O

CRYPTOCXPERTS

WE INNOVATE TO SECURE YOUR BUSINESS

O

Analysis of the gas accounting algorithm of

Cairo 1.0
Date January 2, 2025
Version 1.0
Page count 18
Authors CryptoExperts

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

Contents
1 Introduction
2 Sierra, safe CASM And Cairo 1.0 to the rescue of Cairo 0
3 Sierra and gas accounting challenges
3.1 Sierra libfuncs gas costs and branching costs
3.2 A simple approach of gas cost evaluation of a Sierra program
3.2.1 Sierra programs and graphs oL
3.2.2 Sierra functions and programs worst execution gas consumption . . .
3.3 Hitting the halting problem
4 Trying to overcome the halting problem
4.1 A gas dedicated libfunc: withdraw_gas
4.2 Solving the gas constraints and interactions between LW and GC
4.3 How is the gas accounting problem solved: the big picture
5 Putting it all together: a concrete Cairo 1.0 example

5.1 Analysis of Sierra gas accounting L L oL
5.2 Analysis of the translation to safe CASM

Page 2/18

10
10
12
13

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

1 Introduction

STARKWARE is a company that develops scalability and privacy technologies for blockchain
applications. Specifically, STARKWARE develops a STARK-powered Layer-2 scalability
engine that uses cryptographic proofs to attest to the validity of a batch of transactions. As
part of STARKWARE'’s technology suite, Cairo serves as a platform for generating STARK
proofs for general computation, while STARKNET is a decentralized Layer-2 network scaling
Ethereum based on Cairo.

At the heart of this technology is the Cairo CPU [1], a full fledged STARK-friendly
architecture tailored for proofs production and verification. This is a non-deterministic
memory based machine that executes a Cairo bytecode, which is the binary compilation of
CASM (Cairo Assembly). In order for the developers to be able to program in a high-level
language, STARKWARE developed Cairo 0, which is a (rather thin) programming layer
above CASM bringing syntactic sugar and some abstractions. This programming language
suffered from two issues: being very close to CASM means low-level understanding of the
Cairo VM, and also leaving possible runtime errors of the program (e.g. through false
asserts, invalid memory accesses violating immutable memory, etc.). This latter issue has
a drastic implication regarding gas fees accounting: since a failing program cannot be
proven, the sequencer cannot account for it and cannot charge the user for the “lost gas”.
This leaves the sequencer vulnerable to possible Denial of Services attacks from malicious
actors sending failing programs to overload it. This is also frustrating for legitimate users
as proofs for failing programs is expected. One would ideally seek for something similar to
the “reverted transaction” feature of Ethereum.

In order to overcome these issues, STARKWARE introduced Cairo 1.0, which provides a
higher level language to programmers when compared to Cairo 0 with the introduction of
Sierra (Safe InteRmediate RepresentAtion), an new intermediate language ensuring safety
when translated to CASM. In STARKWARE’s context, safety means that all the possible
execution paths of the compiled CASM can be proven, even the failing ones, which also
enables a sound gas accounting on the program during its execution on the sequencer. This
is a major step forward from Cairo 0 since no “unsafe” CASM can be produced.

The purpose of the current blog post is to dive into how Cairo 1.0 and Sierra allow
to perform sound gas accounting. We will first quickly recall the main Sierra features.
We will then introduce simple examples exposing why gas accounting can be complex to
implement, specifically hitting the unsolvable halting problem in the more general case.
Then, we show how both Sierra features, local gas wallet accounting algorithms as well as
dedicated gas accounting libfuncs allow to overcome these challenges. Finally, we provide
a full concrete example from Cairo 1.0 to CASM with the associated gas accounting.

Page 3/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

2 Sierra, safe CASM And Cairo 1.0 to the rescue of Cairo
0

A gentle introduction to the motivations for Sierra as well as an under the hood overview
are exposed in Nethermind’s blog posts series [2, 3, 4].

In a nutshell, Sierra is a strongly typed language implementing linear typing: each
variable must be consumed exactly once by the statements of a program. All the statements
of a Sierra program are either invocations that cannot fail or return statements: by design, a
Sierra program always terminates its execution with the return of a function, with no other
possible execution branch. When translated to CASM using the dedicated compiler, all the
Sierra statements translation blocks do not trigger runtime errors. This is by construction
of how each statement to CASM translation is written: this requirement is checked by
manual audits of the possible translations. The resulting safe CASM is ensured to be free
of illegal or unallocated memory addresses dereferencing, possibly false assertions, multiple
writes to the same memory cell (because of Cairo’s write-once model), etc.

The building blocks of Sierra statements are called libfuncs: they are defined on strongly
typed inputs with polymorphism as one could expect from a Rust-like high-level language
(e.g. store_temp<a> is the libfunc associated to storing in memory the type a, for instance
a can be felt252, u8, etc.).

A Sierra program can be dissected as a set of user functions, each function being made
of statements. Every statement is either a libfunc call, or a return statement marking a
user function return.

As presented on Figure 1, the Sequencer now only deals with Sierra code (while for
Cairo 0, it was directly dealing with possibly unsafe CASM): the developer locally compiles
the Cairo 1.0 code with the dedicated compiler, and then declares it by sending Sierra code.
The Sequencer then compiles the Sierra code to safe CASM bytecode to deal with proofs
production and execution (although execution could be performed at the Sierra level).
Dealing with Sierra code allows the Sequencer to ensure soundness properties and gas
accounting as we will present hereafter.

