
Aeronautics & Astronautics

Samuel Gilonis

18th March 2014

Third Year Individual Project

IP Number: 960

IP Title: Low-complexity controller design for an unmanned helicopter

Supervisor: Dr. Zhan Shu

Assessor: XXX

1

Individual Project Academic Integrity Statement

Declaration,

I, the undersigned, con�rm that the material presented in this project report is all my own work.

References to, quotations from, and the discussion of work of any other person have been correctly

acknowledged/cited within the report in accordance with University of Southampton guidelines on

academic integrity.

Name:

Signed: Date:

2

Contents

1 Nomenclature 6

2 Introduction 9

3 Aims 9

4 Rotor con�gurations 9

4.1 Main rotor and tail rotor . 10

4.2 Tandem rotors . 10

4.3 Transverse rotors . 10

4.4 Coaxial rotors . 10

4.5 Intermeshing rotors . 10

4.6 Multirotor . 11

5 Quadcopter Kinematics 13

5.1 Position and Orientation of the Quadcopter . 13

5.2 Position, Velocity, Orientation and Angular Velocity Vectors 14

5.3 Position Dynamics . 15

5.3.1 Mapping from zB to z3 . 15

5.3.2 Mapping from z3 to z2 . 16

5.3.3 Mapping from z2 to z1 . 16

5.3.4 Mapping from zB to zI . 17

5.4 Orientation Dynamics . 18

6 Forces and Moments Acting on the Quadcopter 20

6.1 Forces in the k̂I direction . 20

6.1.1 Weight of the Quadcopter . 20

6.1.2 Actuator Action . 20

6.1.3 Friction . 21

6.2 Forces in the ĵI direction . 21

6.2.1 Actuator Action . 21

6.2.2 Hub Force . 21

6.2.3 Friction . 21

6.3 Forces in the îI direction . 22

6.3.1 Actuator Action . 22

6.3.2 Hub Force . 22

6.3.3 Friction . 22

6.4 Rolling moments . 22

6.4.1 Actuator Action . 23

6.4.2 Gyroscopic E�ect from the Quadcopter Body . 23

6.5 Pitching moments . 23

6.5.1 Actuator Action . 23

6.5.2 Gyroscopic E�ect from the Quadcopter Body . 24

6.6 Yawing moments . 24

6.6.1 Gyroscopic E�ect from the Quadcopter Body . 24

3

6.6.2 Inertial Counter Torque from the Propellers . 24

6.6.3 Yaw Due to Drag . 24

7 Equations of Motion 24

7.1 Relating Thrust to Propeller Angular Velocity . 25

7.2 Relating Drag Force on the Propeller to Propeller Angular Velocity 27

7.3 Updated Equations of Motion . 27

8 Rudimentary PD Controller 28

9 Rudimentary PID Controller 32

10 Further Literature Review 32

10.1 Other Possible Control Mechanisms . 33

10.2 3D Visualisation . 35

11 Developing the PID controllers 36

11.1 Controlling motion in the x and y directions . 36

11.2 Controlling motion in the z direction . 37

12 Simulating the PID controllers 38

12.1 Simulation . 38

12.1.1 Example results . 38

12.1.2 3D, real-time visualisation . 40

12.1.3 Gathering multiple results . 41

12.2 Selecting gain parameters . 41

12.3 Uncertainty and errors . 44

12.3.1 Discretisation error . 44

12.3.2 Iteration error . 45

12.3.3 Modelling error . 47

12.3.4 Code error . 48

13 Results from the PID controllers 48

13.1 E�ect of integral gain on eliminating steady-state error . 48

13.2 E�ect of random disturbances . 51

13.3 E�cacy and accuracy of the controller . 52

13.4 Limitations of PID controllers . 54

13.4.1 Linearity . 54

13.4.2 Noise . 54

13.4.3 Windup . 55

14 Future Work 55

14.1 Improving the model . 55

14.2 Improving the PID controllers . 55

14.3 Develop other types of controllers . 55

14.4 Improve 3D visualisation . 55

14.5 Experiment . 56

4

15 Conclusion 56

16 Appendix A: Position Dynamics Additional Steps 57

16.1 Mapping from z3 to z2 . 57

16.1.1 Mapping from z2 to z1 . 58

17 Appendix B: MatLab Code 59

17.1 Code to map vectors from zB to zI : . 59

17.2 Code to convert from angular velocities to time derivatives of the Euler angles: 59

17.3 Code to compute the quadcopter's translational acceleration 60

17.4 Code to compute the quadcopter's rotational acceleration 61

17.5 Code for a PD controller . 61

17.6 Controlling motion in the x and y directions with a PID controller 63

17.7 Controlling motion in the z direction with a PID controller 63

17.8 3D, real-time visualization . 63

18 Appendix C: Orientation Dynamics Additional Steps 64

19 Appendix D: Momentum Theory 65

20 Appendix E: Second set of PID results from varying number of simulations 66

21 Appendix F: Graphs of results from the PD controller 68

22 Appendix G: Graphs of results from the PID controller 80

23 References 92

5

1 Nomenclature

A Rotor disk area

B Constant relating drag force to square of angular velocity

CD Coe�cient of drag

Di Drag generated on the ith propeller

eφ Error in roll angle

eθ Error in pitch angle

eψ Error in yaw angle

ex Error in x-coordinate

ey Error in y-coordinate

ez Error in z-coordinate

f Forces
~FD =

[
−Ciẋ −Cj ẏ −Ckż

]
Drag vector

zB =
{
OB , îB , ĵB , k̂B

}
Body-�xed frame

zI =
{
OI , îI , ĵI , k̂I

}
Earth-�xed inertial frame

H∞ H-in�nity control

I Inertia matrix

I Input current for motor

I0 Current when there is no load on the motor

I3 3× 3 Identity matrix

K Constant relating thrust to square of angular velocity

Kd Proportional gain tuning parameter

Ki Derivative gain tuning parameter

Kp Integral gain tuning parameter

Kt Torque proportionality constant

Kv Proportionality constant relating back EMF to RPM

Kτ Proportionality constant relating thrust to torque

LQR Linear Quadratic Regulator

m Quadcopter mass

PID Proportional Integral

P Power consumed by the motor

~p =
[
pi pj pk

]T
Arbitrary position vector

R Rotation matrix

R Propeller blade length

Rm Motor resistance
~TB =

[
0 0 TBk

]
Thrust vector in zB

~TI =
[
T Ii T Ij T Ik

]
Thrust vector in zI

Ti Thrust generated by the ith propeller

u(t) Output from controller

UAV Unmanned Aerial Vehicle

6

V Voltage across motor

~vI =
[
uI vI qI

]T
Velocity vector in zI

~vB =
[
uB vB wB

]T
Velocity vector in zB

θ Pitch angle

Θ= [φ, θ, ψ]T Orientation vector

ν, vi Induced velocity

ρ Air density

τ Torques

τD Torque due to drag

τm Motor torque

ξ =[x y z]T Position vector

φ Roll angle

ψ Yaw angle

Ψ Orientation dynamics rotation matrix

ωB =
[
p q r

]T
Angular velocity vector

Ω Propeller blade angular velocity

Ωr Residual propeller blade angular velocity

List of Figures

1 Rotor con�gurations (a-e taken from [4]) . 12

2 zI and zB and the rotations necessary to get between them. [8] 14

3 Mapping from zB to z3 . 15

4 Assigning propellers to roll and pitch motion. 22

5 Stabilising the quadcopter using PD control . 32

6 'Fuzzy' PID vs. PID from [13] . 34

7 3D visualisation by Gibianksy in [7] . 35

8 3D visualisation by al-Omari et al. in [14] . 36

9 Simulating quadcopter motion when using a PD controller 39

10 Simulating quadcopter motion when using a PID controller 40

11 3D, real-time visualisation of quadcopter motion . 41

12 Improperly tuned gain parameters lead to large overshoot and oscillatory motion 43

13 Properly tuned gain parameters will lead to no overshoot or oscillatory motion 43

14 Mean rise times against no. of simulations . 47

15 Mean results of 4096 simulations for the PD controller . 49

16 Mean results of 4096 simulations for the PID controller . 50

17 Mean results of 1024 simulations for the partial PID controller 51

18 E�ect of random disturbances . 51

19 Poor controller performance over long distances . 54

20 Mapping from z3 to z2 . 57

21 Mapping from z2 to z1 . 58

22 Momentum Theory. Image from [4, p.99] . 65

23 Mean rise times against no. of simulations . 67

24 Results of 2 simulations . 68

7

25 Results of 4 simulations . 69

26 Results of 8 simulations . 70

27 Results of 16 simulations . 71

28 Results of 32 simulations . 72

29 Results of 64 simulations . 73

30 Results of 128 simulations . 74

31 Results of 256 simulations . 75

32 Results of 512 simulations . 76

33 Results of 1024 simulations . 77

34 Results of 2048 simulations . 78

35 Results of 4096 simulations . 79

36 Results of 2 simulations . 80

37 Results of 4 simulations . 81

38 Results of 8 simulations . 82

39 Results of 16 simulations . 83

40 Results of 32 simulations . 84

41 Results of 64 simulations . 85

42 Results of 128 simulations . 86

43 Results of 256 simulations . 87

44 Results of 512 simulations . 88

45 Results of 1024 simulations . 89

46 Results of 2048 simulations . 90

47 Results of 4096 simulations . 91

List of Tables

1 Gain parameters . 42

2 E�ect of time-step on the accuracy of results . 45

3 E�ect of number of simulations on the mean results . 46

4 E�ect of integral gain on eliminating steady-state error . 50

5 E�ect of partial PID on eliminating steady-state error . 51

6 E�cacy and accuracy of the PD controller . 52

7 E�cacy and accuracy of the partial PID controller . 53

8 Second set of PID results from varying number of simulations 66

8

2 Introduction

There has been escalating interest in Unmanned Aerial Vehicles (UAVs) in recent years, largely stemming

from their controversial military applications but there has also from their potential use in commercial

and civil arenas. In the 1990s the need for UAVs was outlined in [1] by Captain B. Tice of the United

States Air Force as being for all missions that were �Dirty, Dull or Dangerous�. Though he was correct,

the Captain may have been unnecessarily narrow in this de�nition as the UAVs are just as relevant for

dirty, dull and dangerous jobs outside of a military context. NASA compiled a survey [2] of possible

applications for UAVs in a civil context in which they anticipated that these UAVs, or 'drones', would

be used in transport, exploration, scienti�c research, search and rescue, environmental conservation,

policing, surveillance, �re �ghting, disaster response and photography. At the time of writing the online

retailer Amazon have just announced plans for a delivery service based upon the use of octocopters.

The majority of drones at the moment are �xed wing aircraft but rotorcraft (helicopters) have certain

obvious advantages over �xed wing aircraft such as vertical take-o� and landing (VTOL) and the ability

to hover and �y at low altitudes. These advantages make rotorcraft drones an area of interest as while it

would be impossible to inspect a bridge, for example, with a �xed wing drone, with a small unmanned

helicopter this would be a trivial exercise.

This should provide some insight into the practical applications of unmanned rotorcraft but it is worth

noting that they are of interest in a more academic sense as well. As stated in [3, p.vii], helicopters are

high order, highly unstable, underactuated, nonlinear systems with dynamic coupling between the state

variables and control inputs and therefore pose a signi�cant challenge from a control perspective.

Helicopter dynamics are complicated enough so that they are still not fully understood and are therefore

approximated when constructing a model for control purposes. This project will therefore have three

parts: �rst of all a simple model for the rotorcraft dynamics must be derived; secondly, various low-complexity

controllers will be applied to see which o�ers the greatest stability and performance; thirdly, some kind

of graphical representation of the rotorcraft's motion will be created in order to visualize stability and

controller e�cacy.

3 Aims

The aims of this project are:

• Derive a mathematical model for helicopter dynamics.

• Design a low complexity controller that will keep the helicopter stable and allow it to follow a

de�ned trajectory.

• Test the controller using a simulation in MatLab.

• If possible, to design a 3D visualization of the helicopters motion in MatLab.

