
National PDES Testbed
Report Series

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

Architecture for
the Validation
Testing System
Software
Katherine C. Morris

NISTIR 4742

December 1991

U.S. DEPARTMENT OF

COMMERCE

Technology Administration

National Institute of

Standards and Technology

John W. Lyons, Director

December 1991

National PDES Testbed

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

U
N

ITED STATES OF AMER
IC

A

D
E

P
A

R
TM

ENT OF COMM
E

R
C

E

Architecture for
the Validation
Testing System
Software
 Katherine C. Morris

NISTIR 4742

iii

Architecture for the
Validation Testing
System Software

Katherine C. Morris

Abstract

This document is part of the National PDES Testbed Report Series and is intended to
complement the other reports of the Validation Testing System (VTS) project. Other
documents describe the methodology for model validation and software requirements
for automating that methodology.

The problem of sharing data has many facets. The need for the capability to share data
across multiple enterprises, different hardware platforms, different data storage para-
digms and systems, and a variety of network architectures is growing. The emerging
Standard for The Exchange of Product Model Data (STEP), being developed in the
International Organization for Standardization (ISO), addresses this need by providing
information models, called application protocols, which clearly and unambiguously
describe data. The validity of these information models is essential for success in
sharing data in a highly automated business environment.

This document describes an architecture for an integrated software environment to
support the validation of STEP application protocols. The architecture provides a basis
for software development to support the Validation Testing System within the National
PDES Testbed. (PDES, Product Data Exchange using STEP, is the U.S. effort in support
of the international standard.) The software architecture and the use of object-oriented
techniques enables code reusability and system extensibility. The software developed
for the VTS can provide the foundations for STEP related systems or software projects
requiring general purpose editing tools for structured information.

Architecture for the Validation Testing System Software

iv

v

Table of Contents

Abstract ... iii

Table of Contents ...v

List of Figures ..v

List of Tables ..v

1 Introduction ... 1

2 Background .. 2

2.1 The Need for Validation Testing Software 2

2.2 Validation Testing Software at the National PDES Testbed 3

3 The VTS Software Design Strategy ... 7

3.1 Establishing the Testing Environment 8

3.2 VTS Software Layering .. 10

3.3 Relationships between the VTS Software Components 15

3.4 Summary ... 17

4 Conclusion .. 17

5 References ... 19

APPENDIX A VTS Document Series .. 21

List of Figures

FIGURE 1 Interim Software at the National PDES Testbed ... 5

FIGURE 2 The Validation Testing System Software Environment 6

FIGURE 3 VTS Software Generation .. 9

FIGURE 4 Dependencies between VTS Software Components 15

List of Tables

TABLE 1 VTS Software Layering ...11

Architecture for the Validation Testing System Software

vi

Introduction

1

1 Introduction

The emerging Standard for the Exchange of Product Model Data, a project of the Inter-
national Organization for Standardization and commonly referred to as STEP1,
addresses the need to share data in a complex computer environment. STEP will provide
a basis for a common understanding of and communication of data, thus allowing it to
be shared. STEP will include definitions of information models and mechanisms for
representing the models and related data. The information models communicate the
structure and the semantics of the data necessary to inter-operate between different
computer systems. The validity of these information models is essential for success in
sharing data in a highly automated business environment -- the models must be shown
to be both useful and usable for their intended purposes. Demonstration that the infor-
mation models support the needs of applications is the most direct method of validating
these models.

The information models within STEP are integrated and organized into application
protocols. An application protocol contains the information model, in a computer read-
able format, for a specific application area. This document describes an architecture for
software to support validation of information models such as those contained in applica-
tion protocols [Palmer91] or other application models2, which may be proposed stan-
dards within STEP.

The architecture will be used as the basis for software implementation for the Validation
Testing System (VTS) [Morris91b] at the National PDES Testbed3. Section 2 of the
document contains a background discussion of validation software, both present and
future, at the National PDES Testbed. Subsequent sections describe and discuss the
design of the VTS software architecture. Further details of the methodology used for
validation [Mitch91] and requirements for automating that process [Morris91a] are
described in other documents in the VTS documentation series (Appendix A).

The audience for this document includes software designers, developers, and project
managers. The document provides an overview of the software architecture for the
VTS. Developers of tools relating to STEP and, in particular, to the validation of appli-
cation protocols will be interested in the architecture and the approach taken to software
development. This architecture is also relevant to similar software projects which
involve the presentation and manipulation of structured data. An object-oriented
approach is used for the architecture, design, and implementation of the VTS software.

1. The Standard for the Exchange of Product Model Data (STEP) is a project of the International
Organization for Standardization (ISO) Technical Committee on Industrial Automation Systems
(TC184) Subcommittee on Industrial Data and Global Manufacturing Programming Languages
(SC4). For an overview of the standard refer to Part 1: Overview and Fundamental Principles
[ISO1].

2. The term application model will be used throughout this paper to refer to the domain specific
information model which is being evaluated -- whether that be an application protocol, an applica-
tion resource model, a context driven integrated model (CDIM), or some other form of an applica-
tion schema.