We will not provide much more details about Sierra and its syntax as they are not
really needed for understanding the key concepts of gas accounting. However, the curious
reader can refer to |2, 3, 4] for more insights on this topic.

As a very simple example, we provide on Listing 1 a basic Cairo 1.0 function test ()
that takes nothing as input and returns a felt252. On Listing 2, we show how this example
is compiled to Sierra: as we can see, two libfuncs const_as_immediate (instantiated with
the Const<felt252,1> type) and store_temp (instantiated with the felt252 type) are
used here, as well as a return statement returning the felt value. Finally, the resulting
safe CASM compiled code is presented on Listing 3 where we can see that some Sierra
abstractions are removed to produce the simplest affectation instruction.

fn test() -> felt252 {
let a = 1;

Page 4/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

Developer Sequencer

Cairo 1.0 code

[Safe CASI\‘/'I bytecode} {Safe CASM bytecodej
L) L)

Figure 1: Overview of Cairo 1.0 and Sierra generation and running flows during contract
DECLARE and user transaction

Listing 1: A simple Cairo 1.0 example

// Sierra first section: types definitions
type felt252 = felt252 [storable: true, drop: true, dup: true, zero_sized: falsel;
type Const<felt252, 1> = Const<felt252, 1> [storable: false, drop: false, dup:

<~ false, zero_sized: false];

// Sierra second section: (typed) libfuncs used in the

libfunc const_as_immediate<Const<felt252, 1>> = const_as_immediate<Const<felt252,
— 1>>;

libfunc store_temp<felt252> = store_temp<felt252>;

// Sierra third section: the functions and statements (with their ids)
// Statements indices are in comment on the right
const_as_immediate<Const<felt252, 1>>() -> ([01); // O
store_temp<felt252>([0]) -> ([0]); // 1

return ([0]); // 2

// Sierra fourth section: the functions names and statements ids
test::test::test@0() -> (felt252);

Listing 2: Sierra compilation of example in Listing 1

[ap + 0] = 1, ap++; // Sierra statement #1 translation
ret; // Sierra statement #2 translation

Listing 3: CASM compilation of example in Listing 2

3 Sierra and gas accounting challenges

3.1 Sierra libfuncs gas costs and branching costs

Since each Sierra libfunc has a known translation to safe CASM, it is possible to fully
evaluate the cost in gas for this libfunc. The rationale is to count the number of “steps”

Page 5/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

(i.e. roughly ap and fp affectations in CASM), as well as builtins costs (e.g. RangeCheck).
The “cost” of a libfunc will be the sum of the costs of all its CASM instructions. There are
some subtleties related to how builtins other than RangeChecks are handled, and how the
cost is scaled depending on the type cast of the libfunc instantiation, but for the purpose
of conciseness, we will not detail this here as these are not crucial for understanding how
gas accounting works at high-level. For now, let us keep in mind that each CASM step is
rated by convention as 100 gas units.

There is a catch, though. Most of the Sierra libfuncs have only one possible execution
path in the generated CASM, i.e. the execution flow is linear and there is only one possible
next statement. For these libfuncs, called non-branching, the gas cost is straightforward
to evaluate as the sum of the CASM execution flow. However, some of the libfuncs can
have multiple possible execution paths. These branching libfuncs are, for instance, dealing
with conditional execution, statements that might “fail”, enumerations values extraction,
and so on. For those libfuncs, there are multiple possible gas costs: one for each execution
path. These costs are called branching costs: Figure 2 illustrates this.

© O,

steps = 2, steps = 4,
200 gas cost = 200 gas cost = 400

® ® e

Figure 2: Tllustration of a non-branching (on the left) and a branching (on the right) libfunc.
The non-branching libfunc always takes 200 gas units (for 2 steps). The branching libfuncs
has two execution paths yielding two possible costs: either 200 gas units, or 400 gas units.

steps = 2
gas cost

I~

3.2 A simple approach of gas cost evaluation of a Sierra program

3.2.1 Sierra programs and graphs

All Sierra programs can be represented as directed graphs where each node is a Sierra
statement (i.e. a libfunc invocation or a return statement), and two nodes are connected
with a directed edge following the execution flow. User functions calls use a specific libfunc
function_call. The directed graph can be seen as the concatenation of the control flow
graph and the call graph of the Sierra program.

By construction, return statements do not have children. Non-branching libfuncs have
only one child, while branching libfuncs have at least two children. Functions calls have two
children (the next statement in the current caller function and the entry point of the called

Page 6/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

function). Nodes numbering can be any ordered set: by convention, the linear numbering
in the order of appearance of statements in the Sierra program is chosen.

