
FFS Users Guide and Reference

Greg Eisenhauer

September 16, 2014 – FFS Version 1.2

1 Introduction

FFS (Fast Flexible Serialization) is a system for efficiently marshaling data for communication or storage
in a heterogeneous computing environment. This manual servers as both an introduction to using FFS and
as a reference manual for the API.

FFS is more complex than the type systems built into many middleware environments because it was
designed to operate efficiently in situations where a priori knowledge shared between the sender (writer) and
receiver (reader) is limited. In particular, FFS :

• tries to minimize copying, so as not to interfere with delivering communication bandwidth and latency
near what the underlying network,

• supports system evolution through flexible matching between incoming and expected data (limited a
priori knowledge),

• allows the receipt and manipulation of data that is unknown before runtime (zero a priori knowledge),

• has the ability to enact run-time specified functions to data types that are potentially unknown until
run-time, with an efficiency near native code.

2 FFS Basics

The basic approach of the FFS library is relatively simple. FFS supports both files and message-based
transport, but at its core FFS is record-oriented. From a data-description point of view, writers (or encoders)
of data must provide a description of the names, types, sizes and positions of the fields in the records they
are writing. Readers/receivers must provide similar information for the records that they are interested in
reading.

FFS uses this ‘format’ information to establishing a correspondence between the fields in the incoming
records and the fields in the local data structure into which the information is to be placed. No translation
is done on the writer’s end. On the reader’s end, the format of the incoming record is compared with the
format that the program expects. If there are discrepancies, either in the data layout or contents, or in the
underlying machine representations, the FFS read routine performs the appropriate translations.

2.1 Describing Data/Message Types

The FFS routines support records consisting of fields of basic atomic data types, including: “integer”,
“unsigned integer”, “float”, and “string”. Note that field type here is separate from field size so that both
the native C types int and long are “integer” types. Similarly, C’s double and float are both declared as
“float”

In order to support record-oriented structure reading and writing, FFS must know the exact layout of
the structure, including name, type, starting offset and size of each field. This information is conveyed to

FFS using an FMFieldList1 with an entry for each field. Because the size and offset of fields varies from
architecture to architecture (and even from compiler to compiler), it is good practice to use the sizeof()
operator to calculate field size. FFS also provides a macro, FMOffset() that uses compile-time tricks
to calculate the offset of a field with a structure. Below is an example structure for a record and the
corresponding field list:

typedef struct _first_rec {
int i;
long j;
double d;
char c;

} first_rec, *first_rec_ptr;

static FMField field_list[] = {
{"i", "integer", sizeof(int), FMOffset(first_rec_ptr, i)},
{"j", "integer", sizeof(long), FMOffset(first_rec_ptr, j)},
{"d", "float", sizeof(double), FMOffset(first_rec_ptr, d)},
{"c", "integer", sizeof(char), FMOffset(first_rec_ptr, c)},
{NULL, NULL, 0, 0},

};

The order of fields in the field list is not important. It is not even necessary to specify every field in a
structure with an entry in the field list. Unspecified fields at the end of the structure may not be written to
the IO file. Unspecified fields at the beginning or in the middle of a structure will be written to the IO file,
but no information about them will be available.2

2.2 Simple Programs

FFS supports both file-oriented and online (network-based) data interchange. The various uses of FFS
share a common underlying infrastructure with respect to type manipulation. We’ll first demonstrate the
file interface. FFS uses several opaque types as handles to internal data structures:

FMContext - FMContext’s are repositories of structure and type information in FFS. Sometimes an FM-
Context is used on its own and sometimes in concert with other handles.

FFSFile - a handle to a file used for reading or writing FFS data. FFSFile have internal FMContext’s.

FMFormat - an FMFormat represents a handle to a registered structure type.

The code below represents a simple FFS program that writes a record to a file. We use the struct declaration
and FMFieldList given in the example above (though we left out the initialization of the written data
structure for simplicity).

1The ’FM’ prefix is associated with Format Manager functionality within FFS.
2Nota Bene: This behavior results because FFS treats base data records as a contiguous memory block for efficiency. The

compiler may leave “holes” in the data block to preserve the required alignment for some data types. Because FFS puts the
data on the wire as a contiguous block, the values in these “holes” are put on the wire as well. Fields in the record that are
not described to FFS via the field list are simply treated as larger “holes”. Note that relying on the behavior of FFS with
respect to values in these “holes” is erroneous and can have unpredictable results. For example, “hole values” may appear to
be transmitted along with the data in an exchange between homogeneous systems, yet not in other cases. That “hole values”
are read by FFS may also confuse valgrind and other tools who detect the operation as a read of uninitialized memory.