3. The National PDES Testbed is located at the National Institute of Standards and Technology.
Funding for the project has been provided by the Department of Defense’s Computer-Aided
Acquisition and Logistic Support (CALS) Office. The work described is funded by the United
States Government and is not subject to copyright.

Architecture for the Validation Testing System Software

2

2 Background

This section gives a brief background of the needs for validation testing software for the
reader unfamiliar with the validation process for application models. For further infor-
mation on these topics the reader is referred to other documents in the VTS series (see
Appendix A.) An overview of the need for validation software is presented here. A
discussion follows of the software, which is currently being used at the National PDES
Testbed for validation of application protocols, and of directions for future software
implementation.

2.1 The Need for Validation Testing Software

People have many means of communicating ideas and information. When someone
writes a paper to convey a point, readers of the paper can judge the position presented
and determine whether or not it is valid. The validity of the point raised in the paper is
not judged by the tools which were used to prepare the paper. The writer could use
pencil and paper or a sophisticated word processing system to prepare the manuscript --
the tools used would not matter to the reader in judging the validity of the point raised.
The validity of the paper is judged on the evidence provided which supports that point
that the paper raises.

On the other hand, a means of sharing information between computer systems must be
very rigidly defined, hence a standard emerges. Such a standard can be specified as an
information model which captures the meaning of the information in the context of a
particular usage, or application area. The validity of such a standard is based on the
usefulness of the content and the computability of the presentation format. In this case
the tools, used to prepare the standard and to produce the evidence that it is capable of
supporting its intended usage, are of the utmost importance. If the proposed standard is
not demonstrated to support the computerized sharing of data, it will never be used.
Furthermore, due to the complexity of the standard, tools are necessary to assist people
in analyzing the completeness and accuracy of the specification.

Two aspects are important for validating such a standard:

■ the meaning of the standard must be clear and complete, and

■ the standard must be in a format which allows for the computerized sharing of data.

These two aspects combine to effectively communicate and successfully implement the
ideas presented in the standard. Judging the first aspect -- the content of the standard --
is much like the judgement the reader of a paper makes as to its quality. However, the
second aspect -- the computability of the standard -- is only tested by representing the
information in a computer and demonstrating that the representation is capable of
meeting the data access needs for the applications involved in the sharing. The imple-
mentation of the standard information model also helps the person who must judge the
content to analyze the clarity, accuracy, and completeness of the model. This assistance
is necessary for a person to be able to reliably evaluate complex information models.

Background

3

The software used to validate application models at the National PDES Testbed serves
two purposes:

■ to assist users in tracking and manipulating the vast amount of complex information
involved in validating the content of the application models, and

■ to demonstrate that the models can meet the needs of the computer applications
which they are intended to support.

Application protocols are validated by simulating the data access needs for the partic-
ular application area [Mitch91] which they are intended to support. This strategy
addresses both aspects necessary for validating an application model. It provides a
means for people to judge the content of a model, and at the same time it demonstrates
the usability of the model on a computer.

Assistance in managing the information in the model and the additional information
involved in validating the model is necessary due to the complexity of this information.
The application of software tools to assist in these tasks increases the productivity of the
people validating the models by an order of magnitude, if not more, depending on the
quality of the tools. The project schedule for the validation of an application model was
severely impacted by the lack of reliable and efficient tools [PDES90].

Furthermore, the content of an application model can be more reliably judged with the
aid of software. Initial rounds of validation testing uncovered significant flaws in infor-
mation models which had been proposed for standardization. One specific example of
such flaws was found in the Geometry model in STEP. The model did not require
objects to be founded in geometric space, which caused ambiguity in the meaning of
data exchanged according to that model. By simulating the application needs testers
were able analyze the model and uncover this flaw -- which had gone undetected, in the
review process which relied on visual inspection, for over two years.

2.2 Validation Testing Software at the National PDES Testbed

The software to support validation simulates the data access requirements of an applica-
tion area4. As stated earlier, this strategy addresses both aspects necessary for validating
an application model -- it supports validation of the content of a model, and it demon-
strates the computability of the model. The simulation reflects the intended usage of the
application model and is essential for validating the model. The method allows people
to fully analyze the content of a model against requirements for an application area.
Furthermore, the testing process is not complete if the tests are not computer process-
able and repeatable.

4. Other software requirements for validation [Morris91a] include support for clerical aspects of
the process, such as preparation of documentation. These aspects are not addressed in the archi-
tecture. These requirements can be supported using commercially available software, such as
word processing systems.

Architecture for the Validation Testing System Software

4

In addition, the software will assist in managing the complexity of the information
involved in the testing process. The information involved includes

■ product data associated with an application model,

■ relationships within the data,

■ the application model as defined in Express [ISO11], and

■ the English description of the application model.

The VTS software will provide functions to assist in preparation of product data to be
used in testing an application model. The software will support the editing, browsing,
and formatting of product data, and the browsing of the application model, in addition to
support for the actual tests.