We provide on Figure 3 an example of such a representation of a simple Sierra program
made of two functions Testl and Test2: please note that this program does nothing
interesting, it is exhibited for the sake of the example. Following the types declarations
from lines 1 to 4 and libfuncs aliases declaration from line 6 to 27, we have the list of
statements from line 29 to 72, from statement 0 to statement 42. The statements numbers
and the number of steps they take are put in comment just after the semicolon ’;’ (no
explicit step means 0). We represent on the left of Figure 3 the graph representation of
this program as explained above. The regular branching nodes are represented by O, the
functions entry-points are <, and the return statements by [__]. We can see an example

of branching statement for @ for instance, where felt252_is_zero(n){fallthrough()
9(n)}; either jumps to statement @ if the £e1t252 variable n is zero, or falls through to

statement @ if it is non-zero. The portions of the graph that include statements whose
numbers are linearly incremented without branching are somehow self-explanatory, and it
is possible to simplify the graph representation as shown on Figure 4 (we also represent
the cumulative number of steps of the collapsed nodes on the edges).

3.2.2 Sierra functions and programs worst execution gas consumption

Now given the graph representation of a Sierra program, it is possible to compute the
worst execution path in terms of gas consumption, which is equivalent to the number of
CASM steps'. This quantity is the minimum amount of gas needed for the Sierra program
execution in the worst case. In a function, an execution path is the set of directed edges
from the entry-point to one of the possible return values, split across the branches of the
control flow graph. Thanks to Sierra properties, any possible execution must be one of
such paths. Then, the gas consumption cost of a given path is simply the sum of the gas
costs of each statement along this path. Finally, the worst execution path of a function is
simply the maximum value of the costs of all the possible paths. Regarding the specific
case of function calls, the cost of the calling statement is simply the worst execution cost of
the called function. Finally, the worst execution gas cost of a Sierra program corresponds
to the worst execution cost of the top level function of this program.

Informally, computing the execution path gas cost can be algorithmically performed
with graph traversing: from a return statement of a function representing a possible
execution path, roll back to the entry-point of the function by accumulating the gas cost
of each statement. The gas cost of this path will be represented by the sum of all these
costs. When encountering a function call, either the worst execution cost of this function
is already computed: then use it in the cumulative sum. Or this cost is not yet computed,
and apply the algorithm first to the called function to get it (i.e. we traverse the call graph
of the program from the leaf functions to the top level ones). When applied to the simple
example of Figure 3 with the steps represented on Figure 4, the worst gas cost of Test1

!Things are actually a bit more subtle because of possible adjustments that are not explained in this
post for the sake of clarity and conciseness.

Page 7/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

is 8 steps, i.e. 800 gas units, following the path <0> N — [29] The Test2
function has a worst gas cost of 4 steps, i.e. 400 gas units, with an equivalent cost of the

two possible execution paths — @ — and — @ — [42].

3.3 Hitting the halting problem

We could conclude from the simple approach presented in Section 3.2 that evaluating worst
case gas cost of a Sierra program (and hence a Cairo 1.0 program through compilation to
Sierra) is a simple matter. However, we have neglected on purpose the most challenging
cases: using loops and recursion.

Sierra offers conditional and unconditional branching libfuncs, allowing to have loops
whose output condition might be unknown at compilation time (i.e. only known at exe-
cution time), possibly yielding infinite execution time. Similarly, recursive functions calls
can be used in a Sierra program, and the recursion stopping condition might also be un-
known at compilation time. In such situations, the very simple graph traversal algorithm
to compute worst execution costs of Sierra programs cannot be applied since cycles will
actually appear in the graph representing the program. Such cycles prevent the construc-
tion of a path rolling back from return statements to root entry-point nodes, since at
the nodes representing the conditional branching of the cycle, we cannot decide how many
times these cycles are taken. All-in-all, the worst execution gas cost with a cycle will be
represented by a fixed cost taking into account one cycle execution, plus a certain unknown
number of cycles costs.

Let us take a very simple graph example to illustrate the issue. We represent on Figure 5
a graph representing a fictitious Sierra program containing a loop through the usage of an

unconditional jump at node in the function with entry-point at node . When
applying the algorithm to compute worst case execution cost to this graph from return
statement [25], we do not known which path to choose to continue the graph traversal when

arriving at the branching node @: we can either go to @, or go to depending on
a predicate we cannot statically guess in the most general case. This loop prevents the

computation of the gas cost of function at @, and by extension (through the call graph

of the program) the gas cost of the caller function at .
The issue raised here with gas cost accounting is equivalent to the static analysis of
programs general problem, which hits the computer theory fundamental halting problem!

Page 8/18

CXPERTS

Analysis of the gas accounting algorithm of Cairo 1.0

felt252 = felt252;
GasBuiltin =
RangeCheck
NonZeroInt =

type
type
type
type

libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc
libfunc

branch_align =
felt252_add =

felt252_const_0 =
felt252_const_1 =

felt252_drop =

felt252_dup =
felt252_is_zero =
felt252_sub_1 =

withdraw_gas =
jump = jump;

rename_felt252 =

store_temp_gb =
store_temp_rc =
dup_felt =
drop_felt =
drop_nz_felt =
-> O3

revoke_ap_tracking ()

felt252_const_minus_1 =
drop<felt252>;
felt252_non_zero_drop =
dup<felt252>;
felt252_is_zero;
felt252_sub_const <1>;
felt252_unwrap_non_zero =
withdraw_gas;

