UltraPse : A universal and extensible software platform for representing biological sequences
A User Manual

Pu-Feng Du PufengDu@gmail.com

School of Computer Science and Technology, Tianjin University, Tianjin 300350, China

Date Version
Sep.19th, 2017 1.0
Contents

1 Introduction
2 Installation
2.1 Linux/UNIX
2.2 Windows
2.3 Others
3 Usage
3.1 Command line
3.2 Task Definition File
3.2.1 TDF general instructions
3.2.2 TDF specific functions
3.2.3 TDF specific interfaces
4 Synopsis
4.1 Amino acid compositions
4.1 Pseudo-amino acid compositions
4.2 Pseudo-Dinucleotide compositions
5 Other Information
5.1 Authors correspondence
5.2 Submitting your add-ons
5.3 Resources

1 Introduction

A number of biological questions can be formulated as a pattern classification problem. For example,
predicting protein subcellular localization, predicting protein post-translational modification sites and
predicting recombination hotspots are all pattern classification problems. Since all these problems requires
biological sequences as input, they are usually called biological sequence classification problems. The
paradigms for classifying biological sequences usually has a very important step: representing every
biological sequence with a fixed-length numerical vector. This is because most of the machine learning
algorithm would require this kind of data as their input, and most of these problems can be solved by using
machine learning algorithms.

There are a number of existing software for this task. For example, the PseAAC-Builder, PseAAC-General,
PseKNC, PseKNC-General and Pse-In-One. These software can convert protein sequences or nucleotide

sequences to numerical forms. As the direct decedent of PseAAC-General, the most important feature of
UltraPse is its extensibility. The types of representations can be extended by the users. The users can use

mailto:PufengDu@gmail.com
af://n11685

Lua scripts and binary extension modules to configure and extend UltraPse by means of new type of
biological sequence, new type of physicochemical properties and new algorithms of representations.

UltraPse is not a new competitor in this playground, which has already been filled with many other
software. UltraPse aims to become a universal platform for representing biological sequences, where the
users can develop their own sequence representation algorithms.

2 Installation

2.1 Linux/UNIX

To install the Linux/UNIX version of UltraPse, you need to ensure that you have all the following
dependencies installed before you can compile the source codes.

e |ua-devel
e GNU g++ (supporting --std=c++14 or --std=c++1y)

Follow the instructions on GitHub pages to prepare your Lua environment first!!

After you have prepared all these dependencies, you should just type the following command:
1 make

If there is no compiling error, you should have your UltraPse executables compiled.

2.2 Windows

Installation on Windows is pretty simple. UltraPse has no dependency on Windows. No compilation process
is needed. You only need to download the .zip package and unpack it in your favored location. You can
then use Windows command line environment to execute the Windows version UltraPse. Although the GUI
of UltraPse is being developed, there is currently NO GUI for Windows version.

2.3 Others

There is NO guarantee that the source code of UltraPse can be compiled on other systems. However, most
part of the UltraPse are written by standard C++ following ISO C++ 14 standard syntax with standard library.
As long as you can solve the dependency problems, it should not be a problem to let UltraPse run on other
systems.

3 Usage

3.7 Command line

Like its predecessor, the PseAAC-General, UltraPse has a command line interface, which follows GNU
standard. There are many command line options for UltraPse.

The basic syntax for UltraPse is as the following:

af://n11692
af://n11693
af://n11710
af://n11713
af://n11716
af://n11717

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Usage: upse [OPTION...]
UltraPse -- An ultra-fast extensible software platform for biological sequence

representations.

-a,

-f,

j)

-n,

--arguments=LUA-EXPR

--format={svm|tsv|csv}
--in=FILE

--k-tuple=K

--lambda=L

Lua expression to provide extra module-specific
parameters. This option can appear for multiple
times.

Output format.

A FASTA format file for input. The comment line of
a sequence in this file should be unique. If you
do not specify an in-file, the program will try to
read it from keyboard.

Use K-tuples in computation. This option can have
user defined purpose.

An integer for maximal lag. This option can have
user defined purpose.

