
A Sound Semantics for OCamllight
Scott Owens

OCamllight (ESOP ’08) is a formal semantics for a substan-
tial subset of the Objective Caml core language, suitable
for writing and verifying real programs. It includes:

• definitions
– variant data types (e.g., type t = I of int | C of char),
– record types (e.g., type t = {f : int; g : bool}),
– parametric type constructors (e.g., type ’a t = C of ’a),
– type abbreviations (e.g., type ’a t = ’a * int),
– mutually recursive combinations of the above (excepting abbreviations),
– exceptions, and values;

• expressions for type annotations, sequencing, and primitive values
(functions, lists, tuples, and records);

• with (record update), if, while, for, assert, try, and raise expressions;
• let-based polymorphism with an SML-style value restriction;
• mutually-recursive function definitions via let rec;
• pattern matching, with nested patterns, as patterns, and “or” (|)patterns;
• mutable references with ref, !, and :=;
• polymorphic equality (the Objective Caml = operator);
• 31-bit word semantics for ints (using an existing HOL library); and
• IEEE-754 semantics for floats (using an existing HOL library).

OCamllight key points
• Faithful to Objective Caml (very nearly)
• Type soundness proof mechanized in HOL
• Operational semantics validated on test programs
• Written in Ott
• Small-step operational semantics

– Inductively defined relations
– SOS-style
– Labelled transitions for state
– Substution-based

• Type system
– Inductively defined relations
– Syntactic
– Declarative (non-algorithmic)

Proof Effort
A typical type soundness proof

• ≈ 7–8 man-months (including testing)
• Specification: 3.2K lines of HOL (from 4.0K Ott)

– 143 constructors in 42 datatypes
– 310 rules in 46 relations

• Proof: 9.5K lines of HOL
– 17 files
– 653 lemmas
– 48 definitions

Challenges:
• Finding the right lemma using

– my memory
– lemma naming conventions
– documentation (for library lemmas)
– term matching on the theorem database

• Nested inductions
– expr = . . . | Expr tuple of expr list | . . .

– “Pointwise” reasoning vs. using separate lem-
mas

• Proof assistant generated names

Non-challenges:
• Managing De Bruijn indices

Testing
Executable small-step semantics
(Type soundness is insufficient)

• 145 tests
• Full coverage
• 540 line HOL definition of the executable
semantics

• 1K line HOL proof of equivalence between
declatative and executable semantics

red : expr → result

type result =
Stuck

| Step of expr

| StepAlloc of (expr → expr) ∗ expr

| StepLookup of (expr → expr) ∗ location

| StepAssign of expr ∗ location ∗ expr

match [] with

x::y -> 1

| [] -> 2

EXPECT

2

TESTSTUCK

x

END

Related Work
Mechanized metatheory for real-world languages

• Standard ML
– Lee, Crary, Harper (POPL 2007)
internal language

– van Inwegen (1996)
– Maharaj, Gunter (1994)
– Syme (1993)

• Java
– Java: Klein, Nipkow (TOPLAS 2006)
– Syme (1999)
– Nipkow, van Oheimb (POPL 1998)

• C
– Norrish (1998)

Representing Binding (straightforward)
User type variables ’a concrete let f (x : ’a) : ’a = x && true;; f : bool -> bool

Value names x fully concrete (only need closed substs)
let v = function x -> x;;

let x = 1;;

let w = v 9;;

let x = 1;;

let w = (function x -> x) 9;;

Let-bound type variables De Bruijn

let f x =

... (let g x = ... in ...) ...

in

let h x = ... f ...

in

...

Type names int fully concrete + no shadowing (following OCaml)

type t = { f : int };;
let v = { f = 1 };;

type t = { g : bool };;

let = v.g;;

type t = { f : int };;

type t = { g : bool };;
let = { f = 1 }.g;;

Constructor names
Field names

None fully concrete + no shadowing (a slight restriction)

type t = C of int;;

let v = C 1;;

type u = C of bool;;

let = v;;

type t = C of int;;

type u = C of bool;;

let = C 1;;

University of Cambridge http://www.cl.cam.ac.uk/users/so294/ocaml

