
The Trend Locality Sensitive Hash:
TLSH

Jon Oliver, Chun Cheng, Yanggui Chen
21st May 2013

Contact: tlsh@trendmicro.com

Trend Micro TLSH documentation	

Trend Micro TLSH documentation	

Getting TLSH

•  Contact us at
tlsh@trendmicro.com

•  Source Code:
https://github.com/trendmicro/tlsh/

Trend Micro TLSH documentation	

What is Locality Sensitive Hashing

•  Traditional hashes (such as SHA1 and MD5) have the property
that a small change to the file being hashed results in a completely
different hash

•  Locality Sensitive Hashes (LSH) have the property that a small
change to the file being hashed results in a small change to the
hash
–  You can measure the similarity between 2 files by comparing

their LSH values

Trend Micro TLSH documentation	

Example Locality Sensitive Hashing

 Text 1 – Chapter 1 of Pride and Prejudice
It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.
..
When she was discontented, she fancied herself nervous.
The business of her life was to get her daughters married; its solace
was visiting and news.

Text 2 - Chapter 1 of Pride and Prejudice with last line removed
It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.
..
When she was discontented, she fancied herself nervous.

Trend Micro TLSH documentation	

Example Locality Sensitive Hashing

 TLSH
Text 1 E491A51FA380022245B021E9770F3A6FF706C1780365C631581EF6263731EAA87F96EE
Text 2 5B91940FA380026245B021A9771F7A6FF706C1780765C671981EF6263731EAA87F96DE

 MD5_HASH
Text 1 3b9dd1f86ce0c3b467055b48f9a5221c
Text 2 7dc8267c6bea14d36df64934aad4604f

 SHA1_HASH
Text 1 8b8c6ce1253515a1fbceaec0f5cfc58780e6fd5e
Text 2 e494d7fa7b4080520c59a6702764983ff9b6d399

The MD5 and SHA1 hashes are completely different
For these 2 pieces of text, the TLSH values are quite similar Hashes

Trend Micro TLSH documentation	

Example Locality Sensitive Hashing

 TLSH
Text 1 E491A51FA380022245B021E9770F3A6FF706C1780365C631581EF6263731EAA87F96EE
Text 2 5B91940FA380026245B021A9771F7A6FF706C1780765C671981EF6263731EAA87F96DE

The distance between Text 1 and Text 2
 distance(Text1,Text2) = 11

Distance scores can go up to 1000 and above
A low score (of 50 or less) means that the files are quite similar
You will need to determine an appropriate threshold for your application
A distance of 0 means that the files are (very likely) to be exactly the same

Just like the MD5 and SHA1 schemes, collisions can occur and very different files
will have the same hash value.

Trend Micro TLSH documentation	

Algorithm to determine TLSH

Trend Micro TLSH documentation	

Algorithm to determine TLSH

•  We use the Pearson hash [reference 1] as the mapping
function between the trigrams from a window to the
buckets.

Trend Micro TLSH documentation	

Algorithm to determine TLSH

•  TLSH uses a 4-way to reflect the differences between
different histograms

•  The q2 point is at the median bucket count
•  The q1 are the lower and higher quartiles respectively

0

q2

q1

q3

Bu
ck

et
 N

Bu
ck

et

N
+5

Bu
ck

et

N
+4

Bu
ck

et

N
+3

Bu
ck

et

N
+2

Bu
ck

et

N
+1

01 10011011 11

Trend Micro TLSH documentation	

Algorithm to determine the hash

•  Introduce three head bytes (6 hexadecimal characters) to preserve
this information.

•  The hexadecimal representation of the hash is
–  H[0]H[1] → checksum
–  H[2]H[3] → L value
–  H[4] → Q1 ratio
–  H[5] → Q2 ratio
–  H[6] .. H[69] the binary representations of the 128 buckets (using

the method from the previous slide) turned into hex characters

Trend Micro TLSH documentation	

Algorithm to determine the hash

•  The L value
•  The input for the L value is the length of the original document (len)

If len <= 656
 i ← log(len)/log(1.5)
else
 if len <= 3199
 i ← log(len)/log(1.3) – 8.72777
 else
 i ← log(len)/log(1.1) – 62.5472
i ← i MOD 256
return i

