

WAVELIB
Wavelet Transform Implementation in ANSI C

http://rafat.github.io/wavelib

Author : Rafat Hussain

Contact : rafat.hsn@gmail.com

1

mailto:rafat.hsn@gmail.com

Table Of Contents

01. Introduction 3

02. Usage : How To Integrate wavelib In Your Code 5

03. Wavelet Objects, Parameters And Functions 8

04. Wavelet Transform Class (wpt) And Functions 10

05. Wavelet Tree Decomposition (wtree) 18

06. Discrete Wavelet Packet Transform (dwpt) 22

07. Continuous Wavelet Transform 26

2

01 Introduction

Wavelib is an ANSI C implementation of decimated and undecimated 1D Fast Discrete
Wavelet Transforms. Wavelet Packet Transform and Tree Decomposition have also been
added to the package.

Discrete Wavelet Transform Methods Implemented

DWT/IDWT A decimated Discrete Wavelet Transform implementation using implicit
signal extension and up/downsampling so it is a fast implementation. A FFT based
implementation is optional but will not be usually needed. Both periodic and
symmetric options are available.

SWT/ISWT Stationary Wavelet Transform. It works only for signal lengths that are
multiples of 2^J where J is the number of decomposition levels. For signals of
other lengths see MODWT implementation.

MODWT/IMODWT Maximal Overlap Discrete Wavelet Transform is another undecimated
transform. It is implemented for signals of any length but only orthogonal
wavelets (Daubechies, Symlets and Coiflets) can be deployed. This implementation
is based on the method laid out in "Wavelet Methods For Wavelet Analysis" by
Donald Percival and Andrew Walden.

Discrete Wavelet Packet Transform Methods Implemented

WTREE A Fully Decimated Wavelet Tree Decomposition. This is a highly redundant
transform and retains all coefficients at each node. This is not recommended for
compression and denoising applications.

DWPT/IDWPT Is a derivative of WTREE method which retains coefficients based on
entropy methods. This is a non-redundant transform and output length is of the
same order as the input.

How To Obtain The Library

Git Repository

git clone https://code.google.com/p/ctsa/
or

git clone git://git.code.sf.net/p/ctsa/code ctsa-code

3

or

git clone http://git.code.sf.net/p/ctsa/code ctsa-code

Or Download Zip File From

https://code.google.com/p/ctsa/source/browse/
- or -

https://sourceforge.net/projects/ ctsa /files/

License : BSD 3 Clause

Copyright (c) 2014, Rafat Hussain
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

4

https://sourceforge.net/projects/optimc/files/
https://sourceforge.net/projects/optimc/files/
https://sourceforge.net/projects/optimc/files/

02 Usage : How To Integrate WAVELIB In Your Code

CMAKE Users : Holger Nahrstaedt (https://github.com/holgern) recently added cmake build system
and unit testing to this project. The build of this project is now straight-forward if you are a cmake
user. Fo example, on a *nix system a simple “cmake .” followed by “make” will build the wavelib
library and the unit test executable in the Bin folder. If you don't use cmake then you may want to read
the rest of this chapter.

WAVELIB code consists of C source files and their corresponding headers. You can
directly use these files in your code by including "wavelib.h" header in your
code. Just make sure that all the files are in the same folder and your program
can "see" them. For example, something like

gcc -Wall -c *.c

will work with GNU gcc compiler. It will build object files of all the files in
the /src folder and you can link your project against these object files. This is
more straightforward if you are using one of the modern IDEs as you can just plug
all the files in your code and link "wavelib.h" to your project files. The IDE
will do the rest. If you are an expert programmer then you may want to skip the
rest of this section.

