
ERKALE Users’ Guide

Susi Lehtola

July 2, 2019

Contents

1 Introduction 1
1.1 What is ERKALE? 1
1.2 Why another code? 1
1.3 Citation . 2

2 Usage 2
2.1 erkale . 2
2.2 erkale_bastool 6
2.3 erkale_casida 6
2.4 erkale_copt 6
2.5 erkale_copt_plateau 7
2.6 erkale_cube 7
2.7 erkale_fchkpt 8
2.8 erkale_geom 8
2.9 erkale_emd 9

2.9.1 erkale_adf_emd 9
2.10 erkale_loc 9
2.11 erkale_pop 10
2.12 erkale_xrs 11
2.13 Checkpoint files 12

3 Basis set format 12

4 Parallelization 12

5 Examples 13
5.1 SCF calculation 13

5.1.1 Tough convergence cases 13
5.2 Casida . 13
5.3 EMD . 13
5.4 XAS/XRS 14

6 Interfacing with formatted checkpoint files 14
6.1 Reading in results from other codes 14

6.1.1 GAUSSIANTM 15
6.1.2 Q-CHEMTM 15
6.1.3 PSI4TM 15

6.2 Saving results from ERKALE for use in
other codes 15

7 Questions? 15

1 Introduction

1.1 What is ERKALE?

ERKALE is a code for Hartree-Fock and density-functional
theory calculations for atoms and molecules. It uses a
Gaussian basis set for representing the molecular orbitals.
ERKALE is written in C++ and uses the Armadillo tem-
plate library for linear algebra operations. ERKALE is de-
signed to be as easily maintained and user friendly as pos-
sible, but also to try to be reasonably fast for calculations
to take place in practice.

The speciality of ERKALE is the computation of x-ray
properties, such as electron momentum densities and
Compton profiles, x-ray absorption (XAS) and x-ray Ra-
man scattering (XRS) spectra for core electron excita-
tions through the transition potential approximation, and
valence electron excitation spectra through the Casida
method.

ERKALE is also the leading program used for
completeness-optimization of basis sets.

1.2 Why another code?

I wanted to do some research on the modeling of inelastic
x-ray scattering. This would require low-level access to a
quantum chemical code. The code would need to have a
gentle learning curve, be reasonably fast for "production"
use - and be free, so that I and others could use the code
anywhere they liked.

As I did not find suitable existing programs on the mar-
ket, I decided to write my own program. This would mean
spending more time in development, although with the
benefit of getting to grips with low level stuff. The de-
cision was made a lot simpler due to the availability of
fast, free libraries for computing electron repulsion in-
tegrals (LIBINT[1]) and exchange-correlation functionals
(LIBXC[2, 3]), which meant that most of the requisite, but
rather time consuming work was already done by others.

Being free is also important because scientific results
need to be reproducible. The path from equations to re-
sults is often very long in computational science; the code
used to implement the equations is (at least!) as impor-
tant as the equations themselves. To guarantee that the
code stays available, I have chosen the GNU General Pub-
lic License (GPL), which is commonly used in other scien-
tific software as well.

1

1.3 Citation

The recommended citation for the use of ERKALE in scien-
tific publications is

S. Lehtola, ERKALE - HF/DFT from Hel, 2016.
URL http://github.com/susilehtola/erkale

There is also a scientific publication describing ERKALE

[4], which you should cite as well, in addition to fur-
ther publications relevant to the pertinent functionality
in ERKALE [13, 14, 18, 25, 27, 34], as detailed below.

2 Usage

ERKALE is divided into a set of programs, which each are
designed to perform a specific task.

erkale is the main program, which is mainly used for per-
forming ground-state SCF calculations.

erkale_bastool is a utility program for working with ba-
sis set and can be used to decontract a basis, dump
the basis for the wanted element or plot complete-
ness profiles.

erkale_casida performs time-dependent density-
functional theory (TDDFT) calculations in the
Casida formalism as a postprocessing tool for
ERKALE.

erkale_copt creates completeness-optimized primitive
basis sets.

erkale_emd is the electronic momentum density (EMD)
program that postprocesses the results produced by
ERKALE.

erkale_xrs performs XAS/XRS calculations in the transi-
tion potential approximation.

2.1 erkale

The first step in computing ground-state electronic mo-
mentum density properties and Compton profiles, or non-
resonant inelastic x-ray scattering (NRIXS) spectra using
time-dependent density-functional theory (DFT) through
the Casida method, or the transition potential (TP) ap-
proximation in ERKALE is the solution of the ground-state
electron density. This is performed by the erkale program
(erkale_omp for the OpenMP parallelized version).

The SCF solver is run with the syntax

$ erkale runfile

where runfile is the file containing the specifics of the cal-
culation to run.

The only keyword that you have to define is Method,
which specifies the type of calculation you wish to run,
everything else is defaulted. The full list of keywords is
given below.

AtomGuess What method to use for the separated atoms
when using the atomic guess (see Guess section). The
default is Auto, in which case Method will be used
for the atomic guess as well. In some cases (e.g.
meta-GGA functionals) the atomic calculations may
not converge, and specifying a different AtomGuess
may prove helpful.

Basis The basis set to use. This actually is the file name
that ERKALE will look for, and can be given with or
without the .gbs filename extension. ERKALE will
search for the file in the following order:

1. In the current directory.

2. In the directory specified by the environmental
variable ERKALE_LIBRARY.

3. In the system-wide basis set directory, de-
fined at compile-time. By default this is
/usr/share/erkale/basis.

By default, the used basis set is aug-cc-pVTZ.

BasisCutoff When P-orthogonalization is enabled, the
cutoff to use to drop small primitives from contracted
functions (in the intermediate normalization). The
default is 10−8.

BasisOrth The method used to orthonormalize the ba-
sis set. Can be Can for Canonical orthonormaliza-
tion, Sym for symmetric orthonormalization or Chol
for Cholesky orthonormalization. The default is Auto,
which uses symmetric orthonormalization if possible
(no near-linear dependencies), and otherwise canon-
ical orthonormalization. You probably don’t want to
modify this setting.

BasisRotate Perform P-orthogonalization [5] of basis set?
Default is true. To restore functionality to that before
revision 1181, set this to false.

C1-DIIS When DIIS is used, use the original C1 formula-
tion instead of the newer, more flexible C2 formula-
tion? False by default.

Charge The charge of the system, in units of elementary
charge. By default 0.

Cholesky Use the Cholesky decomposition [6] to treat
two-electron integrals?

CholeskyMode Mode to run the Cholesky decomposition
in, specified with an integer. The default is 0, indicat-
ing no special action. Setting the value to 1 will save
the generated Cholesky decomposition on disk. Set-
ting the value to -1 will load the decomposition from
disk, skipping the potentially time consuming forma-
tion. This option is useful for, e.g., running bench-
marks on different functionals using the same basis
set and geometry.

2

CholeskyThr The threshold to use for the Cholesky de-
composition. The default is 10−7.

CholeskyShThr The same-shell threshold to use in the
Cholesky decomposition [7]. The program calcu-
lates all two-electron integrals for a given shell,
and reuses the same integrals until the maximum
Cholesky residual on the shell rshell is smaller than
the global maximum rmax by the set threshold ε:
rshell < εrmax.

ConvThr The orbital gradient convergence threshold.
This is the same as the DIIS error, max ‖[F ,P ‖.

DecFock When forming the Fock matrix in direct SCF,
calculate the contributions in the decontracted basis.
This may be useful when you have a small system
with a very large contracted basis set. False by de-
fault.

Decontract Indices of the atoms to decontract the basis
set for, for example 1,2,6-8, or * for all atoms. Empty
by default, meaning no decontraction.

DensityFitting Use density fitting to evaluate the
Coulomb term (and exact exchange if needed)? De-
fault is true for DFT calculations and false for HF cal-
culations. When calculation of the exact exchange is
needed, you need to define the FittingBasis explicitly.

DFTDelta Defines when to switch to final integration
grid, as a multiple ConvThr. The default value is
100.

DFTGrid Integration grid to use for DFT calculations.
Can be Auto for adaptive grid (thus controlled
by DFTInitialTol and DFTFinalTol), or manually
defined by nrad lmax, nrad being the amount of
radial shells and lmax the maximum order integrated
exactly. For Lobatto grids there is no limitation for
lmax; for Lebedev grids see Table 1 for supported
values. You can also define the angular quadrature
with -npts, where npts is the amount of points in the
Lebedev quadrature of the wanted order. The default
is 50 -194, for a (50,194) grid.

N.B. The default is aimed for LDA and GGA
calculations on light atoms. If you want to run
heavier atoms and/or meta-GGAs, you should check
that the grid is converged! Standard choices for
bigger grids are (75,302) and (99,590). If the basis
set is large like UGBS, you may need many more
radial points.