--mode={comp |pse|dpc|cov|lua|pseb3|user,LIB_OBIJECT,MOD_NAME}

Representation module choices. This option can
appear for multiple times.
--note={stdprot|didnaldirna|tridna}

Sequence definition types. There are four internal

-0,

-P,

-q,

-u,

-V,

-W,

3

_V)

--out=FILE

--property=PROP-ID

types, if the user want to use their own sequence
type, they have to use a task definition file.

A file for storing the results. If you do not
specify an out-file, the results will be written
on screen.

Activate the property PROP-ID for current task.
This option can appear for multiple times.

--query={prop|mode|note|all}

--type=T

--user-task=TASK-FILE
--validate

--omega=W

--help

--usage

--version

Query status of everything.

Type parameter in pseknc, pseaac. This option can
have user defined purpose.

Task description file.

Validate sequences automatically. Sequence with
invalid notations will be dropped automatically.
A decimal number for pseknc and pseaac mode,
parameter w. This option can have user defined
purpose.

give this help 1list

give a short usage message

print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

Report bugs to Dr. Pu-Feng Du: <PufengDu@gmail.com>.

The interpretation of all options are here:

_i,

--in=FILE

This option is to designate FILE as the input of UltraPse. FILE should be a FASTA format file. Unlike the
PseAAC-General, UltraPse has no additional requirement to the FASTA format. Moreover, UltraPse can
recognize the FASTA file format, and can automatically parse the comment line, as long as your FASTA
format file follows the specification of one of the following five major databases: UniProt, GenBank, EMBL,
DDBJ and RefSeq. For example, if your FASTA file contain the following contents:

>sp|P@4637|P53_HUMAN Cellular tumor antigen p53 0S=Homo sapiens GN=TP53 PE=1 SV=4
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP
DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK
SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE
RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS
SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP
PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG
GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD

>sp|Q96EB6|SIR1_HUMAN NAD-dependent protein deacetylase sirtuin-1 0S=Homo sapiens GN=SIRT1
PE=1 SV=2

10 MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREV
11 PAAARGCPGAAAAALWREAEAEAAAAGGEQEAQATAAAGEGDNGPGLQGPSREPPLADNL
12 YDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWTPRP
13 RIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDI
14 NTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIE
15 YFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRII
16 QCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLPE
17 QFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELLG
18 DCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSSS
19 PERTSPPDSSVIVTLLDQAAKSNDDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENPDL
20 KNVGSSTGEKNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVYSD
21 SEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGLEDEPDVPERAGGAGFGTD
22 GDDQEAINEAISVKQEVTDMNYPSNKS

23 >sp|060260|PRKN_HUMAN E3 ubiquitin-protein ligase parkin 0S=Homo sapiens GN=PRKN PE=1 SV=2
24 MIVFVRFNSSHGFPVEVDSDTSIFQLKEVVAKRQGVPADQLRVIFAGKELRNDWTVQNCD
25 LDQQSIVHIVQRPWRKGQEMNATGGDDPRNAAGGCEREPQSLTRVDLSSSVLPGDSVGLA
26 VILHTDSRKDSPPAGSPAGRSIYNSFYVYCKGPCQRVQPGKLRVQCSTCRQATLTLTQGP
27 SCWDDVLIPNRMSGECQSPHCPGTSAEFFFKCGAHPTSDKETSVALHLIATNSRNITCIT
28 CTDVRSPVLVFQCNSRHVICLDCFHLYCVTRLNDRQFVHDPQLGYSLPCVAGCPNSLIKE
29 LHHFRILGEEQYNRYQQYGAEECVLQMGGVLCPRPGCGAGLLPEPDQRKVTCEGGNGLGC
30 GFAFCRECKEAYHEGECSAVFEASGTTTQAYRVDERAAEQARWEAASKETIKKTTKPCPR
31 CHVPVEKNGGCMHMKCPQPQCRLEWCWNCGCEWNRVCMGDHWFDV

O 00 N O L1 A W N B

UltraPse can automatically recognize these three sequence and identify them as sp|Pe4637 , sp|Q96EB6
and sp|oee26e . You do NOT need to write the sequence on a single line. The downloaded format can be
directly recognized.

If there is no -in option on the command line, UltraPse will try to find it in the Task Definition File. If the
input file can not be find again, UltraPse will use Standard Input as its data source. This feature is
particularly useful in writing shell scripts.

If there are multiple -in options on the command line, only the last one (from left to right) is effective.