The National PDES Testbed has been used for STEP validation testing since 1989. The
current software to support the testing process, the interim system, consists of a set of
tools which are not integrated. The interim system, as illustrated in Figure 1, is
described in the Validation Testing Laboratory User’s Guide [Breese91]. The tools in
this system were collected from a variety of sources, and, as a result, they operate on a
variety of hardware platforms and in a variety of software environments. The current
method of sharing data throughout the testing process is by exchanging data files
between the different tools.

The future VTS software will provide an integrated set of tools for automating the vali-
dation testing process. The integration of the tools will provide a more efficient environ-
ment. The VTS software will improve on the existing system in the following areas:

■ the number of errors will be reduced by reducing the frequency of data translation
and human intervention;

■ the amount of time needed for the testing process will be reduced by improved per-
formance and automation of the workflow;

■ the time needed for learning to use the software will be reduced by providing a sin-
gle user interface to the system;

■ the inconsistencies in the data will be reduced by providing more sophisticated sup-
port for data editing and creation; and

■ the potential for errors will be reduced through better and more extensive error
checking.

The interim system requires data translation, which can introduce errors or inconsisten-
cies, every time data is moved between activities in the testing process. Moreover, the
translation process and the associated manual steps, such as importing and exporting the
data, are time consuming. With respect to data editing, the interim system does not track
which portions of the data are complete and which need further development. Manual
support for this function is extremely difficult, given the amount of data, and leads to
inconsistencies in the data. In addition, the manual configuration of the different
versions of all the intermediate data files is error prone. The future environment, illus-
trated in Figure 2, will allow the users to operate in the same environment and through
a common interface, rather than with each tool separately, throughout most of the
testing process.

Background

5

FIGURE 1 Interim Software at the National PDES Testbed
Te

st
 C

as
e

P
ro

d
u

ct
In

st
an

ce
G

en
er

at
io

n

M
o

d
el

D
ev

el
o

p
m

en
t

IG
E

S
fil

e

D
es

ig
ne

r

Te
st

O
pe

ra
to

r

IB
M

 C
A

T
IA

C
V

IG
E

S
 to

 S
T

E
P

Tr
an

sl
at

or
ito

p

C
A

D
D

S
4

to

S
T

E
P

E
xt

ra
ct

S
T

E
P

F
ile

S
T

E
P

 F
ile

 P
ar

se
r

st
ep

pa
rs

e_
st

ep

R
ep

or
t G

en
er

at
or

S
Q

L
In

se
rt

s
S

m
al

lta
lk

In
pu

t F
ile

S
Q

L
Lo

ad
st

ep
w

f_
sq

l

S
Q

L
U

nl
oa

d
po

D
at

a
E

di
to

r
st

ep
pa

rs
e_

qd
es

qd
es

S
T

E
P

F

ile
U

til
iti

es
fix

in

ge
ts

te
p

ot
on pe

f

re
nu

m
be

r

rm
vn

on
pr

Te
st

in
g

D
B

V
is

ua
liz

er

S
em

an
tic

W
or

ki
ng

 S
ch

em
a

S
ch

em
a

G
en

er
at

or
s

S
T

E
P

S
pe

ci
fic

at
io

n

E
xp

re
ss

 P
ar

se
r

fe
de

x S
Q

L
fe

de
x_

sq
l

S
m

al
lta

lk
fe

de
x_

qd
es

fe
de

x_
fla

tte
n

Architecture for the Validation Testing System Software

6

The future environment will use a database system, rather than exchange files, as the
primary means of data sharing5. Currently data is assembled from the various tools and
is manually integrated using exchange files to create a single data set. This manual
process forces the testing process to revolve around the availability of data and tools to
provide the data, rather than the needs for testing particular aspects of the application
model. The use of a database system which can be shared by the different tools will
make the process smoother, thereby allowing the user to concentrate on the validation
activities.

FIGURE 2 The Validation Testing System Software Environment

The remainder of this document describes the VTS software architecture. The VTS soft-
ware is composed of reusable software libraries which support the different functional
areas for the validation process. These libraries are combined to provide an end-user
tool which supports the needs for the validation process. The architecture is designed to

5. Note that this environment will not preclude the use of exchange files as a means of importing
and exporting data into and out of the system. Exchange files will also be used as the primary
means of sharing data until a database has been integrated into the system

Model
Development

Test Case
Data Generation,

Execution and
Analysis

 STEP
 Specification

C++ Class
Definitions

Semantic
Working Schema

Express
Parser

Schema
Generators

DesignerTest
Operator

VTS Software

Other Libraries

Application

Database

Schema Class
Library

CAD Systems

IGES or other
exchange files

CAD System
Exporter

The VTS Software Design Strategy

7

isolate changes to the system. This allows the software to be extended with additional
functionality as available and as new requirements emerge.

For example, the initial focus for implementation will be to replace the existing data
editor, which is the weakest tool in the existing system. Once the software needed to
support this set of functions is complete, the development process will focus on inte-
grating a database system into the software. In the meantime, users will have access to
the new editor. The integration of the database system will be transparent to the users;
however, the integration will enable the expansion of the functions supported by the
end-user tool.