4 Rotor con�gurations

There is a multiplicity of con�gurations for helicopters that all seek to solve the problem of torque

generated by a lift-generating rotor. The starting point in helicopter design is to use a single rotor to

9

generate lift but this rotor will exert a torque on the main body of the helicopter (by Newton's Third Law,

for every reaction there is an equal and opposite reaction) and therefore cause the helicopter to spin. To

counteract this e�ect, additional rotors can be added that spin in the opposite direction, or a tail rotor

can be added that exerts a force perpendicular to that of the main rotor. As these con�gurations entail

di�erent mathematical models, the �rst decision in this project is to select a 'family' of helicopters to

model. The various con�gurations and the problem of counteracting rotor-torque reaction are described

in [4, pp. 3-6]. The rotor con�gurations can be seen in Figure 1.

4.1 Main rotor and tail rotor

As described above, the traditional helicopter con�guration uses a main rotor to generate lift and a tail

rotor which exerts a perpendicular force for yaw control and directional stability. In these helicopters

there will be a swash-plate mechanism that allows the pitch of the blades to be altered either collectively

or cyclically in order to generate vertical propulsion or tilt the thrust vector and cause the helicopter to

engage in translational motion.

4.2 Tandem rotors

This con�guration positions two counter rotating rotors, one in front of the other. As discussed in [4,

p.106], the two rotors rotate at an equal angular velocity and therefore the torque generated by each

cancels the other out. The yaw of the helicopter is controlled by increasing the angular velocity of one of

the rotors so that it generates a greater torque than the other. This con�guration also has swash-plate

mechanisms and can therefore tilt the thrust vector by a cyclic control of the blade pitch. Tandem rotors

have extremely complicated aerodynamics features as there is a great deal of aerodynamic interaction

between the two rotors as well as between the rotors and the fuselage.

4.3 Transverse rotors

Similar to the tandem con�guration, the transverse rotor setup uses two counter rotating rotors to

neutralise the torque, however, the transverse rotor positions the two rotors side-by-side with each being

attached to some form of �xed wing. As with the tandem setup this has the advantage of being able to

use all of the power from the engine to generate lift rather than having to divert power to counter the

torque.

4.4 Coaxial rotors

The coaxial con�guration, discussed in [6, p.101] has two counter rotating rotors with one on top of the

other. Though this is a more stable con�guration than some others, this comes at a cost given the high

mechanical complexity of the hub.

4.5 Intermeshing rotors

This con�guration has two counter rotating rotors at angles from the fuselage that are synchronised so

that the blades do not collide. Yaw is achieved by increasing the angular velocity of one of the rotors

which obviates the need for a tail rotor but the rotors are tilted and therefore not directly producing

vertical thrust, which reduces e�ciency.

10

4.6 Multirotor

Rotorcraft of this con�guration utilise two or more rotors (typically four, six or eight - called quadcopters,

hexacopters and octocopters respectively). Here the same principle of counter rotating rotors is used in

order to negate torque. Rather than using variable pitch blades in order to tilt the thrust vector and

alter the direction of �ight, these multicopters generally alter the lift generated by some of the propellers

in order to tilt the rotorcraft and therefore the thrust vector.

Early on in the project the decision was made to focus on a quadcopter con�guration because quadcopters,

while highly unstable, are mechanically simple, are approximately symmetrical across all three axes, do

not have signi�cant rotor-fuselage interaction and do not need variable pitch blades in order to navigate

all 6 degrees of freedom. These qualities make the quadcopter simpler to model and simulate while still

giving insight into the problems of helicopter control.

11

Figure 1: Rotor con�gurations (a-e taken from [4])

12

5 Quadcopter Kinematics

5.1 Position and Orientation of the Quadcopter

Numerous models for quadcopter motion have been derived in recent years. The �rst step is to de�ne

two frames, an inertial one that the quadcopter's motion will be measured as being relative to and

one that is �xed to the quadcopter body. According to [8], these frames can be described as �a point

in space and three orthonormal vectors that form a basis�. The �rst 'inertial' or 'Earth-�xed' frame,

zI , can be described by
{
OI , îI , ĵI , k̂I

}
where OI represents some point that we can call the origin,

îIrepresents North, ĵI represents East and k̂Irepresents 'up' in the North-East-Down convention. The

'body-�xed' frame, zB , can be described by
{
OB , îB , ĵB , k̂B

}
where OB represents the intersection of

the two quadcopter arms, îB falls along one of the quadcopter arms, ĵB falls along a quadcopter arm

perpendicular to îB and k̂B is normal to îB and ĵB and therefore is the direction of the thrust vector in

zB when all of the propellers are generating equal thrust.

It is necessary to de�ne these frames so that we can derive a way of mapping vectors from one to

the other. For example, while it is trivial to calculate the thrust vector with respect to zB , it is more
di�cult to do so with respect to zI . We need to know the thrust in zI as this will tell us about

the acceleration of the quadcopter with respect to some inertial point rather than with respect to the

quadcopter itself which would be meaningless. It is therefore convenient to derive a rotation matrix that

would map vectors from zB to zI .

First, some method for describing the orientation of zB must be achieved. This is typically done

using the Euler angles: roll, pitch and yaw denoted by φ, θ, and ψ respectively. If zB is at some

orientation described by

 φ

θ

ψ

then it will require three rotations of zB to bring it into alignment with

zI . Each rotation will de�ne a new intermediary frame and we will call these frames z3, z2 and z1.

This derivation is similar but not identical to the derivation found in [3, p.25] and aims to provide more

detail.

13

Figure 2: zI and zB and the rotations necessary to get between them. [8]

5.2 Position, Velocity, Orientation and Angular Velocity Vectors

It is useful to de�ne the position and velocity vectors with respect to zI .

The position vector is given by:

~ξ =

 x

y

z

 (1)

The velocity vector is given by:

~vI =

 uI

vI

wI

 =

 ẋ

ẏ

ż

 (2)

The orientation is given by:

Θ =

 φ

θ

ψ

 (3)

The time derivatives of roll pitch and yaw are given by:

Θ̇ =

 φ̇

θ̇

ψ̇

 (4)

14

Angular velocity is given by:

ωB =

 p

q

r

 (5)

5.3 Position Dynamics

5.3.1 Mapping from zB to z3

We can posit a position vector ~p that is given by ~p =

 pi

pj

pk


This vector could be given with respect to zI or zB or any other frame. This position vector will be

used to demonstrate how the rotation matrices are obtained.

Figure 3: Mapping from zB to z3

The �rst rotation is to rotate zB about îB by and angle φ. This can be seen in Figure 3 where the

vectors îB and î3are coming out of the page.

From Figure 3 it can be made out that:

~pBi = ~p3i (6)

~pBj = ~p3j cosφ+ ~p3k sinφ (7)

~pBk = ~p3k cosφ− ~p3j sinφ (8)

15

Therefore: 
~pBi
~pBj
~pBk

 =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ




~p3i
~p3j
~p3k

 (9)

We now have our rotation matrix that will map vectors from zB to z3: îB

ĵB

k̂B

 = RT (φ)

 î3

ĵ3

k̂3

 (10)

Where:

RT (φ) =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (11)

It is worth noting that the matrix obtained has been de�ned as the transpose of a matrix in order to

simplify later calculations.

5.3.2 Mapping from z3 to z2

The second rotation is about ĵ3 by and angle θ. By the same method as in the previous part we can

obtain a rotation matrix to map vectors from z3 to z2: î3

ĵ3

k̂3

 = RT (θ)

 î2

ĵ2

k̂2

 (12)

Where:

RT (θ) =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (13)

The full working can be seen in Appendix A.

5.3.3 Mapping from z2 to z1

The �nal rotation is about k̂2 by and angle ψ. We can obtain a rotation matrix to map vectors from z2

to z1:  î2

ĵ2

k̂2

 = RT (ψ)

 î1

ĵ1

k̂1

 (14)

16

Where:

RT (ψ) =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (15)

The full working can be seen in Appendix A. z1 is in alignment with zI therefore if we combine the

above rotation matrices we will have obtained a rotation matrix that can map from zB to zI . This

rotation matrix will be called R(Θ).

5.3.4 Mapping from zB to zI

We can denote the linear velocity vector with respect to zI of the quadcopter by:

~v =
[
uI vI wI

] îI

ĵI

k̂I

 (16)

We can also write the velocity vector with respect to zB :

~v =
[
uB vB wB

] îB

ĵB

k̂B

 (17)

Now using the rotation matrices:

~v =
[
uB vB wB

]
RT (φ)

 î3

ĵ3

k̂3

 (18)

~v =
[
uB vB wB

]
RT (φ)RT (θ)

 î2

ĵ2

k̂2

 (19)

~v =
[
uB vB wB

]
RT (φ)RT (θ)RT (ψ)

 î1

ĵ1

1̂2

 (20)

Now equate the right hand side of equations (20) and (16):

[
uB vB wB

]
RT (φ)RT (θ)RT (ψ)

 î1

ĵ1

1̂2

 =
[
uI vI wI

] îI

ĵI

k̂I

 (21)

17

Therefore:

[
uB vB wB

]
RT (φ)RT (θ)RT (ψ) =

[
uI vI wI

]
(22)

Now taking the transpose of each side (Recalling that (AB)
T

= BTAT): uB

vB

wB

 = R(ψ)R(θ)R(φ)

 uB

vB

wB

 (23)

We will therefore de�ne our overall rotation matrix R(Θ) as being equal toR(ψ)R(θ)R(φ), therefore:

R(Θ) =
(
RT (φ)RT (θ)RT (ψ)

)T
(24)

R(Θ) =


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1


T  cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


T  1 0 0

0 cosφ sinφ

0 − sinφ cosφ


T

T

(25)

Giving:

R(Θ) =

 cos θ cosψ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ cosφ sin θ sinψ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ

 (26)

For a given vector ~v in zB , the corresponding vector in zI is given by R(Θ)~v

It is now simple to create a function in MatLab that will map vectors from zB to zI . This code

can be viewed in Appendix B, Section 1.

5.4 Orientation Dynamics

We now need the corresponding transfer matrix in order to convert from the angular velocity of the

quadcopter to the time derivatives of the Euler angles. A less detailed version of this derivation can be

found in [3, pp.27-28] and [6, p.100]:

During an in�nitesimal time interval dt the quadcopter undergoes three in�nitesimal rotations dψ, dθ

and dφ therefore the quadcopters orientation can now be given by: ψ + dψ, θ + dθ, φ + dφ. According

to [3], ��nite rotations cannot be treated as vectors, in�nitesimal rotations may be treated as such�, and

therefore according to [6]:

n̂ = dφîB + dθĵ2 + dψk̂1 (27)

18

Therefore:

−→ω =
dn̂

dt
= φ̇îB + θ̇ĵ2 + ψ̇k̂1 (28)

We can also de�ne the angular velocity vector with respect to zB :

ωB = p̂iB + qĵB + rk̂B (29)

Therefore:

φ̇îB + θ̇ĵ2 + ψ̇k̂1 = p̂iB + qĵB + rk̂B (30)

We can now use the separate rotation matrices to relate

 p

q

r

and
 φ̇

θ̇

ψ̇


 p

q

r

 =

 φ̇

0

0

+RT (φ)

 0

θ̇

0

+RT (φ)RT (θ)

 0

0

ψ̇

 (31)

This give us:

ωB =

 1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇

 (32)

The interstitial steps may be seen in Appendix C.

This has given us a way of converting from the time derivatives of the Euler angles to angular velocity

but we would like to convert the other way around:

Θ̇ =

 φ̇

θ̇

ψ̇

 =

 1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cosφ cos θ


−1

ωB (33)

Therefore:

Θ̇ = Ψ(Θ)ωB (34)

Where:

Ψ(Θ) =

 1 sinφ tan θ cosφ tan θ

0 cosφ sinφ

0 sinφ
cos θ

cosφ
cos θ

 (35)

19

This can now be made into a function in MatLab to convert from angular velocities to the time derivatives

of the Euler angles which can be seen in Appendix B, Section 2.

We can now describe the position, velocity and angular velocity of the quadcopter with respect to

zI .