® -0,--out=FILE

This option specify the output file location. The FILE must be a valid file name on the platform. For
example, on Linux, it could be ~/data/test.pseaac , while on Windows platform, it could be
D:\mydata\test.pseaac

Please note that, for data security reasons, UltraPse will automatically ABORT ALL OPERATIONS, if the
specified output file has already existed.

If there are multiple -o options on the command line, only the last one will be effective.
This option equals to SetoOutputFile ina TDF.

If there is no -o option on the command line, nor the TDF, UltraPse will use Standard Output as the
output file. This is particularly useful in scripting.

UltraPse support three different output format, which can be configured using the -f option.
e f, ——format={svm|tsv|csv}

This option specifies the output file format. UltraPse, like most of the existing programs, support three
different output formats, libSVM format (-f svm), TSV format (-f tsv) and CSV format (-f csv).

The libSVM format follows the libSVM data file specification, which can be found here:
https://www.csie.ntu.edu.tw/~cjlin/libsvm/fag.html# TOP .

In the libSVM format, the class label is always zero in UltraPse. This is different to PseAAC-General.

The TSV format is called Table Separated Vectors. The data are separated by \\t character, whose ASCII
code equals ox@9 .

The CSV format is called Comma Separated Vector. The data are separated by ', character.
Both CSV and TSV format can be loaded in spreadsheets program, like Microsoft Excel or LibreOffice Calc.
® -u, --user-task=TASK-FILE

This option is used to load a Task Definition File (TDF), which is specified by TASK-FILE . ATDF is a Lua script.
It can access UltraPse internal data structure. It can also be used to define new sequence representation
modes, new sequence types and new physicochemical properties.

The format of a TDF follows syntax of Lua language, which can be found here:
http://www.lua.org/manual/5.3/

There are many UltraPse specific functions when writing a TDF. The details of these functions, as well as
how to define new representation modes can be found in the Task Definition File section of this document.

® -m, --mode={comp|pse|dpc|cov|lua|pseb3|user, LIB_OBJECT,MOD_NAME}

This option add computation modules into current computation task. This option can appear multiple times
on the command line. The computation module will work according to the order they are specified on the
command line. The UltraPse host program supports five different computational modules. The computation
modules can be defined using Binary Shared Objects (BSOs). It also provide compatibility to Lua extensions
of PseAAC-General.

This option equals to the AddModule functionin a TDF.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#_TOP
http://www.lua.org/manual/5.3/

The comp module compute the notation compositions of a sequence, accodring to the value of -n option.
That is to say, if -n option specify a sequence type like "Dinucleotide", the comp module will compute the
16-D dinucleotide compositions. If -n option specify a sequence type called "DNA", the same comp module
will compute the 4-D nucleotide compositions.

The pse module compute the PseAAC or PseKNC general form descriptors. Its behaviour can be defined
using a TDF. When -n option specify that the sequence is a protein sequence, the module pse will
compute PseAAC. When -n option specify the sequecne is a dinucleotide sequence, the module pse will
compute the PseDNC. When a user-defined sequence type is defined, as long as compatible
physicochemical properties are defined also, the module pse will compute PsexxC according to the user
definition of sequence types and physichochemical properties.

For a hypothetical example, a user can define a sequence type describing methylated cytidines, using five
letters. Lets say that they are using ACGTM, where M indicate methylated cytidines. Lets also say that they
intend to see the sequence as di-nucleotide sequences. If the physicochemical properties of all dinucleotide
including M are properly defined, the module pse will produce pseudo-methylated-cytidine K-nucleotide
compositions (PseMeCKNC). With parameter A = 3, a 25 + 3 = 28 — D feature vector will be generated for
Type-l PseMeCKNC descriptors. If there are 2 physicochemical properties defined, a25+3%2=31—D
feature vector will be generated for Type-ll PseMeCKNC descriptors.

To select Type-l or Type-Il descriptors, the -t option should be applied. -t 1 is for Type-I descriptors, and
-t 2 isfor Type-Il descriptors.

To choose physicochemical properties, either use -p option on the command line, or use AddProperty
function in a TDF. If both methods are used, the result will consider properties indicated by both methods
together.