GasBuiltin;
RangeCheck;
NonZero<felt252>;

branch_align;
felt252_add;
felt252_const<0>;
felt252_const <1>;

felt252_const<-1>;

drop<NonZeroInt>;

unwrap_non_zero<felt252>;

redeposit_gas = redeposit_gas;
rename<felt252>;
revoke_ap_tracking =
store_temp_felt252 =
store_temp<GasBuiltin>;
store_temp<RangeCheck>;
dup<felt252>;

drop<felt252>;
drop<NonZeroInt >;

revoke_ap_tracking;
store_temp<felt252>;

// 0

felt252_is_zero(n) { fallthrough() 9(n) }; // 1 Step = 1
branch_align() -> O; // 2
store_temp_rc(rc) -> (rc); // 3 Step = 1
store_temp_gb(gb) -> (gb); // 4 Step = 1
felt252_const_1() -> (ome); // 5
store_temp_felt252(one) -> (omne); // 6 Step = 1
drop_felt(z) -> O; // 7

37 |return(rc, gb, one); // 8

38 | branch_align() -> O; // 9

39 | felt252_is_zero(z) { fallthrough() 19(z) }; // 10 Step = 1
40 | branch_align() -> O; // 11
41 | store_temp_rc(rc) -> (rc); // 12 Step = 1
42 | store_temp_rc(rc) -> (rc); // 13 Step = 1
43 | store_temp_gb(gb) -> (gb); // 14 Step = 1
44 |felt252_const_1() -> (ome); // 15
45 | store_temp_felt252(one) -> (one); // 16 Step = 1
46 |drop_nz_felt(n) -> O; // 17
47 |return(rc, gb, ome); // 18
48 | branch_align() -> (O; // 19
49 | felt252_unwrap_non_zero(z) -> (z); // 20
50 | felt252_unwrap_non_zero(n) -> (n); // 21
51 |drop_felt(n) -> ; // 22
52 | store_temp_rc(rc) -> (rc); // 23 Step = 1
563 | store_temp_rc(rc) -> (rc); // 24 Step = 1
54 | store_temp_rc(rc) -> (rc); // 25 Step = 1
55 | store_temp_rc(rc) -> (rc); // 26 Step = 1
56 | store_temp_gb(gb) -> (gb); // 27 Step 1
57 | store_temp_felt252(z) -> (z); // 28 Step = 1

I
G

return(rc, z); // 29

// Test 2

gb,

o
©

00 W W WNNND NN NN N R K R R e
SORONROODIONRINROORNDN P RPOLOORND G D WN -

o
=3

~
=)

felt252_unwrap_non_zero (n)

~
a

store_temp_felt252(n)

72 | return(rc, gb, n); // 42

Test1@0(rc: RangeCheck,
< GasBuiltin,

Test2@30 (rc: RangeCheck,

— felt252);

gb:

@)
()

felt252_is_zero(n) { fallthrough() 37(n) };

-> (n);
-> (n);

// 30 Step = 1

// 40
// 41 Step = 1

61 |branch_align() -> (; // 31
62 | store_temp_rc(rc) -> (rc); // 32 Step = 1
63 | store_temp_gb(gb) -> (gb); // 33 Step = 1
64 | felt252_const_1() -> (one); // 34
65 | store_temp_felt252(one) -> (omne); // 35 Step = 1
66 | return(rc, gb, one); // 36
67 |branch_align() -> ; // 37
68 | store_temp_rc(rc) -> (rc); // 38 Step = 1
69 | store_temp_gb(gb) -> (gb); // 39 Step = 1

GasBuiltin, n: felt252, z: felt252) -> (RangeCheck,

felt252);
gb:

GasBuiltin, n: felt252) -> (RangeCheck, GasBuiltin,

Figure 3: The graph representation of an example Sierra code with two functions Test1
and Test2. 0 is the entry-point of Test1, and 30 is the entry-point of Test2. The nodes
8, 18 and 29 are return statements of Test1, 36 and 42 are return statements of Test2.

Page 9/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

7

1 step |1 step

Figure 4: Simplified graphs for the Sierra code example provided in Figure 3, with collapsed
number of steps in each branch.

7
7

function_call

N

jump
@®

Figure 5: Simple example of a graph containing a function call at statement 2 and an
unconditional jump at statement 18. This represents two functions, one with entry-point
at statement 0 that calls another one with entry-point at statement 10. The first function
has a “linear” statement execution from 0 to its return at 9, i.e. no branch except for the
function call at 2. The second function has two branches with a two-branches statement
at 12, and a loop in one of the branch through 18.

[

4 Trying to overcome the halting problem

4.1 A gas dedicated libfunc: withdraw_gas

Now that we have seen that static analysis is a dead end in the most general case, one
could think that a solution using dynamic analysis would be the way to go. Given the

Page 10/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

user gas balance that is denoted GC (for Gas Counter), a very simple approach to try to
solve the issue (summarized in [5]) would be at each Sierra statement (inside the libfunc’s
safe CASM code) to check if GC is large enough to execute the current statement, and if
yes reduce GC by the dynamic gas cost of the libfunc (depending on the branch if this is a
branching libfunc). Although such an approach would be valid, it has the drastic drawback
of consuming steps for handling GC (as well as reducing the runtime performance): this
means that the gas measurement code itself will heavily impact the gas consumption of
the original user code, which is not acceptable. There is no reason to charge the user for
elements that are unrelated to his Cairo 1.0 program!