Building Shared and Static Libraries on Linux

A Simple Static Library

If you are using GNU GCC compiler then something like

gcc -c *.c

will build the object files in the src folder. You can then package the object
files in a libwavelib.a static library package using

ar rcs libwavelib.a *.o

A Simple Shared Library

gcc -fPIC -c *.c

gcc -shared -Wl,-soname,libwavelib.so.1 -o libwavelib.so.1.0 *.o

You may want to move lipwavelib.so.1.0 to a separate folder before creating

5

https://github.com/holgern

symlinks.

ln -sf libwavelib.so.1.0 libwavelib.so

ln -sf libwavelib.so.1.0 libwavelib.so.1

If your folder is not on the path then you will have to export the path before

executing your program.

export LD_LIBRARY_PATH=/wavelibFOLDERLOCATION/

Some useful links.

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-
in.html

http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-
static-libraries/

http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-two-
dynamic-libraries/

Building Shared and Static Libraries on Windows

Use IDE to build the libraries

I am mentioning this approach as most Windows programmers use one or more IDEs for
their programming. All modern IDEs can create static and DLLs from source codes.
eg., In Visual Studio you start out by creating an empty project, then by adding
all the source and header files followed by "Build Solution".

Link - http://msdn.microsoft.com/en-us/library/ms235636.aspx

http://msdn.microsoft.com/en-us/library/ms235627.aspx

It is equally straightforward to create libraries in Eclipse , Codeblocks and
other IDEs.

Working with Cygwin

A Static library (.a) build is identical to that with linux.

A Simple Static Library

If you are using GNU GCC compiler then something like

6

http://msdn.microsoft.com/en-us/library/ms235627.aspx
http://msdn.microsoft.com/en-us/library/ms235636.aspx
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-two-dynamic-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-two-dynamic-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-static-libraries/
http://www.techytalk.info/c-cplusplus-library-programming-on-linux-part-one-static-libraries/
http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-in.html
http://codingfreak.blogspot.com/2010/01/creating-and-using-static-libraries-in.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

gcc -c *.c

will build the object files in the src folder. You can then package the object
files in a libwavelib.a static library package using

ar rcs libwavelib.a *.o

A Simple DLL in Cygwin

This will build a simple standalone DLL.

gcc -c -fPIC *.c

gcc -shared -o libwavelib.dll *.

Check this link for more options, specially if you want to build the DLL as an
export library.

http://cygwin.com/cygwin-ug-net/dll.html

7

http://cygwin.com/cygwin-ug-net/dll.html

03 Wavelet Object, Parameters and Functions

wave_object wave_init(char* wname); // Initialize wave object

wname - is the name of the wavelet. See below.

Available Wavelets

Haar : haar

Daubechies : db1,db2,.., ,db36

Biorthogonal : bior1.1 ,bior1.3 ,bior1.5 ,bior2.2 ,bior2.4 ,bior2.6 ,bior2.8 ,bior3.1 ,bior3.3 ,bior3.5
,bior3.7 ,bior3.9 ,bior4.4 ,bior5.5 ,bior6.8

Coiflets : coif1,coif2,coif3,coif4,coif5,..,coif17

Reverse Biorthogonal : rbior1.1 ,rbior1.3 ,rbior1.5 ,rbior2.2 ,rbior2.4 ,rbior2.6 ,rbior2.8 ,rbior3.1
,rbior3.3 ,rbior3.5 ,rbior3.7 ,rbior3.9 ,rbior4.4 ,rbior5.5 ,rbior6.8

Symmlets: sym2,........, sym20 (Also known as Daubechies' least asymmetric orthogonal wavelets and
represented by the alphanumeric la)

wave Object Parameters

char wname; // Wavelet Name

int filtlength;// Length of filters. They are of identical length and may be
zeropadded to the same length when they are not.

int lpd_len;// Length of Low Pass Decomposition Filter

int hpd_len;// Length of High Pass Decomposition Filter

int lpr_len;// Length of Low Pass Reconstruction Filter

int hpr_len;// Length of High Pass Reconstruction Filter

double *lpd; //Low Pass Decomposition Filter

double *hpd; //High Pass Decomposition Filter

double *lpr; //Low Pass Reconstruction Filter

double *hpr; //High Pass Reconstruction Filter

Print wave summary

wave_summary(wave_object object);

8

Free wave Object

wave_free(wave_object object);

9

0 4 Wavelet Transform Class (wt) and Functions

wt Initialization

wt_object wt_init(wave,method,N,J);

