q) = (2, 3) ;
(s *> q) =
endspecify
endmodule

The module path from s to g uses a full connection (*>) because it connects a scalar source—the 1-bit
select line—to a vector destination—the 8-bit output bus. The module paths from both input lines in1 and
in2 to g use a parallel connection (=>) because they set up parallel connections between two 8-bit buses.
14.2.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the symbol *> to connect a comma-
separated list of sources to a comma-separated list of destinations. When describing multiple module paths
in one statement, the lists of sources and destinations may contain a mix of scalars and vectors of any size.
The connection in a multiple module path declaration is always a full connection.

For example:

(a, b, ¢ *> gl, g2) = 10;

is equivalent to the following six individual module path assignments:

(a *> gl) = 10 ;
(b *> gl) = 10 ;
(c *> gl) = 10 ;
(a *> g2) = 10 ;
(b *> g2) = 10 ;
(¢ *> g2) = 10 ;

14.2.7 Module path polarity

The polarity of a module path is an arbitrary specification indicating whether the direction of a signal
transition is inverted as it propagates from the input to the output. This arbitrary polarity description does not
affect the actual propagation of data or events through the model; how a rise or a fall at the source
propagates to the destination depends on the internal logic of the module.

Module paths may specify any of three polarities:

— Unknown polarity
— Positive polarity

— Negative polarity

220 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14.2.7.1 Unknown polarity

By default, module paths shall have unknown polarity; that is, a transition at the path source may propagate
to the destination in an unpredictable way, as follows:

— A rise at the source may cause a rise transition, a fall transition, or no transition at the destination.

A fall at the source may cause a rise transition, a fall transition, or no transition at the destination.

A module path specified either as a full connection or as a parallel connection, but without a polarity
operator + or -, shall be treated as a module path with unknown polarity.

For example:
// Unknown polarity
(Inl => gq) = In to g ;
(s *> qg) = s_to g ;

14.2.7.2 Positive polarity

For module paths with positive polarity, any transition at the source may cause the same transition at the
destination, as follows:

— A rise at the source may cause either a rise transition or no transition at the destination.

— A fall at the source may cause either a fall transition or no transition at the destination.
A module path with positive polarity shall be specified by prefixing the + polarity operator to => or *>.
For example:
// Positive polarity
(Inl +=> g) = In_to g ;
(s +*> q) = s_to g ;

14.2.7.3 Negative polarity

For module paths with negative polarity, any transition at the source may cause the opposite transition at the
destination, as follows:

— A rise at the source may cause either a fall transition or no transition at the destination.

— A fall at the source may cause either a rise transition or no transition at the destination.
A module path with negative polarity shall be specified by prefixing the - polarity operator to => or *>.
For example:
// Negative polarity

(Inl -=> gq) = In_to g ;
(s -*> gq) = s_to g ;

Copyright © 2006 IEEE. All rights reserved. 221

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

14.3 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be specified by assigning delay
values to the module path descriptions. The syntax for specifying delay values is shown in Syntax 14-6.

path_delay value ::= (From A.7.4)
list of path delay expressions
| (list_of path delay expressions)
list of path delay expressions ::=
t path_delay expression
| trise_path delay expression, tfall path delay expression
| trise_path delay expression, tfall path delay expression,tz path delay expression
| t01 path delay expression, t10_path delay expression, tOz path delay expression ,
tz1 path delay expression,tlz path delay expression,tz0 path delay expression
| t01 path delay expression, t10 path delay expression,t0z path delay expression,
tz1_path _delay expression,tlz path delay expression,tz0 path delay expression ,
tOx_path_delay expression, tx1 path delay expression,tlx path delay expression,
tx0_path_delay expression, txz path delay expression, tzx path delay expression
t path delay expression ::=
path_delay expression

Syntax 14-6—Syntax for path delay value

In module path delay assignments, a module path description (see 14.2) is specified on the left-hand side,
and one or more delay values are specified on the right-hand side. The delay values may be optionally
enclosed in a pair of parentheses. There may be one, two, three, six, or twelve delay values assigned to a
module path, as described in 14.3.1. The delay values shall be constant expressions containing literals or
specparams, and there may be a delay expression of the form min: typ:max.