Hence, one must find a way to provably and soundly charge the user with the correct
amount of gas without significantly adding artificial steps to the original code. STARK-
WARE Cairo developers team have found a clever way of mizing static analysis and lightweight
dynamic code analysis to achieve this using gas dedicated libfuncs added during Cairo to
Sierra compilation. The rationale is the following:

e Static analysis for the local wallet LW: without cycles, the worst case execution gas
cost of a Sierra program is easy to compute using the algorithm previously presented
in Section 3.2. Hence, a first step consists in transforming the graph representing
the Sierra program to an acyclic graph by “breaking the cycles™ this is achieved by
enforcing during compilation the presence of a dedicated libfunc called withdraw_gas
along the cycle?. This is a branching libfunc that has a success and a failure branch:
in the success branch, the user has enough gas to continue the execution, and in the
failure branch the user has not enough gas for the success case (but there is enough to
handle the usually more lightweight failure case). From a graph perspective, the cycle
is “broken” by removing the edge corresponding to the success branch of withdraw_-
gas. The result of this static worst case computation is called the local wallet LW,
and can be seen as the minimum amount of gas needed for the program executing at
least one cycle in the worst execution path.

e Runtime code: the withdraw_gas libfunc safe CASM translation actually interacts
with the user global gas counter GC. Following the same idea as the full dynamic
check for gas previously presented, GC is checked against a value that will ensure
enough gas for the worst execution path from this node to any return statement. If
the check is OK, we take the success branch and remove the proper amount from GC.
If the check is not OK, we take the failure branch without touching GC, and in this
branch we should be (by static analysis) ensured that we have enough gas. Actually,
gas withdrawal can be seen as a stop to the pit for a refuel that will inject enough
gas boost in the local wallet for possibly one more cycle. Using this strategy, each
time a cycle is taken we are ensured to have enough gas or fail, hence overcoming
the halting problem at a very low cost in terms of additional steps!

2This can be ensured through the compiler that easily detects cycles in the Sierra program graph
equivalent, and ensures that at least one withdraw_gas is placed in one node along this path.

Page 11/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

4.2 Solving the gas constraints and interactions between LW and GC

From the previous description of how gas withdrawal somehow solves the gas accounting
challenges, there is a missing piece regarding the amount of gas that must be checked
at withdraw_gas nodes for possible gas refuel. This is in fact resolved through linear
constraints deduced from the graph analysis.

Let us demonstrate how this works on the example presented in Figure 5. We will
denote by I'(i) the value of the local wallet at node i, i.e. the worst gas cost from this
node to any of the possible paths leading to return (but not following the withdraw_gas
success branch). We will also denote by v;_,; the gas cost of a transition from a libfunc at
node ¢ to its successor j (as we have seen, for branching libfuncs the gas cost might not
be the same in each branch). As a matter of fact, I'(¢) is the maximum amount among
the I'(j) + 7i—; for all the possible children j of i. Also, by construction, I' is zero at
the return statements (since the local wallet is computed by rolling back from return to
entry-point).

We represent on Figure 6 the example with fictitious values for the sake of the expla-
nation: let us assume without loss of generality that the node @ is the withdraw_gas

invocation in the cycle, with a success branch @ — @ and a failure branch @ — @
We have represented the gas reinjection by e12: this is the unknown variable value to be
found. As we have previously stated, all the I'(i) for the local wallet values have been
computed here as worst execution cost from ¢ while removing the success edges of with-
draw_gas by breaking the cycles. The value of €12 will be found by balancing the local
wallet on each side of the removed edge.

First, we can see that there is only one path to a return statement from @: @ —

— @ — @ — [25], yielding I'(13) = 713518 + Yig—12 + Y1219 + Y1925 = 800.

When considering the missing edge — @, we must ensure the equation T'(12) +
e12 = I'(13) + 712513 (note the addition of the gas boost €12 here). This translates to
£12 = I'(13) + 112513 — T'(12) = 800 4 270 — 500 = 570. Consequently, at the withdraw_-
gas statement, we need to inject 570 gas units from the global gas counter GC into the
local wallet to ensure at least one cycle execution (in the worst case). One can notice that
solving such equations can produce a negative value for € at the withdraw_gas statement,
which will usually mean that the failure branch takes actually more gas than the success
one, and that the local wallet contains enough gas so no gas should be pulled from GC: this
can only happen when this withdraw_gas is not part of a cycle?, which will occur when
explicitly calling this libfunc when not needed.

Solving gas flow constraints from the global counter to the local wallet (and vice-versa,
see below) is one of the purposes of the Sierra compiler, which makes use of various graph
traversals to achieve this in linear time. The constants values computed by solving these
constraints are then injected in the safe CASM generated for the libfunc, with a test to
check if GC has enough gas or not for withdraw_gas.

30r else, the failure branch will be one of the branches of the nodes of the cycle maximizing the cost,
S0 its cost cannot be less.

