
Vol. 28 no. 19 2012, pages 2520–2522
BIOINFORMATICS APPLICATION NOTE doi:10.1093/bioinformatics/bts480

Genome analysis Advance Access publication August 20, 2012

Snakemake—a scalable bioinformatics workflow engine
Johannes Köster1,2,* and Sven Rahmann1

1Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen and 2Paediatric Oncology,
University Childrens Hospital, 45147 Essen, Germany

Associate Editor: Alfonso Valencia

ABSTRACT

Summary: Snakemake is a workflow engine that provides a readable

Python-based workflow definition language and a powerful execution

environment that scales from single-core workstations to compute

clusters without modifying the workflow. It is the first system to sup-

port the use of automatically inferred multiple named wildcards (or

variables) in input and output filenames.

Availability: http://snakemake.googlecode.com.

Contact: johannes.koester@uni-due.de

Received on May 14, 2012; revised on June 28, 2012; accepted on

July 28, 2012

1 INTRODUCTION

Large-scale data analyses in bioinformatics involve the chained

execution of many command line applications. Workflow en-
gines help to automate these pipelines and ensure reproducibility.

Systems such as Biopipe (Hoon et al., 2003), Taverna (Oinn
et al., 2004), Galaxy (Goecks et al., 2010), GeneProf (Halbritter

et al., 2011) or PegaSys (Shah et al., 2004) are easy to learn and
use through their graphical user interface. Others such as Ruffus

(Goodstadt, 2010), Pwrake (Tanaka and Tatebe, 2010), GXP
Make (Taura et al., 2010) and Bpipe (Sadedin et al., 2012) use

text-based definition of workflows, which can be advantageous:

workflows can be edited without a graphical environment (e.g.
directly on a remote server); and developers can collaborate on

them through source code management tools. Similar to Pwrake
and GXP Make, Snakemake is inspired by the build system

GNU Make (Stallman and McGrath, 1991). They all infer the
actual workflow (dependencies, parallelization) from a set of

rules with input and output files. Snakemake complements
these prior works with a syntax close to pseudocode, in the

spirit of the Python language.
Snakemake interoperates with any installed tool or available

web service with well-defined input and output (file) formats.
Although this approach lacks type checking of intermediate

files, it does not require tight integration of tools into the work-

flow system, such as with PegaSys (Shah et al., 2004), and thus is
most flexible. Snakemake itself is fully portable, as only a Python

installation is required to run Snakefiles. It provides automatic
scalability because it optimizes the number of parallel processes

w.r.t. provided CPU cores and needed threads and can make use
of single machines as well as cluster engines without modifying

the workflow. In contrast to Pwrake and GXP Make,

Snakemake does not rely on any password-less SSH setup or

custom server processes running on the cluster nodes. Finally,

Snakemake is the first system to support file name inference with

multiple named wildcards in rules.

2 SNAKEMAKE LANGUAGE

A workflow is defined in a ‘Snakefile’ through a domain-specific

language that is close to standard Python syntax. It consists of

rules that denote how to create output files from input files. The

workflow is implied by dependencies between the rules that arise

from one rule needing an output file of another as an input file.
A rule definition specifies (i) a name, (ii) any number of input

and output files and (iii) either a shell command or Python code

that creates the output from the input. Input and output files

may contain multiple named wildcards, whose values are inferred

automatically from the files desired by the user. Listing 1 shows

an example Snakefile for mapping sequence reads to a reference

genome, which is a typical task in, e.g. cancer genomics

(Meyerson et al., 2010): paired-end sequence reads are given as

.fastq files for four samples named 100–103 and mapped to the

human reference genome. Then, a histogram of the

per-nucleotide coverage is generated. There are two variable def-

initions (here SAMPLES and REF) that may also be included

from external files or environment variables and five rules that

each start with the keyword rule followed by a name and the

definitions of input and output files and shell commands or

Python code. Although Python code can be directly integrated

into the workflow definition, Snakemake is not limited to Python

scripts: any available tool or service may be invoked in a

shell- or run-block and its output further processed.
The rule fastq_to_sai (l. 6–9) describes how to map the