The dpc module is the only module that are restriced to protein sequence, which can only be used along
with -n stdprot . It provides di-peptide compositions, which is compatible with PseAAC-General.

The cov module is to calculate covariance based descriptors, including the auto-correlation descriptor (-t
1), cross-correlation descriptor (-t 2) and auto-cross-correlation descriptors (-t 3). All these descriptors
have been defined in Pse-In-One. To specify maximal lag parameter, the -1 option should be applied. To
choose different descriptors, the -t option should be applied.

The 1lua module is to interface the user-defined sequence representation mode in TDF form. The details of
how UltraPse ultilize user-defined sequence representation mode in TDF can be found in Task Definition File
section.

The pseb3 module is to interface with PseAAC-General legacy modules. All PseAAC-General Lua extensions
can be applied in UltraPse with minor modifications.

The user module is to interface with the BSO form user defined mode. The user module take two sub-
options: LIB_OBJECT is a filename and path that specify a loadable library. On Windows platform, it is usually
a DLL file. On Linux platform, it is usually a SO file. The MOD_NAME is the name of the computational
module that should be loaded from the BSO. A BSO file may contain multiple computational modules.

® -n, --note={stdprot|didnal|dirna|tridna}

Specify the seqeunce types, aka notation definitions. There are four public internal notation types. They are
Protein (-n stdprot), Di-nucleotide (DNA) (-n didna), Di-nucleotide (RNA) (-n dirna), and Tri-nucleotide (-

n tridna).

There are other internal notation types. They can be explored by using the -q note method. They can be
applied if the users knows exactly what they indicates. However, the non-public internal notation types are
not guaranteed to be supported in future versions of UltraPse. We DO NOT support the other internal
notation types. No detail documentation will be provided for those non-public internal notation types.

This option equals to the SetNotation function in a TDF. If both command line option and TDF function are
used, the TDF function override the command line option.

To define new sequence types, a TDF MUST be used.
® -p, --property=PROP-ID

This option add a physicochemical property into current computational task. In UltraPse, the set of available
physicochemical properties is determined by the sequence types. For example, if you speified -n stdprot ,
only protein properties can be applied in -p option. If you specified -n didna , only Di-nucleotide (DNA)
properties can be applied. To find out integrated property types, use -q prop option with a corresponding
settingon -n option.

This option equals AddProperty functionin a TDF.
To define a new physichchemical property, a TDF MUST be used.

For those properties that are defined in a TDF, they can also be specified on command line, as long as you
load the right TDF.

If both TDF and command line specify physicochemical properties, the result will use both.
® .y, --validate

This option let UltraPse to automatically filter out those sequences with invalide notations, according to the
requirement of -n option.

If this option is not specified, UltraPse will automatically abort operation with segmentation fault message
when a sequence with invalide notation is encountered. If this options is specified, UltraPse will skip the
seqeunce and report that when all the processing are completed.

If you are not sure whether your input data completely conform to your sequence type specification,
ALWAYS use this option.

If you are very sure that your data comform to the sequence type specification, losing this option will
accelarate the processing a little.

® -1, --lambda=L

® -, --omega=W

® -t, --type=T

® -k, --k-tuple=K

® -a, --arguments=LUA-EXPR

The above five options are called "Module specific paramter options". The are used to provide parameters
for computational modules on the command line. The meanings of -1, -w, -t, and -k are differentin
different computational modules. They can be read in a TDF, using function Getoption .

The -a option provide additional ways to give parameters to a TDF. The LUA-EXPR is a piece of single-line
Lua script. This piece of script will be executed in the same scope and space as the TDF, but before TDF.
Therefore, TDF can read the values that are specified in this LUA-EXPR .

3.2 Task Definition File
3.2.1 TDF general instructions

A TDF in UltraPse is a Lua script. UltraPse includes a fully functional Lua interpreter inside. The TDF is
executed as a Lua script after UltraPse parsed all command line options, and before UltraPse create any
computational facilities. Therefore, a TDF can alter all sort of definitions, options and parameters. It can
configure computational engine, physicochemical properties, sequence notation definitions. But, it can not
access instanced computational facilities, because when the the TDF is executed, those computational
facilities have not been created yet. A TDF can provide functions, so that some computational modules can
call these functions to implement user-defined representation modes.