For preliminiary calculations one may be inter-
ested in smaller grids, for which (30,170) might be
okay. This should not be used for any production
runs.

lmax npoints
3 6
5 14
7 26
9 38

11 50
13 74
15 86
17 110
19 146
21 170
23 194
25 230
27 266
29 302
31 350
35 434

lmax npoints
41 590
47 770
53 974
59 1202
65 1454
71 1730
77 2030
83 2354
89 2702
95 3074
101 3470
107 3890
113 4334
119 4802
125 5294
131 5810

Table 1: Supported Lebedev grids. lmax is the order of the
rule, while npoints gives the amount of points on the grid.

DFTFinalTol (Available only when Method has been set
to a DFT keyword) The final tolerance for the DFT
exchange-correlation integration grid, as determined
by the convergence of the diagonal values of the
Kohn-Sham Fock matrix [8]. By default 10−5.

DFTInitialTol (Available only when Method has been set
to a DFT keyword) The initial tolerance for the DFT
exchange-correlation integration grid, as determined
by the convergence of the diagonal values of the
Kohn-Sham Fock matrix [8]. By default 10−4.

DFTLobatto (Available only when Method has been set to
a DFT keyword) Use Lobatto grids instead of Lebedev
grids for angular quadrature. False by default.

DIISOrder When DIIS is used, how many Fock matrices
to use for the interpolation? By default 20.

DIISThr Error threshold for using DIIS interpolated Fock
matrices. By default 0.05.

DimerSymmetry If running on a diatomic molecule
placed along the z axis, this makes the calculation
enforce the known orbital symmetries for diatomic
molecules, i.e. that the orbital behaves as eimφ with
respect to the angle φ around the bond. This option
may be useful for setting up fully numerical calcu-
lations with X2DHF or HELFEM, as the calculation
yields the occupations for the different m values.

Direct Compute two-electron integrals on-the-fly? You
need to enable this in order to compute large sys-
tems. False by default.

FittingBasis The auxiliary basis set to use for density fit-
ted calculation of the Coulomb and exact exchange
(for HF and hybrid DFT) matrices. Auto for automat-
ical formation. N.B. automatical formation is only

3

supported for pure DFT calculations, as exchange fit-
ting necessary for HF and hybrid DFT has more strin-
gent requirements for the auxiliary basis set. The de-
fault is Auto.

Guess (If an initial wavefunction was not given to the
solver via LoadChk) Which guess to use for the calcu-
lation? The default is Atomic; good alternatives are
NO, Huckel, as well as SAP that needs precomputed
atomic radial potentials, see below. Valid options are

Core for the core guess (very bad for polyatomic
systems, especially in the presence of heavy
atoms),

Huckel for a Hückel-type guess [9], where the pro-
gram employs the orbital coefficients and ener-
gies from a set of spin-averaged fractionally oc-
cupied atomic calculations to build the guess or-
bitals,

SAD for the superposition of atomic densities (SAD)
guess [10], which also employs spin-averaged
fractionally occupied atomic calculations,

SAP for the superposition of atomic potentials (SAP)
[11], which needs precomputed radial poten-
tials, the location for which must be specified
with the ERKALE_SAP_LIBRARY environment
variable,

GSAP for a SAP guess computed in the Gaussian
basis set (this usually gives poor results and
shouldn’t be used), and

NO for the purified SAD guess [11].

InputBohr Specifies that the geometry in the xyz file is in
Bohr instead of Ångström.

LoadChk Initialize calculation with orbitals from check-
point file.

Logfile Redirect standard output to file. Set as stdout to
retain in standard output. By default erkale.log.

MaxIter Maximum number of SCF steps to perform be-
fore giving up. By default 100.

Method Can be HF for (restricted or unrestricted)
Hartree-Fock, ROHF for restricted open-shell
Hartree-Fock or a keyword specifying the used
exchange-correlation functional.

The evaluation of the exchange-correlation function-
als is performed by the LIBXC library, so for a list
of supported exchange, correlation and exchange-
correlation functionals please refer to the attached
list or the LIBXC documentation (e.g. the file
xc_funcs.h included in the LIBXC installation).

The exchange-correlation functionals are given
in the format exchange-correlation, for instance

lda_x-lda_c_vwn for LDA exchange and Vosko-Wilk-
Nusair correlation. If you want, you can also give
this in the format 1-7, where the numbers are the
relevant LIBXC functional identifiers.

If you want to run a calculation with just ex-
change, or just correlation, you can do this by
specifying, e.g., lda_x-none and none-lda_c_vwn,
respectively, as the method. If you set the method
to none or none-none (or substitute 0 for none), you
will get a calculation corresponding to Hartree level
of theory.

Multiplicity Spin multiplicity 2S + 1 of the system. 1 by
default (singlet S = 0).

NLGrid The grid used to evaluate the non-local correla-
tion contribution in VV10. Same syntax as for DFT-
Grid. The default is a (50,194) grid, which typically
gives results converged to the grid limit. Note that
you will want to use a much bigger DFTGrid.

Occupancies Orbital occupancies, given in the format n1
n2 n3 . . . nN for closed shell and n1α n1β n2α n2β . . .
nNα nNβ for open shell systems. If occupancies are
not specified, the Aufbau principle is used to form the
occupancies.

PZ Use Perdew–Zunger self-interaction correction (PZ-
SIC) [12, 13, 14]? Default is No.

PZEthr The threshhold for energy convergence in the line
search procedure.

PZimag Enable imaginary rotations? The default is Auto,
indicating the imaginary degrees are turned on by
stability analysis (if it is enabled).

PZiter The number of consecutive line search itera-
tions to take in the occupied–occupied and occu-
pied–virtual blocks. The default is 20.

PZIThr The threshhold for the initial localization proce-
dure specified by PZlocmet. The default is 10−3.

PZloc Initial localization of the orbitals? The default is
Auto, meaning that canonical orbitals will be local-
ized, but if a previous PZ calculation is loaded in, the
orbitals will not be touched.

PZlocmet The method used in the initial localization of
the orbitals. The possibilities are the same as for the
Method keyword of erkale_loc.

PZmode The interactions to apply the PZ correction to.
The default is XC, standing for exchange and corre-
lation. Any combination of X, C, and D is allowed,
where X stands for exchange, C for correlation and D
for dispersion (i.e. VV10 non-local correlation).

4

PZNRthr The gradient threshold to use to switch to a
Newton–Raphson method in the occupied–occupied
optimization. The default is 0, meaning that the
Newton–Raphson procedure will not be used. Since
the Hessian is evaluated seminumerically, the proce-
dure is rather costly.

PZoo Enable rotations in the occupied–occupied block?
True by default. You can turn this off if you set PZw
to 0 (with PZScale Constant), in which case the model
is invariant to rotations in the occupied–occupied
block.

PZOOThr The convergence threshold for the occu-
pied–occupied gradient. The default is 10−4.

PZov Enable rotations in the occupied–virtual (and vir-
tual–occupied) block? True by default. Turning this
off is primarily useful if you use the PZ code to run
Edmiston–Ruedenberg localization.

PZOVThr The convergence threshold for the occu-
pied–virtual gradient. The default is 10−5.

PZprec Preconditioning of the occupied–virtual block in
PZ-SIC calculations [14]. Can be 0 for no precondi-
tioning, 1 for preconditioning with the unified Hamil-
tonian, or 2 for preconditioning with the orbital-
dependent Hamiltonian.

PZScale Scaling of the Perdew–Zunger self-interaction
correction. Can be Constant (default), Kinetic or Den-
sity.

PZScaleExp The exponent in the kinetic or density scal-
ing equation. The default is 1.0.

PZseed The random seed to use for the initial localiza-
tion. The default is 0.

PZstab Run stability analysis on the found solution [14]?
Can be 0 for no stability analysis, 1 for stability anal-
ysis in the occupied–occupied block, or 2 for sta-
bility analysis in the occupied–occupied and occu-
pied–virtual blocks. The orbital Hessian is formed by
finite difference of analytic gradients, and is diago-
nalized using dense matrix algebra. The eigenvalues
of the Hessian will be printed out.
The program also accepts negative values which trig-
ger following the instability. E.g., -1 means that sta-
bility analysis is run in the occupied–occupied block,
and if negative eigenvalues are found the solution
will be displaced on the direction of the largest in-
stability and the optimization is restarted.

PZstabThr The threshold ε for a negative eigenvalue ω,
interpreted as ω < −ε. If this inequality holds, the
wave function is deemed unstable.

PZw The weight used for the Perdew–Zunger self-
interaction correction. The default is 1.0.

