
DRAFT
Universal Numbers Library: Multi-format Variable1

Precision Arithmetic Library2

E. Theodore L. Omtzigt 1* and James Quinlan 2*¶
3

1 Stillwater Supercomputing, Inc, USA 2 School of Mathematical and Physical Sciences, University of4

New England, USA ¶ Corresponding author * These authors contributed equally.5

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary6

Universal Numbers Library, or Universal for short, is a self-contained C++ header-only template7

library that contains implementations of many number representations and standard arithmetic8

on arbitrary configuration integer and real numbers (Omtzigt et al., 2020). In particular,9

the library includes integers, decimals, fixed-points, rationals, linear floats, tapered floats,10

logarithmic, SORNs, interval, level-index, and adaptive-precision binary and decimal integers11

and floats, each offering a verification suite.12

The primary pattern using a posit number type as example, is:13

#include <universal/number/posit/posit.hpp>

template<typename Real>

Real MyKernel(const Real& a, const Real& b) {

return a * b; // replace this with your kernel computation

}

constexpr double pi = 3.14159265358979323846;

int main() {

using Real = sw::universal::posit<32,2>;

Real a = sqrt(2);

Real b = pi;

std::cout « ”Result: ” « MyKernel(a, b) « std::endl;

}

Universal delivers software and hardware co-design capabilities to develop low and mixed-14

precision algorithms for reducing energy consumption in signal processing, Industry 4.0, machine15

learning, robotics, and high-performance computing applications (Omtzigt & Quinlan, 2022).16

The package includes command-line tools for visualizing and interrogating numeric encodings,17

an interface for setting and querying bits, and educational examples showcasing performance18

gain and numerical accuracy with the different number systems. In addition, a Docker container19

is available to experiment without cloning and building from the source code.20

$ docker pull stillwater/universal21

$ docker run -it --rm stillwater/universal bash22

Universal started in 2017 as a bit-level arithmetic reference implementation of the evolving23

unum Type III (posit and valid) standard. However, the demands for supporting various number24

systems, such as adaptive-precision integers to solve large factorials, adaptive-precision floats25

to act as Oracles, or comparing linear and tapered floats provided the opportunity to create a26

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0003-0194-951X
https://orcid.org/0000-0002-2628-1651
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
complete platform for numerical analysis and computational mathematics. As a result, several27

projects have leveraged Universal, including Matrix Template Library (MTL4), Geometry +28

Simulation Modules (G+SMO), Bembel, a fast IGA BEM solver, and the Odeint ODE solver.29

The default build configuration will produce the command line tools, a playground, and30

educational and application examples. It is also possible to construct the full regression suite31

across all the number systems. For instance, the shortened output for the commands single32

and single 1.23456789 are below.33

$ single

min exponent -125

max exponent 128

radix 2

radix digits 24

min 1.17549e-38

max 3.40282e+38

lowest -3.40282e+38

epsilon (1+1ULP-1) 1.19209e-07

round_error 0.5

denorm_min 1.4013e-45

infinity inf

quiet_NAN nan

signaling_NAN nan

...

$ single 1.23456789

scientific : 1.2345679

triple form : (+,0,0b00111100000011001010010)

binary form : 0b0.0111'1111.001'1110'0000'0110'0101'0010

color coded : 0b0.0111'1111.001'1110'0000'0110'0101'0010

Statement of need34

High-performance computing (HPC), machine learning, and deep learning tasks (e.g.,35

Carmichael et al., 2019; Cococcioni et al., 2022; Desrentes et al., 2022) have increased36

environmental impacts and financial costs due to massive energy consumption (Haidar,37

Abdelfattah, et al., 2018). These both result from growth requirements in processing and38

storage. In addition to redesigning algorithms to minimize data movement and processing,39

modern systems increasingly support multi-precision arithmetic in hardware (Haidar, Tomov,40

et al., 2018). Recently, NVIDIA added support for low-precision formats to its top-level GPUs41

to perform tensor operations (Choquette et al., 2021), including a 19-bit format having an42

exponent of 8 bits and a mantissa of 10 bits (see also [Intel Corporation (2018); kharya:2020].43

In addition, the “Brain Floating Point Format,” commonly referred to as “bfloat16,” is a44

format developed by Google that enables the training and operation of deep neural networks45

using specialized processors called Tensor Processing Units, or TPUs, at higher performance46

and cheaper cost (Wang & Kanwar, 2019). As a result, we see a trend to redesign many47

standard algorithms. In particular, designing fast and energy-efficient linear solvers is an active48

area of research where low-precision numerics plays a fundamental role (Carson & Higham,49

2018; Haidar et al., 2017; Haidar, Tomov, et al., 2018; Haidar, Abdelfattah, et al., 2018;50

Higham et al., 2019).51

While the primary motivation for low-precision arithmetic is its high performance and energy52

efficiency, mixed-precision algorithm designs aim to identify and exploit opportunities to right-53

scale the number of systems used for critical computational paths representing the execution54

bottleneck. Furthermore, when these algorithms are incorporated into embedded devices and55

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
custom hardware engines, we approach optimal performance and power efficiency. Therefore,56

investigations into computational mathematics and measuring mixed-precision algorithms’57

accuracy, efficiency, robustness, and stability are needed.58

Custom number systems that optimize the entire system’s performance per watt (W) are59

crucial components with the rise of embedded devices demanding intelligent behavior. Likewise,60

energy efficiency is an essential differentiator for embedded intelligence applications. Using61

the distinct arithmetic requirements of the control and data flow can result in considerable62

performance and power efficiency gains when creating unique compute solutions. Even within63

the data flow, we observe many requirements for precision and the required dynamic range of64

the arithmetic operations.65

Verification Suite66

Each number system contained within Universal is supported by a comprehensive verification67

environment testing library class API consistency, logic and arithmetic operators, the standard68

math library, arithmetic exceptions, and language features such as compile-time constexpr.69