3 The VTS Software Design Strategy

The VTS software architecture integrates modular software libraries. These libraries
will be incorporated into a single system which supports functions needed for the vali-
dation process. The use of object-oriented techniques and standard interfaces will
enable software reusability. The system will use as much software as is available from
external sources. When such software is unavailable, the necessary software will be
developed. Specifically, support for the implementation methods specific to STEP will
need to be developed.

Since STEP is a developing standard, the mechanisms for its implementation are not
stabilized. Furthermore, since these mechanisms are developing concurrently with the
application models which the VTS software is used to validate, it is unlikely that exter-
nally developed software will be available in the time frame needed. These mechanisms
include the specification language for the application models -- Express [ISO11] -- and
the data interface formats, such as the exchange file format [ISO21]. The VTS must be
responsive to changes in these implementation mechanisms by providing software
which is quickly and easily adaptable to new versions of the mechanisms.

The following goals have influenced the design of the VTS software architecture:

■ to minimize the need for data translation by providing an integrated system which
supports a broad range of functions,

■ to provide a single end-user program,

■ to easily transition the software to support a new application model,

■ to enable different style user interfaces to be developed,

■ to allow for the integration of externally developed software into the system, and

■ to develop reusable software.

The previous section described the high-level design of the system -- an integrated soft-
ware system with a single user interface. This design is reflected in the first two goals
listed above. The remaining goals on the list above deal with the structure of the VTS
software and are discussed throughout this section.

The validation process involves the computerized manipulation of data based on the
application model being evaluated. Therefore, the architecture for the VTS software
includes a library of data structures and access functions for representing that model.
These data structures must be rich enough to store the data and to provide the semantic

Architecture for the Validation Testing System Software

8

information from the application models at runtime. Semantic information needed at
runtime includes the names of the structures, their fields, and, when possible, acceptable
values for the fields and rules governing the relationships between instances.

3.1 Establishing the Testing Environment

An application model is represented in many formats throughout the validation process:
English, Express and Express-G [ISO11], other graphical modeling formats, one or
more programming languages, and computer memory formats. From the perspective of
the end user the interface to the VTS software is through the Express description of the
application model; however, from the perspective of the software developer the
programming language format is of primary importance [Clark90]. In the interim
system each tool uses a different computer format; however, in the VTS software a
single format will be used: C++6 [Stroustrup90]. The C++ representation of the applica-
tion model can be automatically generated from an Express description.

Figure 3 illustrates the VTS software development methodology for producing a testing
environment for a specific application model. An application model, as represented in a
library of data structures and access functions, is integrated into the VTS software. The
application model, described in Express, is translated into a software library as shown in
the upper left hand corner of Figure 3. This library is then installed in the VTS software
to generate a new testing environment for that model. This library changes for each
application model being tested. In order to minimize the difficulty in the transition to a
new testing environment it is important to be able to automatically generate these
libraries.

6. C++ has been chosen as the programming language for implementation because it provides the
following features:
 ❥ good performance in interactive situations,
 ❥ programming language constructs which mirror those found in Express (i.e. hierarchies and

networks of data structures),
 ❥ interfaces to externally developed software (specifically, a user interface toolkit InterViews

[Linton91] and several object-oriented database systems),
 ❥ in the process of becoming standardized, and
 ❥ object-oriented features which enable code reuse.

The VTS Software Design Strategy

9

FIGURE 3 VTS Software Generation

The pieces above the center line in Figure 3 reflect system requirements, or inputs into
the software development process; the pieces below the line illustrate the structure of
the VTS software for a runtime system. The direct translation of an Express schema into
a library of C++ class definitions is the representation of the application model used by
the software. Requirements derived from the STEP specifications and the needs of the
VTS are also represented in component libraries; however, these libraries can not be
automatically generated.

Much of the general functionality needed to support the application model is imple-
mented separately from the application model. This software, represented in the figure
as Core Access Operations, implements the STEP specifications for Express and the
STEP exchange file format. The other software needs of the VTS, also supported as
separate software libraries, are based on analysis of the validation process [Morris91b]
and users’ needs [Morris91a].

The component libraries of the VTS software are integrated to support the functional
requirements for the validation process and are accessible through a single user inter-
face. The interface provides mechanisms for initiating the functions. A representative
sample of these functions is shown in the bottom row of Figure 3. Together the sharable

Requirements

User Functions

 Edit
Data

 Browse Load
STEP
File

Database Import
IGES
File

VTS Software

Core Access

Operations

VTS

Interface

Application
Model as C++

Class Definitions

STEP

Specifications

Express
Translation

Express

Schema

VTS Functional
Requirements

Software

Architecture for the Validation Testing System Software

10

libraries and the functional interface make up the VTS software. This figure only shows
a select subset of the components of the VTS software. The composition of the software
is explained in more detail in the following sections.