SaveChk Save results to checkpoint file. Default is
erkale.chk.

Shift Level shift in Hartree to use when solving the SCF
equations. The default is 0, i.e. no level shift.

System The xyz file containing the nuclear coordinates
of the system to calculate. By default atoms.xyz.
Additionally, the fifth column in the file may be
used to specify atomic charges for the initial atomic
guess, which may be useful for obtaining different
classes of solutions (e.g. ionic vs non-ionic). The
file is searched in the current directory, and then in
the directory specified by the environment variable
ERKALE_SYSDIR.
The molecular geometry can also be specified as a Z
matrix; in this case the xyz file should start with the
line #ZMATRIX.

StrictIntegrals Do tight screening of two-electron inte-
grals in on-the-fly calculations of the Hartree-Fock
Coulomb and/or exchange matrices. False by default,
meaning that adaptive screening based on the change
of the density matrix is used to skip small products.

UseADIIS Use the ADIIS convergence acceleration algo-
rithm? True by default.

UseDIIS Use the DIIS convergence acceleration algo-
rithm? (Once the DIIS error has dropped below DI-
ISThr.) True by default.

UseBroyden Use the Broyden convergence accelerator
algorithm? False by default.

UseLM Use pure spherical harmonics in the basis set, i.e.,
5 d functions instead of the 6 cartesians, 7 f functions
instead of the 10 cartesians, etc. True by default.

UseTRRH Use the Trust Region Roothaan-Hall method
for orbital updates instead of diagonalization of the
Fock matrix. False by default.

Verbose Be verbose in the calculation? True by default.

VV10 Add in VV10 non-local correlation [15]? True or
false. The default is Auto, triggering VV10 contri-
butions when toggled by the functional definition in
LIBXC. If you set “VV10 True”, you need to specify the
parameters to be used with VV10Pars. Whether VV10
is enabled by True or Auto, you need to check that the
NLGrid is suitable.

VV10Pars The b andC parameters for the VV10 non-local
correlation functional. This is only used if VV10 is set
to True, if VV10 is Auto the parameters will be read
in from LIBXC.

5

2.2 erkale_bastool

The basis set tool can be used to prepare basis sets for
calculations by decontracting the basis set (you can, how-
ever, accomplish the same thing with the Decontract set-
ting in the runfile) or dumping a specific element from the
library. The tool can also be used to plot the completeness
profile of an element in the basis set.

To examine the composition of a basis set, use, e.g.,

$ erkale_bastool aug-cc-pVTZ composition

which will print out the contraction scheme of the basis
set.

To plot the completeness profile [16] of a basis set use,
e.g.,1

$ erkale_bastool aug-cc-pVTZ completeness \
O O-prof.dat

which computes the completeness profile of the aug-cc-
pVTZ oxygen basis set and save it to the file O-prof.dat.
The first column in the file contains the 10-base loga-
rithm of the scanning exponent, lgα, whereas the follow-
ing columns contain the s, p, d, . . . space completenesses
of the basis set.

To decontract a basis set, use

$ erkale_bastool input.gbs decontract \
output.gbs

which will save the input basis set in decontracted form
in the file output.gbs.

To dump the basis set for a specific element use

$ erkale_bastool input.gbs dump element \
output.gbs

Or, to dump the basis set for all the elements in a xyz file,
use

$ erkale_bastool input.gbs genbas system.xyz \
output.gbs

To convert a basis set file into Dalton format, use

$ erkale_bastool input.gbs savedalton \
output.dal

To perform P-orthogonalization[5] of a basis set, use

$ erkale_bastool input.gbs Porth cutoff \
Cortho output.gbs

Here, cutoff is the cutoff for primitive coefficients in the
intermediate normalization (largest coefficient normal-
ized to unity), and Cortho is the Cortho parameter used in
the rotation which controls linear dependencies, Cortho =
0 being equivalent to Davidson rotation.

1\ denotes line continuation; write the commands on a single line.

2.3 erkale_casida

To compute NRIXS spectra with the Casida tool, you need
to do first a ground-state calculation.

The runfile format for a Casida calculation is as follows:

CasidaC The correlation functional to be used for the
Casida calculation. Only LDA functionals are cur-
rently supported. By default lda_c.

CasidaCoupling The coupling mode for the Casida calcu-
lation. Can be 0 for the independent particle approx-
imation (IPA), 1 for the random phase approximation
(RPA) or 2 for the time-dependent local density ap-
proximation (TDLDA). By default 2.

CasidaPol Force a polarized Casida calculation, even if a
restricted ground-state calculation is used. False by
default.

CasidaQval The values of momentum transfer that the
spectra should be computed for. For example
0.1:0.1:1.0,2.5,7.4

CasidaStates The states to include in the Casida calcu-
lation, for instance 1:10,14,16:48. For unrestricted
calculations the alpha and beta states need to be
specified separately (alpha first, then beta). You can
also use “HOMO” and “LUMO” as specifiers, e.g.,
1:homo+20, which will include all of the occupied
orbitals and the 20 lowest unoccupied ones as well.

CasidaX The exchange functional to be used for the
Casida calculation. Only LDA functionals are cur-
rently supported. By default lda_x.

DFTFittingBasis The basis set to use as the fitting basis.
Auto for automatical formation.

LoadChk The file containing the ground-state density. By
default erkale.chk.

As a result from the Casida executable you will get the file
casida.dat that contains the dipole NRIXS spectrum. The
first column gives the transition energy and the second
gives the transition speed. If you also specified CasidaQ-
Val, then you will also get files named casida-x.yy.dat that
contain the momentum transfer dependent spectra.

If default settings are enough for you, you don’t need
to specify a runfile.

2.4 erkale_copt

The completeness optimization tool can be used to create
completeness-optimized [17, 18] primitive basis sets. The
optimization uses conjugate gradients with finite differ-
ence gradients [18].

The measure to optimize is

τn =

(
1

lgαhigh − lgαlow

∫ αhigh

αlow

[1− Y (α)]
n
d lgα

)1/n

,

(1)

6

where n = 1 corresponds to maximizing the area of com-
pleteness

τarea = 1− 1

lgαhigh − lgαlow

∫ αhigh

αlow

Y (α)d lgα

and n = 2 to minimizing the rms deviation from com-
pleteness

τrms =

√
1

lgαhigh − lgαlow

∫ αhigh

αlow

[1− Y (α)]
2
d lgα.

Here Y (α) is the completeness profile, which measures
the capability of the basis set to represent the primitive
Gaussian basis function the set is scanned with,

Y (α) =
∑
µν

〈α |µ 〉S−1
µν 〈ν |α 〉 .

When |α〉 can be expanded exactly in the basis set, Y (α) =
1.

The syntax of the program is

$ erkale_copt runfile

where runfile is the file that contains the wanted parame-
ters:

LinDepThresh the linear dependence cutoff, 10−5 by de-
fault

am the angular momentum of the shell to optimize (0 for
S, 1 for P, etc.)

coulomb use the Coulomb metric instead of the overlap
metric? False by default. Use True for optimizing
auxiliary basis sets for density fitting.

max the upper limit of the range of lgα to optimize for

min the lower limit of the range of lgα to optimize for

n the measure to use: n = 0 for maximal area or n = 1
for minimal rms deviation

nfull the number of functions on each side to fully opti-
mize, the exponents in the middle being represented
by an even-tempered expansion. 4 by default, which
yields practically fully converged results

nfunc the number of primitives to use

output file to save the resulting basis to. Default is opti-
mized.gbs.

To generate basis sets for practical calculations you should
use the optimization scheme detailed in reference [17] to
generate sufficient sets for all shells of all elements. Note
that will need to concatenate the shells by hand for each
element.

Note that you should not in general generate basis sets
by hand, but use an automated procedure such as the one
I’ve used [18, 19, 20]. The ERKALE source code includes
the algorithms I’ve used, under src/contrib.

2.5 erkale_copt_plateau

This is another variant of the completeness optimization
program, where instead of defining a number of funtions
and limits for the wanted completeness plateau, the width
of the plateau is determined automatically by targetting
exact satisfaction of the specified value for the metric
τn. This is achieved in teh program by adjustment of the
width of the plateau by changing the upper limit of the
integral [18]. The syntax of the program is

$ erkale_copt_plateau runfile

where runfile is the file that contains the wanted parame-
ters:

LinDepThresh the linear dependence cutoff, 10−5 by de-
fault

am the angular momentum of the shell to optimize (0 for
S, 1 for P, etc.)

coulomb use the Coulomb metric instead of the overlap
metric? False by default. Use True for optimizing
auxiliary basis sets for density fitting.

min the lower limit of the range of lgα

n the measure to use: n = 0 for maximal area or n = 1
for minimal rms deviation

nfull the number of functions on each side to fully opti-
mize, the exponents in the middle being represented
by an even-tempered expansion. 4 by default, which
yields practically fully converged results

nfunc the number of primitives to use

output file to save the resulting basis to. Default is opti-
mized.gbs.