For example:

specify
// Specify Parameters
specparam tRise clk g = 45:150:270, tFall clk g=60:200:350;
specparam tRise Control = 35:40:45, tFall control=40:50:65;

// Module Path Assignments

(clk => g) = (tRise_clk g, tFall clk q);
(clr, pre *> g) = (tRise control, tFall control) ;
endspecify

In the example above, the specify parameters declared following the specparam keyword specify values for
the module path delays. The module path assignments assign those module path delays to the module paths.

14.3.1 Specifying transition delays on module paths
Each path delay expression may be a single value—representing the typical delay—or a colon-separated list
of three values—representing a minimum, typical, and maximum delay, in that order. If the path delay

expression results in a negative value, it shall be treated as zero. Table 14-2 describes how different path
delay values shall be associated with various transitions. The path delay expression names refer to the names

used in Syntax 14-6.

222 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Table 14-2—Associating path delay expressions with transitions

Number of path delay expressions specified
Transitions 1 2 3 6 12
0->1 t trise trise t01 t01
1>0 t tfall tfall t10 t10
0>z t trise tz t0z t0z
z->1 t trise trise tzl tz1
1>z t tfall tz tlz tlz
z->0 t tfall tfall tz0 tz0
0->x * * * * tOx
x->1 * * * * tx1
1>x * * * * tlx
x->0 * * * * tx0
X->7Z * * * * txz
7z ->X * * * * tzx
* See 14.3.2.

For example:

// one expression specifies all transitions
(C => Q) = 20;
(C => Q) = 10:14:20;

// two expressions specify rise and fall delays
specparam tPLH1 = 12, tPHL1 = 25;

specparam tPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C => Q) = (tPLH1, tPHL1) ;

(C => Q) = (tPLH2, tPHL2) ;

// three expressions specify rise, fall, and z transition delays
specparam tPLH1 = 12, tPHL1 = 22, tPzl = 34;

specparam tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLH1, tPHL1l, tPzl);

(C => Q) = (tPLH2, tPHL2, tPz2);

// six expressions specify transitions to/from 0, 1, and z
specparam t0l1 = 12, tl0 = 16, tO0z = 13,

tzl = 10, tlz = 14, tz0 = 34 ;
(C == Q) = (to01, tl0, tO0z, tzl, tlz, tz0) ;
specparam TO0l = 12:14:24, T10 = 16:18:20, TOz 13:16:30 ;
specparam Tzl = 10:12:16, Tlz = 14:23:36, Tz0 = 15:19:34 ;
(C == Q) = (TO1l, T10, TOz, Tzl, Tlz, Tz0) ;

// twelve expressions specify all transition delays explicitly
specparam t01=10, tl0=12, t0z=14, tzl=15, tlz=29, tz0=36,
t0x=14, txl=15, tlx=15, tx0=14, txz=20, tzx=30 ;
(C => Q) = (t01, tl0, tOz, tzl, tlz, tzoO,
tOx, txl, tlx, tx0, txz, tzx) ;

Copyright © 2006 IEEE. All rights reserved. 223

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

14.3.2 Specifying x transition delays

If the x transition delays are not explicitly specified, the calculation of delay values for x transitions is based
on the following two pessimistic rules:

— Transitions from a known state to x shall occur as quickly as possible; that is, the shortest possible
delay shall be used for any transition to x.

— Transitions from x to a known state shall take as long as possible; that is, the longest possible delay
shall be used for any transition from x.

Table 14-3 presents the general algorithm for calculating delay values for x transitions along with specific
examples. The following two groups of x transitions are represented in the table:

a) Transition from a known state sto x: s -> x
b) Transition from x to a known state s: x -> s

Table 14-3—Calculating delays for x transitions

X transition Delay value

General algorithm

s ->X minimum (s -> other known signals)

X->3 maximum (other known signals -> s)

Specific transitions

0->x minimum (0 -> z delay, 0 -> 1 delay)
1>x minimum (1 -> z delay, 1 -> 0 delay)
Z->X minimum (z -> 1 delay, z -> 0 delay)
x->0 maximum (z -> 0 delay, 1 -> 0 delay)
x->1 maximum (z -> 1 delay, 0 -> 1 delay)
X->7Z maximum (1 -> z delay, 0 -> z delay)

Usage: (C=>Q) = (5,12,17,10,6, 22) ;

0->x minimum (17, 5) =5
1->x minimum (6, 12) =6
zZ->X minimum (10, 22) = 10
x->0 maximum (22, 12) =22
x->1 maximum (10, 5) =10
X->7z maximum (6, 17) =17
224 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14.3.3 Delay selection

The simulator shall determine the proper delay to use when a specify path output must be scheduled to
transition. There may be specify paths to the output from more than one input, and the simulator must decide
which specify path to use.