reads given the .fastq file and the reference. It uses two named

wildcards, so it can be applied to the first and the second read of

each read pair (wildcard {group}) from each sample (wildcard

{sample}). If the rule is requested to create the file

100.1.sai, the wildcard {sample} becomes 100 and

{group} becomes 1, so that the input file 100.1.fastq is

expected. To resolve ambiguity, wildcards can be restricted to

regular expressions (e.g. {group,[12]} only allows a single

character from the set {1,2}, while {group,\dþ} allows

any number of numeric characters). Here, BWA (Li and

Durbin, 2009) is used for read mapping, which produces suffix

array interval (.sai) files that must be converted to the common

format .bam for aligned reads; this is done by the rule sai_to_

bam (l. 10–14). In the rule fastq_to_sai, input

files are named (as ref and reads) and can be accessed as

{input.ref} or {input.reads} in the shell block (l. 9).*To whom correspondence should be addressed.

2520 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

 by guest on A
ugust 1, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://snakemake.googlecode.com
http://bioinformatics.oxfordjournals.org/


In the rule sai_to_bam, all input files are accessed at once

through {input} (l. 14). BWAs internal.sai files can be

deleted automatically once the .bam files are created, which

are in turn worth to be write-protected to avoid accidental dele-

tion. Snakemake supports this by marking files as temp (l. 8)

and protected (l. 13). The rule remove_duplicates removes

polymerase chain reaction-induced duplicate reads from the

.bam files using the ‘samtools’ package (Li et al., 2009).

Finally, the rule plot_coverage creates a coverage histogram

for each position of the reference using Python’s ‘matplotlib’

(Hunter, 2007). This rule illustrates how shell output from sam-

tools is directly iterated over by Python code with Snakemake’s

built-in shell function in a run-block.

When Snakemake is invoked without a specific target, the first

rule (here the input-only rule all) is executed. It ensures that the

coverage plot and hence all needed intermediate files are created

for each sample. See http://snakemake.googlecode.com for fur-

ther examples and detailed documentation.

3 SNAKEMAKE ENGINE

Upon invocation, Snakemake creates a directed acyclic graph

(DAG) that represents a plan of rule executions (Fig. 1). The

nodes of the DAG are jobs (i.e. the execution of a rule), a dir-

ected edge between job A and B means that the rule underlying

job B needs the output of job A as an input file. A path in the

DAG represents a sequence of jobs that have to be executed

serially. Importantly, two disjoint paths in the DAG can be

executed independently from each other, i.e. in parallel. Since

individual jobs can use multiple threads themselves,

Snakemake can be instructed to solve a 0/1-knapsack problem

to optimize the usage of CPUs, given a threshold of available

cores. This mechanism allows to scale Snakemake to environ-

ments with a hard limit of used CPU cores, e.g. a shared compute

server. Furthermore, using only as many threads as there are

cores available can be beneficial for performance since it reduces

the amount of context switching.
By default, Snakemake only executes rules if the output files

are not present or the modification time of the input files is

newer. Together with the automatic deletion of output files

from incomplete rule executions (e.g. due to a failing shell com-

mand), this enables Snakemake to avoid duplicate work when

resuming workflows.

To analyse the workflow, Snakemake provides options to per-

form a dry-run without actual execution of jobs, give the reason

for each executed job and print the DAG to the graphviz.dot

format (Gansner and North, 2000) for visualization.
Apart from running on single machines, Snakemake contains

a generic mechanism that allows the execution of jobs on a batch

system or a compute cluster engine that is only constrained by

the availability of a submit command that handles shell scripts

(e.g. qsub) and a shared file system accessible by all cluster nodes.

Hence, a Snakefile scales from single-core workstations over

multi-core servers to compute clusters of different architectures,

without the need to modify the workflow.