// wave - Wavelet object created using wave_object

// method - Takes char values - "dwt", "swt" and "modwt"

// N - Length of Signal/Time Series

// J - Decomposition Levels

Wavelet Transform Execution

dwt(wt, inp);// Discrete Wavelet Transform (Decimated)

swt(wt, inp);// Stationary Wavelet Transform (Undecimated)

modwt(wt, inp); // Maximal Overlap Discrete Wavelet Transform (Undecimated)

// obj - wt object

// inp – Input signal/ Time series of length N

Inverse Wavelet Transform Execution

idwt(wt, dwtop);// Inverse Discrete Wavelet Transform (Decimated)

iswt(wt, dwtop);// Inverse Stationary Wavelet Transform (Undecimated)

imodwt(wt, dwtop); // Inverse Maximal Overlap Discrete Wavelet Transform
(Undecimated)

// obj - wt object

// dwtop – Output of length N

wt Object Parameters

wave_object wave; // wavelet object

char method; // "dwt", "swt" or "modwt"

int siglength;// Length of the original signal.

int outlength;// Length of the output DWT vector

int lenlength;// Length of the Output Dimension Vector "length"

int J; // Number of decomposition Levels

10

int MaxIter;// Maximum Iterations J <= MaxIter

char ext[10];// Type of Extension used - "per" or "sym". Only available for
method "dwt". Undecimated transforms use periodic extension only.

char cmethod[10]; // Convolution Method - "direct" or "FFT". Default is "direct".
"FFT" not available for method "modwt"

int length[102];// Length Vector

double *output; // DWT Output Vector

Accessing DWT output

1D vector wt->output stores Output of Discrete Wavelet Transform. It stores
coefficients in following format:

[A(J) D(J) D(J-1) D(1)]

where A(J) is the approximation coefficient vector at the Jth level while D(n) are
the detail coefficient vectors at the nth level. wt->length contains the lengths
of corresponding vectors. Last entry of the length vector is the length of the
original signal.

wt Functions

setDWTExtension(wt_object wt, char *extension);// works only for dwt. Options
"per" and "sym"

setWTConv(wt_object wt, char *cmethod);// Options "direct" and "fft". Not
implemented for modwt

wt_summary(wt_object wt);// Print summary

wt_free(wt_object object);// Frees wt object

11

Example 1 : DWT/IDWT

double absmax(double *array, int N) {
 double max;
 int i;

 max = 0.0;
 for (i = 0; i < N; ++i) {
 if (fabs(array[i]) >= max) {
 max = fabs(array[i]);
 }
 }

 return max;
}

int main() {
 wave_object obj;
 wt_object wt;
 double *inp,*out,*diff;
 int N, i,J;

 FILE *ifp;
 double temp[1200];

 char *name = "db4";
 obj = wave_init(name);// Initialize the wavelet

 ifp = fopen("signal.txt", "r");
 i = 0;
 if (!ifp) {
 printf("Cannot Open File");
 exit(100);
 }
 while (!feof(ifp)) {
 fscanf(ifp, "%lf \n", &temp[i]);
 i++;
 }
 N = 256;

 inp = (double*)malloc(sizeof(double)* N);
 out = (double*)malloc(sizeof(double)* N);
 diff = (double*)malloc(sizeof(double)* N);
 //wmean = mean(temp, N);

 for (i = 0; i < N; ++i) {
 inp[i] = temp[i];
 //printf("%g \n",inp[i]);
 }
 J = 3;

 wt = wt_init(obj, "dwt", N, J);// Initialize the wavelet transform object
 setDWTExtension(wt, "sym");// Options are "per" and "sym". Symmetric is
the default option
 setWTConv(wt, "direct");