The simulator shall do this by first determining which specify paths to the output are active. Active specify
paths are those whose input has transitioned most recently in time, and either they have no condition or their
conditions are true. In the presence of simultaneous input transitions, it is possible for many specify paths to
an output to be simultaneously active.

Once the active specify paths are identified, a delay must be selected from among them. This is done by
comparing the correct delay for the specific transition being scheduled from each specify path and choosing
the smallest.

For example:

Example 1

For a Y transition from 0 to 1, if A transitioned more recently than B, a delay of 6 will be chosen. But if B
transitioned more recently than A, a delay of 5 will be chosen. And if, the last time they transitioned, A and B
did so simultaneously, then the smallest of the two rise delays would be chosen, which is the rise delay from
B of 5. The fall delay from A of 9 would be chosen if Y was instead to transition from 1 to 0.

Example 2
if (MODE < 5) (A =>Y) = (5, 9);
if (MODE < 4) (A =>Y) = (4, 8);
if (MODE < 3) (A =>Y) = (6, 5);
if (MODE < 2) (A =>Y) = (3, 2);
if (MODE < 1) (A =>Y) = (7, 7);

Anywhere from zero to five of these specify paths might be active depending upon the value of MODE. For
instance, when MODE is 2, the first three specify paths are active. A rise transition would select a delay of 4
because that is the smallest rise delay among the first three. A fall transition would select a delay of 5
because that is the smallest fall delay among the first three.

14.4 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the
module), the larger of the two delays for each path shall be used.

For example:
Example 1—Figure 14-3 illustrates a simple circuit modeled with a combination of distributed delays and
path delays (only the D input to Q output path is illustrated). Here, the delay on the module path from input

D to output Q is 22, while the sum of the distributed delays is 0 + 1 = 1. Therefore, a transition on Q caused
by a transition on D will occur 22 time units after the transition on D.

Copyright © 2006 IEEE. All rights reserved. 225

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

/EI\ = module path delay

‘ = distributed delay
C ‘
| T,

|
3]

Figure 14-3—Module path delays longer than distributed delays

Example 2—In Figure 14-4, the delay on the module path from D to Q is 22, but the distributed delays along
that module path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D will occur
30 time units after the event on D.

»; ‘ /EI\ = module path delay
4 [20-a ‘ = distributed delay

c |

°

Figure 14-4—Module path delays shorter than distributed delays

14.5 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not
allowed at module path outputs.

Figure 14-5 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

=, Dy,

G G |_
H — H |
(a) (b)
Figure 14-5—Legal and illegal module paths
226 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

In Figure 14-5 (a), any module path to s is illegal because the path destination has two drivers.

Assuming signal S in Figure 14-5 (a) is a wired and, this limitation can be circumvented by replacing wired
logic with gated logic to create a single driver to the output. Figure 14-5 (b) shows how adding a third and
gate—the shaded gate—solves the problem for the module in Figure 14-5 (a).

The example in Figure 14-6 is also illegal. In this example, when the outputs Q and R are wired together, it
creates a condition where both paths have multiple drivers from within the same module.

i —
/
5|)F
)

Figure 14-6—lllegal module paths

Although multiple output drivers to a path destination are prohibited inside the same module, they are
allowed outside the module. The example in Figure 14-7 is legal because Q and R each have only one driver
within the module in which the module paths are specified.

w|>

KD

Io

D

Figure 14-7—Legal module paths

Copyright © 2006 IEEE. All rights reserved. 227

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

14.6 Detailed control of pulse filtering behavior

Two consecutive scheduled transitions closer together in time than the module path delay is deemed a pulse.
By default, pulses on a module path output are rejected. Consecutive transitions cannot be closer together
than the module path delay, and this is known as the inertial delay model of pulse propagation.