Since TDF is a Lua script, all Lua language elements are valid. You can use Lua controling statements in a
TDF.

In the following part, we will introduce the UltraPse TDF specific functions, which are defined in UltraPse
and can be called in a TDF. We will also introduce the UltraPse TDF specific interfaces, which are defined in
a TDF and will be called by the UltraPse.

3.2.2 TDF specific functions
e LoadModule
Syntax: LoadModule (BSO_File_Name)
Parameter Type: BSO_File_Name : LUA_TSTRING . A double quoted string or equivalent in Lua.
Returned Value: None
Function: Load a BSO file. Make the module in the BSO ready to be chosen.
e AddModule
Syntax: AddModule (Module_Name)
Parameter Type: Module_Name : LUA_TSTRING . A double quoted string or equivalent in Lua.
Returned Value: None

Function: Add a module into the computational engine. The module name can be internal modules or
those in BSO files. If a module is defined in a BSO file, this BSO file must be loaded before, using
LoadModule function.

e GetAllModules
Syntax: GetAllModules ()
Parameter Type: None.

Returned Value: LuA_TTABLE . A Lua table object. Indices are 1-based subscripts. Values are the names of
all available modules. These names are provided as LUA_TSTRING type values.

Function: Returns all available module names.
e GetActiveModules
Syntax: GetActiveModules ()

Parameter Type: None.

af://n11866
af://n11867
af://n11874

Returned Value: LUA_TTABLE . A Lua table object, Indices are 1-based subscripts. Values are the names of
all modules that have already been added into the computational engine. These names are provided as
LUA_TSTRING type values.

Function: Returns all activated module names.
e DefineNotation
Syntax: DefineNotation (Notation_Object)
Parameter Type: Notation_Object : LUA_TTABLE . A Lua table object that defines a new sequence type.

The Notation_Object MUST follow the following format:

1 Notation_Object = {

2 Name = "...";

3 Base = "...";

4 Length = ...;

5 ReduceMap = "...";
6 |}

Notation_Object can be any valid variable name in Lua. Name, Base, Length and ReduceMap are four
mandatory member in this table. Name is a double quoted string. It can be any valid string in Lua. It must be
unique among all sequence types, including internal types and user-defined types. Base is a double quoted
string. It contains all the letters that will appear in a sequence. Length is an integer. It defines how many
letter in the sequences should be regarded as a unit. For example, for di-nucleotide sequence type, you
write Base = "ACGT"; Length = 2;, while for tri-nucleotide sequence type, you should write Base="ACGT";
Length = 3;. ReduceMap is a double quoted string. It is the reducing rule when sequences are analyzed. For
example, if you specify ReduceMap = "AAACAGAT" in a di-nucleotide sequence type, the AA, AC, AG and AT
will be treated equally as AA.

Returned Value: None
Function: Add a user-defined seugence type, make it ready to be chosen.
e GetNotation
Syntax GetNotation()
Parameter types : None.
Returned value: LUA_TSTRING . A double-quoted string in Lua or equavalent.
Function: Return the current setting of the sequence type, as the name of that type.
e SetNotation
Syntax: SetNotation(Notation_Name)
Parameter types : Notation_Name: LUA_TSTRING . A double-quoted string in Lua or equavalent.
Returned value: None.

Function: Alter the current setting of the sequence type, using the name of a sequence type. The specified
Notation_Name must be a name of internal sequence type or a type that has already been defined using
DefineNotation .

e GetlnputFile
Syntax: GetInputFile()
Parameter types: None.
Returned value: LUA_TSTRING . A double-quoted string in Lua.
Function: Get the current setting of the input file. If current input file is standard input, it will return "stdin".
e SetlnputFile
Syntax: SetInputFile(INPUT_FILE_NAME)
Parameter types: INPUT_FILE_NAME: LUA_TSTRING . A double-quoted string in Lua or equavalent.
Returned value: None.
Function: Set the current setting of the input file.
e GetOutputFile
Syntax: GetOutputFile()
Parameter types: None.
Returned value: LUA_TSTRING . A double-quoted string in Lua.