Page 12/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

Other gas related libfuncs exist, notably redeposit_gas as it does the reverse operation
of withdraw_gas: it redeposits the leftover gas into GC. Indeed, when taking branches that
are not the “worst case”, the local wallet will be overestimated (as the maximum cost of all
the possible branches), and in the end an amount of gas can be given back to the user in
these branches. Besides this, coupon related libfuncs have been recently introduced to deal
with precharging the cost of functions before calling them (this can be useful when “heavy
operations”’ are expected to be called in the failure branch of a withdraw_gas). We will
not enter into more details about these libfuncs in this post as our purpose is mostly to
provide a high-level explanation on gas accounting, and withdrawal is the main operation
for this. Also, while withdraw_gas is enforced at Sierra compilation time whenever there
is a cycle (or a compilation error will be triggered), redepositing gas and coupons* libfuncs
must be called willingly by the programmer as of the current version of the Cairo compiler.

3
function_call
Zaj, .
t

gas counter GC}..

Loop: jump,yig-,12 = 100

T(18) =600

Figure 6: Reinjecting gas in the local wallet from the gas counter to compensate for cycles

4.3 How is the gas accounting problem solved: the big picture

Now that we have explained how gas accounting can be performed by a mix of static
analysis (with the local wallet) and runtime updates (of the global gas counter), let us recall
the key features that allow to solve our original challenge: bring a sound and provable gas
accounting mechanism to Cairo 1.0, ensuring that no Denial of Service can be performed

4Also, coupons are still an experimental feature.

Page 13/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

on the sequencer (i.e. the sequencer does not spend gas without retribution) by malicious
actors, and that the end-user is happy with a proof of his concrete gas consumption for
the contracts he executes:

5

e First of all, the compilation of the Cairo 1.0 code to the Sierra intermediate language

allows to remove any source of runtime error since each libfunc is translated to safe
CASM. A Sierra program is hence ensured to execute from its entry point to one of
the return statements. This is useful for a static analysis of the graph representing
the program, allowing to compute the local wallet LW of worst case execution gas
cost of the program (this can be done using the fact that each libfunc to safe CASM
translation has an associated known gas cost).

When cycles are present in the Cairo 1.0 code (e.g. using loops or recursion), the
Cairo to Sierra compiler injects a withdraw_gas statements in the cycle. This allows,
using graph traversal and constraints solving, to dynamically reinject (at runtime)
the proper amount of gas (statically computed) whenever cycles are executed again.

The Sierra program is the one sent to the sequencer, and the sequencer using the
Sierra to safe CASM compiler is the one performing the previous computations.
Notably, the presence of withdraw_gas statements along cycles in the Sierra program
is enforced here to avoid possible attacks at the Sierra level.

After the Sierra to CASM compilation, the local wallet is known to the runner so that
an initial amount of user gas can be used from the global gas counter. Then, when
a cycle is reached, more gas is (possibly) dynamically withdrawn from the global
user counter. Two situations are possible during this withdrawal attempt: either
enough gas is present in the global counter GC, in which case it is decremented with
the proper amount in CASM. Or the user does not have enough gas, and the failure
branch is taken with an assertion that GC is not large enough.

Putting it all together: a concrete Cairo 1.0 example

In this section, we will show all the concepts presented above in action using a concrete
Cairo 1.0 example, from the Cairo code to the produced safe CASM, with the details
of gas accounting. In order to cover the gas withdrawal concepts, we will use the re-
cursive Fibonacci implementation example from cairo/examples/fib.cairo? €). The
simple Fibonacci computation code is presented on Listing 4, and we can see there is
only one recursive function fib. The compilation to Sierra, using the cairo-compile pro-
gram, is presented on Figure 7. The resulting safe CASM, compiled from Sierra using the
sierra-compile program, is presented on Listing 5 (with, for each CASM statement, the
corresponding Sierra source statement).

Page 14/18

https://github.com/starkware-libs/cairo/blob/main/examples/fib.cairo

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

5.1 Analysis of Sierra gas accounting

We present on Figure 7 the Sierra code along with its (simplified) graph representation. We
have omitted for the sake of clarity the declaration part of the Sierra code. In the following
analysis, we will not detail each libfunc as we are more interested in gas accounting than
in how Sierra libfuncs work.

As we can see, a notable thing to notice is the presence of a withdraw_gas statement (1)
in line 6: the Cairo compiler detected the cycle induced by the recursion and transparently
produced this withdrawal. Beyond that, the program contains three branching paths (three

return statement) and the recursive function call in statement @ We have put in the
comments of the Sierra code the number of steps RangeChecks (rc) taken by each statement
(no explicit value means 0). For the record, 1 step takes 100 gas units and one range check
takes 70 gas units. These yield the gas transitions in the simplified graph presented on
the edges of Figure 8. For instance, the cost of the success branch of the gas withdrawing
statement (1) is 3 steps and 1 range check, i.e. 370 gas units, while the cost of the failing
branch is 4 steps and 1 range check, i.e. 470 gas units, and so on.

As previously presented, in order to compute the local wallet value at each statement,
we break the cycle by removing the success branch (1) — @ When doing so, the local
wallet I'(4) at statement ¢ is computed as the worst gas cost among all the possible branches
in the children, while I' = 0 for return statements. For instance, coming from [42], we have
8 steps from , meaning I'(28) = 800 gas units. Regarding the branching statements, e.g.
@, the worst branch is used for computing I (@ — @ in this case). Finally, the specific

case of the function call @ — @ takes into account the worst execution path from here,

the only path here being @ — <0> - — — [42], yielding I'(26) = 1470.

