pyOpenCL and pyCUDA performance data

Laptop

These configurations are used:

A) CPU, cpu-OpenCL, 1 core
B) CPU, cpu-OpenCL, 8 cores
C) CPU, gpu-OpenCL, 1 core
D) CPU, gpu-OpenCL, 8 cores
E) GPU, gpu-OpenCL

F) GPU, CUDA

Definitions:

« GPU: NVIDIA GT 650M

o CPU: Intel i7

e« CUDA: PaSWAS Smith-Waterman code base

e gpu-OpenCL: for GPU optimized OpenCL code base
e cpu-OpenCL: for CPU optimized OpenCL code base

Timing measurements

We would like to show the ability of pyPaSWAS to align protein sequences on different devices using one of
the three possible implementions and also perform performance (timing) measurements on these alignments.
There is no underlying biological question. Protein sequences were chosen and not DNA/RNA, because the
latter are also in the PaSWAS paper.

The timing is done on 8x10, 8x20, 8x30, ..., 8x340 protein alignments.

Time (s)

C
oD
1000 — o
u]
a
a
800 — o
Opg
a
o
u]
m]
u]
600 — i
u]
a
a
m]
a
_ m]
400 o
a
oo
a
oo
o D
AN
o A A
200 - AL
o N A
N A
N o
[m] AL o“o
o
] A ° o F
A AAA 00© [0} oo <><>0
A
i AAAAAAA 000° 0000000000 ++§
° xS +
A" 5000999 o< T+ EF T xxX
o) OO0 +++T ¥ X X X
é§§§§¥$§$$i§§%%%%*§iixixxxxx E
0 T 1T
80 320 560 800 1120 1440 1760 2080 2400 2720

Number of alignments processed

15 o o x* i bty

1.0 -
+ F

3 000000000000000000000000
0000000
O A

00%20%0p0000°

Giga Cell updates / second

o o 00p5°0%0
_ o) 000 o~ 0O
[oNe) D

AADDDLDAEANNNDDLAELEALAAAA

C

|:||:||:||:|E|I:lDEII:IDDDDDDDDDDDDDDDDDDDDDDDDD
0.0 rrrrrrrrr1r1r11 117171 1T 1T 1t Tr it T T T T T T T T T T T

80 320 560 800 1120 1440 1760 2080 2400 2720

O
AAAAAAAA

Number of alignments processed

Comments:

e The lines are not completely straight because:
1) lengths of sequences vary,
2) CUDA / OpenCL devices perform optimalizations on code and execution
3) fluctations due to other processes running on the devive
e The axes and data are chosen in such a way that using the CPU for Smith-Waterman on a single core
is the (much) worse performaning setup (= implementation + device + data) of all. It also shows that
parallel processing on the GPU in these setups is the fastest way of doing SW.

Speed-up compared to CUDA

To show the speed-up of each of the configuration compared to the GPU, CUDA configuration, each timing
measurement is compared to the timing of the GPU, CUDA configuration.

- GPU, CUDA # CPU, gpu—-OpenCL, 8 cores * CPU, cpu-OpenCL, 8 cores
+,GPU, gpu-OpenCL 0 CPU, gpu-OpenCL, 1 core X CPU, cpu—-OpenCL, 1 core

rrrrrrr1rr1rr1r171r1 1717171 1T 1T 1T T T T T T TTTTTTTI
80 320 560 800 1120 1440 1760 2080 2400 2720

Speed-up compared to CUDA
00 05 10 15 20 25 30

Number of alignments processed

~
Q

o
5 8
(In Lo - GPU, CUDA # CPU, gpu—-OpenCL, 8 cores * CPU, cpu-OpenCL, 8 cores
[@)) + GPU, gpu—OpenCL 0 CPU, gpu—OpenCL, 1 core X CPU, cpu—OpenCL, 1 core
o +
= 8_ T T A T T S S U U IR
< (\i B} T T T T S * * x k% x
a) *
D P
@)
8 uo-> XXXXXXxxxxxxxxxXXXxxXXxKxxxxxxxxx
- —
© o ##################################
©
o o
= AN
o o
(&}
o —
I: Oo00000000000000000000000000000000
e} Lo
g 2 -
o © T | | | | |
0p]

0 500 1000 1500 2000 2500
Number of alignments processed

Comments:

e« GPU + OpenCL is the fasted in this setup

o plot quantifies speed differences between setup with CUDA and other setups

e Speed-up for each of the setups is stable across different number of alignments performed: this plot can
be summarized in a table:

Configuration Timing GCUPS Speedup
GPU, CUDA 92.84 0.89 1.00
GPU, gpu-OpenCL 43.21 1.91 2.65

Configuration Timing GCUPS Speedup

CPU, gpu-OpenCL, 8 cores 243.35
CPU, gpu-OpenCL, 1 core 1055.47
CPU, cpu-OpenCL, 8 cores 55.21
CPU, cpu-OpenCL, 1 core 140.11

0.35
0.08
1.53
0.59

0.41
0.09
1.73
0.68

	pyOpenCL and pyCUDA performance data
	Laptop
	Timing measurements
	Speed-up compared to CUDA