The verification suite is run as part of the make test command in the build directory.70

Due to the size of the library, the build system for Universal allows for fine-grain control to71

subset the test environment for productive development and verification. There are twelve72

core build category flags defined:73

• BUILD_APPLICATIONS74

• BUILD_BENCHMARKS75

• BUILD_CI76

• BUILD_CMD_LINE_TOOLS77

• BUILD_C_API78

• BUILD_DEMONSTRATION79

• BUILD_EDUCATION80

• BUILD_LINEAR_ALGEBRA81

• BUILD_MIXEDPRECISION_SDK82

• BUILD_NUMBERS83

• BUILD_NUMERICS84

• BUILD_PLAYGROUND85

The flags, when set during cmake configuration, i.e. cmake -DBUILD_CI=ON .., enable build86

targets specialized to the category. For example, the BUILD_CI flag turns on the continuous87

integration regression test suites for all number systems, and the BUILD_APPLICATIONS flag will88

build all the example applications that provide demonstrations of mixed-precision, high-accuracy,89

reproducible and/or interval arithmetic.90

Each build category contains individual targets that further refine the build targets. For91

example, cmake -DBUILD_NUMBER_POSIT=ON -DBUILD_DEMONSTRATION=OFF .. will build just92

the fixed-size, arbitrary configuration posit number system regression environment.93

It is also possible to run specific test suite components, for example, to validate algorithmic94

changes to more complex arithmetic functions, such as square root, exponent, logarithm, and95

trigonometric functions. Here is an example, assuming that the logarithmic number system96

has been configured during the cmake build generation:97

$ make lns_trigonometry98

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
The repository’s README file has all the details about the build and regression environment99

and how to streamline its operation.100

Availability and Documentation101

Universal Number Library is available under the MIT License. The package may be cloned or102

forked from the GitHub repository. Documentation is provided via Docs, including a tutorial103

introducing primary functionality and detailed reference and communication networks. The104

library employs extensive unit testing.105

Acknowledgements106

We want to acknowledge all code contributions, bug reports, and feedback from numerous107

other developers and users.108

References109

Carmichael, Z., Langroudi, H. F., Khazanov, C., Lillie, J., Gustafson, J. L., & Kudithipudi,110

D. (2019). Deep positron: A deep neural network using the posit number system. 2019111

Design, Automation & Test in Europe Conference & Exhibition (DATE), 1421–1426.112

Carson, E., & Higham, N. J. (2018). Accelerating the solution of linear systems by iterative113

refinement in three precisions. SIAM Journal on Scientific Computing, 40(2), A817–A847.114

Choquette, J., Gandhi, W., Giroux, O., Stam, N., & Krashinsky, R. (2021). NVIDIA A100115

tensor core GPU: Performance and innovation. IEEE Micro, 41(2), 29–35.116

Cococcioni, M., Rossi, F., Emanuele, R., & Saponara, S. (2022). Small reals representations117

for deep learning at the edge: A comparison. Proc. Of the 2022 Conference on Next118

Generation Arithmetic (CoNGA’22).119

Desrentes, O., Resmerita, D., & Dinechin, B. D. de. (2022). A Posit8 decompression operator120

for deep neural network inference. Next Generation Arithmetic: Third International121

Conference, CoNGA 2022, Singapore, March 1–3, 2022, Revised Selected Papers, 13253,122

14.123

Haidar, A., Abdelfattah, A., Zounon, M., Wu, P., Pranesh, S., Tomov, S., & Dongarra,124

J. (2018). The design of fast and energy-efficient linear solvers: On the potential of125

half-precision arithmetic and iterative refinement techniques. International Conference on126

Computational Science, 586–600.127

Haidar, A., Tomov, S., Dongarra, J., & Higham, N. J. (2018). Harnessing GPU tensor128

cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers.129

SC18: International Conference for High Performance Computing, Networking, Storage130

and Analysis, 603–613.131

Haidar, A., Wu, P., Tomov, S., & Dongarra, J. (2017). Investigating half precision arithmetic132

to accelerate dense linear system solvers. Proceedings of the 8th Workshop on Latest133

Advances in Scalable Algorithms for Large-Scale Systems, 1–8.134

Higham, N. J., Pranesh, S., & Zounon, M. (2019). Squeezing a matrix into half precision, with135

an application to solving linear systems. SIAM Journal on Scientific Computing, 41(4),136

A2536–A2551.137

Intel Corporation. (2018). BFLOAT16 - Hardware Numerics Definition. https://www.intel.138

com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.139

pdf140

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

4

https://choosealicense.com/licenses/mit/
https://github.com/stillwater-sc/universal.git
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://doi.org/10.xxxxxx/draft


DRAFT
Omtzigt, E. T. L., Gottschling, P., Seligman, M., & Zorn, W. (2020). Universal Numbers141

Library: Design and implementation of a high-performance reproducible number systems142

library. arXiv:2012.11011.143

Omtzigt, E. T. L., & Quinlan, J. (2022). Universal: Reliable, reproducible, and energy-efficient144

numerics. Conference on Next Generation Arithmetic, 100–116.145

Wang, S., & Kanwar, P. (2019). BFloat16: The secret to high performance on cloud TPUs.146

Google Cloud Blog, 4.147

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Verification Suite

	Availability and Documentation
	Acknowledgements
	References