Like erkale_copt, this program also generates functions
one shell at a time and so you will need to concatenate
the basis sets by hand.

2.6 erkale_cube

erkale_cube can calculate the electron density and/or the
molecular orbitals on a grid. To compute the electron mo-
mentum density on a grid, use erkale_emd (section 2.9).

erkale_cube generates a file in the GAUSSIAN cube for-
mat, which can be visualized, e.g., with Avogadro [21] or
JMol [22]. The settings are

AutoBuffer Buffer in Ångström to add in each side of
the cube determined by the extremal locations of the
atoms. The default is 2.5.

AutoSpacing Grid spacing in Ångström to use in auto-
matic grid generation. The default is 0.1.

Cube The geometry of the cube, same syntax as for EMD-
Cube in section 2.9. Alternatively, can be Auto for
automatic generation (default).

7

Density A boolean stating whether the densities are to
be calculated. Output saved to density.cube; if spin
unrestricted also alpha and beta densities are com-
puted and saved in density-a.cube and density-b.cube,
respectively.

ELF Compute the electron localization function [23]?
The default is false.

LoadChk File to load orbitals and densities from

OrbIdx Indices of orbitals to plot. Same syntax as for
CasidaStates in section 2.3, but the HOMO and
LUMO specifiers are not supported.

Potential Compute the electrostatic potential? Saved in
potential.cube. Default is false.

SplitOrbs A boolean stating whether the orbitals are
to be saved in a single file orbital.cube (false, de-
fault), or to be split into single orbital-specific files or-
bital.N.cube, where N is the orbital index. If spin un-
restricted, the corresponding files are orbital-a.cube
and orbital-b.cube, or orbital-a.N.cube and orbital-
b.N.cube.

2.7 erkale_fchkpt

For compatibility with other software, ERKALE includes a
tool for converting formatted checkpoint files into ERKALE

format, and vice versa: erkale_fchkpt.
The main purpose of this tool is to enable visual-

ization of calculations performed with ERKALE using
Avogadro[21] (doesn’t support spin polarized calcula-
tions) or IQmol[24], and to analyze calculations per-
formed with GAUSSIANTM or Q-CHEMTM.

The accepted keywords for erkale_fchkpt are as follows:

LoadChk Load checkpoint in ERKALE format from file.

LoadFchk Load formatted checkpoint from file.

SaveChk Save checkpoint in ERKALE format in file.

SaveFchk Save formatted checkpoint from file.

FchkTol Tolerance for deviation of norm of density ma-
trix. The default is 10−8. (Only applicable to fchk→
chk)

Renormalize A boolean stating whether the density ma-
trix should be renormalized to the correct amount of
electrons. (Only applicable to fchk→ chk)

Reorthonormalize A boolean stating whether the or-
bitals are to be reorthonormalized. (Only applicable
to fchk→ chk)

2.8 erkale_geom

erkale_geom performs ground-state geometry optimiza-
tions, using analytical derivatives. The program is ran
similar to the main executable erkale. Upon execution,
the electronic structure is first solved in the starting point
structure verbosely, after which the executions proceeds
in non-verbose mode. The optimization is performed
in cartesian coordinates, which is suboptimal for large
molecules due to the suboptimal choice of the degrees of
freedom. ROHF geometry optimization is not currently
supported.

N.B. Analytic VV10 forces are currently incorrect in
ERKALE. You should use numerical gradients instead
for VV10 calculations, as well as for PZ-SIC calcula-
tions.

Additional settings compared to erkale are

Criterion The convergence criterion to use: LOOSE,
NORMAL, TIGHT or VERYTIGHT. The default is NOR-
MAL.

CGReset If using conjugate gradients, reset the search di-
rection every N steps. The default is 5.

MaxSteps The maximum amount of geometry optimiza-
tion steps to take. Default is 256.

NumGrad Use numerical gradients instead of analytic
gradients? Default is False. You may want to set the
Stencil and the Stepsize as well.

Optimizer The optimization algorithm to use. Currently
supported options are

CGFR Fletcher–Reeves conjugate gradients

CGPR Polak–Ribière conjugate gradients

BFGS Broyden–Fletcher–Goldfarb–Shanno op-
timizer (default)

SD Steepest descent

OptMovie The file to store the progress of the optimiza-
tion in. The file contains xyz snapshots of the system,
and can be played as a movie in, e.g., JMol. Default
is optimize.xyz.

Result The file to store the final geometry in. Default is
optimized.xyz.

Stencil The finite difference stencil to use for numerical
gradients. The default is 2, for a two-point central
difference stencil.

Stepsize The step size for the finite difference stencil in
bohr. The default is 10−6.

It is also possible to fix atoms during the geometry opti-
mization. This is done by adding a -Fx suffix to the ele-
ment symbol in the input geometry file.

8

2.9 erkale_emd

The EMD executable can be used to calculate the electron
momentum density and the Compton profile.

To calculate the radial electron momentum density
(isotropic EMD) and the isotropic Compton profile with
the algorithm from reference [25] from the checkpoint
file called erkale.chk, the runfile format is

LoadChk erkale.chk
DoEMD true

The default relative tolerance for the radial p integral is
10−8, which can be modified with the EMDTol keyword.

As a result of the calculation, you will get the following
files:

emd.txt The radial EMD. The first column is p, the
second is the EMD n (p).

moments.txt The moments of the radial EMD,
〈
pk
〉

for
k = −2, . . . , 4.

〈
p0
〉

is simply the number of
electrons.

compton.txt The isotropic Compton profile J (q). The first
column is q, the second is J (q) and the third
gives the error estimate of the numerical in-
tegration.

compton-interp.txt The isotropic Compton profile, inter-
polated on a fixed grid. Contents otherwise
same as in compton.txt.

Correspondingly, if you want to compute the EMD on a
grid, you need to add the EMDCube keyword. The syntax
is

EMDCube -10:.1:10

for a cube from -10 bohr to 10 bohr with spacing 0.1 bohr
in px, py and pz, or, if you want a non-isotropic grid, the
syntax is

EMDCube -3:.2:5 -2:.5:3 -1:.01:1

where the spacings are given separately for px, py and
pz. The result will then be saved in the file emdcube.dat,
where the first three columns contain px, py and pz and
the fourth one contains the value of the EMD.

You can also calculate momentum density overlap inte-
grals

SAB(k) =

∫
p2knA(p)nB(p)d

3p

as well as the related similarity measures

IAB(k) =

∫
p2kπA(p)πB(p)d

3p,

where the momentum shape functions are defined as

πA(p) =nA(p)/NA,

NA being the amount of electrons

NA =

∫
nA(p)d

3p.

Also the similarity integral

DAB(k) =
√
IAA(k) + IBB(k)− 2IAB(k)

is calculated. The reference is given with the LoadChk
keyword, and the similarity calculation is triggered with
the Similarity keyword, with an argument specifying the
checkpoint used for the comparison. The integrals are
performed on a grid with 500 point radial points (Cheby-
shev rule), and 2030 angular points (Lebedev), analo-
gously to [26].

2.9.1 erkale_adf_emd

As a supplementary feature, ERKALE can also calculate
momentum densities from calculations performed with
the Amsterdam Density Functional program (ADF) in the
Slater type orbital (STO) basis. However, we do not rec-
ommend the use of ADF for EMD calculations as better
results can be obtained faster using GTO basis sets.

2.10 erkale_loc

This is a tool for orbital localization. The used algorithms
are described in [27], please cite it when you use the pro-
gram. Accepted keywords

LoadChk Checkpoint to load calculation from.

SaveChk Checkpoint to which save calculation with lo-
calized orbitals.

Maxiter Maximum amount of iterations to take in the
unitary optimization. Default is 50000.