int main(int argc, char **argv)
{

FFSFile file = open_FFSfile("test_output", "w");
FMContext fmc = FMContext_of_file(file);
FMFormat rec_format;
first_rec rec1;

rec_format = FMregister_simple_format(fmc, "first rec", field_list, sizeof(first_rec));
write_FFSfile(file, rec_format, &rec1);
close_FFSfile(file);

}

This program creates a file named test output. You can use the program FFSdump, part of the FFS package
to print this binary file as verbose text. FMregister simple format() is one of the most basic calls in FFS,
used to provide FFS with the detailed field layout of a structure. FMformats are registered with particular
FMContexts, this one extracted from the FFSFile. In addition to the FMFieldList, structures/types must
have a name and you must provide its size. The FMregister simple format() call can only be used if the
structure contains only basic atomic types, or arrays of or pointers to basic atomic types. Structures which
contain other structures must be registered with FMregister data format() as described in Section 3.1.

The code below is a simple FFS program that reads the file written above. Once again we use the struct
declaration and FMFieldList given earlier and while we’ve left the print statements out of this code for
simplicity, you can find them in the actual programs in the ffs/doc/examples directory in the FFS source
code distribution.

int
main(int argc, char** argv);
{

FFSFile file = open_FFSfile("test_output", "r");
FFSTypeHandle first_rec_handle;
FFSContext context = FFSContext_of_file(file);
first_rec rec1;

first_rec_handle = FFSset_simple_target(context, "first rec", field_list, sizeof(first_rec));
FFSread(file, &rec1);
close_FFSfile(file);

}

The code above demonstrates the basics, albeit with several simplifying assumptions. Structurally it is similar
to the writing program. FFSset simple target() call provides FFS with a description of a particular struc-
ture/message type that this program can handle and is the read-side analogue of the FMregister simple format()
call. The FFSTypeHandle is roughly equivalent to an FMFormat, except that it is associated with incoming
messages/records rather than outgoing ones. FFSContext uses here is similar to the FMContext, except that
it also stores the associations between the “original” source format (the ‘wire’ format) and the “native”, or
target format. The FFSread() calls grabs the next record in the file and puts it in the rec1 variable. In
this case, we are relying upon the a priori knowledge that there is one record in the file and that its format
compatible is compatible with the native first rec.

Compatibility The notion of format compatibility is fairly important in FFS. The general idea is that the
target format specifies a set of required fields and the physical layout that the reading program requires them
in. FFS matches source and target fields by name and any source format which contains the required target
fields is potentially compatible. In the example above, the reader and writer are using the same C-level
structure declaration. If the programs were executed on different architectures, their binary representations
(and hence the details of the source and target formats) might differ in byte order, type size and layout,

but FFS would compensate for all of these differences and deliver the data to the receiver in his native
representation. FFS will also ignore (or correct for) differences in field order and even the presence of
additional fields not required by the reader. These techniques, and others which are described later, help
FFS enable communication even when multiple versions of application components in complex distributed
systems.

3 More Complexity in Types

typedef struct R3vector_struct {
double x, y, z;

} R3vector;

typedef struct particle_struct {
R3vector loc;
R3vector deriv1;
R3vector deriv2;

} particle;

Figure 1: A nested record format

The example structure in the previous section consisted solely of
fields of simple atomic data types. FFS actually supports much more
complexity than those simple structures. In particular, FFS sup-
ports nested structures, null-terminated strings, both statically- and
variable-sized arrays, pointers to simple and complex objects and tree-
and graph-based structures.

3.1 Nested structures

Multiple structures may make up a complete datatype. FFS re-
quires that the transitive closure of all referenced structures be de-
clared to FFS together as a unified type.

For example, the structure particle struct declared as in Figure 1 could be described to FFS through
the following field lists and a new element, the FMStructDescRec : field lists:

static FMField R3field_list[] = {
{"x", "float", sizeof(double), FMOffset(R3vector*, x)},
{"y", "float", sizeof(double), FMOffset(R3vector*, y)},
{"z", "float", sizeof(double), FMOffset(R3vector*, z)},
{NULL, NULL, 0, 0},

};

static FMField particle_field_list[] = {
{"loc", "R3vector", sizeof(R3vector), FMOffset(particle*, loc)},
{"deriv1", "R3vector", sizeof(R3vector), FMOffset(particle*, deriv1)},
{"deriv2", "R3vector", sizeof(R3vector), FMOffset(particle*, deriv2)},
{NULL, NULL, 0, 0},

};

FMStructDescRec particle_format_list[] = {
{"particle", particle_field_list, sizeof(particle), NULL},
{"R3vector", R3field_list, sizeof(R3vector), NULL},
{NULL, NULL, 0, NULL}};

There are a couple of things to note here. First, the FMStructDescRec essentially contains, for each of the
structures, the elements passed to describe a single structure in FMregister simple format(). (Ignore the
fourth, NULL, element in each entry for the moment.) Second, the first entry in each FMStructDescRec is
the structure name and it is that name that is used as a field type in the field lists of containing structures.
Lastly, the first element in the FMStructDescRec list must be top-level structure. The remaining structure
entries can appear in any order, but they together they must constitute the transitive closure of all structures
referenced.