6 Forces and Moments Acting on the Quadcopter

Now that we can describe quadcopter motion, the next step towards a complete model of the quadcopter

dynamics is to assess which forces and moments are acting on the quadcopter. An analysis of the

forces and moments upon quadcopters is undertaken in [5, pp. 15-24] from which the list of forces and

moments was obtained but the derivations of the equations for these forces and moments are original

unless otherwise stated. Some forces, such as the 'hub forces' (de�ned in [5] as �the resultant of the

horizontal forces acting on all the blade elements�) and other aerodynamic e�ects such as the tendency

of the advancing blade in a propeller to generate more lift than the retreating blade, have been neglected

for the sake of simplifying the model. They may be included in the model at a later date.

6.1 Forces in the k̂I direction

6.1.1 Weight of the Quadcopter

The force due to gravity is mg. As a vector with respect to zI this is given by: 0

0

−mg

 (36)

6.1.2 Actuator Action

The thrust vector with respect to zB can be expressed as ~TB where ~TB =

 0

0

TBk

 as in zB the thrust

vector only has a 'vertical' component.

The thrust vector with respect to zI is therefore given by:

~TI =

 T Ii
T Ij
T Ik

 = R(Θ)

 0

0

TBk

 (37)

~TI =

 cos θ cosψ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ cosφ sin θ sinψ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ


 0

0

TBk

 (38)

Therefore the component of thrust from the propellers in the k̂B direction is given by:

T Ik = cosφ cos θTBk = cosφ cos θ ~TB = cosφ cos θ

4∑
i=1

Ti (39)

20

Where i denotes the number of the propeller and Ti denotes the thrust generated by that propeller.

6.1.3 Friction

The frictional force on the quadcopter is modelled as being simply:

~FD =

 −Ciẋ−Cj ẏ
−Ckż

 (40)

Where Ci, Cj and Ck are constants that relate force to linear velocity. The model of friction used is a

very primitive one but as it is very similar to the ones used in other successful projects such as [5] and

[7] it appears to be su�cient. Neither of these projects o�ers an explanation of why this model may be

appropriate so an outline of one has been attempted here. One method of expressing drag force is by

use of the drag equation:

FD =
1

2
ρv2CDA (41)

Where FD is the drag,ρ is the air density, v is the velocity, CD is a dimensionless drag coe�cient and

A is the area of object experiencing drag. It is important to note that CD cannot always be taken as a

constant and at low Reynold's numbers there is a relationship between Reynold's number and CD such

that drag can be taken as approximately proportional to velocity. At higher Reynolds numbers this

relationship changes and the drag is taken to be proportional to the square of the velocity. It is therefore

assumed that the quadcopter will be operating at low Reynold's numbers and therefore frictional forces

can be related to linear velocities by the constants Cx, Cy and Cz which incorporate drag coe�cient,

the density of air, the factor of one half and the area of the quadcopter generating drag.

The component of drag in the k̂B direction is therefore:

−Cz ż (42)

6.2 Forces in the ĵI direction

6.2.1 Actuator Action

As with the component of thrust in the k̂B direction, from equation (38) we can see that the component

of thrust from the propellers in the ĵB direction is given by:

T Ij = (cosφ sin θ sinψ − cosψ sinφ)

4∑
i=1

Ti (43)

6.2.2 Hub Force

As stated in [5, p.20]: �the hub force is the resultant of the horizontal forces acting on all the blade

elements�. The horizontal forces are those acting in the plane de�ned by the orthonormal vectors îB and

ĵB in zB . As of yet this force has not been modelled for this project.

6.2.3 Friction

From equation (40) the frictional force in the ĵB direction is given by:

21

−Cy ẏ (44)

6.3 Forces in the îI direction

6.3.1 Actuator Action

From equation (38) we can see that the component of thrust from the propellers in the îB direction is

given by:

T Ij = (sinφ sinψ + cosφ cosψ sin θ)

4∑
i=1

Ti (45)

6.3.2 Hub Force

As of yet this force has not been modelled for this project.

6.3.3 Friction

From equation (40) the frictional force in the îB direction is given by:

−Cxẋ (46)

6.4 Rolling moments

Here we must arbitrarily de�ne which propellers contribute to rolling moments and which contribute to

pitching moments.

Figure 4: Assigning propellers to roll and pitch motion.

As can be seen in Figure 4, propellers 1 and 3 will be contributing to the pitching moment and propellers

2 and 4 will be contributing to the rolling moment.

22

6.4.1 Actuator Action

If we take the distance from the centre of the quadcopter to the centre of each propeller to be l then the

rolling moment given by the propellers can be written as:

l(T2 − T4) (47)

6.4.2 Gyroscopic E�ect from the Quadcopter Body

The Newton-Euler formalism de�nes the translational and rotational dynamics of a rigid body:[
f

τ

]
=

[
mI3 0

0 I

][
v̇

ω̇

]
+

[
ω ×m
ω × Iω

]
(48)

Where I3 is a 3×3 identity matrix, m is the mass of the body and I is the moment of inertia of the

body about the centre of gravity. From this we can obtain Euler's equations for rigid body dynamics in

vector form:

τ = Iω̇ + ω × (Iω) (49)

Giving us:  τφ

τθ

τψ

 =

 Ixxṗ+ (Izz − Iyy) qr

Iyy q̇ + (Ixx − Izz) pr
Izz ṙ + (Iyy − Ixx) pq

 (50)

 Ixxṗ

Ixxq̇

Ixxṙ

 =

 τφ + (Iyy − Izz) qr
τθ + (Izz − Ixx) pr

τψ + (Ixx − Iyy) pq

 (51)

Where

 τφ

τθ

τψ

 are the external torques. We can therefore see that the rolling gyroscopic e�ect from the

quadcopter body is given by:

(Iyy − Izz) qr (52)

Even when hub force has been modelled, this moment may be neglected for the sake of simplicity as the

hub force and the distance h will both be small.

6.5 Pitching moments

6.5.1 Actuator Action

If we take the distance from the centre of the hub to the centre of each propeller to be l then the rolling

moment given by the propellers can be written as:

23

l(T1 − T3) (53)

6.5.2 Gyroscopic E�ect from the Quadcopter Body

From equation (51) the pitching gyroscopic e�ect from the quadcopter body is given by:

(Izz − Ixx) pr (54)

6.6 Yawing moments

6.6.1 Gyroscopic E�ect from the Quadcopter Body

From equation (51) the pitching gyroscopic e�ect from the quadcopter body is given by:

(Ixx − Iyy) pq (55)

6.6.2 Inertial Counter Torque from the Propellers

Any change in rotor speed will result in a torque given by:

IRΩ̇r

Where IR is the rotor inertia and Ω̇r is the overall residual propeller angular acceleration (therefore if

all of the propellers are accelerating uniformly then Ω̇r will equal zero. Ω̇r is only nonzero if there is a

disparity if there is a net angular acceleration when the angular acceleration of all of the propellers are

summed).

6.6.3 Yaw Due to Drag

If Di is the torque due to drag on the ithpropeller then the total yaw due to drag is given by:

4∑
i=1

(−1)i+1Di (56)

7 Equations of Motion

The above forces and torques can be written as:

fI = m
~̈
ξ =

 ẍ

ÿ

z̈

 =

 (sinφ sinψ + cosφ cosψ sin θ)
∑4
i=1 Ti − Cxẋ

(cosφ sin θ sinψ − cosψ sinφ)
∑4
i=1 Ti − Cy ẏ

−mg + cosφ cos θ
∑4
i=1 Ti − Cz ż

 (57)

τB = Iω̇ =

 Ixx 0 0

0 Iyy 0

0 0 Izz


 ṗ

q̇

ṙ

 =

 l(T2 − T4) + (Iyy − Izz) qr
l(T1 − T3) + (Izz − Ixx) pr∑4
i=1(−1)i+1Di + (Ixx − Iyy) pq

 (58)

Giving us:

24

~̈
ξ =

 ẍ

ÿ

z̈

 =


1
m (sinφ sinψ + cosφ cosψ sin θ)

∑4
i=1 Ti −

1
mCxẋ

1
m (cosφ sin θ sinψ − cosψ sinφ)

∑4
i=1 Ti −

1
mCy ẏ

−mg + cosφ cos θ
∑4
i=1 Ti − Cz ż

 (59)

Therefore if we know the orientation, linear velocity, thrust of each propeller and hub forces then we

know how the quadcopter will accelerate in three dimensional space.

ω̇ =

 ṗ

q̇

ṙ

 =


1
Ixx

l(T2 − T4) + 1
Ixx

(Iyy − Izz) qr
1
Iyy
l(T1 − T3) + 1

Iyy
(Izz − Ixx) pr

1
Izz

∑4
i=1(−1)i+1Di + 1

Izz
(Ixx − Iyy) pq + IRΩ̇r


Therefore if we know the thrusts of each propeller and the drag force created by the propeller blades

and the angular velocity of the quadcopter then we can calculate the angular acceleration.

As shown in [7] we can now crudely relate the thrust and the drag fores on the propellers to the angular

velocities of the rotors using Momentum Theory. For a richer model Blade Element Theory should be

used but for reasons of simplicity it has not been included at this time.

7.1 Relating Thrust to Propeller Angular Velocity

The motor torque can be given by:

τm = Kt(I − I0) (60)

Where τm is the rotor torque, Kt is the torque proportionality constant, I is the input current and I0 is

the current when there is no load on the motor.

The voltage across the motor can be expressed as the sum of back EMF and resistive losses:

V = IRm +KvΩ (61)

Where V is the voltage, I is the input current, Rm is the motor's resistance, Kv is the proportionality

constant that indicates back EMF per RPM and Ω is the propeller blade angular velocity.

Power consumed is given by:

P = IV (62)

From equation (60):

I =
τm
Kt

+ I0 (63)

25

Therefore:

P =

(
τm
Kt

+ I0

)[(
τm
Kt

+ I0

)
Rm +KvKtΩ

]
(64)

P =
(τm + I0Kt) (τmRm + I0KtRm +KvΩ)

K2
t

(65)

Now assume that the motor's resistance and the current when there is no load on the motor are both

negligible. These assumptions are made in [7] and will yield:

P ' Kv

Kt
τmΩ (66)

The motor's torque is proportional to the thrust produced therefore we can rewrite equation (66) as:

P ' KvKτ

Kt
TΩ (67)

Where Kτ is a proportionality constant that relates thrust to torque.

As can be seen in Appendix D, from Momentum Theory we get that the induced velocity of a propeller

is given by:

ν =

√
T

2ρA
(68)

Where ν is the induced velocity, ρ is air density and A is the area swept through by the propeller. This

relationship is derived in Appendix C.

P = Tν (69)

Therefore:

KvKτ

Kt
TΩ =

T
3
2

√
2ρA

(70)

T =

[
2ρA

(
KvKτ

Kt

)]
Ω2 (71)

Therefore thrust is proportional to the square of the propellers angular velocity:

T = KΩ2 (72)

We can therefore calculate some value for K, or calculate one based upon some existing quadcopter and

then relate thrust to the square of the propellers angular velocity in our model of quadcopter dynamics.

26

This relationship rests upon Momentum Theory which is known to be an inaccurate method of analysing

propellers. For the sake of simplicity Momentum Theory has been used here but a more complete analysis

should incorporate Blade Element Analysis to better calculate the thrust generated by the propellers.

7.2 Relating Drag Force on the Propeller to Propeller Angular Velocity

Using the drag equation we can express the frictional force on the propeller blades as:

FD =
1

2
ρAv2CD (73)

Where FDis the frictional force on the blades, ρ is the air density, v is the blade tip velocity and CDis

the dimensionless drag coe�cient.

Here we can assume that all of this force acts at the blade's tip which is an erroneous assumption

but irrelevant since we only desire to derive some relationship between the drag moment and propeller

angular velocity.