Method Method to use for orbital localization. Can be:

ER Edmiston–Ruedenberg localization.
[28]

FB Foster–Boys, i.e., second moment [29]

FB2 FB with penalty exponent p = 2 [30]

FB3 FB with penalty exponent p = 3 [30]

FM fourth moment [31]

FM2 FM with penalty exponent p = 2 [31]

FM3 FM with penalty exponent p = 3 [31]

MU Pipek–Mezey (PM) with Mulliken
charges [32]

MUH PM with Mulliken charges, but with ex-
ponent p = 1.5 instead of p = 2 [33]

MU2 PM with Mulliken charges, but with ex-
ponent p = 4 instead of p = 2 [33]

LO PM with Löwdin charges [33]

9

LOH PM with Löwdin charges, but with expo-
nent p = 1.5 instead of p = 2 [33]

LO2 PM with Löwdin charges, but with expo-
nent p = 4 instead of p = 2 [33]

BA PM with Bader charges [34, 35]

BAH PM with Bader charges, but with expo-
nent p = 1.5 instead of p = 2 [34, 35]

BA2 PM with Bader charges, but with expo-
nent p = 4 instead of p = 2 [34, 35]

BE PM with Becke charges [34]

BEH PM with Becke charges, but with expo-
nent p = 1.5 instead of p = 2 [34]

BE2 PM with Becke charges, but with expo-
nent p = 4 instead of p = 2 [34]

HI PM with Hirshfeld charges [34, 36]

HIH PM with Hirshfeld charges, but with ex-
ponent p = 1.5 instead of p = 2 [34, 36]

HI2 PM with Hirshfeld charges, but with ex-
ponent p = 4 instead of p = 2 [34, 36]

IHI PM with iterative Hirshfeld charges [34,
37, 38]

IHIH PM with iterative Hirshfeld charges, but
with exponent p = 1.5 instead of p = 2
[34, 37, 38]

IHI2 PM with iterative Hirshfeld charges, but
with exponent p = 4 instead of p = 2
[34, 37, 38]

IAO PM with intrinsic atomic orbital charges
[39] (This yields intrinsic bond orbitals,
IBOs, in the nomenclature of [39])

IAOH PM with intrinsic atomic orbital charges
[34, 39], but with exponent p = 1.5 in-
stead of p = 2 (This yields intrinsic bond
orbitals, IBOs, in the nomenclature of
[39])

IAO2 PM with intrinsic atomic orbital charges
[39], but with exponent p = 4 instead of
p = 2 (This yields intrinsic bond orbitals,
IBOs, in the nomenclature of [39])

ST PM with iterative Stockholder charges
[34, 40, 41, 42]

STH PM with iterative Stockholder charges
[34, 40, 41, 42], but with exponent p =
1.5 instead of p = 2

ST2 PM with iterative Stockholder charges
[34, 40, 41, 42], but with exponent p =
4 instead of p = 2

VO PM with Voronoi charges [34]

VOH PM with Voronoi charges [34], but with
exponent p = 1.5 instead of p = 2

VO2 PM with Voronoi charges [34], but with
exponent p = 4 instead of p = 2

The default is FB.

Virtual In addition to occupied orbitals, localize virtual
orbitals as well? Default is false.

Logfile Where the progress report is saved to. The de-
fault is the standard output.

Accelerator The convergence accelerator to use. Can be
SDSA for steepest descent / steepest ascent, CGPR
for Polak–Ribière conjugate gradients, or CGFR for
Fletcher–Reeves conjugate gradients. The default is
CGPR. The use of CGFR is discouraged.

LineSearch Method to use for line searches. Can be
poly_df for fitting the derivative of the cost function,
poly_fdf for fitting both cost function and its deriva-
tive, armijo for an Armijo line search or fourier_df for
a Fourier transform method.

StartingPoint Where to start the optimization from. Pos-
sibilities: CAN for canonical orbitals, ORTH for a ran-
dom orthogonal matrix (default), or UNIT for a ran-
dom complex unitary matrix.

Delocalize Instead of localizing, delocalize orbitals? De-
fault is false.

Seed The random seed to use when starting from a ran-
dom matrix.

FThreshold Determine convergence when relative
change in function value is less than this. Default is
10−7.

GThreshold Determine convergence when absolute
value of the Riemannian derivative is smaller than
this. Default is 10−7.

2.11 erkale_pop

To perform additional population analyses in addition to
the Mulliken analysis ran by erkale by default, you can use
erkale_pop. The accepted keywords are

LoadChk Checkpoint file to load densities from. Default
is erkale.chk.

Bader Calculate Bader charges, along the lines of refer-
ence [43]. Default is false.

Becke Calculate Becke charges. N.B. These are depen-
dent on the used weighting scheme, which is not
physical! Default is false.

DensThr Compute total density thresholds for orbital
visualization[34, 39]. Default is false.

Hirshfeld Calculate Hirshfeld charges [36]. Default is
false.

10

HirshfeldMethod Method to use in computing reference
densities for Hirshfeld or iterative Hirshfeld analy-
sis. Default is HF. It is also possible to load reference
densities from checkpoint files with Load, so the use
of post-HF densities is also possible. The checkpoint
files should be in the current working directory and
be named el_Q.chk, el being the element symbol and
Q the charge (only 0 for Hirshfeld, Q ∈ [−2, 2] for
iterative Hirshfeld).

IterativeHirshfeld Calculate iterative Hirshfeld
charges[37, 38]. Default is false.

IAO Calculate intrinsic atomic orbital charges[39]. De-
fault is false.

IAOBasis (Minimal) basis set to use for intrinsic atomic
orbital analysis. Default is MINAO.gbs.

Mulliken Calculate Mulliken charges. Default is false.

Lowdin Calculate Löwdin charges. Default is false.

OrbThr Compute orbital density thresholds for orbital
visualization[34, 39]. Default is false.

OrbThrVal Orbital density thresholds for orbital or total
density visualization[34, 39]. Default is 0.85, corre-
sponding to 85% of total charge within the threshold.

OrbThrGrid DFT grid tolerance for numerical overlap
matrix, for determining orbital or density thresholds
for visualization[34, 39]. Default is 10−3.

Stockholder Calculate iterative Stockholder charges [40,
41, 42]. Default is false.

Voronoi Calculate Voronoi charges. Default is false.

Tol Integration grid tolerance for the diagonal element of
the overlap matrix [44]. Default is 10−5.

2.12 erkale_xrs

The runfile for the XRS executable contains the same di-
rectives as that of the SCF executable (since the TP calcu-
lation involves an SCF calculation), and in addition some
directives that are specific to the XRS/XAS calculation. To
perform a XAS/XRS calculation, you first need to do a
ground-state calculation, from which the initial core state
is then identified by localization.

Note: in contrast to the other executables, erkale_xrs
will check the SaveChk file whether a calculation has been
already performed. This can be used to initialize an XCH
calculation with a TP calculation (copy TP checkpoint to
the SaveChk file of the XCH run), or to compute more TP
spectra (e.g., different augmentation scheme, different Q
values or different QMethod).

Note: The current implementation (since revision
1262) of the localization of the core hole is based on an
algorithm similar to the one by Iannuzzi and Hütter [45],
instead of the one described in [4]. This enables

XRSAugment Asks for the double basis set method to be
used: after the TP calculation has converged, aug-
ment the basis set with diffuse functions on the given
atoms to improve the description of virtual orbitals,
e.g., 1,2,5-10,13. You should always augment the ex-
cited atom; others aren’t normally necessary. None
by default.

XRSDoubleBasis (If the double basis set method is used)
The basis set to add on the augmented centers. The
default is X-AUTO, which is X-FIRST for first-row
atoms and X-SECOND for second-row atoms.

XRSGridTol The XC integration grid tolerance for the
double basis set calculation. 10−4 by default.

XRSInitialState The core state to excite. Default is 1s.
The program localizes a set of orbitals on the excited
atom, from which the core state is identified. Only
the inner core can be excited; the orbital must not be
in the valence or the iteration will not converge.

XRSInitialOrbital Index of initial orbital on the wanted
shell. Default is 1. For excitations from higher than s
shells, can be chosen from the range 1, . . . , 2l + 1.

XRSLmax (If the local expansion method is used.) De-
fines the order of expansion in the angular integrals.
5 by default.

XRSLquad (If the local expansion method is used.) De-
termines how many points are used in the angular
integrals. 30 by default.

XRSMethod Which type of calculation to run. Can be TP
for transition potential (for x-ray Raman and x-ray
absorption spectra), FCH for full core-hole (for com-
puting vertical photoionization energy), or XCH (for
computing absolute energy correction to TP spec-
trum). The default is TP.

XRSNrad (If the local expansion method is used.) Gives
the number of points used in the radial integrals. 200
by default.

XRSSpin Which spin to excite? Alpha by default. (This
setting is relevant for open-shell ground state sys-
tems.)

XRSQval The values of momentum transfer q the
spectra should be calculated for. For example
0.1:0.1:1.0,2.5,7.4

XRSQMethod The method of computing the q dependent
spectra. Can be Local for the local expansion method
[46], Fourier for the Fourier transform based method
or Series for a moment matrix based method (not rec-
ommended). The default is Fourier, which is also
used for q dependent Casida.

The excited atom is specified for erkale_xrs in the xyz file
with the -Xc suffix. You can use the same ground state
calculation for studying excitations at different centers,
e.g., the nonequivalent carbons on phenol.

