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Summary6

Universal Numbers Library, or Universal for short, is a self-contained C++ header-only template7

library that contains implementations of many number representations and standard arithmetic8

on arbitrary configuration integer and real numbers (Omtzigt et al., 2020). In particular,9

the library includes integers, decimals, fixed-points, rationals, linear floats, tapered floats,10

logarithmic, SORNs, interval, level-index, and adaptive-precision binary and decimal integers11

and floats, each offering a verification suite.12

The primary pattern using a posit number type as example, is:13

#include <universal/number/posit/posit.hpp>

template<typename Real>

Real MyKernel(const Real& a, const Real& b) {

return a * b; // replace this with your kernel computation

}

constexpr double pi = 3.14159265358979323846;

int main() {

using Real = sw::universal::posit<32,2>;

Real a = sqrt(2);

Real b = pi;

std::cout « ”Result: ” « MyKernel(a, b) « std::endl;

}

Universal delivers software and hardware co-design capabilities to develop low and mixed-14

precision algorithms for reducing energy consumption in signal processing, Industry 4.0, machine15

learning, robotics, and high-performance computing applications (Omtzigt & Quinlan, 2022).16

The package includes command-line tools for visualizing and interrogating numeric encodings,17

an interface for setting and querying bits, and educational examples showcasing performance18

gain and numerical accuracy with the different number systems. In addition, a Docker container19

is available to experiment without cloning and building from the source code.20

$ docker pull stillwater/universal21

$ docker run -it --rm stillwater/universal bash22

Universal started in 2017 as a bit-level arithmetic reference implementation of the evolving23

unum Type III (posit and valid) standard. However, the demands for supporting various number24

systems, such as adaptive-precision integers to solve large factorials, adaptive-precision floats25

to act as Oracles, or comparing linear and tapered floats provided the opportunity to create a26
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complete platform for numerical analysis and computational mathematics. As a result, several27

projects have leveraged Universal, including Matrix Template Library (MTL4), Geometry +28

Simulation Modules (G+SMO), Bembel, a fast IGA BEM solver, and the Odeint ODE solver.29

The default build configuration will produce the command line tools, a playground, and30

educational and application examples. It is also possible to construct the full regression suite31

across all the number systems. For instance, the shortened output for the commands single32

and single 1.23456789 are below.33

$ single

min exponent -125

max exponent 128

radix 2

radix digits 24

min 1.17549e-38

max 3.40282e+38

lowest -3.40282e+38

epsilon (1+1ULP-1) 1.19209e-07

round_error 0.5

denorm_min 1.4013e-45

infinity inf

quiet_NAN nan

signaling_NAN nan

...

$ single 1.23456789

scientific : 1.2345679

triple form : (+,0,0b00111100000011001010010)

binary form : 0b0.0111'1111.001'1110'0000'0110'0101'0010

color coded : 0b0.0111'1111.001'1110'0000'0110'0101'0010

Statement of need34

High-performance computing (HPC), machine learning, and deep learning tasks (e.g.,35

Carmichael et al., 2019; Cococcioni et al., 2022; Desrentes et al., 2022) have increased36

environmental impacts and financial costs due to massive energy consumption (Haidar,37

Abdelfattah, et al., 2018). These both result from growth requirements in processing and38

storage. In addition to redesigning algorithms to minimize data movement and processing,39

modern systems increasingly support multi-precision arithmetic in hardware (Haidar, Tomov,40

et al., 2018). Recently, NVIDIA added support for low-precision formats to its top-level GPUs41

to perform tensor operations (Choquette et al., 2021), including a 19-bit format having an42

exponent of 8 bits and a mantissa of 10 bits (see also [Intel Corporation (2018); kharya:2020].43

In addition, the “Brain Floating Point Format,” commonly referred to as “bfloat16,” is a44

format developed by Google that enables the training and operation of deep neural networks45

using specialized processors called Tensor Processing Units, or TPUs, at higher performance46

and cheaper cost (Wang & Kanwar, 2019). As a result, we see a trend to redesign many47

standard algorithms. In particular, designing fast and energy-efficient linear solvers is an active48

area of research where low-precision numerics plays a fundamental role (Carson & Higham,49

2018; Haidar et al., 2017; Haidar, Tomov, et al., 2018; Haidar, Abdelfattah, et al., 2018;50

Higham et al., 2019).51

While the primary motivation for low-precision arithmetic is its high performance and energy52

efficiency, mixed-precision algorithm designs aim to identify and exploit opportunities to right-53

scale the number of systems used for critical computational paths representing the execution54

bottleneck. Furthermore, when these algorithms are incorporated into embedded devices and55
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custom hardware engines, we approach optimal performance and power efficiency. Therefore,56

investigations into computational mathematics and measuring mixed-precision algorithms’57

accuracy, efficiency, robustness, and stability are needed.58

Custom number systems that optimize the entire system’s performance per watt (W) are59

crucial components with the rise of embedded devices demanding intelligent behavior. Likewise,60

energy efficiency is an essential differentiator for embedded intelligence applications. Using61

the distinct arithmetic requirements of the control and data flow can result in considerable62

performance and power efficiency gains when creating unique compute solutions. Even within63

the data flow, we observe many requirements for precision and the required dynamic range of64

the arithmetic operations.65

Verification Suite66

Each number system contained within Universal is supported by a comprehensive verification67

environment testing library class API consistency, logic and arithmetic operators, the standard68

math library, arithmetic exceptions, and language features such as compile-time constexpr.69

The verification suite is run as part of the make test command in the build directory.70

Due to the size of the library, the build system for Universal allows for fine-grain control to71

subset the test environment for productive development and verification. There are twelve72

core build category flags defined:73

• BUILD_APPLICATIONS74

• BUILD_BENCHMARKS75

• BUILD_CI76

• BUILD_CMD_LINE_TOOLS77

• BUILD_C_API78

• BUILD_DEMONSTRATION79

• BUILD_EDUCATION80

• BUILD_LINEAR_ALGEBRA81

• BUILD_MIXEDPRECISION_SDK82

• BUILD_NUMBERS83

• BUILD_NUMERICS84

• BUILD_PLAYGROUND85

The flags, when set during cmake configuration, i.e. cmake -DBUILD_CI=ON .., enable build86

targets specialized to the category. For example, the BUILD_CI flag turns on the continuous87

integration regression test suites for all number systems, and the BUILD_APPLICATIONS flag will88

build all the example applications that provide demonstrations of mixed-precision, high-accuracy,89

reproducible and/or interval arithmetic.90

Each build category contains individual targets that further refine the build targets. For91

example, cmake -DBUILD_NUMBER_POSIT=ON -DBUILD_DEMONSTRATION=OFF .. will build just92

the fixed-size, arbitrary configuration posit number system regression environment.93

It is also possible to run specific test suite components, for example, to validate algorithmic94

changes to more complex arithmetic functions, such as square root, exponent, logarithm, and95

trigonometric functions. Here is an example, assuming that the logarithmic number system96

has been configured during the cmake build generation:97

$ make lns_trigonometry98
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The repository’s README file has all the details about the build and regression environment99

and how to streamline its operation.100

Availability and Documentation101

Universal Number Library is available under the MIT License. The package may be cloned or102

forked from the GitHub repository. Documentation is provided via Docs, including a tutorial103

introducing primary functionality and detailed reference and communication networks. The104

library employs extensive unit testing.105
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