Once the appropriate FMStructDescRec list has been assembled, the structure can be substituted into the

reader and writer programs above by substituting FMregister data format() and FFSset fixed target()
calls for FMregister simple format() and FFSset simple target(), respectively.

extern FMFormat
FMregister_data_format(FMContext context, FMStructDescList struct_list);

extern FFSTypeHandle
FFSset_fixed_target(FFSContext c, FMStructDescList struct_list);

3.2 Array types

struct {
float a[5];
unsigned int b[10];
float c[2][12];

}

Figure 2: Simple Array fields

In previous examples, the field type entry in field lists is always
the name of an atomic type or of a structure listed in the FMStruct-
DescList, however FFS allows more complex field types to be repre-
sented. Fields of which are arrays of other elements are specified by
adding an array size declaration to the the field type entry. For exam-
ple, "float[5]" and "unsigned integer[10]" both declare fields
which are statically sized arrays. Multiple size declarations can be
supplied in order to declare multiply dimensioned arrays, such as
"float[2][12]". These field types match the C declarations in Fig-
ure 2. Note that when declaring array fields to FFS, the field size
element in the FMField list must be the element size, not the total array size. When reading a record
containing array fields, the dimensionality of each field must match that which was used when the record
was written, though the size of the elements may differ.

typedef struct _dyn_rec {
char *string;
long count;
double *double_array;

} dyn_rec, *dyn_rec_ptr;

FMField dyn_field_list[] = {
{"string field", "string", sizeof(char *),
FMOffset(dyn_rec_ptr, string)},

{"count", "integer", sizeof(long),
FMOffset(dyn_rec_ptr, count)},

{"double_array", "float[count]", sizeof(double),
FMOffset(dyn_rec_ptr, double_array)},

{ NULL, NULL, 0, 0}
};

Figure 3: A dynamic array record format

In addition to fixed array sizes, FFS supports dy-
namically sized arrays, where the array size is con-
trolled by data values at run-time. In this case, the
size in the array type specification must be the string
name of an integer field in the record. The value of
that integer field gives the array size. The actual
data type in the record should be a pointer to the
element type. Figure 3 gives an example of a dy-
namic array declaration. Dynamic arrays may also
be multiply dimensioned, including the use of a mix
of static and dynamic sizes.

3.3 Pointer-based Types

Unlike its predecessor PBIO, FFS supports
pointer-based declarations in field types. These are
declared by using a * in the field type string. For ex-
ample, the field type "*integer" declares a pointer
to a single integer and "*integer[5]" declares a
pointer to a fixed size array of 5 integers. These basic features can be combined, using parenthesis to control
association. For example, while "*integer[5]" is a pointer to 5 integers, "(*integer)[5]" is a fixed size
array of 5 pointers to integers. Note that the use of a dynamic array bound (as in "float[count]") implies
a pointer-based type. In fact, "float[count]" and "*float[count]" specify identical types to FFS.3 Note:
For all the pointer-based types, the field size element in the FMField list must be the size of item pointed-to,
or the element size if the final item is an array.

Of course, in addition to pointers to atomic data types and arrays of those types, FFS allows pointers

3There is no way to specify a non-pointer-based dynamically sized type to FFS. Only statically-sized arrays may have storage
in-line with the other fields in a structure.

typedef struct node {
int node_num;
struct node *link1;
struct node *link2;

} *node_ptr;

FMField node_field_list[] =
{

{"node_num", "integer", sizeof(int), FMOffset(node_ptr, node_num)},
{"link1", "*node", sizeof(struct node), FMOffset(node_ptr, link1)},
{"link2", "*node", sizeof(struct node), FMOffset(node_ptr, link2)},
{(char *) 0, (char *) 0, 0, 0}

};

FMStructDescRec node_format_list [] = {
{"node", node_field_list, sizeof(struct node), NULL},
{NULL, NULL, 0, NULL}

};

Figure 4: An example of a recursively-defined type

to structures, including recursively-defined structures. This allows FFS to represent and transport pointer-
based structures such as linked lists, graphs and trees. Figure 4 shows the FFS declaration of a structure
that implements a binary tree. When working with recursively-defined types, FFS will write/encode the
transitive closure of all data blocks pointed to in the structure presented. It keeps a visit table to ensure
each block is only processed once, even if its address appears in multiple pointers. When the message is
read/decoded, pointers which originally targeted the same block will still point to the same block in the
decoded message.