12

 dwt(wt, inp);// Perform DWT
 //DWT output can be accessed using wt->output vector. Use wt_summary to
find out how to extract appx and detail coefficients

 for (i = 0; i < wt->outlength; ++i) {
 printf("%g ",wt->output[i]);
 }

 idwt(wt, out);// Perform IDWT (if needed)
 // Test Reconstruction
 for (i = 0; i < wt->siglength; ++i) {
 diff[i] = out[i] - inp[i];
 }

 printf("\n MAX %g \n", absmax(diff, wt->siglength)); // If Reconstruction
succeeded then the output should be a small value.

 wt_summary(wt);// Prints the full summary.
 wave_free(obj);
 wt_free(wt);

 free(inp);
 free(out);
 free(diff);
 return 0;
}

13

Example 2 : SWT/ISWT

double absmax(double *array, int N) {
 double max;
 int i;

 max = 0.0;
 for (i = 0; i < N; ++i) {
 if (fabs(array[i]) >= max) {
 max = fabs(array[i]);
 }
 }

 return max;
}

int main() {
 wave_object obj;
 wt_object wt;
 double *inp, *out, *diff;
 int N, i, J;

 FILE *ifp;
 double temp[1200];

 char *name = "bior3.5";
 obj = wave_init(name);// Initialize the wavelet

 ifp = fopen("signal.txt", "r");
 i = 0;
 if (!ifp) {
 printf("Cannot Open File");
 exit(100);
 }
 while (!feof(ifp)) {
 fscanf(ifp, "%lf \n", &temp[i]);
 i++;
 }
 N = 256;

 inp = (double*)malloc(sizeof(double)* N);
 out = (double*)malloc(sizeof(double)* N);
 diff = (double*)malloc(sizeof(double)* N);
 //wmean = mean(temp, N);

 for (i = 0; i < N; ++i) {
 inp[i] = temp[i];
 //printf("%g \n",inp[i]);
 }
 J = 1;

 wt = wt_init(obj, "swt", N, J);// Initialize the wavelet transform object
 setWTConv(wt, "direct");

14

 swt(wt, inp);// Perform SWT
 //SWT output can be accessed using wt->output vector. Use wt_summary to
find out how to extract appx and detail coefficients

 for (i = 0; i < wt->outlength; ++i) {
 printf("%g ",wt->output[i]);
 }

 iswt(wt, out);// Perform ISWT (if needed)
 // Test Reconstruction

 for (i = 0; i < wt->siglength; ++i) {
 diff[i] = out[i] - inp[i];
 }

 printf("\n MAX %g \n", absmax(diff, wt->siglength));// If Reconstruction
succeeded then the output should be a small value.

 wt_summary(wt);// Prints the full summary.

 wave_free(obj);
 wt_free(wt);

 free(inp);
 free(out);
 free(diff);
 return 0;
}

15

Example 3 : MODWT/IMODWT

double absmax(double *array, int N) {
 double max;
 int i;

 max = 0.0;
 for (i = 0; i < N; ++i) {
 if (fabs(array[i]) >= max) {
 max = fabs(array[i]);
 }
 }

 return max;
}

int main() {
 wave_object obj;
 wt_object wt;
 double *inp, *out, *diff;
 int N, i, J;

 FILE *ifp;
 double temp[1200];

 char *name = "db4";
 obj = wave_init(name);
 wave_summary(obj);

 ifp = fopen("signal.txt", "r");
 i = 0;
 if (!ifp) {
 printf("Cannot Open File");
 exit(100);
 }
 while (!feof(ifp)) {
 fscanf(ifp, "%lf \n", &temp[i]);
 i++;
 }
 N = 177;

 inp = (double*)malloc(sizeof(double)* N);
 out = (double*)malloc(sizeof(double)* N);
 diff = (double*)malloc(sizeof(double)* N);
 //wmean = mean(temp, N);

 for (i = 0; i < N; ++i) {
 inp[i] = temp[i];
 //printf("%g \n",inp[i]);
 }
 J = 2;

 wt = wt_init(obj, "modwt", N, J);// Initialize the wavelet transform
object

16

 modwt(wt, inp);// Perform MODWT
 //MODWT output can be accessed using wt->output vector. Use wt_summary to
find out how to extract appx and detail coefficients

 for (i = 0; i < wt->outlength; ++i) {
 printf("%g ",wt->output[i]);
 }

 imodwt(wt, out);// Perform ISWT (if needed)
 // Test Reconstruction

 for (i = 0; i < wt->siglength; ++i) {
 diff[i] = out[i] - inp[i];
 }

 printf("\n MAX %g \n", absmax(diff, wt->siglength));// If Reconstruction
succeeded then the output should be a small value.

