
modelBorgi�er Manual

J. T. Sauls and J. M. Buescher

December 2, 2013

BRAIN Aktiengesellschaft

Microbial Production Technologies

Platform for Quantitative Biology and Sequencing

Darmstaeter Str. 34-36, 64673 Zwingenberg, Germany

www.brain-biotech.de

jrb@brain-biotech.de

1

�We will add your biological and technological distinctiveness to our own. Resistance is futile.�
� Borg hail.

Contents

1 Introduction 3

2 Set-up 3

2.1 Installation . 3
2.2 Dependencies . 3
2.3 Test script . 3

3 Procedure 4

3.1 Load the comparison model. 4
3.1.1 Verify format . 4
3.1.2 Add information from the SEED database 5
3.1.3 Verify model holds �ux . 6

3.2 Load the template model . 6
3.2.1 Load Tmodel from SBML . 6
3.2.2 Load Tmodel from .mat �le . 6

3.3 Compare models . 6
3.4 Match reactions and metabolites . 7

3.4.1 Optimizing scoring parameters . 8
3.4.2 Auto-matching based on scores . 9
3.4.3 Matching �ow . 9

3.5 Merge model with database . 10
3.6 Extracting models . 11

4 Appendix 11

4.1 Description of scoring parameters . 11
4.2 Description of scripts . 12
4.3 Important terms . 12

2

1 Introduction

When using this tool, please reference

J.T. Sauls and J.M. Buescher, Assimilating genome-scale metabolic reconstructions
with modelBorgi�er

submitted

modelBorgi�er is published under Creative Commons BY-NC-SA

2 Set-up

2.1 Installation

Assuming that the openCOBRA Toolbox is installed and functional on your system,
installation only requires that you add the modelBorgi�er directory to the Matlab path.

2.2 Dependencies

Before you start, please download and install these dependencies. We suggest you locate
them in the directory /modelBorgi�er/dependencies together with their respective accompanying
licenses. The linear and exponential optimization techniques use functions available through the
Matlab Optimization Toolbox (non-free).

• modelBorgi�er relies on the openCOBRA Toolbox
(http://opencobra.sourceforge.net/openCOBRA/Welcome.html) [6] for reading and
writing functions (themselves dependent on the Matlab sbmltoolbox, included with the
standard openCOBRA install), and any FBA analysis.

• Reading CSV �les utilizes the csv2cell.m by David Groppe and csvimport.m by Ashish
Sadanandan functions from MatlabCental
(http://www.mathworks.com/matlabcentral/�leexchange/20836-csv2cell and
http://www.mathworks.com/matlabcentral/�leexchange/23573-csvimport).

• For machine learning, the LIBSVM library[2]
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) is needed for SVM optimization.

• The script �ndjobj.m by Yair Altman
(http://www.mathworks.com/matlabcentral/�leexchange/14317-�ndjobj-�nd-java-
handles-of-matlab-graphic-objects) is used for GUI
presentation.

2.3 Test script

The script driveModelBorgi�er.m demonstrates the order of use and implementation of the
functions in the modelBorgi�er suite. It is designed to be a guide when adding a new model
and uses the two popular models iJO1366 and iBSU1103 as an for example comparison and
merging. It also utilizes the open databases from the Model SEED to add additional
annotation information based on SEED IDs. To use the test suite as is, download both the
above models and place the SBML �les in the /modelBorgi�er/test directory.

3

• iJO1366[4] is a popular E. coli model which can be downloaded in SBML format from
http://www.nature.com/msb/journal/v7/n1/extref/msb201165-s3.xml (paper:
http://www.nature.com/msb/journal/v7/n1/full/msb201165.html; license
http://creativecommons.org/licenses/by-nc-sa/3.0/ note this is a non-commercial license).

• iBSU1103[3] is a B. subtillus model which uses IDs consistent with the Model SEED
(model in SBML:
http://genomebiology.com/content/supplementary/gb-2009-10-6-r69-s4.xml; paper:
http://genomebiology.com/2009/10/6/R69; license:
http://creativecommons.org/licenses/by/2.0/).

• The Model SEED[5] (http://seed-viewer.theseed.org/) is a collection of stoichiometric
models, and the way to access models created by the RAST[1] annotation server. Models
in the Model SEED draw from two databases, for reactions
(seed-viewer.theseed.org/ModelSEEDdownload.cgi?biochemistry=1) and metabolites
(seed-viewer.theseed.org/ModelSEEDdownload.cgi?biochemCompounds=1). These
databases are open and freely available. For use in modelBorgi�er, �rst convert them to
CSV �les, semicolon delimited. We suggest you place them in
/modelBorgi�er/test/SEED_db with the appropriate license.