Pulse width ranges control how to handle a pulse presented at a module path output. They are as follows:

— A pulse width range for which a pulse shall be rejected
— A pulse width range for which a pulse shall be allowed to propagate to the path destination
— A pulse width range for which a pulse shall generate a logic x on the path destination

Two pulse limit values define the pulse width ranges associated with each module path transition delay. The
pulse limit values are called the error limit and the reject limit. The error limit shall always be at least as
large as the reject limit. Pulses greater than or equal to the error limit pass unfiltered. Pulses less than the
error limit but greater than or equal to the reject limit are filtered to X. Pulses less than the reject limit are
rejected, and no pulse emerges. By default, both the error limit and the reject limit are set equal to the delay.
These default values yield full inertial pulse behavior, rejecting all pulses smaller than the delay.

In Figure 14-8, the rise delay from input A to output Y is 7, and the fall delay is 9. By default, the error limit
and the reject limit for the rise delay are both 7. The error limit and the reject limit for the fall delay are both
9. The pulse limits associated with the delay forming the trailing edge of the pulse determine whether and
how the pulse should be filtered. Waveform v' shows the waveform resulting from no pulse filtering. The
width of the pulse is 2, which is less than the reject limit for the rise delay of 7; therefore, the pulse is filtered
as shown in waveform v.

(A=>Y)=17,9;
/I Module path
Il delay for a buffer

A

<«—» Pulse width =4

/I Pulse considered
Y’ /I at module path output

< Pulse width =4

Il Pulse is filtered

Figure 14-8—Example of pulse filtering

There are three ways to modify the pulse limits from their default values. First, the Verilog language
provides the PATHPULSES specparam to modify the pulse limits from their default values. Second,
invocation options can specify percentages applying to all module path delays to form the corresponding
error limits and reject limits. Third, SDF annotation can individually annotate the error limit and reject limit
of each module path transition delay.

228 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

14.6.1 Specify block control of pulse limit values

Pulse limit values may be set from within the specify block with the PATHPULSES specparam. The syntax
for using PATHPULSES to specify the reject limit and error limit values is given in Syntax 14-7.

pulse control_specparam ::= (From A.2.4)
PATHPULSES = (reject_limit value [, error limit_value])
| PATHPULSESspecify input terminal descriptor$specify output terminal descriptor
= (reject_limit value [, error limit value])
error_limit value ::=
limit value
reject limit value ::=
limit value
limit_value ::=
constant_mintypmax_expression

Syntax 14-7—Syntax for PATHPULSES pulse control

If only the reject limit value is specified, it shall apply to both the reject limit and the error limit.

The reject limit and error limit may be specified for a specific module path. When no module path is
specified, the reject limit and error limit shall apply to all module paths defined in a module. If both
path-specific PATHPULSES specparams and a nonpath-specific PATHPULSES specparam appear in the
same module, then the path-specific specparams shall take precedence for the specified paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and
outputs, with the following restriction: the terminals may not be a bit-select or part-select of a vector.

When a module path declaration declares multiple paths, the PATHPULSES specparam shall only be
specified for the first path input terminal and the first path output terminal. The reject limit and error limit
specified shall apply to all other paths in the multiple path declaration. A PATHPULSES specparam that
specifies anything other than the first path input and path output terminals shall be ignored.

For example:

In the following example, the path (clk=>q) acquires a reject limit of 2 and an error limit of 9, as defined
by the first PATHPULSES declaration. The paths (clr*>q) and (pre*>q) receive a reject limit of 0 and
an error limit of 4, as specified by the second PATHPULSES declaration. The path (data=>q) is not
explicitly defined in any of the PATHPULSES declarations; therefore, it acquires reject and error limit of 3,
as defined by the last PATHPULSES declaration.

specify
(clk => qg) = 12;
(data => g) = 10;
(clr, pre *> gq) = 4;

specparam
PATHPULSESc1k$q = (2,9),
PATHPULSESc1r$q = (0,4),
PATHPULSES = 3;

endspecify

Copyright © 2006 IEEE. All rights reserved. 229

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

14.6.2 Global control of pulse limit values

Two invocation options can specify percentages applying globally to all module path transition delays. The
error limit invocation option specifies the percentage of each module path transition delay used for its error
limit value. The reject limit invocation option specifies the percentage of each module path transition delay
used for its reject limit value. The percentage values shall be an integer between 0 and 100.

The default values for both the reject and error limit invocation options are 100%. When neither option is
present, then 100% of each module transition delay is used as the reject and error limits.