 wt_summary(wt);// Prints the full summary.

 wave_free(obj);
 wt_free(wt);

 free(inp);
 free(out);
 free(diff);
 return 0;
}

17

05 Wavelet Tree Decomposition (wtree)

wtree initialization

wtree_object wtree_init(wave,N,J);

// wave - Wavelet object created using wave_object

// N - Length of Signal/Time Series

// J - Decomposition Levels

wtree Execution

wtree(wt, inp); // Wavelet Tree Decomposition

// obj - wtree object

// inp – Input signal/ Time series of length N

wtree object Parameters

wave_object wave; // wavelet object

int siglength;// Length of the original signal.

int outlength;// Length of the output DWT vector

int J; // Number of decomposition Levels

int MaxIter;// Maximum Iterations J <= MaxIter

char ext[10];// Type of Extension used - "per" or "sym".

int *coeflength;// Size J+1 Vector containing lengths of Coefficients at each
level. All coefficients at each level have the same length. The first value is
the length of the signal (siglength). The last value is the length at the Jth
level of decomposition.

double *output; // WTREE Output Vector of size outlength

18

wtree Functions

setWTREEExtension(wtree_object wtree, char *extension);// Options "per" and "sym"

int getWTREENodelength(wtree_object wt, int X);// Returns the length of the
coefficients node at the level X of decomposition. 0 < X <= J. All coefficents at
each level have the same length.

void getWTREECoeffs(wtree_object wt, int X, int Y, double *coeffs, int N);// The
function return coefficents coeffs at the node {X,Y} of length N [obtained from
getWTREElength(wt,X)] at level X. 0 < X <= J. 0 < Y < 2**J

wtree_summary(wtree_object wt);// Print summary

wtree_free(wtree_object object);// Frees wt object

Full Wavelet Tree decomposition is a highly redundant transformation and retains
coefficients at every decomposition node. Following functions are useful in
extracting coefficients.

1. wtree_summary : prints out how each node is stored in the output vector and how
you can access it. This is a print to screen command and is not recommended to be

19

{0,0}

{1,0} {1,1}

{2,0} {2,1} {2,2} {2,3}

Wavelet Tree Full decomposition (J = 2)

used in applications where speed is the primary concern.

2. getWTREENodelength & getWTREECoeffs : will give you a.) the length of the
nodes at each level and b.) the node coefficients.

wt->output stores node coefficents beginning with Jth level from left to right.
For a two level decomposition, as shown in the figure, the coefficients are stored
as -

[{2,0} {2,1} {2,2} {2,3} {1,0} {1,1}]

Example wtree

int main() {
int i, J, N, len;
int X, Y;
wave_object obj;
wtree_object wt;
double *inp, *oup;

char *name = "db3";
obj = wave_init(name);// Initialize the wavelet
N = 147;
inp = (double*)malloc(sizeof(double)* N);
for (i = 1; i < N + 1; ++i) {

inp[i - 1] = -0.25*i*i*i + 25 * i *i + 10 * i;
}
J = 3;

wt = wtree_init(obj, N, J);// Initialize the wavelet transform object
setWTREEExtension(wt, "sym");// Options are "per" and "sym". Symmetric is

the default option

wtree(wt, inp);
wtree_summary(wt);
X = 3;
Y = 5;
len = getWTREENodelength(wt, X);
printf("\n %d", len);
printf("\n");
oup = (double*)malloc(sizeof(double)* len);

printf("Node [%d %d] Coefficients : \n",X,Y);
getWTREECoeffs(wt, X, Y, oup, len);
for (i = 0; i < len; ++i) {

printf("%g ", oup[i]);
}
printf("\n");