4 Using FFS Over Networks or Other Transport

The simple example programs given above use the FFSfile interface to FFS, but FFS was designed to
operate in message-oriented mode with fully-typed messages being exchanged in a heterogeneous environ-
ment. The FFS APIs used in this environment use the terms encoding and decoding, but marshaling and
unmarshaling would be just as appropriate. Because network-based applications can be a bit tricky to setup
and require multiple programs to run simultaneously, we’re going to demonstrate these APIs with simple
programs that write the encoded messages to files. The principles are the same and the reader should be
able to work the the programs more easily.

4.1 Simple Encode Program

The non-file-oriented FFS programs use the same basic types as the file-based programs: FMContext,
FFSContext, FMFormat and FFSTypeHandle.

The code below represents a simple FFS program that encodes a record of the type used in the first
examples and writes the encoded data to a file. (Once again, we’ve left out the initialization of the written
data structure for simplicity.)

int main(int argc, char **argv)
{

FMContext fmc = create_FMContext();
FFSBuffer buf = create_FFSBuffer();
FMFormat rec_format;
first_rec rec1;
char *output;
int fd, output_size;

rec_format = register_simple_format(fmc, "first rec", field_list, sizeof(first_rec));
output = FFSencode(buf, rec_format, &rec1, &output_size);

/* write the encoded data */
fd = open("bin_output", O_WRONLY|O_CREAT);
write(fd, output, output_size);
close(fd);

}

There are several differences between this encode sample and the write FFSfile() example above. Instead
of extracting the FMContext value that was created with the FFSFile, this example creates an FMContext
value directly. The FMContext data structure is the principal repository of structure and type information
in FFS. Section 8 describes FMContexts and how they operate in more detail.

This sample code also uses an FFSBuffer. FFSBuffers are simply a convenient mechanism for reusing
memory from one FFSencode to the next. Each FFSBuffer wraps a malloc’d data block, tracking its allocated
size and current usage. FFSencode places the encoded data is placed in the malloc’d block, realloc’ing it if
necessary depending upon the size of the encoded block. The data within the block remains valid until the
FFSBuffer is used in another FFS call.

The principal routine here is the FFSencode(). Like the write FFSfile(), FFSencode takes an FMFormat
and a pointer to the data to be encoded. The FFSBuffer fills in for the FFSFile pointer as the destination.
However, it also takes an integer pointer that is filled in with the actual size of the encoded data. The return
value is a pointer to beginning of the block of encoded data (which may not correspond to the beginning
of the FFSBuffer’s data block.) Generally the length of the data block is necessary for decoding the data,
so it is usually transmitted, explicitly or implicitly, along with the data itself. Here, since there is a single
message stored in the file, we are implicitly using the file length as a means of communicating the block
length to the receiver.

int main(int argc, char **argv)
{

FMContext fmc = create_FMContext();
FFSBuffer buf = create_FFSBuffer();
FMFormat rec_format;
first_rec rec1;
char *output;
int fd, output_size;

rec_format = register_simple_format(fmc, "first rec", field_list, sizeof(first_rec));
output = FFSencode(buf, rec_format, &rec1, &output_size);

/* write the encoded data */
fd = open("bin_output", O_WRONLY|O_CREAT);
write(fd, output, output_size);
close(fd);

}

4.2 Simple Decode Program

The code below is a simple FFS program that reads the data written into the file above.

int main() /* receiving program */
{

FFSTypeHandle first_rec_handle;
FFSContext context = create_FFSContext();
first_rec rec1;
int fd, size;
char encoded_buffer[2048]; /* big enough for this example */

fd = open("enc_file", O_RDONLY, 0777);
size = read(fd, encoded_buffer, sizeof(encoded_buffer));

first_rec_handle = FFSset_simple_target(context, "first rec", field_list, sizeof(first_rec));
FFSdecode(context, encoded_buffer, (void*)&rec1);

}

Just as the encoding program created an FMContext rather than using one associated with an FFSFile,
this decoding program creates its own FFSContext. It also uses FFSset simple target() to tell FFS the
details of the structure it wants the data converted to. Then it uses FFSdecode() to extract the data from
the encoded block and fill in the first rec value.