τD =
1

2
ρAv2CDR (74)

Where R is the propeller radius. Given that:

v = ΩR (75)

We can rewrite equation (74) as:

τD =
1

2
ρACDR

3Ω2 (76)

Therefore the torque due to drag is proportional to the square of the angular velocity:

τD = BΩ2 (77)

7.3 Updated Equations of Motion

We can now rewrite the equations of motion:

fI = m
~̈
ξ =

 ẍ

ÿ

z̈

 =

 (sinφ sinψ + cosφ cosψ sin θ)K
∑4
i=1 Ω2

i − Cxẋ
(cosφ sin θ sinψ − cosψ sinφ)K

∑4
i=1 Ω2

i − Cy ẏ
−mg + cosφ cos θK

∑4
i=1 Ω2

i − Cz ż

 (78)

τB = Iω̇ =

 Ixx 0 0

0 Iyy 0

0 0 Izz


 ṗ

q̇

ṙ

 =

 lK(Ω2
2 − Ω2

4) + (Iyy − Izz) qr
lK(Ω2

1 − Ω2
3) + (Izz − Ixx) pr

B
∑4
i=1(−1)i+1Ω2

i + (Ixx − Iyy) pq

 (79)

Therefore:

27

~̈
ξ =

 ẍ

ÿ

z̈

 =


1
m (sinφ sinψ + cosφ cosψ sin θ)K

∑4
i=1 Ω2

i − 1
mCxẋ

1
m (cosφ sin θ sinψ − cosψ sinφ)K

∑4
i=1 Ω2

i − 1
mCy ẏ

−g + cosφ cos θK
∑4
i=1 Ω2

i − 1
mCz ż

 (80)

ω̇ =

 ṗ

q̇

ṙ

 =


1
Ixx

lK(Ω2
2 − Ω2

4) + 1
Ixx

(Iyy − Izz) qr
1
Iyy
lK(Ω2

1 − Ω2
3) + 1

Iyy
(Izz − Ixx) pr

1
Izz
B
∑4
i=1(−1)i+1Ω2

i + 1
Izz

(Ixx − Iyy) pq

 (81)

MatLab functions can now be written that compute the quadcopter's translational and rotational

acceleration. These functions can be found in Appendix B.

8 Rudimentary PD Controller

Proportional-Integral-Derivative (PID) control is perhaps the most widely used control mechanism and

has been used since its conception almost one hundred years ago when it was developed by Nicolas

Minorsky as a means to automatically steer ships for the US Navy as documented in [9, pp.145-146].

Although this technique is very old it is still used today and given the simplicity of designing PID

controllers, it will serve well to test the model of quadcopter dynamics derived in Sections 5-7.

As outlined in [10, pp.211-217], PID control or 'three-term' control calculates the error between a desired

set point and the measured state as well as the rate of change of this error and the integral of this error.

The output of the controller is a signal that is proportional to the sum of these errors, each multiplied

by some constant. The derivative, or 'D', term serves to reduce overshoot of the system and the integral,

'I', term serves to eliminate steady-state errors.

The derivative or integral terms may be left out to create P,PI or PD controllers.

To control the quadcopter using PID or PD control, six single-input, single-output (SISO) controllers

are necessary to govern roll, pitch, yaw (heading), and motion in the îI , ĵI , k̂I directions.

The �rst step is to stabilise the roll pitch and yaw. The errors can be de�ned thusly:

eφ = φdesired − φmeasured (82)

eθ = θdesired − θmeasured (83)

eψ = ψdesired − ψmeasured (84)

The outputs of the PD controllers will therefore be:

Kφ
p eφ +Kφ

d

deφ(t)

dt
(85)

Kθ
peθ +Kθ

d

deθ(t)

dt
(86)

28

Kψ
p eψ +Kψ

d

deψ(t)

dt
(87)

Where Kp denotes the proportional gain tuning parameter and Kd denotes the derivative gain tuning

parameter and the superscripts φ, θ and ψ denoted which action the tuning parameters apply to. Given

that the roll and pitch movements are identical but about di�erent axes, we can use the same values

for Kφ
p and Kθ

p and for Kφ
d and Kθ

d . As a starting point the same values will also be used for Kψ
p and

Kψ
d although these may have to be altered. We may also assume for the sake of this test controller that

φdesired and θdesired are zero so that controller always stabilises but we would like to be able to set the

heading ψdesired.

The torques are related to the orientation of the quadcopter by the relationship:

τ = IΘ̈ (88)

Where I is the inertia matrix for the quadcopter. We therefore want the output of our PD controller to

be related to the torques by the relationship as stated in [7]:

τ = Iu(t) (89)

τ =

 τφ

τθ

τψ

 =

 Ixx 0 0

0 Iyy 0

0 0 Izz


 Kφ

p eφ +Kφ
d
deφ(t)
dt

Kθ
peθ +Kθ

d
deθ(t)
dt

Kψ
p eψ +Kψ

d
deψ(t)
dt

 (90)

Given that we are assuming φdesired and θdesired are zero, this means that:

eφ = −φmeasured = −φ (91)

eθ = −θmeasured = −θ (92)

eψ = ψdesired − ψmeasured (93)

Therefore:

 τφ

τθ

τψ

 =


−Ixx

(
Kφ
p φ+Kφ

d φ̇
)

−Iyy
(
Kθ
pθ +Kθ

d θ̇
)

−Izz
(
Kψ
p eψ +Kψ

d ˙eψ

)
 (94)

We can now equate the right hand sides of equations (79) and (95) for an expression that relates the

desired set points of the controller (in this case they are zero) with the angular velocities of the propellers

necessary to achieve these states.

29

 lK(Ω2
2 − Ω2

4) + (Iyy − Izz) qr
lK(Ω2

1 − Ω2
3) + (Izz − Ixx) pr

B
∑4
i=1(−1)i+1Ω2

i + (Ixx − Iyy) pq

 =


−Ixx

(
Kφ
p φ+Kφ

d φ̇
)

−Iyy
(
Kθ
pθ +Kθ

d θ̇
)

−Izz
(
Kψ
p eψ +Kψ

d ˙eψ

)
 (95)

This gives us three equations with four unknowns therefore we need an additional constraint. For the

quadcopter to stay aloft we know that the component of thrust from the actuators in the k̂i direction

must be equal to the weight of the quadcopter given by mg. The thrust vector in zB is given by:

TB =

 0

0

T

 (96)

Where T = K
∑4
i=1 Ω2

i . As the the blades do not have variable pitch and we are neglecting the e�ects

of blade �apping, the thrust vector in zB only has a k̂B component. If we de�ne the thrust vector in zI

as zI =

 Ti

Tj

Tk

, we know that Tk is equal to mg and we are not interested in the other components.

We must now use the rotation matrix de�ned in Section 5.3.4 to map the thrust vector into zI :

 cos θ cosψ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ cosφ sin θ sinψ − cosψ sinφ

− sin θ cos θ sinφ cosφ cos θ


 0

0

T

 =

 Ti

Tj

mg

 (97)

Therefore:

mg = cosφ cos θT (98)

Which gives:

T =
mg

cosφ cos θ
(99)

And therefore:

K

4∑
i=1

Ω2
i =

mg

cosφ cos θ
(100)

So we now have four equations and four unknowns so we can solve the system of equations for Ω1, Ω2,

Ω3 and Ω4. These equations are given in full below:


lK(Ω2

2 − Ω2
4) + (Iyy − Izz) qr

lK(Ω2
1 − Ω2

3) + (Izz − Ixx) pr

B
(
Ω2

1 − Ω2
2 + Ω2

3 − Ω2
4

)
+ (Ixx − Iyy) pq + IRΩ̇r

K
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)

 =


−Ixx

(
Kφ
p φ+Kφ

d φ̇
)

−Iyy
(
Kθ
pθ +Kθ

d θ̇
)

−Izz
(
Kψ
p eψ +Kψ

d ˙eψ

)
mg

cosφ cos θ

 (101)

30

We can assume in steady �ight, for the sake of this test controller at least, that the contributions from

the gyroscopic e�ects of the quadcopter body and the propellers are negligible and therefore rewrite the

equations as:


lK(Ω2

2 − Ω2
4)

lK(Ω2
1 − Ω2

3)

B
(
Ω2

1 − Ω2
2 + Ω2

3 − Ω2
4

)
K
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)

 =


−Ixx

(
Kφ
p φ+Kφ

d φ̇
)

−Iyy
(
Kθ
pθ +Kθ

d θ̇
)

−Izz
(
Kψ
p eψ +Kψ

d ˙eψ

)
mg

cosφ cos θ

 (102)

These equations can then be solved to give the necessary angular velocities of each propeller:


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


mg

4K cosφ cos θ +
−2B(Kθ

pθ+K
θ
d θ̇)Iyy+lK(Kψ

p eψ+K
ψ
d ˙eψ)Izz

4lBK

mg
4K cosφ cos θ +

−2B(Kφ
p φ+K

φ
d φ̇)Ixx−lK(Kψ

p eψ+K
ψ
d ˙eψ)Izz

4lBK

mg
4K cosφ cos θ +

2B(Kθ
pθ+K

θ
d θ̇)Iyy+lK(Kψ

p eψ+K
ψ
d ˙eψ)Izz

4lBK

mg
4K cosφ cos θ +

2B(Kφ
p φ+K

φ
d φ̇)Ixx−lK(Kψ

p eψ+K
ψ
d ˙eψ)Izz

4lBK

 (103)

The MatLab code for this controller can be seen in Appendix B, Section 5. We can the plot the angular

velocity and angular displacement of the quadcopter with respect to time when the angular velocities

of the propellers are governed by the PD controller as shown in Figure 5. Some hypothetical values for

physical constants such as mass and friction constants were given based upon existing quadcopters and

a range of values for Kd, Kp and Ki were used until an appropriate system response was obtained. An

initial disturbance is set in the form of an angular velocity so that the quadcopter has to restore to a

stable orientation. On the graph showing angular displacement, the red line shows the roll, the green

line shows pitch and the dashed blue line shows the yaw. On the graph showing angular velocity the

same colours indicate the time derivatives of these same Euler angles.

31

Figure 5: Stabilising the quadcopter using PD control

This result shows that the quadcopter can be stabilised using PD control. However, from the graph of

angular displacement we can see that there is a small steady state error. In order to eliminate this error

we should use a PID controller by augmenting our PD controller with an integral gain tuning parameter.

9 Rudimentary PID Controller

In order to create a PID controller it is simply a case of augmenting the output from the controller to

include an integral gain tuning parameter. In this case the angular velocities of each propeller are given

by:


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


mg

4K cosφ cos θ +
−2B(Kθ

pθ+K
θ
d θ̇+K

θ
I

´ T
0
θdt)Iyy+lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK

mg
4K cosφ cos θ +

−2B(Kφ
p φ+K

φ
d φ̇+K

φ
I

´ T
0
φdt)Ixx−lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK

mg
4K cosφ cos θ +

2B(Kψ
p eψ+K

ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Iyy+lK(Kθ

pθ+K
θ
d θ̇+K

θ
I

´ T
0
θdt)Izz

4lBK

mg
4K cosφ cos θ +

2B(Kψ
p eψ+K

ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Ixx−lK(Kφ

p φ+K
φ
d φ̇+K

φ
I

´ T
0
φdt)Izz

4lBK

 (104)

10 Further Literature Review

Although a large amount of literature review has gone into modelling quadcopter motion and designing

the PID controller, further review into the possible control mechanisms that could be applied to a

quadcopter, as well as various 3D visualization techniques, will be detailed in this section.

32

10.1 Other Possible Control Mechanisms

A number of control methods have been applied to the quadcopter problem including PID (Proportional

Integral Derivative) control [7], LQR (Linear Quadratic Regulator) [8], H∞ control [11] and fuzzy logic

control [12]. Combinations of these control techniques can be used as seen in [13] where a 'fuzzy

PID' controller was created with promising results. While it has been demonstrated that even a blunt

instrument such as PD control can be used to stabilise the quadcopter, PID control has some limitations.

The parameters Kd, Kp and Ki require tuning to �nd a stable con�guration as PID control does not

guarantee stability. Neither does PID control guarantee an optimal controller or a robust one. It

lacks robustness in the sense that the above model of quadcopter motion (presented in Sections 5-7)

does not take into account wind speed and although the controller will measure the error in position

and orientation and react accordingly, PID controllers are linear and will not respond well to non-linear

e�ects. It lacks optimality as there is no reason why a PID controller will o�er the best way of controlling

the quadcopter, the response time may be sluggish and the system process variables may overshoot their

desired values.

There are ways of improving the e�cacy of a PID control such as tuning the gain parameters which can

be done automatically as in [7] to good e�ect. An even more sophisticated method is to use a 'fuzzy

PID' controller as in [13], the results of which can be seen in Figure 6.