3 Procedure

To quickly demo the modelBorgi�er, simply follow driveModelBorgi�er.m. Additionally, all
scripts have documentation located in the .m �le that can be accessed via Matlab's help com-
mand. The following is a description of the comparison and modeling process.

3.1 Load the comparison model.

Load the model you wish to compare (Cmodel) and merge with the template model (Tmodel),
from its current format.

If the model is already in openCOBRA compatible SBML format, then use the openCOBRA
function readCbmodel.m.

>> Cmodel = readCbModel (f i leName) ;

If the model is in a less readily machine readable format, such as .xls, then use an appropriate
custom written script (converting .xls to .csv may be necessary if you are not on a Windows
machine). Some model may be provided in SBML format, but an additional �le contains useful
information. If so, consider using using a script to extract information from this additional
�le(s).

3.1.1 Verify format

Use verifyModel.m to ensure that Cmodel has all relevant information and can be successfully
compared against Tmodel for already existing reactions and metabolites.

4

Figure 1: Program �ow.

>> Cmodel = ver i fyMode l (Cmodel) ;

Verify model ensures all required information arrays are present, that all reactions are forward
or reversible (not reverse), and that all reaction and metabolite names are unique. If reaction
names are not unique, verifyModel.m will prompt you to put in new names, or you can use
checkCobraNamesUnique.m from the openCOBRA toolbox to systematically rename all
duplicate reactions. Finally, verifyModel.m formats reaction and metabolite names so they are
lower case and do not contain obtuse characters, gives the �elds a conserved order, and makes
sure the model has a name.

3.1.2 Add information from the SEED database

Optional. If your model either came from the Model SEED or uses SEED identi�ers (reac-
tion names in the form rxnXXXXX and metabolites in the form cpdXXXXX), then the script
addSEEDInfo.m uses those identi�ers too add information to the model via the databases men-
tioned above.

>> Cmodel = addSEEDInfo (Cmodel , rxnDbFileName , cpdDbFileName) ;

This greatly aids comparison and matching, especially when the template model does not
reference the SEED IDs otherwise. It also replaces the metabolite names with the appropriate

5

abbreviations in the reaction equations. The databases should be in semicolon delimited CSV
format.

3.1.3 Verify model holds �ux

Optional. Run a simple FBA simulation to see if the model holds �ux. Make sure there is an
objective function set, and that the bounds are reasonable. If the model doesn't hold �ux before
it is added to merged, than it is more di�cult to determine if it was added correctly afterwards.

>> solverOkay = changeCobraSolver (' g lpk ' , 'LP ') ;
>> CmodelSol = optimizeCbModel (Cmodel) ;

3.2 Load the template model

For the very �rst model assimilation, use a regular genome scale metabolic reconstruction of
your choice as template model. For subsequent assimilations, we suggest you use the composite
model generated in previous model assimilations as template model.

3.2.1 Load Tmodel from SBML

In this case, load and verify the model as above, optionally adding information from the
SEED database and checking if the model holds �ux. Then, convert the model to an appropriate
template for comparison using buildTmodel.m.

>> Tmodel = buildTmodel (Tmodel) ;

3.2.2 Load Tmodel from .mat �le

If previous models have been merged, then this composite model can be used as Tmodel.
Simply load the Matlab workspace (.mat �le) containing the composite model.

3.3 Compare models

Compare Cmodel to Tmodel by running the script compareCbModels.m.

>> [Cmodel , Tmodel , score , S ta t s] = compareCbModels (Cmodel , Tmodel) ;

This script �rst assembles additional information arrays in both models for the purpose of
comparison, returning the information with the original models. It then compares Cmodel to
Tmodel, pairwise by reaction, allocating a normalized score based on similarity. This may take
~4 hours for two models of around 2000 reactions each.

These scores are held in the 3D array score, which is of size [number of reactions in Cmodel x
number of reactions in Tmodel x number of scoring parameters]. Stats contains information on
best matches.

6

3.4 Match reactions and metabolites

Pair reactions and metabolites from Cmodel to Tmodel using reactionCompare.m. Matching is
initiated with the following command.

>> [rxnList , metList , S ta t s] = reactionCompare (Cmodel , Tmodel , s c o r e) ;

reactionCompare.m calls a GUI that allows the user to choose a match for a given reaction in
Cmodel, and also to match the metabolites for that reaction. Note that the best matches are
presented (default 3, more can be viewed).