3.2 VTS Software Layering

The VTS software libraries can be decomposed into five layers based on specialization
with respect to the needs of the VTS system and a specific application model. This
design is intended to foster the reuse of code and the integration of external software
into the system. Table 1 shows the software components of each layer. The five layers
focus on different functional areas and are named accordingly:

■ multiple application model libraries,

■ application model specific libraries,

■ VTS specific libraries,

■ generic systems, and

■ machine dependent systems.

The first three layers represent functionality which is tailored to the VTS needs. Most of
these software components need to be developed for the VTS, but they can make use of
externally developed software. The components of the last two layers, generic and
machine dependent systems, are mostly available from external sources and do not need
to be developed specifically for the VTS. For the most part the external systems are
included into the VTS software through libraries. But some of the components, such as
the operating system or utilities provided with a database system, are separate systems.

This section defines the VTS software components. The components in the three middle
layers are especially significant to the software design. The relationships between the
components in these three layers is discussed in the following sub-section. All of the
software components will be described in further detail in the VTS design document
(Appendix A).

The VTS Software Design Strategy

11

TABLE 1 VTS Software Layering

VTS Layer Software Components

Multiple application model libraries Configuration System

Data Converter

Express Parser: Fed-X

Application model specific libraries Application Model: Schema Class Library

Application Database

Data Probe library

Translators from CAx7, IGES, etc.

VTS specific libraries STEP Core library

VTS Interface library

Data Editor library

Express Browser library

Generic systems Generic User Interface libraries: X Windows,
InterViews

Database management system

Abstract Data Type libraries

Generic Graphic Interfaces: Hoops8, PEX

Machine dependent systems C++ compiler and standard libraries

Operating system: POSIX [FIPS151]

3.2.1 Multiple Application Model Libraries

The multiple application model layer provides the software needed for handling more
than one application model. This layer supports the transition and configuration of tools,
application models, and test data to support the validation of different application
models. In the current system many of these functions are manually controlled. The
software components in this layer are external to the VTS run-time environment.9

7. CAx is any Computer-Aided operations/processes, including: MCAD (Mechanical Computer-
Aided Design), e.g. drawing/drafting; ECAD (Electrical Computer-Aided Design), e.g. PCB lay-
out; MCAE (Mechanical Computer-Aided Engineering), e.g. solids modeling; ECAE (Electrical
Computer-Aided Engineering), e.g. logic design; CAM and CIM (Computer-Aided Manufactur-
ing and Computer-Integrated Manufacturing), e.g. NC processing and photoplotting.

8. No approval or endorsement of any product by the National Institute of Standards and Tech-
nology is intended or implied.

Architecture for the Validation Testing System Software

12

The Configuration System governs which executable programs can be used with which
data files. This involves tracking which version of an application model was used to
generate the C++ representation used in the software and which data files correspond to
these application models. The Configuration System should be accessible by an
executing program. Until this software is in place, its function is performed manually.

The Data Converter converts data to a new version of an application model. It takes as
input the data corresponding to an application model and a listing of changes to the
application model and outputs data corresponding to the new version of the application
model. Initial work has been done in the design of the system and the language for spec-
ifying some of the changes to a model [Kohout90].

Also included in this layer is the NIST PDES Toolkit [Clark90]. The program
fedex_plus [McLay90], which is part of the toolkit, automatically translates an
application model into the C++ class definitions used to represent it in the VTS software
as illustrated in Figure 3. The output of the program is the Schema Class Library in the
application model specific layer described below.

3.2.2 Application Model Specific Libraries

The application model specific and the VTS specific layers contain the data structures
needed to support the computerized manipulation of data based on a common schema or
application model. The application model specific layer represents the components
which are tailored to the application model undergoing validation. These components
are updated each time the application model changes.

The Schema Class Library is the representation of an application model in C++ and
provides the data structures and functions specific to that model. Most of the changes to
support the validation of a new application model are limited to the Schema Class
Library. Other libraries in this layer -- the Application Database and the Data Probe
Library -- only need to be re-installed to reflect their interaction with the new Schema
Class Library.10 This design enables the creation of tools which can be tailored to a
particular application model by linking with the library for that model.

The term Application Database refers to a database system which has been installed
with a particular application model. This term is used to distinguish it from the generic
database system software which is independent of an application model. The schema
definition for the Application Database is provided by the class definitions in the
Schema Class Library. The application database is dependent on the commercial data-
base management system chosen for use in the Testbed. The installation process
involves preprocessing the class definitions from the Schema Class Library to generate
the database. The preprocessor is provided by the database supplier.

The Data Probe library composes the functions encapsulated in the other libraries to
assemble an end-user tool. The tool provides data editing and browsing functions with
the appropriate user interface and application model. The tool also supports browsing of

9. The Configuration System and Data Converter should ultimately be integrated into the VTS
run-time environment; however, this integration is beyond the current scope of the project.

10. The impact of the change in the Schema Class Library on the translators is dependent on the
particular changes in the application model.

The VTS Software Design Strategy

13

the application model. The Data Probe library is initialized to use the Schema Class
Library for a a particular application model.