It is an error if the error limit percentage is smaller than the reject limit percentage. In such cases, the error
limit percentage is set equal to the reject limit percentage.

When both PATHPULSES and global pulse limit invocation options are present, the PATHPULSES
values shall take precedence.

14.6.3 SDF annotation of pulse limit values

SDF annotation can be used to specify the pulse limit values of module path transition delays. Clause 16
describes this in greater detail.

When PATHPULSES, global pulse limit invocation options, and SDF annotation of pulse limit values are
present, SDF annotation values shall take precedence.

14.6.4 Detailed pulse control capabilities

The default style of pulse filtering behavior has two drawbacks. First, pulse filtering to the X state may be
insufficiently pessimistic with an X state duration too short to be useful. Second, unequal delays can result in
pulse rejection whenever the trailing edge precedes the leading edge, leaving no indication that a pulse was
rejected. This subclause introduces more detailed pulse control capabilities.

14.6.4.1 On-event versus on-detect pulse filtering

When an output pulse must be filtered to X, greater pessimism can be expressed if the module path output
transitions immediately to X (on-detect) instead of at the already scheduled transition time of the leading
edge of the pulse (on-event).

The on-event method of pulse filtering to X is the default. When an output pulse must be filtered to X, the
leading edge of the pulse becomes a transition to X, and the trailing edge becomes a transition from x. The
times of transition of the edges do not change.

Just like on-event, the on-detect method of pulse filtering changes the leading edge of the pulse into a

transition to X and the trailing edge to a transition from X, but the time of the leading edge is changed to
occur immediately upon detection of the pulse.

230 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
HARDWARE DESCRIPTION LANGUAGE Std 1364-2005

Figure 14-9 illustrates this behavior using a simple buffer with asymmetric rise/fall times and both the reject
limits and error limits equal to 0. An output waveform is shown for both on-detect and on-event approaches.

rise/fall
4/6

in [\ out
L

10 12 14 18

out (on-event)
(default)

out (on-detect)

Figure 14-9—On-detect versus on-event

On-detect versus on-event behavior can be selected in two different ways. First, one may be selected
globally for all module path outputs through use of the on-detect or on-event invocation option. Second, one
may be selected locally through use of specify block pulse style declarations.

The syntax for pulse style declarations is shown in Syntax 14-8.

pulsestyle declaration ::= (From A.7.1)
pulsestyle_onevent list of path outputs ;
| pulsestyle ondetect list of path outputs ;

Syntax 14-8—Syntax for pulse style declarations

It is an error if a module path output appears in a pulse style declaration after it has already appeared in a
module path declaration.

The pulse style invocation options take precedence over pulse style specify block declarations.

Copyright © 2006 IEEE. All rights reserved. 231

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on September 20,2012 at 02:33:32 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-2005 IEEE STANDARD FOR VERILOG®

14.6.4.2 Negative pulse detection

When the delays to a module path output are unequal, it is possible for the trailing edge of a pulse to be
scheduled for a time earlier than the schedule time of the leading edge, yielding a pulse with a negative
width. Under normal operation, if the schedule for a trailing pulse edge is earlier than the schedule for a
leading pulse edge, then the leading edge is cancelled. No transition takes place when the initial and final
states of the pulse are the same, leaving no indication a schedule was ever present.

Negative pulses can be indicated with the X state by use of the showcancelled style of behavior. When the
trailing edge of a pulse would be scheduled before the leading edge, this style causes the leading edge to be
scheduled to x and the trailing edge to be scheduled from x. With on-event pulse style, the schedule to x
replaces the leading edge schedule. With on-detect pulse style, the schedule to X is made immediately upon
detection of the negative pulse.

Showcancelled behavior can be enabled in two different ways. First, it may be enabled globally for all
module path outputs through use of the showcancelled and noshowcancelled invocation options. Second, it

may be enabled locally through use of specify block showcancelled declarations.

The syntax for showcancelled declarations is shown in Syntax 14-9.

showcancelled declaration ::= (From A.7.1)
showcancelled list_of path outputs ;
| noshowcancelled list_of path outputs ;

Syntax 14-9—Syntax for showcancelled declarations

It is an error if a module path output appears in a showcancelled declaration after it has already appeared in
a module path declaration. The showcancelled invocation options take precedence over the showcancelled
specify block declarations.

232 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use