20

free(inp);
free(oup);
wave_free(obj);
wtree_free(wt);
return 0;

}

21

06 Discrete Wavelet Packet Transform (dwpt)

wtree initialization

wpt_object wpt_init(wave,N,J);

// wave - Wavelet object created using wave_object

// N - Length of Signal/Time Series

// J - Decomposition Levels

dwpt Execution

dwpt(wt, inp); // Discrete Wavelet Packet Transform

// obj - wpt object

// inp – Input signal/ Time series of length N

idwpt Execution

idwpt(wt, dwtop); // Inverse Discrete Wavelet Packet Transform

// obj - wpt object

// dwtop – DWPT output

dwpt object parameters

wave_object wave; // wavelet object

int siglength;// Length of the original signal.

int outlength;// Length of the output DWT vector

int J; // Number of decomposition Levels

int MaxIter;// Maximum Iterations J <= MaxIter

char ext[10];// Type of Extension used - "per" or "sym".

char entropy[20];// One of four values “shannon” (default), “threshold”, “norm”
and “logenergy”. These values can be set using setDWPTEntropy().

int nodes; // number of nodes retained by the Best Basis Search algorithm

int *nodeindex;// Index of retained nodes. The length of this vector is 2 * wt-

22

>nodes. See the example below. wt->nodes = 3 , the nodeindex vector is
[2,0,2,1,1,1] where {2,0},{2,1} and {1,1} are the nodes in the pruned tree.

int *coeflength;// Size J+1 Vector containing lengths of Coefficients at each
level. All coefficients at each level have the same length. The first value is
the length of the signal (siglength). The last value is the length at the Jth
level of decomposition.

double *output; // DWPT Output Vector of size outlength

DWPT Best Basis Search Algorithm

DWPT best basis search algorithm is an entropy based algorithm as described in
Ripples in Mathematics: The Discrete Wavelet Transform by Jensen and la Cour-
Harbo, Springer Verlag, 2001. The program accepts four entropy options – shannon,
threshold, norm and logenergy. These values can be set using setDWPTEntropy
function and the default value is “shannon”. This selected entropy is used to
calculate the cost function associated with every node and a best basis is
selected based on the cost function. Unlike wtree, the wpt object retains only the
selected nodes and is a non-redundant transform suitable for compression and
denoising applications.

23

{1,1}

{2,0} {2,1}

Discrete Wavelet Packet Transform (J = 2)
Using Best Basis Search Algorithm

dwpt functions

setDWPTExtension(wtree_object wtree, char *extension);// Options "per" and "sym"

int getDWPTNodelength(wtree_object wt, int X);// Returns the length of the
coefficients node at the level X of decomposition. 0 < X <= J. All coefficents at
each level have the same length.

void getDWPTCoeffs(wtree_object wt, int X, int Y, double *coeffs, int N);// The
function return coefficents coeffs at the node {X,Y} of length N [obtained from
getWTREElength(wt,X)] at level X. 0 < X <= J. 0 < Y < 2**J. Also {X,Y} needs to
be one of the retained nodes.

void setDWPTEntropy(wpt_object wt, char *entropy, double eparam);//

wpt_summary(wtree_object wt);// Print summary

wpt_free(wtree_object object);// Frees wt object

The coefficient access is exactly the same way as explained in the wtree chapter.

Example dwpt

double absmax(double *array, int N) {
 double max;
 int i;

 max = 0.0;
 for (i = 0; i < N; ++i) {
 if (fabs(array[i]) >= max) {
 max = fabs(array[i]);
 }
 }

 return max;
}

int main() {
int i, J, N;
wave_object obj;
wpt_object wt;
double *inp, *oup, *diff;

char *name = "db4";
obj = wave_init(name);// Initialize the wavelet
N = 788 + 23;
inp = (double*)malloc(sizeof(double)* N);
oup = (double*)malloc(sizeof(double)* N);
diff = (double*)malloc(sizeof(double)* N);
for (i = 1; i < N + 1; ++i) {

//inp[i - 1] = -0.25*i*i*i + 25 * i *i + 10 * i;
inp[i - 1] = i;