Now that the local wallet values have been computed at each statement, one must
solve the constraints to find the gas boost 1 pulled from GC during gas withdrawal. As
presented in Section 4.2, this is done by solving I'(1) + 1 = I'(2) + 112 = I'(2) + 370, i.e.
g1 =2170+ 370 — 1270 = 1270 in our case.

5.2 Analysis of the translation to safe CASM

We can observe on the safe CASM compiled code on Listing 5 that the value £1 = 1270 is
injected in the generated assembly. The code reads as follows:

e First of all, a hint stores in [ap + 0] the result of checking if 1270 is < than the
global gas counter GC (that is stored in [fp - 6]).

e If the previous comparison is false, this means that there is enough gas and we jump
to the relative instruction 7 at line 6 (this is the success branch). The instruction re-
moves 1270 from the gas counter [fp - 6], and stores this in the temporary variable
[ap + 0]. Then, this value is range checked (using the RangeCheck builtin stored in
[fp - 7]). We recall that a range check on a value v asserts that 0 < v < 2128, In
our case, we assert that 0 < GC — 1270 < 2128,

Page 15/18

NOoO O WN

W N =

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

e [f the previous comparison is true, this means that there is not enough gas and
we follow the failure branch at line 3. The instruction there stores in temporary
variable [ap + 0] the value GC + 2!%® — 1270 (note that we have 2!28 — 1270 =
340282366920938463463374607431768210186, hence the large encoded value in the
assembly). Then, at line 5 a range check asserts that 0 < GC + 2128 — 1270 < 2128,
i.e. GC < 1270. Finally, at line 5 we jump to relative 26, that corresponds to line 24,
which corresponds to Sierra statement 32 (the first statement after (28) that is not an
untranslated Sierra abstraction).

// Calculates fib...
pub fn fib(a: felt252, b: felt252, n: felt252) -> felt252 {
match n {
0 => a,
=> fib(b, a + b, n - 1),

Listing 4: Recursive Fibonacci Cairo 1.0 example

%{ memory[ap + 0] = 1270 <= memory[fp + -6] %}

jmp rel 7 if [ap + 0] != 0, ap++; // 0, Sierra statement #1

[ap + 0] = [fp + -6] + 340282366920938463463374607431768210186, ap++; // 2, Sierra
statement #1

[ap + -11 = [[fp + -7] + 0l; // 4, Sierra statement #1

jmp rel 26; // 5, Sierra statement #1

[fp + -6]1 = [ap + 0] + 1270, ap++; // 7, Sierra statement #1
[ap + -1] = [[fp + -7] + 0]; // 9, Sierra statement #1

[ap + 0] = [fp + -7] + 1, ap++; // 10, Sierra statement #4
jmp rel 10 if [fp + -3] != 0; // 12, Sierra statement #5

[ap + 0] = [ap + -1], ap++; // 14, Sierra statement #11

[ap + 0] = [ap + -3], ap++; // 15, Sierra statement #12

[ap + 0] = 0, ap++; // 16, Sierra statement #13

[ap + 0] = 0, ap++; // 18, Sierra statement #13

[ap + 0] = [fp + -5], ap++; // 20, Sierra statement #13

ret; // 21, Sierra statement #14

[ap + 0] = [ap + -1], ap++; // 22, Sierra statement #21

[ap + 0] = [ap + -3], ap++; // 23, Sierra statement #22

[ap + 0] = [fp + -4], ap++; // 24, Sierra statement #23

[ap + 0] = [fp + -5] + [fp + -4]1, ap++; // 25, Sierra statement #24
[fp + -3] = [ap + 0] + 1, ap++; // 26, Sierra statement #25

call rel -28; // 28, Sierra statement #26

ret; // 30, Sierra statement #27

%{ memory[ap + 0] = segments.add() %}

ap += 1; // 31, Sierra statement #32

[ap + 0] = 375233589013918064796019, ap++; // 33, Sierra statement #34

[ap + -1] = [[ap + -2] + 0]; // 35, Sierra statement #35
[ap + 0] = [fp + -7] + 1, ap++; // 36, Sierra statement #39
[ap + 0] = [fp + -6], ap++; // 38, Sierra statement #40

[ap + 0] = 1, ap++; // 39, Sierra statement #41

[ap + 0] = [ap + -5], ap++; // 41, Sierra statement #41

[ap + 0] = [ap + -6] + 1, ap++; // 42, Sierra statement #41

ret; // 44, Sierra statement #42

Listing 5: Recursive Fibonacci (Sierra code on Figure 7) compilation to CASM

Page 16/18

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

// Types and libfuncs declarations removed for clarity

1
2
3
4 | disable_ap_tracking() -> (); // 0

5|// Following withdraw_gas: [success = 3 steps, 1 rcl, [failure = 4 steps, 1 rcl
6 |withdraw_gas ([0], [1]) { fallthrough([5], [6]) 28([71, [81) }; // 1

7

8

branch_align() -> O; // 2
9 | dup<felt252>([4]) -> ([4], [91); // 3

failure 10 | store_temp <RangeCheck>([5]) -> ([51); // 4, 1 step
11 |// Following felt252_is_zero: 1 step for success and failure

