HEAAN library
HEAAN

Kyoohyung Han
May 23, 2018

Seoul National University

HEAAN scheme

HEAAN Scheme

HEAAN library is a library that supports operations between
encrypted array of complex numbers. The Security of this scheme is
decided by 1ogQ, LogN with fixed standard deviation ¢ = 3.2. If you
use Martin’s LWE parameter estimator, you can check the security of
the scheme .

encode : (my,...,mg) € C* = |A-m(x)] € Z2[X]/(X" 4 1).
The ciphertext is pair of polynomial (a(x), b(x)) € Rq such that
b(x) = —a(x)s(x) + [A - m(x)] + e(x) for m(x) € R[X]/(X" + 1)

for secret key s(x), R = Z[X]/(X" + 1) and Rq = R/QR.

Thttps:/ /bitbucket.org/malb/lwe-estimator

Functionality

- encode: input m € C¥, output integer polynomial m(x).

- decode: input m(x), output array of complex number m.

- encrypt: input m, encode it and return a ciphertext (a(x), b(x)).
- decrypt: input (a(x), b(x)), decrypt and decode it and return m.
- add: input two ciphertext, return encryption of my + m,.

- square: input a ciphertext, return encryption of mo m.

- mult: input two ciphertext, return encryption of m; o m,.

- rotate: input a ciphertext, return encryption of rotated m.

20 means element-wise multiplication

How to use HEAAN library?

Pre-computations

First, we need to decide A and depth of target circuit L. This will
decide Q = Al. Using security parameter A and LWE parameter
estimator, we will choose N which is the dimension of polynomial 3.

Context context(logN, logQ);

= compute matrices for encoding and decoding. This class includes
encode and decode function.

ZZX mx = context.encode(mvec,slots,pBits);

= this will return encoded result which is an integer polynomial
m(x). Here pBits is logarithm of A with base 2.

3https:/ /github.com/kimandrik/HEAAN

Key Generation

In HEAAN scheme, we need additional public key which is a pair of
polynomial in R3,. Here P is called special modulus that has same
bit size with Q*.

SecretKey sk(logN, h);
= generate a sparse secret polynomial s(x) °.
Scheme scheme(sk, context);
= generate two public keys in below:
PKene = (a(x), —a(x)s(x) + e(x)) € Rq
PK e = (a(X), —a(x)s(x) + P - s*(x) + e(x)) € Rpq

“Now, the security is based on hardness of RLWE problem with (210gQ, LogN, o)
>This polynomial has only h number of non-zero elements € {—1,1}

Key Generation

If users of this library need slot rotation functionality, they need to
generate public keys corresponding it.

scheme.addConjKey(sk);
scheme.addLeftRotKey(sk,i);
scheme.addRightRotKey(sk.i);

= generate public keys for left rotation and right rotations.
PKiefiror,i = (a(X), —a(x)s(x) + Ps(x") + e(x)) € Rq

for k =5 mod 2N (k = 2N — 1 in case of conjugation and k = 5" in
case of right rotation). This key is used for left rotation of our
plaintext array with index i. If you call scheme.addLeftRotKeys
and scheme.addRightRotKeys is will generate all keys for power
of two rotations.

Homomorphic Addition

There are various version of homomorphic addition. Notice that we
can do addition between plaintext and ciphertext also.

cipher3 = scheme.add(cipher1l, cipher2);
scheme.addAndEqual(cipherl, cipher2);
cipher2 = scheme.addConst(cipherl, const);

= these algorithms are quite fast. addition between two ciphertexts
only takes about 10ms to 20ms for commonly used parameters. Note
that addAndEqual will update first input to the result ciphertext,
and this is slightly faster because of memory allocation timing.

Homomorphic Addition

Homomorphic Addition time = 19.48 ms
0.429113 (expected = 0.428984)
0.886836 (expected 0.886822)

dvec: 1.55806 (expected = 1.55808)
0
1

.683899 (expected = 0.683982)
.13934 (expected = 1.13933)

Homomorphic Multiplication

There are various version of homomorphic multiplication. Notice
that we can do multiplication between plaintext and ciphertext also.

cipher2 = scheme.square(cipherl);

cipher2 = scheme.squareAndEqual(cipher1);
cipher3 = scheme.mult(cipherl, cipher2);
scheme.multAndEqual(cipherl, cipher2);
cipher2 = scheme.multByConst(cipherl, const);

= those algorithms except multByConst use pR,; that we
generate at the first step. This takes about 100ms to 1000ms
depends on the parameters like depth L and A.

Homomorphic Rescaling

The result of homomorphic multiplication has scaling factor A%. So
we need to re-scaling it. Here pBits is logarithm of A with base 2.

cipher2 = scheme.reScaleBy(cipherl, pBits);
scheme.reScaleByAndEqual(cipherl, pBits);

= this will change to scaling factor A? to A. The result ciphertext
has modulus Q/A.

Homomorphic Multiplication and Rescaling

Homomorphic Multiplication time = 315.924 ms
dvec: -0.584994 (expected = -0.584978)

dvec: -0.126959 (expected = -0.126956)

dvec: 0.361808 (expected = 0.361819)

dvec: 0.019111 (expected = 0.0191251)

dvec: 0.0169387 (expected = 0.0169513)

Homomorphic Rotation

Because the plaintext is an array of real (or complex) element, we
need rotation (or shifting) operation for efficiency.

cipher2 = scheme.leftRotateBy(cipherl, i);
scheme.leftRotateByAndEqual(cipherl, i);
cipher2 = scheme.rightRotateBy(cipher1, i);
scheme.rightRotateByAndEqual(cipherl, 1i);

= each rotation need corresponding public key. If there is no

corresponding public key, this will combine power of two shifting
automatically.

1

Homomorphic Rotation

Homomorphic Rotation time = 143.653 ms

dvec .968041 (expected = 0.96837)
dvec .775928 (expected = 0.775818)
= 0.582289)

.70814 (expected = 0.708524)

0
0
dvec: 0.582578 (expected
0
0.666356 (expected = 0.666725)

Put All together

// Key Generation

Context context(logN, logQ);

SecretKey sk(logN);

Scheme scheme(sk, context);

scheme.addLeftRotKey(sk, 1);

// Encrypt

Ciphertext cipherl = scheme.encrypt(mvecl, slots, pBits, logQ);
Ciphertext cipher2 = scheme.encrypt(mvec2, slots, pBits, logQ);
// Homomorphic Operations

Ciphertext addCipher = scheme.add(cipherl, cipher2);

Ciphertext multCipher = scheme.mult(cipherl, cipher2);
scheme.reScaleByAndEqual(multCipher, pBits);

Ciphertext rotCipher = scheme.leftRotate(cipherl, 1);

// Decrypt

complex<double>* dvecAdd = scheme.decrypt(sk, addCipher);
complex<double>* dvecMult = scheme.decrypt(sk, multCipher);
complex<double>* dvecRot = scheme.decrypt(sk, rotCipher);

	HEAAN scheme
	How to use HEAAN library?