Figure 2: reactionCompare GUI displays details for the next reaction from Cmodel to be matched
(1) and details for the highest scoring reactions in Tmodel (2). Likewise, details for the metabo-
lites of this reaction in Cmodel are displayed (3) next to the metabolites of the corresponding
reactions in Tmodel (4). The current status of the progress of the matching is given in numbers
and in a pie chart (5). A histogram of the scores of the best matching is displayed (6) above
a slider (7) that lets the user select the minimum score of the reactions to be reviewed. The
matching reaction from Tmodel is selected by clicking on the reaction in (2) and clicking the
button �Choose Match� in (8). If no match is available, the reaction can be declared new with
the button �New Reaction�. To facilitate the review process, common mistakes are indicated
by red �elds in (9), while passed checks are blue. If the check cannot be performed, the �elds
remain white. If metabolites remain to be reviewed, this can be started by clicking �Review
Metabolites� (10). A click on the button �Finish Comparison� (11) ends the matching (e.g. to
save the workspace).

7

reactionCompare.m gives auto-matching options described below. reactionCompare.m outputs
rxnList and metList, which designate reactions and metabolites in Cmodel to the index of their
match in Tmodel, or indicate them as new or need review. Stats contains weighting
information in addition to best matches. Matching can be suspended at anytime, so subsequent
calls to reactionCompare.m should include these output arguments.

>> [rxnList , metList , S ta t s] = reactionCompare (Cmodel , Tmodel , score , . . .
rxnList , metList , S ta t s) ;

3.4.1 Optimizing scoring parameters

Figure 3: Select optimization of scoring parameters in highlighted area

The initial comparison between models is based on forty parameters which are arbitrarily
weighted. The parameters cover a large swath of information available in genome-scale recon-
structions, but do not necessarily emphasize the relevant information in the models you have at
hand. For this reason it is important to optimize the weighting of the scoring parameters. This
is accomplished through the reactionCompare.m GUI via one of three methods; support vector
machines (SVM), linear optimization, or exponential optimization. It is recommended to check
the 'optimize parameters' box in the GUI when using SVM.

All three methods use previously declared reactions as a training set to determine which
parameters are pertinent, and weighs them accordingly. For example, if KEGG IDs are not
available in one of the models, then that corresponding parameter will be down weighted (most
likely to zero), as it holds no bearing on the matching process. Likewise, if reaction EC numbers
prove to be particularly good at predicting matches, then it will be more heavily weighted.

8

3.4.2 Auto-matching based on scores

Figure 4: Set cuto�s for automated matching and start automatching in highlighted area

Optimizing the weight of the scoring parameters helps widen the scoring distance between
probable matches and probable new reactions and metabolites. Thus, auto-matching based
on cuto� scores can be done more con�dently after optimization. Simply set a low cuto� to
automatically declare new reactions when no match exists with a score above a certain value.
The same applies for a high cuto� for automatic pairing. Additionally, a margin can be set, such
that a reaction will only be automatically paired with a match, when the score for the match
is better that the second best match by a certain margin. Auto-matching in the same manner
exist for metabolites.

As metabolites become declared, the status of the reactions which contain those metabolites
can be elucidated. For example, if all of a reaction's metabolites have matches in the template
model, and the template model also contains a reaction with those exact metabolites, than the
original reaction is automatically paired with the one from the template. Conversely, if a reaction
contains a metabolite that does not exist in the template model, then it is declared as new.

3.4.3 Matching �ow

The following is a general guide to e�ective and e�cient matching.

1. Consider a small subset of reactions, ie 20-50. You can choose to consider reactions with
at least one match with a score above a certain cuto� by adjusting the slider under the
score frequency histogram in the GUI. Note that comparing high scoring reactions (likely
matches) is more helpful towards the generation of a training data set.

9

Figure 5: The metCompare GUI is called viay the reactionCompare GUI. It displays the aviail-
able details on the metabolite from Cmodel (1) and details on the highest scoring metabolites
from Tmodel. The other metabolites from the same reaction can also be chosen (3) and the corre-
sponding reaction equation is displayed (4). The matching metabolite can be selected by clicking
it in (2) or by selecting it in (5). Clicking the button �Choose Match� �nalizes the selection.
The current progress of the matching is also displayed (6). The matching of metabolites can be
skipped at any time (7) to return to the reactionCompare GUI. If all metabolites of the reaction
have been matched or declared new, the GUI can be closed by clicking �Add Metabolite(s)� (8).

2. Declare these reactions as either having a match or new.

3. After each reaction is declared, a sub-GUI that allows the user to compare metabolites
will start. Similarly, declare metabolites as having a match or new. Reactions that are
given a match must also have matches for all of their metabolites.