11

2.13 Checkpoint files

ERKALEuses the HDF5 library http://www.hdfgroup.
org/HDF5/ to perform checkpointing. The method has
both the advantage of the speed and accuracy of binary
I/O, and the cross-platform compatibility and easy visual
inspection that formatted text I/O is conventionally used
for.

You can inspect ERKALE checkpoint files with the
h5dump utility of HDF5. For instance, you can see what
entries the checkpoint file erkale.chk contains with

$ h5dump -n erkale.chk

Sometimes you might want to get a hold on the orbital
energies. These are saved in the E entry (restricted runs)
or the Ea and Eb entries (unrestricted runs), e.g.,

$ h5dump -d E erkale.chk

will give you the orbital energies in Hartree.
If you want just the orbital energies in eV, you can use,

e.g.,

$ h5dump -d E -m “% .10e” erkale.chk | \
awk ’{if(NR>5 && NF==2) {print $2*27.21138505}}’

Here, the -m “% .10e” option defines that the output from
h5dump is to be in scientific notation with 10 decimals –
the default precision of h5dump may not be enough for
all purposes.

3 Basis set format

The basis set files use GAUSSIAN ’94 format. As an exam-
ple, the cc-pVDZ basis for hydrogen is

H 0
S 3 1.00
13.0100000 0.0196850
1.9620000 0.1379770
0.4446000 0.4781480

S 1 1.00
0.1220000 1.0000000

P 1 1.00
0.7270000 1.0000000

The first row contains the element the basis is for (H) and
the atom number for the specific entry (0 for the default
basis). The second line indicates that an S shell is to fol-
low with 3 primitives and norm 1.00. The next lines then
contain the exponent and the contraction coefficient of
the normalized primitive, respectively. **** on the last
line marks that there are no more shells in the basis set.

N.B. The convention used in ERKALE for the angular
momenta symbols is: S (l = 0), P (l = 1), D (l = 2), F
(l = 3), G (l = 4), H (l = 5), I (l = 6), J (l = 7), K
(l = 8), L (l = 9), M (l = 10), N (l = 11). Basis sets

from the EMSL basis set exchange don’t have J shells,
but denote l=7 with K. To cope with this, you can also
define the angular momentum of the shell with, e.g.,

l=1 1 1.00
0.7270000 1.0000000

If you want to mix basis sets in a calculation, e.g., in order
to use a bigger basis set for the excited atom in a XAS/XRS
calculation, you can do this quite easily by preparing your
own basis set file, which contains a general basis (index
0) for all the atoms in the system, and a specific basis for
the atom(s) you want to treat differently. For instance the
basis set

H 0
S 3 1.00
13.0100000 0.0196850
1.9620000 0.1379770
0.4446000 0.4781480

H 1
S 3 1.00
13.0100000 0.0196850
1.9620000 0.1379770
0.4446000 0.4781480

S 1 1.00
0.1220000 1.0000000

P 1 1.00
0.7270000 1.0000000

would define a minimal basis set (1 s function) to be used
for hydrogen by default, except for atom number 1 for
which a 2s1p basis is used. ERKALE will refuse to calculate
if you screw up the index blatantly, e.g., in this case if
atom number 1 in the xyz file is not hydrogen but, say,
oxygen.

If you want to perform counterpoise calculations, then
you simply mark the ghost atoms with the -Bq suffix in the
geometry file.

4 Parallelization

The routines in ERKALE are parallelized using OpenMP
statements in the source code. This allows for efficient use
of multicore workstations and compute nodes. The num-
ber of threads used by ERKALE is controlled as usual with
the OMP_NUM_THREADS environment variable. By de-
fault, the OpenMP executables will use all the cores avail-
able.

It is recommended you compile ERKALE both as a se-
quential version and as a parallel version, as the OpenMP
version includes unnecessary overhead for calculations
running on a single core.

12

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

5 Examples

The geometry and the runfiles for the examples given here
are shipped with the ERKALE source code.

5.1 SCF calculation

As an example we compute the water dimer with the co-
ordinates given by the following xyz file at Hartree-Fock
level of theory and the aug-cc-pVTZ basis set.

6
Water dimer
O -1.464 0.099 0.300
H -1.956 0.624 -0.340
H -1.797 -0.799 0.206
O 1.369 0.146 -0.395
H 1.894 0.486 0.335
H 0.451 0.165 -0.083

This is a rather small system, so using the core guess with

Guess Core

in the runfile is usually beneficial. The default, using the
atomic guess [10], is better in larger systems. However,
for demonstration purposes we use a third initialization
method - that of a “minimal” basis - with even a com-
pletely different method!

System h2o-dimer.xyz
Method lda_x-lda_c_vwn
Basis cc-pVDZ
SaveChk lda.chk
Guess Core

and run it with erkale; on my desktop computer the calcu-
lation took a few seconds. Out of the calculation we get
the checkpoint file lda.chk.

Next, we use the minimal basis DFT calculation to seed
the full HF calculation, where we use the runfile

System h2o-dimer.xyz
Method HF
Basis aug-cc-pVTZ
LoadChk lda.chk
SaveChk hf.chk

and run it once again. For this example, HF converges
with 16 iterations starting from the core guess, in 15 iter-
ations starting from atomic densities, and in 13 iterations
starting from the cc-pVDZ LDA calculation.

5.1.1 Tough convergence cases

For cases that fail to converge using the default conver-
gence settings, you may want to try using the code devel-
oped for PZ-SIC calculations[13, 14] by using the settings

0

2

4

6

8

10

12

I
(a
rb
.
u
n
it
s)

13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0

E (eV)

Fig. 1: Photoabsorption spectrum.

PZ true
PZscale const
PZw 0.0
PZoo false
PZov true
PZimag false

The first line tells ERKALE to use the the PZ-SIC code,
whereas the second and third lines make sure that the
PZ-SIC correction is turned off. The fourth line turns off
occupied–occupied rotations, which are unnecessary for
HF and Kohn–Sham DFT, and the fifth line makes sure
that occupied–virtual rotations are enabled, the last line
making sure imaginary rotations are not enabled.

With these settings, the program will run using the
given settings for PZ-SIC. The orbitals saved to disk at
every iteration are canonicalized orbitals.

N.B. ROHF and XAS/XRS calculations aren’t currently
supported with the PZ-SIC code.

5.2 Casida

We compute the valence photoabsorption spectrum of the
water dimer with

LoadChk hf.chk
CasidaStates 1:70

where we have only included the first 70 states in the cal-
culation, giving 600 pairs of occupied and unoccupied or-
bitals, whereas the full calculation would have 1740 pairs.

The Casida calculation gives the dipole NRIXS intensity,
which can be converted into the photoabsorption spec-
trum by multiplying the dipole intensity with the energy.

Furthermore, the calculation gives just delta peaks, so
for plotting purposes we have broadened the peaks with a
Lorentzian with a FWHM of 0.05 eV. The result is shown
in Fig. 1.

5.3 EMD

We compute the isotropic Compton profile by running
erkale_emd with the runfile

13

0

2

4

6

8

10

12

14

16

18

20

n
(p
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p (a.u.)

Fig. 2: The electron momentum density.

0

1

2

3

4

5

6

7

8

J
(q
)
(e
le
ct
ro
n
s
/
a
.u
.)

0 1 2 3 4 5 6

q (a.u.)

Fig. 3: The Compton profile.

LoadChk hf.chk
DoEMD true

Out of the calculation we get the electron momentum
density and Compton profile shown in Figs. 2 and 3.

5.4 XAS/XRS

Next, we compute the x-ray Raman spectrum. First, we
need to define which atom is excited. This we do by cre-
ating a new xyz file

6
Water dimer
O -1.464 0.099 0.300
H -1.956 0.624 -0.340
H -1.797 -0.799 0.206
O-Xc 1.369 0.146 -0.395
H 1.894 0.486 0.335
H 0.451 0.165 -0.083

where we have defined the donor oxygen as the excited
atom.

As the input for the XAS/XRS calculation, we use the
following input (in reality, you may want to use a bigger
basis set):

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I
(a
rb
.
u
n
it
s)

532 534 536 538 540 542 544

E (eV)

Fig. 4: XAS spectrum of donor oxygen.

System h2o-dimer-xrs.xyz
Method lda_x-lda_c_vwn
Basis cc-pVDZ
LoadChk lda.chk
XRSAugment 4
XRSInitialState 1s

The XRSAugment keyword asks for a double-basis set cal-
culation to be performed. Once the TP calculation has
converged, you can play with the double basis set method
or the q values used for computing the spectra.

The resulting XAS spectrum2 is shown in Fig. 4.
To perform an absolute energy scale correction, do an-

other run with the XRSMethod XCH setting. You can use
the TP result to initialize the calculation by copying the
TP checkpoint to the SaveChk file of the XCH run.