33

Figure 6: 'Fuzzy' PID vs. PID from [13]

The 'Fuzzy' control uses fuzzy logic which is a form of logic in which the truth value may be any

value between 1 and 0 (as opposed to binary logic in which truth values are either 1 or 0) in order

to tune the PID parameters in various di�erent operating conditions. Fuzzy control is non-linear and

is therefore intrinsically better suited to dealing with the nonlinear dynamics of a quadcopter than a

classical controller.

Another more modern approach to quadcopter control is the use of H∞ control as practiced in [11].

H∞ control is another nonlinear control technique that has been used to govern quadcopter motion. The

objective of H∞control is to optimise robust stabilisation and robust performance by taking into account

the disturbances and the discrepancies between the actual plant and the model of the plant that we are

34

operating with.

10.2 3D Visualisation

A number of similar projects have used 3D visualisation in order to demonstrate the e�cacy of their

controllers. Figure 7 shows the simple visualiser designed by Gibianksy in [7] which does not allow the

user to input desired values for the orientation or position of the quadcopter but assumes an initial

disturbance and then simulates the quadcopter's restoration to the 'neutral' position (all Euler angles

being equal to zero). The visualiser shows the thrust vectors of each propeller as arbitrarily scaled

coloured cylinders to give an indication of the thrust generated by each propeller.

Figure 7: 3D visualisation by Gibianksy in [7]

A more detailed approach was taken by al-Omari et al. in [14]. In their visualiser the user could enter

coordinates and a heading (yaw angle) for the quadcopter in real time as shown in Figure 8.

35

Figure 8: 3D visualisation by al-Omari et al. in [14]

No such visualisation has yet been created for this project but ideally one similar to that created by

al-Omari et al. will be developed in order to demonstrate the e�cacy of di�erent controllers.

11 Developing the PID controllers

First the error terms for the spatial coordinates must be de�ned:

ex = xdesired − xmeasured (105)

ey = ydesired − ymeasured (106)

ez = zdesired − zmeasured (107)

11.1 Controlling motion in the x and y directions

In the PID controllers shown above the functionality is extremely limited. These controllers are only

capable of driving the orientation of the quadcopter back to a 'neutral' state. However, this is easily

altered so that we can drive the orientation of the quadcopter to some desired orientation vector.

Once this is done we can set this desired roll and pitch angles as being proportional to the error (and

the derivative and integral of the error) between the desired coordinates and the measured coordinates

in the x and y directions. By this method, when the quadcopter is far away from its desired coordinate

it will tilt towards said desired coordinate and thus tilt the thrust vector towards it. As it approaches

36

the destination the error is reduced and thus the quadcopter begins to pull back. This is shown by the

following equations:

φdesired = Ky
p × ey +Ky

d × ėy +Ky
i ×

T̂

0

eydt (108)

θdesired = Kx
p × ex +Kx

d × ėx +Kx
i ×

T̂

0

exdt (109)

A limit must be imposed upon the desired angles otherwise the quadcopter would simply �ip over if the

desired coordinates were too far away. The limits can be expressed by:

−π
4
≤ φ ≤ π

4
(110)

−π
4
≤ θ ≤ π

4
(111)

The code to implement these equations can be viewed in Appendix 14.6.

11.2 Controlling motion in the z direction

Motion in the z direction is simpler to control as it can be done simply by setting the thrust as

proportional to the errors in the z direction rather than the function used in the rudimentary controllers

above which set thrust as the force necessary to maintain a constant altitude. In order to keep a constant

altitude the thrust must be given by the following equation, derived in Section 8:

T =
mg

cosφ cos θ
(112)

However, in order to have the altitude of the quadcopter as an input we can use a PID controller based

upon the error between the desired and the measured altitude:

T = Kz
p × ez +Kz

d × ėz +Kz
i ×

T̂

0

ezdt (113)

Some code must be included to prevent negative thrusts:

T ≥ 0 (114)

The code to implement this can be viewed in Appendix 14.7.

In the rudimentary PID controllers, adumbrated in Sections 8 and 9, the thrust is computed to always

be exactly what is required to keep the quadcopter aloft. In this case the thrust is designed to approach

that which is necessary to keep the quadcopter at the desired z-coordinate.

The angular velocities for the propellers are now given by:

37


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


T
4 +

−2B(Kθ
pθ+K

θ
d θ̇+K

θ
I

´ T
0
θdt)Iyy+lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK

T
4 +

−2B(Kφ
p φ+K

φ
d φ̇+K

φ
I

´ T
0
φdt)Ixx−lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK

T
4 +

2B(Kψ
p eψ+K

ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Iyy+lK(Kθ

pθ+K
θ
d θ̇+K

θ
I

´ T
0
θdt)Izz

4lBK

T
4 +

2B(Kψ
p eψ+K

ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Ixx−lK(Kφ

p φ+K
φ
d φ̇+K

φ
I

´ T
0
φdt)Izz

4lBK

 (115)

Or, given in full:


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


Kz
p×ez+K

z
d×ėz+K

z
i ×
´ T
0
ezdt

4 +
−2B(Kθ

pθ+K
θ
d θ̇+K

θ
I

´ T
0
θdt)Iyy+lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK
Kz
p×ez+K

z
d×ėz+K

z
i ×
´ T
0
ezdt

4 +
−2B(Kφ

p φ+K
φ
d φ̇+K

φ
I

´ T
0
φdt)Ixx−lK(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Izz

4lBK
Kz
p×ez+K

z
d×ėz+K

z
i ×
´ T
0
ezdt

4 +
2B(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Iyy+lK(Kθ

pθ+K
θ
d θ̇+K

θ
I

´ T
0
θdt)Izz

4lBK
Kz
p×ez+K

z
d×ėz+K

z
i ×
´ T
0
ezdt

4 +
2B(Kψ

p eψ+K
ψ
d ˙eψ+K

ψ
I

´ T
0
eψdt)Ixx−lK(Kφ

p φ+K
φ
d φ̇+K

φ
I

´ T
0
φdt)Izz

4lBK


(116)

12 Simulating the PID controllers

12.1 Simulation

Once the tuning gain parameters have been calibrated, simulations can be run that will test the

hypothetical quadcopter's response to given coordinates. When the simulation is run the code will

generate �ve plots: a plot of the path through space that the quadcopter would take, a plot of quadcopter

orientation against time, a plot of angular velocity against time, a plot of quadcopter position against

time and a plot of the quadcopter's linear velocity against time. On the plot of the path taken by the

quadcopter will also be printed the rise time of the quadcopter. This is de�ned by the time taken for

the quadcopter to be within 5% of all desired coordinates.

In order to make the simulation environment more realistic, a randomised disturbance (in the form

of an initial angular velocity of the quadcopter) is included in the simulation. However, this simulation

is still very idealistic as it does not take into account wind and other external forcing conditions which

make controlling quadcopters in reality a much more complex feat.

12.1.1 Example results

An example of the simulation, using the PD controller, is shown below in Figure 9. Default coordinates

of [100, 100, 100] are used in all simulations unless speci�ed otherwise.

38

Figure 9: Simulating quadcopter motion when using a PD controller

The same simulation is run using a PID controller in Figure 10.

39

Figure 10: Simulating quadcopter motion when using a PID controller

12.1.2 3D, real-time visualisation

As well as the results shown in Figures 9 and 10 the performance of a controller can also be viewed

in real-time. This is useful as the user can take information about the speed and acceleration of the

quadcopter at various stages of its journey which is unavailable when simply looking at a complete plot

of the quadcopter's path as in Figures 9 and 10. A still from one of these simulations can be seen in

Figure 11. The code for this visualisation can be seen in Appendix 14.8.

40

Figure 11: 3D, real-time visualisation of quadcopter motion

12.1.3 Gathering multiple results

It is di�cult to compare the performance of controllers when there are random disturbance at work so

it is useful to be able to see the mean results of multiple simulations in order to compare the important

measures of merit for a controller: mean rise time and mean proximity to the desired coordinates. The

graphs for the full range of results can be seen in Appendices F and G.

12.2 Selecting gain parameters

The gain parameters used are shown in Table 1:

41

Controller PD PID Partial PID (see Section 13.2)
Kφ
p 5.0 5.0 5.0

Kφ
d 4.0 4.0 4.0

Kφ
i 0.0 0.0 0.0

Kθ
p 5.0 5.0 5.0

Kθ
d 4.0 4.0 4.0

Kθ
i 0.0 0.0 0.0

Kψ
p 5.0 5.0 5.0

Kψ
d 4.0 4.0 4.0

Kψ
i 0.0 0.06 0.06

Kx
p 0.3× π

180 0.3× π
180 0.3× π

180

Kx
d 0.5× π

180 0.5× π
180 0.5× π

180

Kx
i 0.0 1.5e− 4× π

180 0.0
Ky
p 0.3× π

180 0.3× π
180 0.3× π

180

Ky
d 0.5× π

180 0.5× π
180 0.5× π

180

Ky
i 0.0 1.5e− 4× π

180 0.0
Kz
p 1.2e6 1.2e6 1.2e6

Kz
d −2.4e6 −2.4e6 −2.4e6

Kz
i 0.0 2.0e5 2.0e5

Table 1: Gain parameters

These gain parameters were obtained by trial and error, using the values employed by Gibiansky in [7]

as a starting point. This is certainly not an optimal solution but the values obtained have, as shown in

Section 13, given a controller that functions well. In order to use trial and error to manually optimise

the tuning parameters it was important to have the correct data. It was desirable to reduce error and

rise time but also to reduce overshoot and attempt to have the quadcopter move in as logical a fashion as

possible. To this end graphs were obtained to show how the quadcopter 'wanted' to behave in response

to error. An example of this is shown in Figure 12 and then, after tuning the gain parameters, in Figure

13. These �gures show that by properly tuning the controllers overshoot can essentially be eliminated

and a smooth path can be obtained.

42

Figure 12: Improperly tuned gain parameters lead to large overshoot and oscillatory motion

When improperly tuned it can be seen from Figure 12 that the desired pitch or roll angle 'spirals' around

the desired x or y coordinate respectively, moving through zero many times. This indicates oscillatory

motion as the quadcopter struggles to settle on the desired coordinates.

Figure 13: Properly tuned gain parameters will lead to no overshoot or oscillatory motion

When properly tuned it can be seen from Figure 13 that the desired pitch or roll angle does not spiral

around the desired x or y coordinate but instead approaches it in a more linear fashion and equals zero

43

exactly as it reaches it. As discussed in Section 10, there are many superior ways of optimising the gain

parameters. Automatic tuning as seen in [7] could be used or else a fuzzy PID controller as in [13] could

be used.

12.3 Uncertainty and errors

There are many potential sources of error in the simulation which are discussed in this section alongside

the approaches made to limit or eliminate these errors. As there does not appear to be any established

conventions on how to approach the reduction of error in the simulation of controllers, the approach made

has been based upon that used to reduce error in computational �uid dynamics. Four main sources of

error have been identi�ed: discretisation error, iteration error, model error and code error. In doing

CFD one must also look out for boundary-condition errors which are not relevant here.

Although the e�orts to eliminate error have been detailed below, there is still great uncertainty about

the results as all helicopters are highly complex and non-linear systems and therefore controlling them

outside of an idealised simulation environment is fraught with complexity.

12.3.1 Discretisation error

Discretisation error is the error due to having a grid or a time step that is not �ne enough. In this

instance the grid spacing is not an issue but it is possible that the time step could have an e�ect. It

is desirable to obtain 'time independence', i.e. have the time step such that doubling it will not vary

the results by more than 0.5%. The important results, as mentioned above, are the rise time and the

proximity to the desired coordinates.

It is important to have a time-step that is as small as necessary but no smaller. This is because as

the time-step diminishes, the number of computations that are necessary to complete the simulation

will balloon and the simulation will become much more burdensome. While this may not matter when

running the simulation one time, the simulation will be run several thousand times in order to gather

mean data on the performance of the controllers.

The code shall therefore be run for a range of time steps until an appropriate value is obtained and

the results presented in Table 2. For the purposes of reducing discretisation error the randomised

disturbances are unnecessary and would cloud the results and have therefore been disabled. In Table 2,

the spatial coordinates, x, y and z denote the �nal position of the quadcopter and all entries pre�xed

by the Greek letter, ∆, denote a percentage change in the pertinent value (given as an absolute value).

