
1

Redact Tool for ParanoiDF
Author: Patrick Wragg

25/07/2014
University of Kent

Supervisor: Julio Hernandez-
Castro

Purpose: To find word(s) behind a redaction box
with high probability. Grammar parser included to

narrow results to users preference.

2

Contents: Page:
Introduction 3
Method One 4
Method Two 9
Grammar Parsing (Method Three) 14
Disclaimer 16

3

Introduction
Definition of Redaction: The censoring or obscuring of part of a text for legal or
security purposes.

PLEASE READ THIS BEFORE CONTINUING:
 There are several ways that PDFs structure text streams/redaction boxes, and

it depends on the individual PDF (E.g. different versions).

 The fonts included with the tool are free ones obtained from
www.fontpalace.com. Obviously I would break the law if I were to include
those that are not free. Feel free to add any of your own fonts (free or paid for)
to the “fonts” directory of the tool. They must be TrueType fonts (have the ext.
“.ttf”)

 You have to do a small amount of word type deduction yourself (don’t be lazy)
before running the command. Reason: There are about 150,000 different
words in total, if you highly suspect the word is a country, why make it search
through 150,000 when there are 196 countries?

 There are 3 pieces of information you need to collect before running the
command “redact [option] [option]”: Font Size, Font, and Redaction box
coordinates. The majority of this tutorial explains methods of how to find
them. The actual command thereafter is fairly trivial.

 The more graphics/multimedia in a PDF, the longer it will take to identify the
correct redact box object (“/BBox”). This is because the BBox (Bounding Box)
object is used generically for most types of graphic/multimedia; it is not unique
to the redaction box.

 Both the PDF’s for this tutorial were redacted securely using Adobe Acrobat
Pro.

 Sometimes, the font size is not directly before to the Tf operator. Sometimes it
is on the next line (the far left number):

4

Method One

After deducing that this word will most likely be a country, we can
start:
Method 1:

1. Open the file using “open input-file”

2. The first thing I will do is search for /BBox (not case-sensitive): “search /bbox”.
As you can see, two objects are returned, 17 and 18.

5

3. I will now look at both objects. As you can see, object 17 is the text stream.
This is handy, because the object containing the text stream should contain
the font size. The font size is found just before Tf (Text Font Size) operator. In
this case it is 14. Note this down.

4. Also in object 17 is the font object that is used for the text stream (this means
it tells us the font used). It is located after the “/Font” operator. In this case it
is “/Font << /TT0 25 0 R”; so the object is “25”.

6

5. After doing the command “object 25”, it displays the font inside the object. In
this case, it is Calibri. Note this down.

6. After confirming that the text stream object (17) is the correct object where
the redaction box is after or before, it is worth noting the coordinates that are
by the /BBox operator (this is so that when identifying the actual redaction
box object, you can be sure it is in the right place).

7

7. We should now go back to object 18 (found at step 2) now by doing “object
18”.

8. In object 18 (above), we can deduct from comparing the two end coordinates
of the text stream object 17, and this one, that this object represents the
redact box. This is because one ends roughly near the other one. We will write
these coordinates down: 300.879, 768.962, 347.299, 782.008

9. Now we can finally do the command! “redact c c”. C and C are the two options
I chose, because it is most likely a country, and is most likely a capitalised
word.
Font Size = 14
Font = Calibri
Coordinates = 300.879, 768.962, 347.299, 782.008

8

10. Done! After entering in the information and telling us that the redaction box
size is 46x13 points, it outputted 24/197 successful words that fit the box.
Below are the results, with the correct country “England” within the results.

9

Method Two:

After deducing that this word will most likely be a name (Patrick),
we can start:

1. Open the file.

2. The first thing I did here was search for /BBox by doing “search /bbox”. As you
can see, object 25 is the result.

10

3. Using the command “object 25”, I will look inside the object.

4. Seeing as it seems like it doesn’t have any useful information, I will search for
whether it has any references. I will do the command “references to 25” to see
if there are any objects that are connected to this object. This object
references 21.

5. I am now looking inside object 21 “object 21”. This object catches my eye as it
has a “/Font” operator which points to an object.

11

6. I will now check the other objects that are in object 21. At the top there is
“/Contents 22 0 R”. I will check this one. Result! (Below) This object (22) holds
the text stream (which means the font size too). I write down the font size
number, which is the digit before “Tf”, in this case, it is 11. It is a good idea to
take note of the coordinate number it has given below so we can use it to help
identify which object is the redaction box.

7. Going back to object 21, I look inside the object that is next to “/Font << /TT0
31 0 R”, so object 31. Object 31 has the font in it. In this case it is Calibri

12

8. After going back to object 25 (step 2), I deduce that this must be the redaction
box because its coordinates are similar to the text stream one I took note of
earlier. The redaction box coordinates are: 150.57, 756.22, 182.25, 768.26

9. Now we can finally do the command! “redact f c”. I used F and C because it
was most likely to be a first name, and capitalised.
Font Size = 11
Font = Calibri
Coordinates = 150.57 756.22 182.25 768.26

13

10.Done! After entering in the information and telling us that the redaction box
size is 31x12 points, it outputted 1,061/5,494 successful words that fit the box.
Below are the results, with the correct country “England” within the results.

14

Grammar Parsing (Method Three)
After checking a word, you may want to do a parsing of the
grammar of the sentence that the word is in to refine the results
based on grammatical parse-ability score.

1. After retrieving the successful words, it will ask you if you want to do a
grammar check. Type in “y” to proceed.

2. You now have to add the sentence that the word was in, where “$word” is the
wildcard for where the word is situated in the sentence. It can be anywhere in
the sentence. The example I have chosen is “The $word crossed the road.”, so
if the word is “people”, the sentence it parses is: “The people crossed the
road.”.

15

3. The parser will now load all of the sentences from a temporary file.

4. Once it is done, it will display this message.

5. Now all you have to do is specify how many results you want it to output to
“results.txt”. It will sort the results so that the best parsed sentences will be at
the top, and the worst will be at the bottom (lower the score the better).

16

Disclaimer:
 The results are not perfect. It is designed to find the word behind the redaction

box based on high probability.
 The grammar parsing is not an indication of whether the sentence makes

“human grammatical sense”. It is an indication of how well it parses based on
a number of factors. The lower the score, the better parse-ability score it
receives (see below).

From question 17 of http://www-nlp.stanford.edu/software/parser-faq.shtml:
“Why does the parser accept incorrect/ungrammatical sentences?
This parser is in the space of modern statistical parsers whose goal is to give the
most likely sentence analysis to a list of words. It does not attempt to determine
grammaticality, though it will normally prefer a "grammatical" parse for a sentence
if one exists. This is appropriate in many circumstances, such as when wanting to
interpret user input, or dealing with conversational speech, web pages, non-native
speakers, etc.

For other applications, such as grammar checking, this is less appropriate. One could
attempt to assess grammaticality by looking at the probabilities that the parser
returns for sentences, but it is difficult to normalize this number to give a useful
"grammaticality" score, since the probability strongly depends on other factors like
the length of the sentence, the rarity of the words in the sentence, and whether word
dependencies in the sentence being tested were seen in the training data or not.“