12 | felt252_is_zero([9]) { fallthrough() 15([10]) }; // &

14 | branch_align() -> O; // 6

15 | drop<felt252>([4]1) -> O; // 7

16 | drop<felt252>([3]) -> (); // 8

17 | struct_construct <Tuple<felt252>>([2]) -> ([111); // 9

18 | enum_init<core::panics::PanicResult::<(core::felt252,)>, 0>([11]) -> ([12]); // 10
19 | store_temp <RangeCheck>([5]) -> ([61); // 11, 1 step

20 | store_temp<GasBuiltin>([6]) -> ([61); // 12, 1 step

21 | store_temp<core::panics::PanicResult::<(core::felt252,)>>([12]) -> ([12]); // 13, 3
< steps

22 | return([6], [6], [12]1); // 14

23

24 | branch_align() -> (); // 15

25 | drop<NonZero<felt252>>([101) -> () ; // 16

26 | dup<felt252>([3]) -> ([3]1, [131); // 17

27 | felt252_add ([2], [13]) -> ([14]); // 18, 1 step

28 | const_as_immediate<Const<felt252, 1>>() -> ([151); // 19
29 | felt252_sub ([4], [15]1) -> ([16]1); // 20, 1 step

30 | store_temp<RangeCheck>([5]) -> ([51); // 21, 1 step

31 | store_temp<GasBuiltin>([6]1) -> ([61); // 22, 1 step

32 | store_temp<felt252>([3]) -> ([3]1); // 23, 1 step

33 | store_temp<felt252>([14]) -> ([141); // 24, 1 step

34 | store_temp<felt252>([16]) -> ([16]1); // 25, 1 step

35 | function_call<user@fib::fib::fib>([5], [6], [3], [14], [16]1) -> ([17], [18], [19]);
— // 26, 2 steps for call

36 | return([17], [18], [191); // 27

success

function_call

38 | branch_align() -> O; // 28

39 | drop<felt252>([3]) -> (); // 29

40 | drop<felt252>([4]) -> O; // 30

41 | drop<felt252>([2]) -> (); // 31

42 | array_new<felt252>() -> ([20]); // 32, 1 step

43 | const_as_immediate<Const<felt252, 375233589013918064796019>>() -> ([21]1); // 33

44 | store_temp<felt252>([21]) -> ([21]); // 34, 1 step

45 | array_append<felt252>([20], [21]) -> ([22]); // 35, 1 step

46 | struct_construct<core::panics::Panic>() -> ([23]1); // 36

47 | struct_construct <Tuple<core::panics::Panic, Array<felt252>>>([23], [22]) -> ([24]);
— // 37

48 | enum_init<core::panics::PanicResult::<(core::felt252,)>, 1>([24]1) -> ([25]1); // 38
49 | store_temp <RangeCheck>([7]) -> ([71); // 39, 1 step

50 | store_temp<GasBuiltin>([81) -> ([81); // 40, 1 step

51 | store_temp<core::panics::PanicResult::<(core::felt252,)>>([25]) -> ([25]); // 41, 3
< steps

52 |return([7], [8], [25B1); // 42

54 | fib::fib::fib@0 ([0]: RangeCheck, [1]: GasBuiltin, [2]: felt252, [3]: felt252, [4]:
<y felt252) -> (RangeCheck, GasBuiltin, core::panics::PanicResult::<(core::
— felt252,)>);

Figure 7: The Sierra compiled code and graph representation of the Cairo 1.0 code of List-
ing 4.

References

[1] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo — a Turing-complete
STARK-friendly CPU architecture. Cryptology ePrint Archive, Report 2021/1063,
2021. https://ia.cr/2021/1063.

[2] Mathieu. Under the hood of Cairo 1.0: Exploring Sierra
[Part 1], May 2023. https://www.nethermind.io/blog/
under-the-hood-of-cairo-1-0-exploring-sierra-part-1.

[3] Mathieu. Under the hood of Cairo 1.0: Exploring Sierra
[Part 2], April 2023. https://www.nethermind.io/blog/

Page 17/18

https://ia.cr/2021/1063
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-1
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-1
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-2
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-2

CEXPERTS Analysis of the gas accounting algorithm of Cairo 1.0

ras counter GC }. or
e P,
<

O
/Il
~
0o
S’ QJ

I'(2) = 2170

200

I'(2) = 2070
T'(6) = 500

I'(15) = 1970 3
r(14) =0

I'(26) = 1470

Q27 =0

Figure 8: Local wallet values I' computation at each node for the Sierra Fibonacci function
of Figure 7, and computation of the gas withdrawal constraint at withdraw_gas node (1),
leading to gas reinjection of 1270 gas units.

under-the-hood-of-cairo-1-0-exploring-sierra-part-2.

[4] Mathieu. Under the hood of Cairo 1.0: Exploring Sierra

[Part 3, Marsh 2023. https://www.nethermind.io/blog/
under-the-hood-of-cairo-1-0-exploring-sierra-part-3.

[5] Ori Ziv. Not Stopping at the Halting Problem. STARKWARE Sessions 23, 02 2023.
https://www.youtube.com/watch?v=wYxUedcdVZ4.

Page 18/18

https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-2
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-2
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-2
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-3
https://www.nethermind.io/blog/under-the-hood-of-cairo-1-0-exploring-sierra-part-3
https://www.youtube.com/watch?v=wYxUedcdVZ4