5 Using FFS With Many Message Types

One of the simplifying assumptions in both the file and message-based examples above is that there is
only one type of message being exchanged, so the receiver always knows what data type is expected next.
In many practical scenarios this may not be true.

On the sending/encoding side, handling multiple message types is straightforward. Each type must be
registered with FMregister simple format() or FMregister data format() to get its FMFormat value,
then that value is used to write or encode data. Type registration may happen all at once when the program
starts or the file is opened, or it may happen later, after some other data has been written or encoded. The
only requirement is that the registration for a data type happens before it can be written or encoded.

On the receiving side, things are simple in principle, but involve a bit more code. When the receiving
program can understand multiple incoming message structures, each should be set as a possible target
using FFSset simple target() or FFSset fixed target(), reserving the return values. The FFS call
FFS target from encode() examines an incoming record and determines which of the registered targets it
is compatible with (or most compatible with). The corresponding FFSFile call is FFSnext type handle().
The profiles of these calls are below, followed by an example FFSfile program that reads multiple data types
from a file.

extern FFSTypeHandle FFSnext_type_handle(FFSFile ffsfile);
extern FFSTypeHandle FFS_target_from_encode(FFSContext c, char *data);

The multi-format read program below assumes the visibility of the first rec and field list decla-
rations for earlier in this document. The code is similar to the prior reading program, except that it uses
FFSnext type handle() to identify each incoming record.

typedef struct _second_rec {
int *items;
long count;
char * name;

} second_rec, *second_rec_ptr;

static FMField field_list2[] = {
{"items", "integer[count]", sizeof(int), FMOffset(second_rec_ptr, items)},
{"count", "integer", sizeof(long), FMOffset(second_rec_ptr, count)},
{"name", "string", sizeof(char*), FMOffset(second_rec_ptr, name)},
{NULL, NULL, 0, 0},

};

int
main(int argc, char** argv)
{

FFSFile iofile = open_FFSfile("test_output", "r");
FFSTypeHandle first_rec_handle, second_rec_handle, next_handle;
FFSContext context = FFSContext_of_file(iofile);

first_rec_handle = FFSset_simple_target(context, "first format", field_list, sizeof(first_rec));
second_rec_handle = FFSset_simple_target(context, "second format", field_list2, sizeof(second_rec));
while ((next_handle = FFSnext_type_handle(iofile)) != NULL) {

if (next_handle == first_rec_handle) {
first_rec rec1;
FFSread(iofile, &rec1);
printf("Read first_rec : i=%d, j=%ld, d=%g, j=%c\n", rec1.i, rec1.j, rec1.d, rec1.c);

} else if (next_handle == second_rec_handle) {
second_rec rec2;
int i;
FFSread(iofile, &rec2);
printf("Read items= ");
for (i=0; i<rec2.count; i++) printf("%d ", rec2.items[i]);
printf(", count = %d, name = %s\n", rec2.count, rec2.name);

} else {
printf("Unknown record type file\n");

}
}
close_FFSfile(iofile);

}

6 Memory Handling

There are two aspects of memory handling that this section will concern itself with: alternative FFS
interfaces that minimize data copies and understanding what FFS is doing with data that it stores. Op-
timizing memory handling, typically to minimize copies, is a performance concern in FFS, particularly for
large records. There are fewer user-visible aspects of this to be concerned with in the FFSFile interface,
but the FFSContext interface provides different variations of its interfaces that might be more optimal in
different circumstances.

6.1 Encode memory handling

For example, the FFSencode() call in the writing program of Section 4.1 must copy every byte of the
data to be encoded in order to create a contiguous encoded block. This contiguous data block is actually
stored in temporary memory associated with the FFSContext (therefore the value returned by FFSencode()
should not be passed to free()). The data is only guaranteed to remain valid until the next FFS operation

on that FFSContext.

Encoding to a contiguous block is necessary if you are dealing with a transport or storage mechanism
that requires data to be presented as such. However, if the data is going to be presented to a system call like
writev() that accepts a vector of data buffers, then copying everything is unnecessary. In this circumstance,
it’s best to use FFSencode vector() which copies on the minimum amount of data, leaving the rest in place.

typedef struct FFSEncodeVec {
void *iov_base;
unsigned long iov_len;

} *FFSEncodeVector;

extern FFSEncodeVector
FFSencode_vector(FFSBuffer b, FMFormat fmformat, void *data);

The struct FFSEncodeVec structure which results from FFSencode vector() is identical to struct iovec
that is used with writev() and similar calls. The FFSencode vector() call also uses a FFSBuffer handle.
While FFSencode() copies data into FFS-internal temporary memory to be overwritten at the next FFS
operation, FFSBuffers are a means through which applications can gain some control over how long encoded
data remains valid. Any number of FFSBuffer handles can be created with create FFSBuffer() and data
encoded into one will remain valid until that FFSBuffer is used again. When a FFSBuffer is no longer
needed, it can be free’d with free FFSBuffer(FFSBuffer buf).