Each Translator is a separate software component. A translator functions by accepting
data from its input system (the system being translated) and creating new instances of
the classes from the Schema Class Library.

3.2.3 VTS Specific Libraries

The VTS specific layer of the software architecture includes libraries to support the
general functional requirements of the VTS software and is independent of the applica-
tion model being tested. This layer contains software to support the following functional
areas:

■ user interfaces,

■ data editing and browsing functions, and

■ browsing the application models written in Express.

The software in this layer is divided into libraries based on its dependencies on STEP or
external systems. The STEP Core library and the Express Browser library support
requirements specific to STEP, while the VTS Interface and the Data Editor libraries
support other requirements specific to the VTS tools. This division is illustrated as sepa-
rate requirements in Figure 3.

The STEP Core library provides functionality for supporting the Schema Class Library
and for accessing a dictionary of information about the application model at run-time.
The dictionary contains the names of entities and other descriptive information. Support
for the Schema Class Library is provided through a set of abstract classes which support
the basic constructs found in Express. These classes form the basis for the Schema Class
Library and allow the other libraries in this layer to manipulate the contents of the
Schema Class Library in a general way.

The Data Editor library extends the STEP Core library to support data editing. This
library includes functions for editing instances of product data and functions for manip-
ulating groups of instances. The latter functionality includes merging STEP exchange
files, searching sets of instances, and checking sets of instances for completeness with
respect to the application model. Some of this functionality may be migrated to the
STEP Core library should it prove to be more generally useful.

The VTS Interface library is designed with the potential for multiple types of display11.
The strategy for this is to encapsulate the functional content of the interface so that it
will not be tightly coupled with the display functionality. The initial version of the inter-
face uses the InterViews [Linton91] toolkit. The VTS Interface is built on this library by
extending it to support the specific interface of the Testbed tools. The extensions include
classes for displaying data instances, groups of data instances, and an application model.
This library is also responsible for interfacing to the operating system such as when
locating, opening, and closing files.

11. The initial version uses the InterViews toolkit. Another potential interface is to an ASCII ter-
minal and would be based on a curses library.

Architecture for the Validation Testing System Software

14

The Express Browser library contains the functions needed for browsing Express
models. The library would support both a hypertext style interface for browsing entity
definitions in the Express source text and a graphical display of the application model
based on Express-G.

3.2.4 Generic and Machine Dependent Systems

The generic and machine dependent systems are completely independent of the specific
needs of the VTS and are available as self-contained packages either in the public
domain or as commercial systems. The software in these two layers isolates the rest of
the VTS software from dependencies on a particular platform. The generic systems refer
to toolkits or other external software which is directly integrated into the VTS architec-
ture. The lowest layer, machine dependent systems, refer to the operating system and
compiler used in developing the software.

Generic User Interface Toolkits, such as libraries provided with the InterViews toolkit,
will be used as a basis for the VTS Interface library in the X11 [Scheifler89] environ-
ment.

Generic Graphic Interface Toolkit systems, such as Hoops [Wiegrand89] or PEX [PEX]
will be used to support the three dimensional graphical display of products, which is
planned as future work.

The Database Management System to be used in the Testbed has not yet been chosen. A
set of requirements for this system in the Testbed is available [Morris90a]. The primary
requirement is that the system has a C++ interface and is capable of using class defini-
tions written in C++ as its data definition language.

Abstract Data Type libraries contain C++ classes for representing primitive data types
such as strings, integers, and real numbers, complex data types such as lists and arrays,
common system functions such as file management, and other general purpose utilities
such as for handling binary trees or regular expressions. It is anticipated that some of
these libraries will come from the provider of the database management system and/or
C++ compiler; others may need to be developed.

The VTS Software Design Strategy

15

3.3 Relationships between the VTS Software Components

This section discusses the relationships between the VTS software components from the
three middle categories of the software layering shown in Table 1: the application
model specific libraries, the VTS specific libraries, and the generic systems. The VTS
software design is confined initially to the components in these layers. Dependencies
between the software in these layers are shown in Figure 4.

FIGURE 4 Dependencies between VTS Software Components

 Schema

Indicates Dependency

Database
Utilities

Translators

Application
Database

Library

Interface Abstract
Data Types

Data Probe

STEP Core

VTS
Interface

Data Editor Express
Browser

Application

VTS

Generic

Specific
Libraries

Model
Specific

Libraries

and
Machine

Dependent
Systems

Toolkits

Generated Library

Architecture for the Validation Testing System Software

16

The division of the VTS software into component libraries enables code reuse by encap-
sulating the functionality needed for different aspects of the validation process. Several
considerations are influential in defining the components of the VTS software, but two
functional requirements are of particular importance:

■ the need to easily transition the software to a new application model, and

■ the desire to enable different user interfaces to be developed.