Function: Get the current setting of the output file. If current output file is standard output, it will return
"stdout".

e SetOutputFile
Syntax: SetOutputFile(OUTPUT_FILE_NAME)
Parameter types: OUTPUT_FILE_NAME: LUA_TSTRING . A double-quoted string in Lua.
Returned value: None.
Function: Set the current setting of the output file.
e GetOption
Syntax: GetOption(OPTION_NAME)
Parameter types: OPTION_NAME: LUA_TSTRING . A double-quoted string in Lua.
Returned value: LUA_TSTRING . The corresponding value of the command line options.

Function: Return a command line options value. There are four command line options that can be accessed
using this function: -1, -w, -t and -k . To access them, the corresponding OPTION_NAME must be used
according to the following table:

Option name Command line option Returned Type

_cmd_lambda -1 LUA_TSTRING
_cmd_omega -w LUA_TSTRING
_cmd_subtype =& LUA_TSTRING
_cmd_ktuple -k LUA_TSTRING

For example, if GetOption("_cmd_lambda") is used, it will return whatever is set on the command line for the
-w option.

e DefineProperty
Syntax: DefineProperty(Property_Object)

Parameter types: Property_Object: LUA_TTABLE . A Lua table object describing a type of physicochemical
property. This table object MUST follow the following format:

1 Property_Object =

2 | {

3 Template = "...";
4 ID = "...";

5 Values =

6 {

7 AA = 1.0;

8 AC = 2.0;

9 AG = 3.0;
10 AT = 3.3;
11

12 s

13 Comment = "...";
14 |}

Property_Object can be any valid variable name in Lua. This table has four mandatory members: Template, ID,
Values and Comment. Template is identifier of the existing physicochemical properties that should be used as
the template for this new physicochemical properties. Besides the values altered in the Values section, all
the other values of the new physicochemical properties will be the same as the template. If Template is "",
Values section must specify values for all notations in current sequence types. /D is a string. It is the unique
identifier of the property. Values is a table object. It defines all physicochemical property values. The
member name in Values table must conform to the sequence type definition. Neither extra nor missing
member is allowed. Comment is a string. It explains what this property actually offer. If you do not need that,
just leave itas "".

Returned value: None.
Function: Define a physicochemical property and make it ready to be chosen.
e AddProperty

Syntax: AddProperty(PROP_ID)

Parameter types: PROP_ID: LUA_TSTRING . A double-quoted Lua string or equavalent.
Returned value: None.

Function: Add a physicochemical property into current computation task. The PROP_ID must be an ID of a
physicochemical property that conforms to current setting of sequence types. The PROP_ID must exist as an
internal physicochemical property or a user-defined property that has already been defined using
DefineProperty function.

e GetActiveProperties
Syntax: GetActiveProperties()
Parameter types: None.

Returned value: LUA_TTABLE . A Lua table object, Indices are 1-based subscripts. Values are the IDs of all
physicochemical properties that have already been added into current task. These IDs are provided as
LUA_TSTRING type values.

Function: Get all the physicochemical properties that will be used in this task.

PLEASE NOTE

There are other TDF specific functions, which we have not documented here. Users can read the source
code of LuavMExt.cpp for a comprehensive understanding. Those undocumented functions can be used in
a TDF. However, we do not guarantee that undocumented functions can be used in future versions of
UltraPse.

3.2.3 TDF specific interfaces
e UltraPseVMConfig
Prototype: UltraPsevMConfig()

Function: This is the global configuration interface. This function will be called after TDF execution, just
before actual computation starts. It is desinged to perform global scale specific configuration for the Lua
runtime environment itself.

e UPseConfig
Prototype: UPseConfig()

Function: This is the configuration interface for user-defined sequence representation mode. This function
will be called by the internal module 1ua . This function will be called when the computational engine is
instantiated. This function should return an integer, which is the number of descriptors that will be
generated in the user-defined representation mode.

e UPseCompute
Prototype: UPseCompute(Table_Indices)

Function: This is the computation interface for user-defined sequence representation mode. This function
will be called by the internal moduel 1ua . This function will be called on every sequence.

af://n12092

The Table_Indices is a table object. It contains internal indices of a sequence. The internal indice of a
sequence is the zero-based dictionary order number of every notation on that sequence. For example, on a
protein sequence, the internal index is for every letter on the sequence. It is the dictionary order of that
letter, from O to 19. For another example, on a DNA sequence, the internal index is for every 2 or 3 letters
according to your choice of seqeunce type. It is also the dictionary order for 2 or 4 letters.