An example program, similar to that of Section 4.1 follows. We use the second rec data type because
it has pointer-based elements.

int main(int argc, char **argv)
{

FMContext fmc = create_FMcontext();
FFSBuffer buf = create_FFSBuffer();
FMFormat rec_ioformat;
second_rec rec2;
FFSEncodeVector outvec;
int fd, outvec_size;
char str[32];
int array[10];
int j;

srand48(time());
sprintf(str, "random string %ld", lrand48()%100);
rec2.name = &str[0];
rec2.count = lrand48()%10;
rec2.items = &array[0];
for(j=0; j<rec2.count; j++) rec2.items[j] = lrand48()%5+2;
rec_ioformat = register_simple_format(fmc, "second format", second_field_list, sizeof(second_rec));
outvec = FFSencode_vector(buf, rec_ioformat, &rec2);
for(outvec_size=0;outvec[outvec_size].iov_len!=0;outvec_size++);

printf("Wrote name=%s, count=%ld, items = [", rec2.name, rec2.count);
for(j=0; j<rec2.count; j++) printf("%d, ", rec2.items[j]);
printf("]\n");

/* write the encoded data */
fd = open("enc_file", O_WRONLY|O_CREAT|O_TRUNC, 0777);
writev(fd, outvec, outvec_size);
close(fd);

}

6.2 Decode memory handling

As usual, the situation on the decoding side is a bit more complex than the encoding side. The example
code given in Section 4.2 uses the FFSdecode() call, which accepts a contiguous message block as input and
places the decoded record in user-supplied memory. This explanation is actually something of a simplification.
FFSdecode() puts the base structure component of the decoded record in user-supplied memory. If the
record contains any pointer-based elements, such as strings, variable-sized arrays or other pointer values,
those elements are held in FFS-controlled temporary memory associated with the FFScontext. This means
that they will remain valid only for until the next FFS operation (and that they should never be free’d
directly).

Applications which require direct control all message memory, for example to preserve the entire message
for later use, should use the routines FFS est decode length() and FFSdecode to buffer(). FFS est decode length()
returns the number of bytes required to contain the entire decoded contents of a message, including strings,
variable arrays, etc. 4 FFSdecode to buffer() unmarshals the input record and all its associated pointer-
based elements into the provided buffer (assumed to be sized appropriately with FFS est decode length()).
The record is placed at the beginning of the buffer and it is immediately followed by the pointer-based ele-
ments (with padding added if as necessary to respect alignment requirements, etc.) Thus the whole record
including the pointer-based elements that it contains can be (must be) treated as a unit for memory allo-
cation. (To be explicit - decoded messages do not have each pointer-based element individually malloc’d.
Don’t pass those elements to free(). Bad things will happen if you do.)

The following is a new version of the decoding program of Section 4.2 which decodes the entire incoming
message into malloc’d memory.

int main() /* receiving program */
{

FFSTypeHandle second_rec_handle;
FFSContext context = create_FFSContext();
second_rec *rec2;
int fd, encode_size, decode_size, j;
char encoded_buffer[2048]; /* hopefully big enough */

/* "receive" encoded record over a file */
fd = open("enc_file", O_RDONLY, 0777);
encode_size = read(fd, encoded_buffer, sizeof(encoded_buffer));

second_rec_handle = FFSset_simple_target(context, "second format", second_field_list, sizeof(second_rec));
FFS_target_from_encode(context, encoded_buffer);
decode_size = FFS_est_decode_length(context, encoded_buffer, encode_size);
rec2 = malloc(decode_size);
FFSdecode(context, encoded_buffer, (void*)rec2);
printf("Read name=%s, count=%ld, items = [", rec2->name, rec2->count);
for(j=0; j<rec2->count; j++) printf("%d, ", rec2->items[j]);
printf("]\n");

}

6.3 Decoding In Place

The downside to using FFSdecode to buffer() is that the entire message is copied into the malloc’d
buffer. In many circumstances, the encoded message is not needed once it has been decoded and it would
be more efficient if the message could be decoded ’in place’, without involving an additional buffer. The
routine FFSdecode in place() is designed for this situation, but due to the nature of FFS encode/decode
operations ’in place’ decoding isn’t always possible. The circumstances here depend upon the characteristics