The VTS software is conceptually divided based on these requirements. The informa-
tion from a particular application model is encapsulated in the Schema Class Library.
The Data Editor library encapsulates the information and operations needed for manip-
ulating and editing that information. The VTS Interface library contains the operations
needed to present that information in a general way to the user. The presentation format
in the user interface is not influenced by the specific content of the information but uses
generalizations, or abstractions, about the structure of the information. These abstrac-
tions are based on Express and are supported by the STEP Core library. (This particular
division of libraries is represented in the illustration of the VTS software in Figure 3.)

The VTS architecture layering supports modularization of the software. Component
libraries in each layer are dependent on some of the libraries within the same layer or in
the next, more general layer, as shown in Figure 4; however, the more general layers are
not dependent on the less general layers. For example, the VTS specific layer depends on
the generic systems layer, but not vice versa. In general, dependencies are limited to the
interface between layers. The exception is in the area of the database management
system. The database system will come from external sources and will have its own
particular structure. Illustrated here is an external view of that system.

The VTS architecture is structured to enable reuse of the software. A different style of
user interface could be developed for the VTS software by replacing the VTS Interface
library without affecting the data editing and representation capabilities of the system.
For example, two different systems could be developed to support window-based and
ASCII-based interfaces by replacing this library. These systems would provide the same
functions in terms of editing and representational capabilities, since those components
of the software would not change.

Parts of the VTS software will be useful to other programs. In particular, the Core and
Schema Class libraries represent the data structures for the application model and can
be used by other implementations based on STEP models. For example, a stand-alone
translator for extracting data from IGES [IGES5.1]12 to a proposed STEP format was
developed using an initial version of these libraries [PTI2.1]. A translator such as this is
not dependent on the VTS Interface library which may require a sophisticated
windowing system. However, the translator shares the functionality for representing the
application model with the VTS software. Therefore, it will be able to directly access
the VTS database using the interface provided in Schema Class Library. The interface to
the database is transparent to a translator based on this library. Therefore, the translator
will not need to be updated when the Schema Class Library is integrated with a data-
base. Likewise, parts of the VTS Interface and Data Editor libraries will be useful for
any general purpose editor of highly structured information.

12. IGES is the Initial Graphics Exchanges Specification.

Conclusion

17

3.4 Summary

The VTS architecture is based on a decomposition of the functional needs for validation
of STEP application protocols. The object-oriented techniques of encapsulation and
abstraction are used to define reusable software components which support the func-
tions needed for automating the validation process. The software is decomposed in two
ways:

■ common functionality is abstracted into reusable software libraries creating a func-
tional layering of the software; and

■ software components are specialized with respect to specific functional requirements
of STEP and of the VTS.

The structuring of the software enables code reusability and system extensibility. The
software developed for the VTS can provide the foundations for STEP-related systems
or general purpose editors for structured information. The architecture defines a struc-
ture for attaching new software components as the VTS expands to cover broader func-
tional requirements. The new functions can be integrated into the system without
disturbing the existing functionality.

4 Conclusion

The most significant impacts of the VTS software architecture are on the amount of time
needed for and on the reliability of the validation of an application protocol. The inte-
gration of the software will significantly reduce the amount of time needed for valida-
tion and improve the reliability of the results. These improvements will enable
application protocols to be validated more quickly and with less effort.

Several significant features of the VTS architecture allow the software to be responsive
to the needs for validation testing. These features include the following:

■ a structure for isolating changes to the system due to changing requirements (i.e. the
application model, different software or hardware platforms, STEP, ...);

■ a single format for data representation, thereby eliminating the need to translate the
data to a variety of formats and the errors associated with such translations;

■ a single point of access for the end user, thereby reducing the amount of time spent
in learning to use the software; and

■ a collection of reusable source code, which will support the integration of additional
functionality into the system and also support the implementation of other STEP-
based systems.

The structure provided by the architecture allows the software to be easily transitioned
to validate a new application model. The structure also minimizes the impact of other
changes in the environment on the system. The integration of the software into a single
system minimizes the errors introduced into the process by frequent translation of the
data. The impact on the users when the system is expanded to support new functions is
also minimized. Furthermore, the architecture provides a structure for developing reus-
able source code which will allow additional related functions to be supported more
quickly and provide a natural mechanism for integrating these into an existing system.

Architecture for the Validation Testing System Software

18

In addition, the software developed may benefit other projects as well. Initial implemen-
tation of portions of the architecture have already been used by other projects
[PTI2.1][McLay90].

The VTS project will implement components of this architecture to support the needs
for STEP application protocol validation within the National PDES Testbed [Mitch90].
Implementation of the software will include the identification of existing software to
address the functional areas needed and the development of software to support func-
tions not available externally. The architecture defined here provides a basis for devel-
oping and integrating this software.

References

19

5 References

[Breese91] Breese, J. N., McLay, M. and Silvernale, G., Validation Testing
Laboratory User’s Guide, NISTIR4683, National Institute of Standards
and Technology, Gaithersburg, MD, October 1991.

[Clark90] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR 4336,
National Institute of Standards and Technology, Gaithersburg, MD, May
1990.

[FIPS151] Federal Information Processing Standard 151, POSIX: Portable Operating
System Interface for Computer Environments, IEEE 1003.1/Draft 12,
September 1988.