The simulations are all run for 120s which is far longer than necessary to reach a steady state. The PD

controller has been used for these results. The rise time for each time step is designated by R.T.

44

Time Step (s) R.T (s) ∆R.T (%) x (m) ∆x (%) y (m) ∆y (%) z (m) ∆z (%)
0.1 Not reached N/A 88.54 N/A 111.46 N/A 98.64 N/A
0.05 Not reached N/A 94.27 6.47 105.73 5.14 98.64 0
0.025 15.4500 N/A 97.14 3.04 102.86 -2.71 98.64 0
0.0125 14.9000 3.56 98.57 1.47 101.43 1.39 98.64 0

6.25e− 3 14.6563 1.64 99.28 0.73 100.72 0.71 98.64 0
3.125e− 3 14.5438 0.77 99.64 0.36 100.36 0.36 98.64 0
1.5625e− 3 14.4859 0.40 99.82 0.18 100.18 0.18 98.64 0
7.8125e− 4 14.4586 0.19 99.91 0.09 100.09 0.09 98.64 0

Table 2: E�ect of time-step on the accuracy of results

From the results in Table 2 we can see that a value between 3.125 × 10−3 and 1.5625 × 10−3 will be

appropriate and therefore for the purposes of this paper a time step of 2.0× 10−3s will be used.

12.3.2 Iteration error

Iteration error is error due to a steady state not being reached, i.e. the simulation is not allowed to run

for long enough to obtain good results. For these simulations there are two possible sources of iteration

error: �rstly, there could be an error in the �nal 'location' of the quadcopter if the simulation were not

allowed to reach a steady state and the program might indicate that no steady state would be reached

when in fact it would be if the simulation were allowed to continue. This kind of error is obviously very

easy to root out by simply giving the program much more time than it needs to reach a steady state.

From Table 2e we can see that the rise times will always be in the neighbourhood of 15s and although

we can expect deviations from this (especially once random disturbances are reintroduced), it is simply

unrealistic to expect rise times of greater than two minutes. This is also visible from Figures 9 and 10

(in which disturbances are active); there is no activity visible after the 30s mark.

There is another kind of iteration error that could e�ect a reading of the results. As stated above,

it is the mean results of multiple simulations, rather than how well the controllers perform in single

simulations, that are of interest. It is important, therefore, that the simulations are run enough times

for the mean results to be representative. Given that the disturbances, though random, will always

fall in the same range, we should expect that as the number of simulations increases, the mean results

should start to converge on a value. By doubling the number of simulations until the results converge by

an acceptable amount, in the same way as the time-step, an appropriate number of simulations to get

accurate results can be obtained. The results of this method can be seen in Table 3 (the PID controller

has been used), where the mean rise time is designated by M.R.T:

45

Simulations M.R.T (s) ∆M.R.T (%) x (m) ∆x (%) y (m) ∆y (%) z (m) ∆z (%)
2 14.93 104.31 97.93 100 0
4 15.20 1.81 101.48 2.71 100.76 2.89 100 0
8 15.88 4.47 100.19 1.27 98.70 2.04 100 0
16 15.80 0.50 100.33 0.14 100.98 2.31 100 0
32 15.86 0.38 100.69 0.36 98.51 2.45 100 0
64 16.06 1.26 99.64 1.04 98.64 0.13 100 0
128 15.66 2.49 100.58 0.94 99.34 0.71 100 0
256 16.14 3.07 100.38 0.20 99.60 0.26 100 0
512 16.09 0.31 100.14 0.24 99.69 0.09 100 0
1024 16.16 0.44 100.30 0.16 99.57 0.12 100 0
2048 16.19 0.19 100.34 0.04 99.60 0.03 100 0
4096 16.14 0.31 100.34 0.00 99.64 0.04 100 0

Table 3: E�ect of number of simulations on the mean results

The randomised disturbances heavily e�ect the results such that at low numbers of simulations the results

do not seem to converge and the variation in mean rise time �uctuates up to around 5%. However, at

higher numbers of simulations the variation drops down to less than 0.5% and the mean rise times start

to approach a value around 16.14s. Similarly the �nal x coordinate values converge at around 100.34

and the �nal y coordinate values converge at around 99.64. The �nal z coordinate values are always

exactly 100 as the integral gain parameter completely eliminates the steady state error in the z direction.

A second set of results was obtained to corroborate this one, available in Appendix E, and when 4096

simulations were computed all of the values were within 0.1%. A plot of the mean rise times against the

number of simulations can be seen in Figure 14.

46

Figure 14: Mean rise times against no. of simulations

However, 4096 simulations is extremely computationally burdensome so a compromise must be made

between reducing the iteration error and the time taken to obtain results. 1024 simulations seems to be

an appropriate number as doubling or halving the number of simulations will vary the results by less

than 0.5% (according to either set of results).

12.3.3 Modelling error

Modelling error is error due to a fault with the model itself or due to the incorrect equations being used.

This is potentially a large source of error in these simulations as several simpli�cations have been made

such as ignoring hub forces and certain aerodynamic e�ects. Aerodynamic friction has been modelled

as simply being proportional to quadcopter velocity, the model is also based upon Momentum Theory

which is less accurate than Blade Element Theory and lastly, the model does not take into account wind

gusts that may knock the quadcopter o� course.

There are a number of ways that modelling error can be reduced. Firstly, every e�ort to ensure the

validity of the derivation of quadcopter dynamics has been made. Secondly, the simpli�cations that

been made to the model are all supported by the literature review; the work done in [5],[7] and [8] all

make similar simpli�cations.

In terms of future work, the two most important ways in which the simulation could be made more

realistic would be to introduce a randomised wind gust into the code and to alter the model to use Blade

Element Theory rather than Momentum Theory.

47

12.3.4 Code error

Code error is error due to the numerical method being implemented incorrectly. As analytic solutions

would be extremely di�cult to obtain, the main method by which this kind of error can be eradicated is

simply checking the code against the mathematical model and ensuring that there are no discrepancies.

13 Results from the PID controllers

In this section the results themselves are discussed, having established the method for obtaining results,

as well as their validity, in Section 12. The full range of results can be viewed in Appendices F and G.

13.1 E�ect of integral gain on eliminating steady-state error

The most noticeable change when using the PID controller is that the steady-state error is the z direction

is completely eradicated. When using a simple Proportional-Derivative controller is used, aiming for a

z-coordinate of 100, the quadcopter will always end up at 98.6375. Although this is a small error it

may be more pronounced when attempting more precise movements with the quadcopter. This will be

discussed in Section 13.3.

Introducing an integral gain parameter has excellent results in the z direction and steady state error is

completely eradicated. Even when looking at low numbers of simulations (or indeed, single simulations),

there is zero error which indicates that the error is zero every time and does not just have a mean value

of zero. This can be seen from Table 3 or from the plots in Appendix G.

Despite the e�cacy of integral term in eradicating steady state error in the z direction, in the x and y

directions the performance is not as impressive. The most accurate results are yielded when looking at

the mean results of the most number of simulations so the results of the PD and PID controllers when

simulated 4096 times shall be compared in Table 4. As previously stated the desired coordinates are

[100,100,100].

48

Figure 15: Mean results of 4096 simulations for the PD controller

49

Figure 16: Mean results of 4096 simulations for the PID controller

Controller Error in x (%) Error in y (%) Error in z (%) Mean Rise Time (s)
PD 0.0132 0.0518 1.3625 16.3524
PID 0.3323 0.3194 0.0 16.1236

Table 4: E�ect of integral gain on eliminating steady-state error

We can therefore see a slight reduction in rise time by using the PID controller rather than the PD. The

more striking result however, is that the steady state errors in the x and y directions actually increases

when using an integral term. The largest error was in the z direction for the PD controller and this was

successfully eliminated with an integral term but the error in x and y directions, which was negligible

for the PD controller, has risen to around 0.3% when using the PID controller. This result raises the

possibility of only using an integral term for the z direction. The PID controller can easily be modi�ed

just by setting the values of Kx
i and Ky

i equal to zero.This gives the results shown in Table 5.

50

Figure 17: Mean results of 1024 simulations for the partial PID controller

Controller Error in x (%) Error in y (%) Error in z (%) Mean Rise Time (s)
Partial PID 0.0097 0.027 0.0 15.6532

Table 5: E�ect of partial PID on eliminating steady-state error

The results in Table 5 show an improvement in all areas; the errors are all less than 0.03% and the mean

rise time has been reduced.

13.2 E�ect of random disturbances

The e�ect of the random disturbances can be seen in Figure 18.

Figure 18: E�ect of random disturbances

The disturbances throw the path of the quadcopter away from a linear route and when the full range

of possible paths are examined (as in Figure 18) it can be seen that it forms a cobra's head like shape.

51

This shape can be explained by the way that the PID controllers have been designed. The desired x

and y coordinates are reached by setting the desired roll and pitch angles to be proportional to the error

in x and y. This means that when the disturbance alters the yaw angle of the quadcopter it will still

roll and pitch and therefore give motion in the incorrect direction. The quadcopter will still reach the

desired coordinates as there is a controller that corrects the yaw angle and besides, unless disturbance

is very large then the motion of the quadcopter is likely to have components in the desired direction.

This means that the quadcopter will drift o� course, correct it's heading and then head straight for the

desired coordinates.

13.3 E�cacy and accuracy of the controller

So far all of the simulations have been testing the performance of the controllers with respect to getting

the quadcopter to the same coordinate ([100,100,100]). To fully evaluate the performance of a controller

a range of coordinates must be used as it may perform well over long distances where small steady

state errors are negligible but behave worse over short distances where the user may be more sensitive

to smaller errors. The mean results of 1024 simulations (to do this many simulations takes around 90

minutes and, as there are diminishing returns from doing more as proved in Section 12.3.2, 1024 is

su�cient for this demonstration) for the PD controller are in Table 6, given to 2 decimal places.

Des. Coordinates Final Coordinates x-error (%) y-error (%) z-error (%) Rise Time (s)
[0.1,0.1,0.1] [0.09,0.10,-1.26] 8.95 3.22 1362.5 Not reached
[0.5,0.5,0.5] [0.51,0.47,-0.86] 1.08 5.78 272.5 Not reached

[1,1,1] [0.97,1.02,-0.36] 3.14 1.6 136.25 Not reached
[5,5,5] [5.02,4.98,3.64] 0.34 0.37 27.25 3.64

[10,10,10] [10.01,9.96,8.64] 0.14 0.39 11.37 Not reached
[25,25,25] [25,25,23.64] 0.02 0.01 5.45 Not reached
[50,50,50] [50.01,50.02,48.64] 0.02 0.04 2.73 15.87

[100,100,100] [100.02,99.98,98.64] 0.019 0.02 1.36 14.84
[200,200,200] [199.97,199.95,198.64] 0.02 0.02 0.68 24.25
[500,500,500] [499.87,499.84,498.64] 0.03 0.03 0.27 30.04

[1000,1000,1000] [1005.06,998.28,998.64] 0.51 0.17 0.14 51.05

Table 6: E�cacy and accuracy of the PD controller

The most obvious conclusion to draw from the results in Table 6 is that the error in the z direction is

unacceptably large over small distances. For all three simulations where the desired z coordinates were

less than 5, the simulation yielded a negative result for the �nal z coordinate. This indicates that the

quadcopter would have hit the �oor. It is also interesting to note that the error in the z direction never

changes, it is always equal to 1.3625. The controller performs much better in the x and y directions

although the error is considerably higher over very small or very large distances. At any distance above

5m and below 500m it can be seen that the quadcopter will reach its destination to within 0.5%. However,

there is quite often an error of between 1 and 5cm which is much more noticeable over short distances.

It is also worth noting that the simulation shows that as the quadcopter tries to reach distances of 1000m

in each direction the error begins to increase again. This shows that the controller is very e�ective over

short to medium distances but when given very short or very long distances to track, it performs less well.