}

24

J = 4;

wt = wpt_init(obj, N, J);// Initialize the wavelet transform Tree object
setDWPTExtension(wt, "per");// Options are "per" and "sym". Symmetric is the

default option
setDWPTEntropy(wt, "logenergy", 0);

dwpt(wt, inp); // Discrete Wavelet Packet Transform

idwpt(wt, oup); // Inverse Discrete Wavelet Packet Transform

for (i = 0; i < N; ++i) {
diff[i] = (inp[i] - oup[i])/inp[i];

}

wpt_summary(wt); // Tree Summary

printf("\n MAX %g \n", absmax(diff, wt->siglength)); // If Reconstruction
succeeded then the output should be a small value.

free(inp);
free(oup);
free(diff);
wave_free(obj);
wpt_free(wt);
return 0;

}

25

07 Continuous Wavelet Transform (cwt)

This CWT code is a C translation (with some modifications) of Wavelet Software provided by
C. Torrence and G. Compo, and is available at URL: http://atoc.colorado.edu/research/wavelets/''.

cwt initialization

cwt_object cwt_init(wave,param,N,dt,J);

// wave - Wavelet name. One of “morl”,”paul” or “dog”

// param – parameter associated with the wavelet. See below

// N - Length of Signal/Time Series

// dt – Sampling Rate

// J – Total Number of Scales

“morl” : Morlet Family of Wavelets accept real, positive parameter values(“param”). Value 6.0 is used
in the example and values between 4.0-6.0 are typically used.

“paul” : Paul Wavelets accept positive integer values <= 20. Default Value is 4.

“dog” : Derivative of Gaussian Wavelets accepts positive even integer values. Param = 2 is the
Mexican Hat Wavelet.

cwt Execution

cwt(wt, inp); // Continuous Wavelet Transform

// obj - cwt object

// inp – Input signal/ Time series of length N

icwt Execution

icwt(wt, cwtop); // Inverse Continuous Wavelet Transform

// obj - cwt object

// cwtop – ICWT output

26

cwt object parameters

char *wave; // Wavelet - “morl”/”morlet”,”paul” or “dog”/”dgauss”

int siglength;// Length of the original signal.

double s0;// Smallest scale. Typically s0 <= 2 * dt

int J; // Total Number of Scales

double dt; // Sampling Rate

char type[10];// Scale Type - “pow” or “linear”

int pow; // Base of power if scale type = “pow”. Default pow = 2

double dj; // Separation between Scales. eg., scale = s0 * 2 ^ ([0:N-1] *dj) or
scale = s0 * [0:N-1] * dj

double m; // Wavelet parameter param

double smean; // Signal Mean

cplx_data *output; // CWT Output Vector of size J * siglength. The vector is
complex. The ith real value can be accessed wt->output[i].re and imaginary value
by wt->output[i].im

double *scale; // Scale vector of size J

double *period; // Period vector of size J

double *coi; // Cone of Influence vector of size siglength

Setting CWT Scale Vector

There are two ways of setting Scale Parameters. The first method is straightforward and should be used
if the scales are linear or power-of-N.

void setCWTScales(cwt_object wt, double s0, double dj,char *type,int power)

The cwt_object needs to initialized first. s0 is the smallest scale, while dj is the separation between
scales. Dj can also be seen as a measure of resolution which is calculated as dj = 1.0 / Number of
subscales so smaller value of dj corresponds to higher resolution within a scale. type accepts
“pow”/”power” or “lin”/”linear” as input values, power is the base of power if “pow”/”power' is
selected and is ignored if the input is “lin”. Power of N scale calculation.

for (i = 0; i < wt->J; ++i) {

27

wt->scale[i] = s0*pow((double) power, (double)(i)*dj);
}

Linear Scale calculation

for (i = 0; i < wt->J; ++i) {
wt->scale[i] = s0 + (double)i * dj;

}

Custom Scale vector can be set using.

void setCWTScaleVector(cwt_object wt, double *scale, int J,double s0,double dj)

In this case the vector scale of size J is input by the user.