ACKNOWLEDGEMENTS

The authors thank Tobias Marschall (CWI Amsterdam) and

Marcel Martin (TU Dortmund) for their tremendously helpful

testing work, feature requests and comments.

Conflict of Interest: None declared.

REFERENCES

Gansner,E.R. and North,S.C. (2000) An open graph visualization system and its

applications to software engineering. Software Pract Exper, 30, 1203–1233.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences.

Genome Biol., 11, R86.

Goodstadt,L. (2010) Ruffus: a lightweight Python library for computational pipe-

lines. Bioinformatics, 26, 2778–2779.

Halbritter,F. et al. (2011) GeneProf: analysis of high-throughput sequencing experi-

ments. Nat. Methods, 9, 7–8.

Listing 1. Example Snakefile for mapping paired-end reads with BWA.

(1) SAMPLES ¼ "100 101 102 103".split()

(2) REF ¼ "hg19.fa"

(3) rule all:

(4) input: "{sample}.coverage.pdf".format(sample ¼ sample)

(5) for sample in SAMPLES

(6) rule fastq_to_sai:

(7) input: ref ¼ REF, reads ¼ "{sample}.{group}.fastq"

(8) output: temp("{sample}.{group}.sai")

(9) shell: "bwa aln {input.ref} {input.reads}4{output}"

(10) rule sai_to_bam:

(11) input: REF, "{sample}.1.sai", "{sample}.2.sai",

(12) "{sample}.1.fastq", "{sample}.2.fastq"

(13) output: protected("{sample}.bam")

(14) shell: "bwa sampe {input} j samtools view -Sbh -4{output}"

(15) rule remove_duplicates:

(16) input: "{sample}.bam"

(17) output: "{sample}.nodup.bam"

(18) shell: "samtools rmdup {input} {output}"

(19) rule plot_coverage_histogram:

(20) input: "{sample}.nodup.bam"

(21) output: hist ¼ "{sample}.coverage.pdf"

(22) run:

(23) from matplotlib.pyplot import hist, savefig

(24) hist(list(map(int,

(25) shell("samtools mpileup {input} j cut -f4",

(26) iterable¼True))))

(27) savefig(output.hist)

Fig. 1. DAG of jobs for the example workflow

2521

Snakemake

 by guest on A
ugust 1, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://snakemake.googlecode.com
http://bioinformatics.oxfordjournals.org/


Hoon,S. et al. (2003) Biopipe: a flexible framework for protocol-based bioinfor-

matics analysis. Genome Res., 13, 1904–1915.

Hunter,J. (2007) Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 9,

90–95.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009) The sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Meyerson,M. et al. (2010) Advances in understanding cancer genomes through

second-generation sequencing. Nat. Rev. Genet., 11, 685–696.

Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics, 20, 3045–3054.

Sadedin,S.P. et al. (2012) Bpipe: a tool for running and managing bioinformatics

pipelines. Bioinformatics, 28, 1525–1526.

Shah,S.P. et al. (2004) Pegasys: software for executing and integrating analyses of

biological sequences. BMC Bioinformatics, 5, 40.

Stallman,R.M. and McGrath,R. (1991) GNU Make—A Program for Directing

Recompilation. http://wwwgnu.org/software/make/.

Tanaka,M. and Tatebe,O. (2010) Pwrake: a parallel and distributed flexible work-

flow management tool for wide-area data intensive computing. In HPDC’10,

ACM. pp. 356–359. http://dl.acm.org/citation.cfm?id=1851529.

Taura,K. et al. (2010) Design and Implementation of {GXP} Make – A Workflow

System Based on Make. In IEEE International Conference on eScience, IEEE

Computer Society, pp. 214–221, Los Alamitos, CA, USA.

2522

J.Köster and S.Rahmann

 by guest on A
ugust 1, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://www.gnu.org/software/make/
http://dl.acm.org/citation.cfm?id=1851529
http://bioinformatics.oxfordjournals.org/