The mean results of 1024 simulations for the partial PID controller are in Table 7:

52

Des. Coordinates Final Coordinates x-error (%) y-error (%) z-error (%) Rise Time (s)
[0.1,0.1,0.1] [0.11,0.13,0.1] 9.44 29.7 0.0 Not reached
[0.5,0.5,0.5] [0.49,0.49,0.5] 2.04 1.4 0.0 Not reached

[1,1,1] [1.01,0.95,1.0] 0.8 4.61 0.0 43.44
[5,5,5] [4.99,4.97,5] 0.2 0.55 0.0 16.38

[10,10,10] [9.99,9.98,10.0] 0.06 0.25 0.0 16.11
[25,25,25] [24.99,25.02,25.0] 0.04 0.07 0.0 16.40
[50,50,50] [50.01,50,50] 0.02 0.04 0.0 16.29

[100,100,100] [99.96,99.99,100] 0.04 0.01 0.0 15.63
[200,200,200] [199.98,200,200] 0.01 0.0 0.0 19.55
[500,500,500] [499.94,499.75,500] 0.01 0.05 0.0 31.86

[1000,1000,1000] [975.33,1004.09,1000.28] 2.47 0.41 0.03 55.52

Table 7: E�cacy and accuracy of the partial PID controller

The results in Table 7 corroborate much of what was seen in simulations for the PD controller (as they

are identical except in terms of yawing action and motion in the z direction). Again it is seen that the

performance of the controller slips over the very short and very long ranges. However, the use of an

integral term dramatically improves the performance in the z direction. There is now no error over any

range less than 1000m so that the controller could be used to navigate the quadcopter over very short

distances without it hitting the �oor, as would be an issue with the PD controller.

The poorer performance over larger distances is probably due to the tuning parameters being more

suited for shorter distances. This is indicated by Figure 19 in which it can be seen that the shape of

the path taken by the quadcopter is much less straight forward than that taken when the quadcopter is

travelling over shorter distances (as can be seen in Figure 17).

53

Figure 19: Poor controller performance over long distances

13.4 Limitations of PID controllers

13.4.1 Linearity

As mentioned throughout the project, all helicopters are high order, non-linear systems whereas PID

controllers are linear. This means that there is signi�cant 'plant uncertainty', i.e. one cannot be exactly

certain as to how the quadcopter will behave, and therefore it is not guaranteed that the controller will

perform as well in reality as it has in simulations.

13.4.2 Noise

Another major problem is that, would the controllers designed in this project to be used in reality, there

could be a lot of noise in the signal from the sensors. Therefore the signal may read very large changes of

error in the system, the derivative of which would amplify the signal and cause the quadcopter to behave

erratically. Although it is possible to remove the derivative term and have a PI controller, it is possible

to use electronic �lters to process the signals and remove unwanted high-frequency constituents and

enhance desirable ones. This will result in a 'smoother' signal without spikes in the error and therefore

the derivative term can still be used.

54

13.4.3 Windup

Wind up, and in particular integral windup, is a phenomenon whereby the output from the integrator

exceeds the capacity of the actuator. In practice this would mean that the propellers could not spin any

faster but the error will continue to be integrated and therefore the integrator will continue to grow and

can cause the system to become unstable. This problem can be addressed in many ways, most obviously

by setting a limit on the value of the integral term.

14 Future Work

There is a multitude of ways, many of them already discussed, in which the work in this project could

be expanded upon.

14.1 Improving the model

The model of quadcopter dynamics should be expanded and re�ned. It should be made to use Blade

Element Theory rather than Momentum Theory, it should incorporate external forcing conditions such

as wind gusts and it should take hub forces into account.

14.2 Improving the PID controllers

As discussed elsewhere in the project the PID controller could be improved in a number of ways. A hybrid

fuzzy-PID controller could be used to improve the response of the controller, �lters could be used to

eradicate signal noise (in the event of a practical experiment taking place), and the gain parameters could

be automatically tuned which optimise the controller performance and improve performance, particularly

over very short and very long distances.

14.3 Develop other types of controllers

As discussed in the literature review, there are many types of controllers that could be used to operate a

quadcopter and indeed would probably be better suited to the task. Non-linear controllers such as H∞
controllers in particular would be an avenue worth investigating as they would handle the non-linear

e�ects much better than a PID controller. There are other linear controllers such as LQR controllers

that could also be tested against the PID controllers performance.

By putting the equations of motion into state space form and linearising them, MATLAB can be used to

obtain a transfer function that could in turn be used in Simulink to automatically generate a very wide

variety of controllers. This would be an excellent method of comparing the respective merits of multiple

controllers.

14.4 Improve 3D visualisation

The 3D visualisation utilised in this project was very limited and just took the form of a marker denoting

the position of the quadcopter at any given time. This was a useful aid as it allows a user to judge

the speed, acceleration and deceleration as well as situations in which it arrives in the vicinity of the

destination very quickly but does not satisfy the rise time criteria. However, a more sophisticated 3D

visualisation, such as the one shown in Figure 8, would allow the user to see more information about the

orientation and the angular velocity and acceleration of the quadcopter.

55

It would also be able to give the quadcopter real time commands so that its performance in changing

direction could be evaluated.

14.5 Experiment

Ideally any future work should involve implementing the controller to operate an actual quadcopter.

This would give much better insight into the disparity between simulation of the controllers and their

actual performance in a real life situation.

15 Conclusion

In this project, the aims were de�ned as:

• Derive a mathematical model for helicopter dynamics.

• Design a low complexity controller that will keep the helicopter stable and allow it to follow a

de�ned trajectory.

• Test the controller using a simulation in MatLab.

• If possible, to design a 3D visualization of the helicopters motion in MatLab.

All of these aims have been successfully completed with varying degrees of success. In Section 4,

quadcopters were selected as the rotor con�guration that this project would focus upon. Section 5

contained a derivation of quadcopter kinematics, giving a means by which vectors could be mapped

from the inertial to the body-�xed frames of reference and thus allow us to model quadcopter motion.

Section 6 contained a catalogue of the forces and moments that act upon the quadcopter and then the

�ndings of Sections 5 and 6 were combined to give the quadcopter's equations of motion in Section 7.

This completes the �rst aim of the project, to derive a mathematical model for helicopter dynamics.

Having completed the quadcopter model, Sections 8 and 9 contained rudimentary PD and PID controllers

that were only built to stabilise the quadcopter but not actually control it. A brief literature review was

given in Section 10 that discussed various means of controlling and simulating quadcopters. Section 11

then focused on developing the rudimentary controllers of Sections 8 and 9 so that they could be used to

give the quadcopter coordinates to follow. This completes the second aim of the project, a low-complexity

controller that both stabilises the quadcopter and allows a user to send it to given coordinates. These

controllers were then simulated in Section 12 alongside an extended discussion of the validity of the

results of those simulations. This section completes the �nal two aims of the project, to simulate the

quadcopter's motion and to give an appropriate 3D visualisation.

The results of the simulations were then discussed in Section 13 and the limitations of the technique used

(Proportional-Integral-Derivative control) were discussed. This led onto Section 14 where the possibilities

for expanding and improving upon the project were discussed.

56

16 Appendix A: Position Dynamics Additional Steps

Some steps detailing the derivation of the two rotation matrices RT (θ) and RT (ψ) were eliminated from

the derivation presented in Section 5.3 for the sake of brevity. These are presented here:

16.1 Mapping from z3 to z2

Figure 20: Mapping from z3 to z2

From Figure 20 it can be made out that:

p3i = p2i sin θ − p2k sin θ (117)

~p3j = ~p2j (118)

~p3k = ~p2k cos θ + ~p2i sin θ (119)

Therefore: 
~p3i
~p3j
~p3k

 =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




~p2i
~p2j
~p2k

 (120)

We now have our rotation matrix that will map vectors from zB to z3:

57

 î3

ĵ3

k̂3

 = RT (θ)

 î2

ĵ2

k̂2

 (121)

Where:

RT (θ) =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (122)

16.1.1 Mapping from z2 to z1

Figure 21: Mapping from z2 to z1

From Figure 21 it can be made out that:

p2i = p1i cosψ + p1j sinψ (123)

~p2j = ~p1j cosψ − ~p1i sinψ (124)

~p2k = ~p1k (125)

Therefore: 
~p2i
~p2j
~p2k

 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1




~p1i
~p1j
~p1k

 (126)

58

We now have our rotation matrix that will map vectors from zB to z3: î2

ĵ2

ĵ2

 = RT (ψ)

 î1

ĵ1

k̂1

 (127)

Where:

RT (ψ) =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (128)

17 Appendix B: MatLab Code

17.1 Code to map vectors from zB to zI:

1 function R = rotation(angles)

2

3 phi=angles (1);

4 theta=angles (2);

5 psi=angles (3);

6

7 R=zeros (3);

8

9 R(1,:) = [

10 cos(theta)*cos(psi)

11 cos(psi)*sin(phi)*sin(theta)-cos(phi)*sin(psi)

12 sin(phi)*sin(psi)+cos(phi)*cos(psi)*sin(theta)

13];

14

15 R(2,:) = [

16 cos(theta)*sin(psi)

17 cos(phi)*cos(psi) + sin(phi)*sin(theta)*sin(psi)

18 cos(phi)*sin(theta)*sin(psi)-cos(psi)*sin(phi)

19];

20

21 R(3,:) = [

22 -sin(theta)

23 cos(theta)*sin(phi)

24 cos(phi)*cos(theta)

25];

26

27 %This rotation matrix maps between the body -fixed frame and the inertial %frame.

28

29 end

17.2 Code to convert from angular velocities to time derivatives of the Euler

angles:

59

1 function thetadot = omega2thetadot(omega ,angles)

2

3 phi=angles (1);

4 theta=angles (2);

5 psi=angles (3);

6

7 A=zeros (3);

8

9 A(1,:)=[

10 1

11 0

12 -sin(theta)

13];

14

15 A(2,:) =[

16 0

17 cos(phi)

18 cos(theta)*sin(phi)

19];

20

21 A(3,:) =[

22 0

23 -sin(phi)

24 cos(phi)*cos(theta)

25];

26

27 W=inv(A);

28 thetadot=W*omega;

29

30 %This function converts from angular velocity to the time derivatives

31 %of roll , pitch and yaw.

32

33 end

17.3 Code to compute the quadcopter's translational acceleration

1 function a= acceleration(orientation ,m,K,inputs ,velocities ,Cx,Cy,Cz,g);

2

3 gravity = [0 0 -g].';

4 thrust_FB = K*sum(inputs); %thrust in the body -fixed frame

5 R = rotation(orientation); %rotation matrix to map vectors from F_B to F_I

6 thrust_FI = R*thrust_FB; %thrust in the inertial frame

7 drag = [-Cx*velocities (1);-Cy*velocities (2);-Cz*velocities (3)];

8

9 a = gravity + 1/m*thrust_FI + 1/m*drag;

10

11 %This function computes the acceleration of the quadcopter based upon

12 %its orientation , mass , thrust proportionality constant , inputs (the

13 %squares of each propeller 's angular velocity , the linear velocity , the

14 %drag constants and the acceleration due to gravity.

15

16 end

60

17.4 Code to compute the quadcopter's rotational acceleration

1 function a = angular_acceleration(I,l,K,inputs ,angular_velocities);

2

3 i1=inputs (1);

4 i2=inputs (2);

5 i3=inputs (3);

6 i4=inputs (4);

7

8 p=angular_velocities (1);

9 q=angular_velocities (2);

10 r=angular_velocities (3);

11

12 Ixx=I(1,1);

13 Iyy=I(2,2);

14 Izz=I(3,3);

15

16 actuator_action =[

17 l*K*(i2 -14);

18 l*K*(i1-i3);

19 0;

20];

21

22 dragtorque =[

23 0;

24 0;

25 B*(i1-i2+i3-i4);

26];

27

28 gyrotorque =[

29 (Iyy -Izz)*q*r;

30 (Izz -Ixx)*p*r;

31 (Ixx -Iyy)*p*q;

32];

33

34 a = inv(I)*(actuator_action + gyrotorque + dragtorque);

35

36 %This function computes the angular acceleration of the quadcopter

37 %based upon the inertia matrix , the length of the quadcopter arms , the

38 %thrust proportionality constant , the inputs (squares of the angular

39 %velocities of the propellers) and the angular velocity of the

40 %quadcopter.