Inverse CWT and Approximate Reconstruction

The approximate reconstruction is achieved using the delta method suggested by Daubechies and used
by Terrence and Compo in their CWT implementation (See the references). This implementation
explicitly calculates Cdelta, instead of using interpolation tables, every time icwt is calculated. There is
a higher computation cost associated with this method but it should give better approximation if proper
s0 and J are selected. Anything under 0.01 is usually acceptable. Use a smaller s0 and larger J if the
RMS reconstruction error is > 0.01.

Example cwt

int main() {
int i, N, J,subscale,a0,iter,nd,k;
double *inp,*oup;
double dt, dj,s0, param,mn;
double td,tn,den, num, recon_mean, recon_var;
cwt_object wt;

FILE *ifp;
double temp[1200];

char *wave = "morlet";// Set Morlet wavelet. Other options "paul" and "dog"
char *type = "pow";

N = 504;
param = 6.0;
subscale = 4;
dt = 0.25;
s0 = dt;
dj = 1.0 / (double)subscale;
J = 11 * subscale; // Total Number of scales

28

a0 = 2;//power

ifp = fopen("sst_nino3.dat", "r");
i = 0;
if (!ifp) {

printf("Cannot Open File");
exit(100);

}
while (!feof(ifp)) {

fscanf(ifp, "%lf \n", &temp[i]);
i++;

}

fclose(ifp);

wt = cwt_init(wave, param, N,dt, J);

inp = (double*)malloc(sizeof(double)* N);
oup = (double*)malloc(sizeof(double)* N);

for (i = 0; i < N; ++i) {
inp[i] = temp[i] ;

}

setCWTScales(wt, s0, dj, type, a0);

cwt(wt, inp);

printf("\n MEAN %g \n", wt->smean);

mn = 0.0;

for (i = 0; i < N; ++i) {
mn += sqrt(wt->output[i].re * wt->output[i].re + wt->output[i].im *

wt->output[i].im);
}

cwt_summary(wt);

printf("\n abs mean %g \n", mn / N);

printf("\n\n");
printf("Let CWT w = w(j, n/2 - 1) where n = %d\n\n", N);
nd = N/2 - 1;

printf("%-15s%-15s%-15s%-15s \n","j","Scale","Period","ABS(w)^2");
for(k = 0; k < wt->J;++k) {

iter = nd + k * N;
printf("%-15d%-15lf%-15lf%-15lf \n",k,wt->scale[k],wt->period[k],
wt->output[iter].re * wt->output[iter].re + wt->output[iter].im * wt-

>output[iter].im);
}

icwt(wt, oup);

num = den = recon_var = recon_mean = 0.0;

29

printf("\n\n");
printf("Signal Reconstruction\n");
printf("%-15s%-15s%-15s \n","i","Input(i)","Output(i)");

for (i = N - 10; i < N; ++i) {
printf("%-15d%-15lf%-15lf \n", i,inp[i] , oup[i]);

}

for (i = 0; i < N; ++i) {
//printf("%g %g \n", oup[i] ,inp[i] - wt->smean);
td = inp[i] ;
tn = oup[i] - td;
num += (tn * tn);
den += (td * td);
recon_mean += oup[i];

}

recon_var = sqrt(num / N);
recon_mean /= N;

printf("\nRMS Error %g \n", sqrt(num) / sqrt(den));
printf("\nVariance %g \n", recon_var);
printf("\nMean %g \n", recon_mean);

free(inp);
free(oup);
cwt_free(wt);
return 0;

}

References

Compo, G P and Torrence, C, 1998, A Practical Guide to Wavelet Analysis, Bulletin of The American
Meteorological Society,79,1, 61-78

Bishop, M, Continuous Wavelet Transform Reconstruction Factors for Selected Wavelets.

Daubechies, I., 1992, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.

Farge, M., 1992, Wavelet Transforms and Their Applications to Turbulence, Annual Review of Fluid
Mechanics, 24, 395-457

30

	Wavelet Transform Implementation in ANSI C