Vertical photoionization energies can be obtained with
the XRSMethod FCH setting.

6 Interfacing with formatted check-
point files

6.1 Reading in results from other codes

ERKALE can read in results from formatted checkpoint files
produced by other codes. Once you have the formatted
checkpoint file (per-code instructions below),

1. Convert the formatted checkpoint file into ERKALE

format with

$ erkale_fchkpt runfile

where runfile contains the relevant LoadFchk
and SaveChk directives. Since the formatted check-
point files may be quite big, you may want to
compress them with gzip, bzip2 or xz to save disk
space; ERKALE can read compressed formatted

2As for Casida, dipole.dat contains the XRS spectrum, which you need
to multiply with the transition energy to get the XAS spectrum!

14

checkpoint files as well, the need for decompression
is determined by the filename extension.

2. Calculate the properties as you usually would using
the newly obtained ERKALE checkpoint file.

6.1.1 GAUSSIANTM

To compute, e.g., EMD properties from calculations per-
formed with GAUSSIANTM , do the following:

1. At the beginning of the GAUSSIANTM run input file,
specify the keyword

%Chk=chkpt

which will give you a binary checkpoint file,
chkpt.chk, as a result of the GAUSSIANTM run.

2. If you use a post-HF level of theory, you need to
specify in the route section that the density matrix
needs to be computed with Density=Current, e.g.,

#P CCSD/aug-cc-pVTZ Density=Current

3. Run the calculation with GAUSSIANTM.

4. Convert the binary file into formatted checkpoint
format (i.e. an ASCII file) with the GAUSSIANTM

formchk utility

$ formchk chkpt.chk chkpt.fchk

6.1.2 Q-CHEMTM

Specify “GUI 2” in the Q-CHEMTM runfile. N.B. Presently,
the usefulness of formatted checkpoint files produced by
Q-CHEMTM are limited to SCF (HF/DFT) level results.

6.1.3 PSI4TM

An example partial PSI4TM input file to save the results in
a formatted checkpoint file is as follows:
energy, wfn = energy(’scf’, return_wfn=True)
fchk_writer = psi4.core.FCHKWriter(wfn)
fchk_writer.write(’output.fchk’)

6.2 Saving results from ERKALE for use in
other codes

Many visualization programs, such as AVOGADRO or IQ-
MOL, support the use of formatted checkpoint files for vi-
sualization of e.g. electron densities and molecular or-
bitals. To achieve this, use the erkale_fchkpt tool as in
section 6.1, only now LoadChk the Erkale checkpoint and
SaveFchk a formatted checkpoint. Note that alternatively,
electron densities and molecular orbitals can also be visu-
alized in AVOGADRO or JMOL using cube files which were
described above in section 2.6.

Fig. 5: Electron density plot using Avogadro.

Fig. 6: Orbital plot using Avogadro.

As an example, we visualize the aug-cc-pVTZ -level
Hartree–Fock calculation of the water dimer presented
above in section 5.1 using AVOGADRO 1.0.3. Saving a for-
matted checkpoint and loading it in AVOGADRO, setting
the resolution to “High” and leaving the isosurface value
at 0.1 in AVOGADRO, we obtain the graphics shown in
Fig. 5. Correspondingly, plotting the HOMO using “High”
resolution and the default isosurface value of 0.02, we
obtain the plot shown in Fig. 6.

7 Questions?

If you want to know more about how ERKALE

works, or you are interested in contributing,
you can contact me via email at susi.lehtola (at)
alumni.helsinki.fi. As the code is on GitHub,
patches can be easily proposed using pull requests.

References

[1] E. F. Valeev, Libint — a high-performance library for
computing Gaussian integrals in quantum mechan-
ics. https://github.com/evaleev/libint/ 1.2

[2] M. A. L. Marques and others, Libxc – a
library of exchange-correlation functionals for

15

https://github.com/evaleev/libint/

density-functional theory. http://www.tddft.org/
programs/octopus/wiki/index.php/Libxc 1.2

[3] M. A. L. Marques, M. J. T. Oliveira, and T. Burnus,
Libxc: a library of exchange and correlation func-
tionals for density functional theory, Comput. Phys.
Commun. 183, 2272 (2012) . arXiv:1203.1739 1.2

[4] J. Lehtola, M. Hakala, A. Sakko and K. Hämäläi-
nen, ERKALE — A Flexible Program Package for X-
ray Properties of Atoms and Molecules, J. Comput.
Chem. 33, 1572 (2012). 1.3, 2.12

[5] F. Jensen, Unifying General and Segmented Con-
tracted Basis Sets. Segmented Polarization Consis-
tent Basis Sets, J. Chem. Theory Comput. 10, 1074
(2014). 2.1, 2.2

[6] N. H. F. Beebe and J. Lindberg, Simplifications in
the generation and transformation of two-electron
integrals in molecular calculations, Int. J. Quantum
Chem. 12, 683 (1977). 2.1

[7] H. Koch, A. Sánchez de Merás, and T. B. Pedersen,
Reduced scaling in electronic structure calculations
using Cholesky decompositions, J. Chem. Phys. 118,
9481 (2003). 2.1

[8] A. M. Köster, R. Flores-Moreno, and J. U. Rev-
eles, Efficient and reliable numerical integration
of exchange-correlation energies and potentials, J.
Chem. Phys. 121, 681 (2004). 2.1

[9] P. Norman and H. J. Aa. Jensen, Phosphores-
cence parameters for platinum (II) organometallic
chromophores: A study at the non-collinear four-
component Kohn–Sham level of theory, Chem. Phys.
Lett. 531 (2012), 229. 2.1

[10] J. H. Van Lenthe et al., Starting SCF calculations by
superposition of atomic densities, J. Comput. Chem.
27 (2006), 926. 2.1, 5.1

[11] S. Lehtola, Superposition of Atomic Potentials: a
simple yet efficient orbital guess for self-consistent
field calculations, arXiv:1810.11659. 2.1

[12] J. P. Perdew and A. Zunger, Self-interaction correc-
tion to density-functional approximations for many-
electron systems, Phys. Rev. B. 23, 5048 (1981). 2.1

[13] S. Lehtola and H. Jónsson, Variational, Self-
Consistent Implementation of the Perdew–Zunger
Self-Interaction Correction with Complex Optimal
Orbitals, J. Chem. Theory Comput. 10, 5324 (2014).
1.3, 2.1, 5.1.1

[14] S. Lehtola, M. Head-Gordon, and H. Jónsson,
Complex orbitals, multiple local minima and sym-
metry breaking in Perdew--Zunger self-interaction
corrected density-functional theory calculations, J.
Chem. Theory Comput. 12, 3195 (2016). 1.3, 2.1,
5.1.1

[15] O. A. Vydrov and T. Van Voorhis, Nonlocal van der
Waals density functional: The simpler the better, J.
Chem. Phys. 133, 244103 (2010). 2.1

[16] D. P. Chong, Completeness profiles of one-electron
basis sets, Can. J. Chem. 73, 79 (1995). 2.2

[17] P. Manninen and J. Vaara, Systematic Gaussian
basis-set limit using completeness-optimized primi-
tive sets. A case for magnetic properties, J. Comput.
Chem. 27, 434 (2006). 2.4, 2.4

[18] S. Lehtola, Automatic algorithms for completeness-
optimization of Gaussian basis sets, J. Comput.
Chem. 36, 335 (2015). 1.3, 2.4, 2.4, 2.5

[19] J. Lehtola, P. Manninen, M. Hakala and K. Hämäläi-
nen, Completeness-optimized basis sets. Application
to ground-state electron momentum densities, J.
Chem. Phys. 137, 104105 (2012). 2.4

[20] S. Lehtola, P. Manninen, M. Hakala and K. Hämäläi-
nen, Contraction of completeness-optimized basis
sets. Application to ground-state electron momen-
tum densities, J. Chem. Phys. 138, 044109 (2013).
2.4

[21] Avogadro: an open-source molecular builder
and visualization tool. http://avogadro.
openmolecules.net/ 2.6, 2.7

[22] Jmol: an open-source Java viewer for chemical
structures in 3D. http://www.jmol.org/ 2.6

[23] A. D. Becke and K. E. Edgecombe, A simple measure
of electron localization in atomic and molecular sys-
tems, J. Chem. Phys. 92, 5397 (1990). 2.6

[24] IQmol, a free open-source molecular editor and vi-
sualization package. http://iqmol.org 2.7

[25] J. Lehtola, M. Hakala, J. Vaara, and K. Hämäläinen,
Calculation of isotropic Compton profiles with Gaus-
sian basis sets, Phys. Chem. Chem. Phys. 13, 5630
(2011) . 1.3, 2.9