[IGES5.1] The Initial Graphics Exchange Specification (IGES), Version 5.1, IGES/
PDES Organization, NCGA, Fairfax, VA, September 1991.

[ISO1] ISO 10303 Industrial Automation Systems -- Product Data Representation
and Exchange -- Part 1: Overview and Fundamental Principles,Working
Draft N43 ISO TC184/SC4/WGPMAG, Mason, H., ed., October 7, 1991.

[ISO11] ISO 10303 Industrial Automation Systems -- Product Data
Representation and Exchange -- Part 11: Description Methods: The
EXPRESS Language Reference Manual, Committee Draft N14 ISO
TC184/SC4, Spiby, P., ed., April 29, 1991.

[ISO21] ISO 10303 Industrial Automation Systems -- Product Data
Representation and Exchange -- Part 21: Clear Text Encoding of the
Exchange Structure, Committee Draft ISO TC184/SC4, Van Maanen, J.,
ed., March 12, 1991.

[Kohout90] Kohout, Robert, STEP Data Translations, internal documentation,
National Institute of Standards and Technology, Gaithersburg, MD,
September 1990.

[Linton91] Linton, M,. InterViews Reference Manual Version 3.0-alpha, Computer
Systems Laboratory, Departments of Electrical Engineering and
Computer Science, Stanford University, Silicon Graphics, January 1991.

[McLay90] McLay, M.J. and Morris, K.C., The NIST STEP Class Library, C++ at
Work-’90 Conference Proceedings, September 1990. (Reprinted as
NISTIR 4411.)

[Mitch90] Mitchell, Mary, Development Plan: Validation Testing System, NISTIR
4417, National Institute of Standards and Technology, Gaithersburg,
MD, October 1990.

Architecture for the Validation Testing System Software

20

[Mitch91] Mitchell, M., A Proposed Testing Methodology for STEP Application
Protocol Validation, NISTIR 4684, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

[Morris91a] Morris, K.C., McLay, M. and Carr, P. J., Validation Testing System
Requirements, NISTIR 4676, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

[Morris91b] Morris, K.C., Mitchell, M.J. and Sauder, D. Validating STEP Application
Protocols at the National PDES Testbed, NISTIR, National Institute of
Standards and Technology, Gaithersburg, MD, November 1991.

[Palmer91] Palmer, M. and Gilbert, M., Guidelines for the Development and
Approval of STEP Application Protocols, ISO TC184/SC4 N1 Version
0.7 working draft, January 25, 1991.

[PDES90] Test Report for Context-Driven Integrated Model (CDIM) Application
A1, Skeels, J., ed., PDES, Inc. internal report PMG012.01.00, SCRA,
Charleston, SC, April 1990.

[PEX] PEX Protocol Encoding, Version 5.0P, X Public Review Draft, Barry,
S.C., ed., September 1990.

[PTI2.1] Silvernale, Gerard, Block Point Release 2.1 Systems Manual
PTI018.01.00, PDES, Inc., SCRA, Charleston, SC, February 1, 1990.

[Scheifler89] Scheifler, R.W., X Protocol Reference Manual for Version 11, O’Reilly
and Associates, Inc., Sebastopol, CA, 1989.

[Stroustrup90] Stroustrup, B., ANSI X3J16/90-0020, C++ Language System Reference
Manual.

[Wiegrand89] Wiegrand, Gary, HOOPS Reference Manual, 2nd ed., Ithaca Software,
Ithaca, NY, 1989.

No approval or endorsement of any product by the National Institute of Standards and Technology is intended
or implied.

21

APPENDIX A VTS Document Series

This document complements others in the National PDES Testbed Report Series which
provide detailed technical information relating to the Testbed software. Those docu-
ments which specifically address aspects of the Validation Testing System are described
below.

Validation Testing Systems Plan lays out the tasks and the overall approach for the
initial implementation of the Validation Testing System. (NISTIR 4417)

Proposed Testing Methodology for STEP Application Protocol Validation describes the
complete process used to develop and validate application protocols. This methodology
document focuses on the analysis of application models and planning for validation
testing. (NISTIR 4684)

Validating STEP Application Models at the National PDES Testbed describes a strategy
for automation based on an analysis of the information flow in the application protocol
development and testing process, and on initial experiences with automation for valida-
tion testing at the National PDES Testbed. (NISTIR 4735)

Validation Testing System Requirements describes functional requirements for automa-
tion of the VTS. This document also provides an overview of the VTS software environ-
ment. Requirements for the VTS system are driven by the STEP development effort and
reflect the needs of the National PDES Testbed users. (NISTIR 4676)

Architecture for the Validation Testing System Software describes an architecture for
software which supports the testing of information models for validity and correctness.
The architecture provides a basis for software development within the National PDES
Testbed. (NISTIR 4742)

Validation Testing System Software Design provides guidelines for the implementation
of the VTS software. The document describes an architecture for creating and inte-
grating software libraries to support the tools for the VTS. Designs for the components
of the software are also provided. (forthcoming)