4. Use one of the optimizing functions to partition scores, then use the auto-match function
to declare for-sure matches and for-sure new reactions. Adjust the auto-match parameters
based on the scores you observe. The metabolite comparison GUI will most likely
re-launch for these newly declared reactions.

5. Repeat steps 1-4 until all reactions and metabolites have matches in Tmodel or are
declared as new.

3.5 Merge model with database

Use mergeModels.m to merge Cmodel with Tmodel. It returns the composite model, TmodelC,
and Cmodel as extracted from the composite model. Stats now additionally contains
comparison information between models in the composite model.

10

>> [TmodelC , Cspawn , Stat s] = mergeModels (Cmodel , Tmodel , rxnList , metList , . . .
S ta t s) ;

For reactions and metabolites for which matches have been found, the script adds information
to the current entries in Tmodel. New entries are made for new reactions and metabolites from
Cmodel. mergeModels.m calls cleanToModel.m, which may prompt the user to clarify duplicate
reaction and metabolite names to ensure the composite model only contains unique entries.

Merging is also done in a manner that ensures the original models can be retrieved in
their original mathematical form. This may require that some reactions and metabolites be
re-reviewed. Note that reaction bounds, reversibility of reactions, and the index of the objective
function are stored individually for all models. Furthermore, protons and water are ignored when
checking for stoichiometric �edelity, because these two metabolites are notoriously not balanced
in some published metabolic models.

3.6 Extracting models

Models merged together or into an existing composite model can be later retrieved with
readCbTmodel.m. This reproduces the initial model with additional annotation information.

>> Cspawn = readCbTmodel ('modelName ' ,Tmodel) ;

The composite model can also be �attened and treated as a stand alone model with squishT-
model.m.

4 Appendix

4.1 Description of scoring parameters

The reaction scoring parameters are de�ned in compareCbModels.m. Most parameters come
in a pair, one allotting points for a match, the other removing points for a miss between any to
given reactions. String comparison supports multiple pieces of information contained within one
�eld as separated by a pipe ('|').

rxnName Reaction names match.

rxnNameL Reaction long name match. Also cross checks to ID.

ec Reaction EC number match.

rxnKEGG Reaction KEGG ID match.

rev Reaction reversibility match.

sub Reaction subsystem match.

gr Genes match.

metNum Same number of metabolites.

metSto Same stoichiometry.

metName Metabolites have same name. Points alloted per metabolite.

11

metForm Metabolites have same formula. Points alloted per metabolite.

metKEGG Metabolites have same formula. Points alloted per metabolite.

metSEED Metabolites have same SEED ID. Points alloted per metabolite.

reacNum Same number of reactants.

reacSto Same reactant stoichiometry.

prodNum Same number of products.

prodSto Same product stoichiometry.

rxnComp Reactions involve the same compartments.

rxnSEED Reaction SEED ID match.

metBonus Bonus alloted if all the metabolite names, formulas, KEGG or SEED IDs match.

rxnNet Network similarity around reaction.

Metabolites are also scored individually on the following parameters: ID, compartment, name,
formula, charge, KEGGID, SEEDID, ChEBIID, PubChemID, and InChIString.

4.2 Description of scripts

All scrips have usage descriptions located within the .m �le itself. Scripts in /modelBorgi-
�er/src are core to the comparison process, while those in /modelBorgi�er/tools are mostly
concerned with formatting data to aid comparison.

4.3 Important terms

Cmodel Compare Model. The model that is to be compared and merged to Tmodel.

Tmodel Template Model. The model to which Cmodel is compared and merged. This can
simply be another model, or a composite model of many previously combined
models.

rxnList The array which pairs reactions from Cmodel to their match in Tmodel, or declares
them as new.

metList Analogous array for metabolites.

References

[1] Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology.
BMC genomics 9, 75 (2008).

[2] C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1�27:27 (2011).

[3] Henry, C. S., Zinner, J. F., Cohoon, M. P. & Stevens, R. L. iBsu1103: a new genome-
scale metabolic model of Bacillus subtilis based on SEED annotations. Genome
biology 10, R69 (2009).

12

[4] Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia coli
metabolism�2011. Molecular Systems Biology 7, (2011).

[5] Overbeek, R. et al. The subsystems approach to genome annotation and its use in
the project to annotate 1000 genomes. Nucleic acids research 33, 5691�702 (2005).

[6] Schellenberger, J. et al. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA Toolbox v2.0. Nature Protocols 6, 1290�1307
(2011).

13