Trend Micro TLSH documentation	

Algorithm to determine TLSH

•  The Q ratio values

q1 ← the 32nd smallest number in bucket[0..127]
q2 ← the 64th smallest number in bucket[0..127]
q3 ← the 96th smallest number in bucket[0..127]

q1_ratio ← (q1*100/q3) MOD 16
q2_ratio ← (q2*100/q3) MOD 16

Trend Micro TLSH documentation	

Calculating the distance between 2 hashes

 Define a mod_diff(X, Y, R) function between two values, X and Y, according to a
range R.
X and Y are values in the range [0, .. R-1]

Calculate the distance between X and Y in 2 ways
i. the difference between X and Y
ii. the difference between X and Y if you go up to R-1 and then back to 0
The mod_diff value is the minimum of (i) and (ii)

examples:
mod_diff(3, 4, 16) = 1
mod_diff(3, 10, 16) = 7
mod_diff(3, 15, 16) = 4

Trend Micro TLSH documentation	

Calculating the distance between 2 hashes

 // Input: t1 and t2
Const RANGE_LVALUE = 256
Const RANGE_QRATIO = 16

diff ← 0
ldiff ← mod_diff(t1.lvalue, t2.lvalue, RANGE_LVALUE);
If ldiff <= 1
 diff ← diff + ldiff
else
 diff ← diff + ldiff * 12;

q1diff ← mod_diff(t1.q1ratio, t2.q1ratio, RANGE_QRATIO);
If q1diff <= 1
 diff ← diff + q1diff
else
 diff ← diff + (q1diff-1) * 12;

q2diff ← mod_diff(t1.q2ratio, t2.q2ratio, RANGE_QRATIO);
If q2diff <= 1
 diff ← diff + q2diff
else
 diff ← diff + (q2diff-1) * 12;

Trend Micro TLSH documentation	

Calculating the distance between 2 hashes
(cont.)

If t1.checksum <> t2.checksum
 diff ← diff + 1

for i ← 1 to 64 {
 decode t1.H[i+5] in 4 binary values b10 b11 b12 b13
 decode t2.H[i+5] in 4 binary values b20 b21 b22 b23
 if (b10,b11) != b(20,21) {
 if (b10,b11) == (1,1) AND (b20,b21) == (0,0) diff = diff + 6
 else if (b10,b11) == (0,0) AND (b20,b21) == (1,1) diff = diff + 6
 else if (b10,b11) == (1,1) AND (b20,b21) == (0,1) diff = diff + 2
 else if (b10,b11) == (0,0) AND (b20,b21) == (1,0) diff = diff + 2
 else diff = diff + 1
 }
 // do the identical process for (b12,b13) and (b22,b23)
 …
}

return diff

Trend Micro TLSH documentation	

References

The Pearson Hash
[1] "Fast Hashing of Variable-Length Text Strings" by Peter K. Pearson
Communications of the ACM, Volume 33 Issue 6, June 1990 Pages 677-680.
http://cs.mwsu.edu/~griffin/courses/2133/downloads/Spring11/p677-pearson.pdf

SdHash
[2] "Data fingerprinting with similarity digests"
Vassil Roussev
Sixth IFIP WG 11.9 International Conference on Digital Forensics, Hong Kong, China, January 4-6, 2010
http://roussev.net/pdf/2010-IFIP--sdhash-design.pdf

Nilsimsa
[3] Source code for Nilsimsa http://ixazon.dynip.com/~cmeclax/nilsimsa.html

[4] "An open digest-based technique for spam detection"
E. Damiani1, S. De Capitani di Vimercati1, S. Paraboschi2, P. Samarati
Proceedings of the 2004 international workshop on security in parallel and distributed systems. 2004.
http://spdp.di.unimi.it/papers/pdcs04.pdf

Trend Micro TLSH documentation	

References (cont.)

SSDEEP
[5] "Identifying almost identical files using context triggered piecewise hashing"
Jesse Kornblum
Journal Digital Investigation: The International Journal of Digital Forensics & Incident Response archive
Volume 3, September, 2006 Pages 91-97
http://dfrws.org/2006/proceedings/12-Kornblum.pdf

[6] Source code for SSDEEP: http://ssdeep.sourceforge.net/

Comparison Paper
[7] "An evaluation of forensic similarity hashes"
Vassil Roussev
Journal Digital Investigation: The International Journal of Digital Forensics & Incident Response archive
Volume 8, August, 2011
Pages S34-S41