The Table_Indices table contain a specific field, called "Length", indicating the number of indices in the table.

This function should also return a table object, which contain all the descriptors generated, and a "Length"
field, indicating the number of descriptors.

e pseb3_seq_proc
Prototype: pseb3_seq_proc(id, seq)

Function: This is the computational interface for PseAAC-General legacy extension modules. All PseAAC-
General Lua extension module should have this interface. There is no need to change this interface in the
Lua script. The parameter and the returned result are identical to the PseAAC-General. For more details,
please refer to documents of PseAAC-General.

e pseb3_length
Prototype: pseb3_length()

Function: This is the compatitble interface for PseAAC-General legacy extension modules. All PseAAC-
General Lua extension module MUST add this interface to be executed by UltraPse. This interface should
return an integer to the UltraPse host program, which indicate the number of descriptors that will be
generated by the pseb3_seq_proc procedure.

4 Synopsis
4.1 Amino acid compositions

The following command compute only amino acid compositons for all sequences in tiny.fas

1 ./upse -n stdprot -m comp -f svm -i test/tiny.fas

4.1 Pseudo-amino acid compositions

The following command use a pre-defined TDF to compute Classic Type-I PseAAC, with A = 10, w = 0.05.
1 ./upse -i test/tiny.fas -u tdfs/classic-pseaac.lua -t 1 -1 10 -w 0.05 -f svm
The following command use a pre-defined TDF to compute Classic Type-ll PseAAC, with A = 10, w = 0.05.

1 ./upse -i test/tiny.fas -u tdfs/classic-pseaac.lua -t 2 -1 10 -w 0.05 -f svm

4.2 Pseudo-Dinucleotide compositions

The following command use a pre-defined TDF to compute Type-l PseDNC, with A = 3,w = 0.5.

1 ./upse -i test/tiny-dna.fas -u tdfs/psednc.lua -t 1 -1 3 -w 0.5 -f svm

af://n12139
af://n12140
af://n12144
af://n12151

5 Other Information

5.1 Authors correspondence

e Correspondence

Please send all correspondence regarding the UltraPse software to Dr. Pu-Feng Du, via
PufengDu@gmail.com .If you find any bugs or find UltraPse can not be compiled in your environment, you
should contact Dr. Pu-Feng Du via PufengDu@gmail.com. We will try our best to help you.

e Specialized Version Requests

We can produce specific versions of UltraPse for your speicial purpose. The details of this kind of request
can be discussed. Please send your request to PufengDu@gmail.com.

5.2 Submitting your add-ons

If you want to contribute plugins for UltrPse, just join the project on GitHub. The address of UltraPse is:
https://github.com/pufengdu/UltraPse

5.3 Resources

The following resources may be useful when you use UltraPse.
e Lua official site

http://www.lua.org/

e C++14 standard

https://isocpp.org/std/the-standard

e MinGW64 / MSYS2

http://www.msys2.org/

e PseAAC

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/

e PseAAC-General

https://github.com/pufengdu/PseAAC-General

e Pse-In-One

http://bioinformatics.hitsz.edu.cn/Pse-in-One/home/

af://n12155
af://n12156
mailto:PufengDu@gmail.com
mailto:PufengDu@gmail.com
mailto:PufengDu@gmail.com
af://n12169
https://github.com/pufengdu/UltraPse
af://n12173
http://www.lua.org/
https://isocpp.org/std/the-standard
http://www.msys2.org/
http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/
https://github.com/pufengdu/PseAAC-General
http://bioinformatics.hitsz.edu.cn/Pse-in-One/home/

	1 Introduction
	2 Installation
	2.1 Linux/UNIX
	2.2 Windows
	2.3 Others

	3 Usage
	3.1 Command line
	3.2 Task Definition File
	3.2.1 TDF general instructions
	3.2.2 TDF specific functions
	3.2.3 TDF specific interfaces

	4 Synopsis
	4.1 Amino acid compositions
	4.1 Pseudo-amino acid compositions
	4.2 Pseudo-Dinucleotide compositions

	5 Other Information
	5.1 Authors correspondence
	5.2 Submitting your add-ons
	5.3 Resources