4Because returning an exact size value would essentially require traversing the entire encoded structure, the value returned
by FFS est decode length() is actually a conservative overstimate.

of the sender and the receiver. Because FFS doesn’t marshal to a common “network” format, incoming
data is mostly laid out as it was on the sending machine, which may differ from where it is to be decoded.
For example, a pointer-based structure encoded on a 32-bit architecture might require more memory when
decoded on a 64-bit architecture. FFS has a routine, FFSdecode in place possible() that returns true
if we can decode ’in place’ and false otherwise. FFSdecode in place possible() takes a FFSTypeHandle
parameter, but because in place decoding depends upon the characteristics of the source architecture, the
FFSTypeHandle here must be the handle of the original encoded data, not the final target type. There is an
additional call, FFSTypeHandle from encode() that returns the original, source-side, FFSTypeHandle of an
encoded buffer. If FFSdecode in place possible() return FALSE, the message should be decoded as in prior
examples. However if it returns true, the incoming messsage buffer can also serve as the destination. The
following code segment demonstrates the typical logic:

if (FFSdecode_in_place_possible(FFSTypeHandle_from_encode(context, encoded_buffer))) {
FFSdecode_in_place(context, encoded_buffer, (void**)&rec2);

} else {
decode_size = FFS_est_decode_length(context, encoded_buffer, encode_size);
rec2 = malloc(decode_size);
FFSdecode(context, encoded_buffer, (void*)rec2);

}

7 On Format Compatibility

Format compatibility is an important concept in FFS and is at the heart of controlling and managing
the match-up between incoming messages/records and the data formats that the application is prepared to
process.

We’ll look first at the most straightforward situation, where the receiving/reading application understands
some limited set of message types. In this scenario, a typical non-FFS application would marshall all messages
to a known, fixed ’wire’ format, perhaps with a unique ID or keyword at the beginning to differentiate different
incoming messages. Such an approach is usually efficient, but it depends upon an a priori agreement between
the senders and receivers, and any change in the wire format must occur simultaneously in all communicating
parties. FFS differs mainly in that it allows significant more flexibility on the nature of incoming messages,
which allows FFS-based applications to function in environments where a priori agreement is not possible,
or in situations where message formats may evolve over time.

In the FFS situation, there are two components to the equation, the set of data formats that the appli-
cation expects and understands (the ‘target’ set), and the format of each incoming data record. As we have
seen above, both of these are specified by FMStructDescRec lists that describe the data in detail, including
field names, types, sizes and offsets. When an incoming record is presented to FFS, the application generally
wants to know “which of my target formats does this incoming message correspond to?” The incoming struc-
ture may differ in many characteristics from the target structures, so the question boils down to to which
target structure the incoming message can be mapped? In determining possible mappings, FFS considers
a number of possible factors, including the name of the top-level data structure, the names and types of
the subfields, and the details of substructures. Details of the algorithm employed appear in [2] (the FFS
algorithm is essentially idential to the PBIO algorithm presented there). However, the basics of matching
can be boiled down to some simple guidelines:

• Field matching is done by name and structure. I.E. to be considered a match, fields must have the
same name and the same array dimensionality. Similarly fields with atomic types don’t match with
fields of the same name that are structures.

• The fields in formats that the application expects (the target set) are considered to be required fields.
That is, for each target format X and incoming format Y, FFS will consider X to be a match for Y if
and only if incoming format Y has a superset of the fields of X.

• If an incoming record matches more than one target format, the target format that matches the most
fields in the incoming record is chosen.

Given this matching criterion, the semantics of data reception are straightforward. FFS will convert
incoming data into the selected target format with these side effects:

• the byte order, floating point format, pointer size and field size of the incoming data will be changed
to match the local native format.

• if the matching incoming and target fields are of atomic types that differ in size, the data value will be
extended or truncated as required.

• extra fields in the incoming data (fields that do not appear in the target format) are ignored.

These semantics allow easy exchange of data between applications running on very different architectures,
but they also allow a certain amount of flexibility between senders and receivers that can be helpful in an
evolving distributed system. In particular, as opposed to situations which require a priori agreements, FFS
clients and servers need not necessarily be updated simultaneously when it becomes useful to change the
data included in a message.

For example, consider a request-response server with many clients. Suppose we want to include a new
field in the request message, perhaps something that specifies a priority or other SLA information for the
request. The first step would be to update the server so that it registers both the old and new (with the
extra field) formats and handles each appropriately. With the server then handling both types of requests,
the clients could be updated gradually, as time allows.