[26] J. Vandenbussche, G. Acke, and P. Bultinck, Perfor-
mance of DFT methods in momentum space: quan-
tum similarity measures versus moments of momen-
tum, J. Chem. Theory Comput. 9, 3908 (2013). 2.9

[27] S. Lehtola and H. Jónsson, Unitary optimization of
localized molecular orbitals, J. Chem. Theory Com-
put. 9, 5365 (2013). 1.3, 2.10

[28] C. Edmiston and K. Ruedenberg, Localized atomic
and molecular orbitals, Rev. Mod. Phys. 35, 457
(1963). 2.10

[29] J. M. Foster and S. F. Boys, Canonical Configura-
tion Interaction Procedure, Rev. Mod. Phys. 32, 300
(1960). 2.10

16

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc
http://www.tddft.org/programs/octopus/wiki/index.php/Libxc
http://avogadro.openmolecules.net/
http://avogadro.openmolecules.net/
http://www.jmol.org/
http://iqmol.org

[30] B. Jansík, S. Høst, K. Kristensen, and P. Jørgensen,
Local orbitals by minimizing powers of the orbital
variance, J. Chem. Phys. 134, 194104 (2011). 2.10

[31] I.-M. Høyvik, B. Jansík, and P. Jørgensen, Orbital
localization using fourth central moment minimiza-
tion, J. Chem. Phys. 137, 224114 (2012). 2.10

[32] J. Pipek and P. G. Mezey, A fast intrinsic localization
procedure applicable for ab initio and semiempirical
linear combination of atomic orbital wave functions,
J. Chem. Phys. 90, 4916 (1989). 2.10

[33] I.M. Høyvik, B. Jansik, and P. Jørgensen,
Pipek–Mezey Localization of Occupied and Vir-
tual Orbitals, J. Comput. Chem. 34, 1456 (2013).
2.10

[34] S. Lehtola and H. Jónsson, Pipek–Mezey orbital lo-
calization using various partial charge estimates, J.
Chem. Theory Comput. 10, 642 (2014). 1.3, 2.10,
2.11

[35] J. Cioslowski, Partitioning of the orbital overlap ma-
trix and the localization criteria, J. Math. Chem. 8,
169 (1991). 2.10

[36] F. L. Hirshfeld, Bonded-atom fragments for describ-
ing molecular charge densities, Theor. Chim. Acta
44, 129 (1977). 2.10, 2.11

[37] P. Bultinck, Ch. Van Alsenoy, P. W. Ayers, and R.
Carbó-Dorca, Critical analysis and extension of the
Hirshfeld atoms in molecules, J. Chem. Phys. 126,
144111 (2007). 2.10, 2.11

[38] P. Bultinck, P. W. Ayers, S. Fias, K. Tiels, and Ch.
Van Alsenoy, Uniqueness and basis set dependence
of iterative Hirshfeld charges, Chem. Phys. Lett. 444,
205 (2007). 2.10, 2.11

[39] G. Knizia, Intrinsic atomic orbitals: an unbiased
bridge between quantum theory and chemical con-
cepts, J. Chem. Theory Comput. 9, 4834 (2013).
2.10, 2.11

[40] T. C. Lillestolen and R. Wheatley, J. Chem. Commun.
(Cambridge, U. K.) 7345, 5909 (2008). 2.10, 2.11

[41] T. C. Lillestolen and R. J. Wheatley, J. Chem. Phys.
131, 144101 (2009). 2.10, 2.11

[42] T. C. Lillestolen and R. J. Wheatley, Atomic charge
densities generated using an iterative stockholder
procedure", J. Chem. Phys. 131, 144101 (2009).
2.10, 2.11

[43] J. I. Rodríguez et al., An efficient grid-based scheme
to compute QTAIM atomic properties without ex-
plicit calculation of zero-flux surfaces, J. Comput.
Chem. 30, 1082 (2009). 2.11

[44] M. Krack and A. M. Köster, An adaptive numerical
integrator for molecular integrals, J. Chem. Phys.
108, 3226 (2008). 2.11

[45] M. Iannuzzi and J. Hütter, Inner-shell spectroscopy
by the Gaussian and augmented plane wave
method, Phys. Chem. Chem. Phys. 9, 1599 (2007).
2.12

[46] A. Sakko, M. Hakala, J. A. Soininen, and K. Hämäläi-
nen, Density functional study of x-ray Raman scat-
tering from aromatic hydrocarbons and polyfluo-
rene, Phys. Rev. B 76, 1 (2007) .

2.12

Changes

2019-07-02 Update documentation on the completeness-
optimization tools.

2018-03-18 Better document visualization of orbitals.

2018-01-07 Documented change of convergence thresh-
olds (DeltaPmax, DeltaEmax, DeltaPrms →
ConvThr). Documented new SCF guesses.

2016-08-01 Dropped removed keywords Linesearch and
UseTRDSM from manual. TightIntegrals
should be StrictIntegrals. Document how to
use PZ-SIC code for hard to converge cases.

2016-07-14 Specify charge can be specified for atomic
guess in the xyz file. Specify geometries
can be loaded from ERKALE_SYSDIR. Ge-
ometry can also be specified as a Z Ma-
trix. Document VV10 non-local correlation.
Documented AtomGuess. Documented the
Cholesky decomposition. Documented the
new Perdew–Zunger self-interaction correc-
tion code. XC fitting has been removed.

2015-01-22 Can define angular quadrature by amount of
points in rule. Documented Perdew–Zunger
stability analysis.

2014-12-18 Documented more changes in the XRS calcu-
lation. Documented Perdew–Zunger calcula-
tions.

2014-05-16 XRS calculations can now be done with non-
1s initial states.

2014-05-03 Added orbital threshold calculations and P-
orthogonalization.

2014-02-14 Added iterative Hirshfeld charges and local-
ization.

2013-12-22 Added note about basis set angular momen-
tum.

17

2013-12-13 Added citation to unitary optimization algo-
rithm, and to Pipek–Mezey methods. Added
mention of similarity integrals, and electro-
static potential cubes.

2013-11-06 Added intrinsic atomic orbital charges.

2013-11-05 Added Voronoi charges.

2013-10-30 Added genbas option of erkale_bastool.

2013-09-30 Added entry on erkale_pop. Updated entries
on erkale and erkale_loc.

2013-07-24 Updated entries on erkale_cube and
erkale_fchkpt.

2013-06-05 Added the DFTGrid keyword for the use of
a manually defined integration grid (mainly
for more exact comparison to literacy val-
ues).

2013-05-18 Added the geometry optimizer erkale_geom.

2013-01-19 Can now initialize erkale_xrs runs by copy-
ing a previously computed checkpoint to the
SaveChk file before running. Added section
explaining checkpoint files.

2013-01-07 Added exchange-correlation fitting.

2012-09-04 TRDSM and line search minimization are
now implemented.

2012-08-28 Changes to erkale_xrs. The FullHole keyword
is now obsolete, having been replaced by the
XRSMethod keyword.

2012-08-23 Added mention about erkale_cube,
erkale_adf_emd and customizable toler-
ance for the radial integrals in erkale_emd.
RI-HF is now supported.

2012-07-30 Added basis set composition and tight inte-
grals, updated orthogonalization method.

2012-06-21 Fixed syntax for CasidaStates.

2012-03-02 The DFTDirect setting is now deprecated, as
starting from revision 428 all DFT calcula-
tions are done on-the-fly.

2012-02-23 Added UseTRRH setting for trust-region
Roothaan-Hall updates.

2012-01-13 Choosing the density-fitting basis is now pos-
sible.

2012-01-06 Updated completeness-optimization section.

18

	1 Introduction
	1.1 What is Erkale?
	1.2 Why another code?
	1.3 Citation

	2 Usage
	2.1 erkale
	2.2 erkale_bastool
	2.3 erkale_casida
	2.4 erkale_copt
	2.5 erkale_copt_plateau
	2.6 erkale_cube
	2.7 erkale_fchkpt
	2.8 erkale_geom
	2.9 erkale_emd
	2.9.1 erkale_adf_emd

	2.10 erkale_loc
	2.11 erkale_pop
	2.12 erkale_xrs
	2.13 Checkpoint files

	3 Basis set format
	4 Parallelization
	5 Examples
	5.1 SCF calculation
	5.1.1 Tough convergence cases

	5.2 Casida
	5.3 EMD
	5.4 XAS/XRS

	6 Interfacing with formatted checkpoint files
	6.1 Reading in results from other codes
	6.1.1 Gaussian™
	6.1.2 Q-Chem™
	6.1.3 Psi4™

	6.2 Saving results from ERKALE for use in other codes

	7 Questions?