41

42 end

17.5 Code for a PD controller

1 function [inputs ,previous_error2] = PD(m,g,K,B,I,l,start_time ,end_time ...

2 ,dt,orientation ,desired_orientation ,previous_error)

3 %eulerdot represents the time derivatives of the euler angles.

4

5 inputs=zeros (4,1);

6 previous_error2=zeros (3,1); %At the end of the code the function will set

7 %the error as the new previous error. In

8 %themain simulator code previous_error2

9 %will be set as the previous_error argument

61

10 %for this function.

11

12 Ixx=I(1,1);

13 Iyy=I(2,2);

14 Izz=I(3,3);

15

16 phi=orientation (1);

17 theta=orientation (2);

18 psi=orientation (3);

19

20 Kp_phi =4; %the tuning parameters

21 Kd_phi =3;

22 Kp_theta =4;

23 Kd_theta =3;

24 Kp_psi =4;

25 Kd_psi =3;

26

27 phi_des=desired_orientation (1);

28 theta_des=desired_orientation (2);

29 psi_des=desired_orientation (3);

30

31 error_phi=phi_des -phi;

32 error_theta=theta_des -theta;

33 error_psi=psi_des -psi;

34

35 previous_error_phi=previous_error (1);

36 previous_error_theta=previous_error (2);

37 previous_error_psi=previous_error (3);

38

39 errordot_phi =(error_phi -previous_error_phi)/dt;

40 errordot_theta =(error_theta -previous_error_theta)/dt;

41 errordot_psi =(error_psi -previous_error_psi)/dt;

42

43 thrust=m*g/(K*cos(phi)*cos(theta));

44

45 inputs (1)=thrust /4 ...

46 + 1/(4*l*B*K)*(-2*B*(Kp_theta*error_theta+Kd_theta*errordot_theta)*Iyy ...

47 + l*K*(Kp_psi*error_psi+Kd_psi*errordot_psi)*Izz);

48

49 inputs (2)=thrust /4 ...

50 + 1/(4*l*B*K)*(-2*B*(Kp_phi*error_phi+Kd_phi*errordot_phi)*Ixx ...

51 - l*K*(Kp_psi*error_psi+Kd_psi*errordot_psi)*Izz);

52

53 inputs (3)=thrust /4 ...

54 + 1/(4*l*B*K)*(2*B*(Kp_psi*error_psi+Kd_psi*errordot_psi)*Iyy...

55 + l*K*(Kp_theta*error_theta+Kd_theta*errordot_theta)*Izz);

56

57 inputs (4)=thrust /4 ...

58 + 1/(4*l*B*K)*(2*B*(Kp_psi*error_psi+Kd_psi*errordot_psi)*Ixx...

59 - l*K*(Kp_phi*error_phi+Kd_phi*errordot_phi)*Izz);

60

61 previous_error2 (1)=error_phi;

62 previous_error2 (2)=error_theta;

63 previous_error2 (3)=error_psi;

64

65 %This function computes the propeller angular velocities necessary to obtain

66 %the desired orientation based upon PD control.

62

67

68 end

17.6 Controlling motion in the x and y directions with a PID controller

1 phi_des= Kp_y*error_y + Kd_y*errordot_y + Ki_y*int_y;

2 if phi_des >pi/4

3 phi_des=pi/4;

4 end

5 if phi_des <-pi/4

6 phi_des=-pi/4;

7 end

8

9 theta_des= Kp_x*error_x + Kd_x*errordot_x + Ki_x*int_x;

10 if theta_des >pi/4

11 theta_des=pi/4;

12 end

13 if theta_des <-pi/4

14 theta_des=-pi/4;

15 end

17.7 Controlling motion in the z direction with a PID controller

1 thrust=Kp_z*error_z + Kd_z*errordot_z + Ki_z*int_z;

2 if thrust <0

3 thrust =0;

4 end

17.8 3D, real-time visualization

1 if risetime ~= 0

2 figure;

3 for i=1:2: gecount

4 %If the quadcopter reaches the rise time criteria ,

5 %the simulation will cut off 10s after the rise time.

6 plot3(xs(1:i),ys(1:i),zs(1:i),':r')

7 hold on

8 scatter3(xs(i),ys(i),zs(i),'r')

9 hold off

10 axis([xmin ,xmax ,ymin ,ymax ,zmin ,zmax])

11 posstr2=strcat ({' x = '},num2str(xs(i))...,

12 {', y = '},num2str(ys(i)),{', z = '},num2str(zs(i)));

13 text(xs(i),ys(i) ,0.9*zs(i),posstr2)

14 clock=strcat ({' t = '},num2str(times(i)), 's');

15 text(xs(i),ys(i),zs(i),clock)

16 title('Path of Quadcopter ')

17 grid on

18 drawnow

19 end

20

21 else

22 for i=1:2: length(result.x)

63

23 %If the rise time criteria are not met ,

24 %the whole simulation will be shown.

25 plot3(xs(1:i),ys(1:i),zs(1:i),':r')

26 hold on

27 scatter3(xs(i),ys(i),zs(i),'r')

28 hold off

29 axis([xmin ,xmax ,ymin ,ymax ,zmin ,zmax])

30 posstr2=strcat ({' x = '},num2str(xs(i)),{', y = '}...

31 ,num2str(ys(i)),{', z = '},num2str(zs(i)));

32 text(xs(i),ys(i) ,0.9*zs(i),posstr2)

33 clock=strcat ({' t = '},num2str(times(i)), 's');

34 text(xs(i),ys(i),zs(i),clock)

35 title('Path of Quadcopter ')

36 grid on

37 drawnow

38 end

39 end

18 Appendix C: Orientation Dynamics Additional Steps p

q

r

 =

 φ̇

0

0

+RT (φ)

 0

θ̇

0

+RT (φ)RT (θ)

 0

0

ψ̇

 (129)

 p

q

r

 =

 φ̇

0

0

+

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 0

θ̇

0

+

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 0

0

ψ̇


(130) p

q

r

 =

 φ̇

0

0

+

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 0

θ̇

0

+

 cos θ 0 − sin θ

sinφ sin θ cosφ cos θ sinφ

cosφ sin θ − sinφ cosφ cos θ


 0

0

ψ̇

 (131)

 p

q

r

 =

 φ̇

0

0

+

 0

θ̇ cosφ

−θ̇ sinφ

+

 − ˙ψ sin θ

ψ̇ cos θ sinφ

ψ̇ cosφ cos θ

 (132)

 p

q

r

 =

 φ̇− ˙ψ sin θ

θ̇ cosφ+ ψ̇ cos θ sinφ

−θ̇ sinφ+ ψ̇ cosφ cos θ

 (133)

ωB =

 1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇

 (134)

64

19 Appendix D: Momentum Theory

Figure 22: Momentum Theory. Image from [4, p.99]

The mass �ow rate across the rotor is given by:

ṁ = ρAvi (135)

Where ṁ is the mass �ow rate, ρ is the air density, A is the rotor disk area and vi is the induced velocity.

Then by Newtons 2nd Law (Force = rate of change of momentum):

T = ṁw (136)

T = ρAviw (137)

Where T is the thrust and w is the downwash. Then by energy conservation:

Tvi =
1

2
ṁw2 (138)

Therefore:

ρAviwvi =
1

2
ρAviw

2 (139)

65

vi =
1

2
w (140)

Substituting this expression for vi into equation (125):

T = ρAvi · 2vi (141)

T = 2ρAv2i (142)

Therefore:

vi =

√
T

2ρA
(143)

20 Appendix E: Second set of PID results from varying number

of simulations

The results in Table 8 corroborate those presented in Section 12.3.2 which suggest that 1024 simulations

is su�cient to obtain accurate results and reduce iteration error.

Simulations M.R.T (s) ∆M.R.T (%) x (m) ∆x (%) y (m) ∆y (%) z (m) ∆z (%)
2 16.08 100.60 101.52 100 0
4 15.20 5.47 101.48 0.87 100.76 0.75 100 0
8 15.88 4.47 100.19 1.27 98.70 2.04 100 0
16 15.80 0.50 100.33 0.14 100.98 2.31 100 0
32 15.86 0.38 100.69 0.36 98.51 2.45 100 0
64 16.06 1.26 99.64 1.04 98.64 0.13 100 0
128 15.66 2.49 100.58 0.94 99.34 0.71 100 0
256 16.14 3.07 100.39 0.19 99.60 0.26 100 0
512 16.18 0.25 100.41 0.02 100.21 0.61 100 0
1024 16.12 0.37 100.30 0.11 99.66 0.55 100 0
2048 16.18 0.37 100.34 0.04 99.53 0.13 100 0
4096 16.12 0.37 100.33 0.01 99.68 0.15 100 0

Table 8: Second set of PID results from varying number of simulations

66

Figure 23: Mean rise times against no. of simulations

67

21 Appendix F: Graphs of results from the PD controller

Figure 24: Results of 2 simulations

68

Figure 25: Results of 4 simulations

69

Figure 26: Results of 8 simulations

70

Figure 27: Results of 16 simulations

71

Figure 28: Results of 32 simulations

72

Figure 29: Results of 64 simulations

73

Figure 30: Results of 128 simulations

74

Figure 31: Results of 256 simulations

75

Figure 32: Results of 512 simulations

76

Figure 33: Results of 1024 simulations

77

Figure 34: Results of 2048 simulations

78

Figure 35: Results of 4096 simulations

79

22 Appendix G: Graphs of results from the PID controller

Figure 36: Results of 2 simulations

80

Figure 37: Results of 4 simulations

81

Figure 38: Results of 8 simulations

82

Figure 39: Results of 16 simulations

83

Figure 40: Results of 32 simulations

84

Figure 41: Results of 64 simulations

85

Figure 42: Results of 128 simulations

86

Figure 43: Results of 256 simulations

87

Figure 44: Results of 512 simulations

88

Figure 45: Results of 1024 simulations

89

Figure 46: Results of 2048 simulations

90

Figure 47: Results of 4096 simulations

91

23 References

[1] Tice, B. (1991) Unmanned Aerial Vehicles: The Force Multiplier of the 1990s, Airpower Journal,

Spring Edition

[2] Cox, T., Nagy, C., Skoog, M., Somers, I. (2004) Civil UAV Capability Assessment, Dryden Flight

Research Centre

[3] Raptis, A., Valvanis K. (2011) Linear and Nonlinear Control of Small Scale Unmanned Helicopters,

1st ed. Atlanta: Springer.

[4] Leishman, J. (2006) Principles of Helicopter Aerodynamics, 2nd ed. Cambridge: Cambridge University

Press.

[5] Bouabdallah, S. (2007) Design and Control of Quadrotors with Application to Autonomous Flying,

École Polytechnique Fédérale de Lausanne, Lausanne

[6] Etkin, B., Du� Reid, L. (1996) Dynamics of Flight: Stability and Control, 3rd ed. Toronto: John

Wiley & Sons, Inc.

[7] Gibiansky, A. (2012). Quadcopter Dynamics, Simulation, and Control.

Available: http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/. Last accessed 29th November

2013

[8] Bouabdallah, S., Noth, A., Siegwart R. (2004) PID vs LQ Control Techniques Applied to an Indoor

Micro Quadrotor

[9] Bennett, S. (1986) A History of Control Engineering, 1st ed. London: Peter Peregrinus Ltd.

[10] Schwarzenbach, J., Gill, K. (1992) System Modelling and Control, 3rd ed. Leeds: Edward Arnold

[11] Ra�o, G., Ortega, M., Rubio, F. (2009) An Integral Predictive/Nonlinear H∞ Control Structure

for a Quadrotor Helicopter, Universidad de Sevilla, Sevilla.

[12] Shaikh, M. (2011) Quadrocopter Fuzzy Flight Controller, Örebro University, Närke, Sweden.

[13] Abassi, E., Mahjoob, M., Yazdanpanah. (2013) Controlling of Quadrotor UAV Using a Fuzzy

System for Tuning the PID Gains in Hovering Mode, University of Tehran, Tehran.

[14] al-Omari, M., Jaradat, M., Jarrah, M. (2013) Integrated Simulation Platform for Indoor Quadrotor

Applications, University of Sharjah, Sharjah, UAE.

92