Now suppose further that there is a need to modify the response message, perhaps to include additional
information about the resource usage that the request consumed. As long as the new information is rep-
resented simply as new fields in the response message, unmodified clients will silently ignore the new data.
Clients that want to access the new information can add those fields to their target formats and have them
be delivered.

This basic functionality of ignoring “extra” fields in incoming data and being able to register different
handlers for multiple versions of incoming data offer a significant improvement in flexibility over systems that
require complete a priori agreement. However, FFS has two other features that expand what [2] calls the
’compatibility space’ of an application. The first of these features is simple. For receive-side target formats,
FFS allows the specification of ’default values’. If a field in the target format has a default value, incoming
data without that field is still considered a match and the FFS conversion functionality automatically fills
the incoming field with the specified default value. Default values are only allowed for atomic data types
and are specified in the FMField list by placing the value in parenthesis after the ’field name’. E.G.

{"priority(7)", "unsigned integer",
sizeof(int), FMOffset(request_msg_ptr, priority)},

While the prior FFS features, ignoring extraneous fields and adding default values are useful, they are
still limited. Sometimes one would like to make changes to message types where the new and old type contain
basically the same information, but perhaps it is organized differently. Maybe a ’total cost’ field is broken
down into ’price per item’ and ’item count’. Maybe multiple fields are grouped into a new substructure.
Perhaps an array is converted to a linked list. Message morphing, as described in [2] is an approach to
extending the compatibility space to include these sorts of changes. While a full description of how to
employ message morphing is beyond the scope of this manual, the basic idea is simple. When creating the
new message format, the developer includes a small code snippet that can rewrite the new message into
its older form. The code snippet is expressed in COD, the FFS data processing language that is described
below in Section 10. From the format compatibility point of view, the use of message morphing changes the

format matching procedure above in that it adds a second possible option to what format the incoming data
can be. If the matching routines can’t find a match in the target set for the incoming data’s base format,
it will then consider the format into which the morphing code can transform the data and see if there is a
match for that format. If there is, all incoming data is automatically transformed into the ’older’ format
by the morphing code. This allows ’new’ servers to interact easily with ’old’ clients and vice versa, without
resorting to techniques such as protocol negotiation.

8 Working with Formats

In order to achieve the semantics described above, the receiver must have complete knowledge of the
nature of the incoming data, including the names and types of the data’s fields, their exact layout, size
and nature of the underlying bit-representation. Because FFS cannot provide high performance if full
structure descriptions and architecture-specific information (byte-order, floating-point format, pointer size)
are attached to every message, that format description must be separated from the message, itself marshaled
and transported separately. Instead, when FFS marshals data for transmission, a ’metadata token’, or format
ID, is attached to the data as an identifier.

8.1 The Format Server

While there are a variety of ways that FFS might structure its handling of format IDs and format
descriptions, there are a couple of key characteristics that must be maintained:

• The format description must contain sufficient information for the receiver to decode the message.
Generally this includes the complete structure description and architecture information such as byte-
order, floating point format and pointer size.

• The format ID must uniquely identify a format description.

• There must be a mechanism through which a receiver can retrieve the format description given a format
ID in an incoming message.

The first requirement ensures that messages can be converted from their wire formats and be interpreted at
their destination. The second asserts that there must be no collisions in the format ID space. Note that
while there is no requirement in FFS that every format description may to a unique format ID, FFS and
EVPath cache and index a variety of information based on format IDs. A mapping that is not 1-to-1 may
introduce inefficiencies, but not necessarily incorrectness.

The last requirement comes from anticipated usage of FFS. More accurately, it might be stated that the
format description which describes the message must be available to the receiver of that message so that it
can be decoded. However, FFS doesn’t control the wire transmission, so it can’t necessarily ensure that,
for example, the format ID/description pair are always transmitted before any messages encoded with that
format ID. Even that solution is not guaranteed for multicast transports where a late arriver might miss the
initial broadcast, so FFS must provide some kind of a lookup mechanism. Note that there are no particular
requirements on the nature of format IDs themselves. They can be as complex as full URLs or as short as
necessary for them to be unique, as long as the requirements above are fulfilled.

The format description lookup problem is far from unique, and many well known techniques, such as those
that are applied to optimize DNS lookups, can be successfully applied here. Alternatively, one can imagine
schemes that exploit the flexibility in the requirements above to embed something like nameserver contact
information in the format ID, or where each communicating entity acts as a server for its own formats. We
have not attempted to innovate in this space or to solve problems of security and scaling that might arise if
FFS were widely deployed, opting instead for a relatively simple solution that still offers relatively efficient
lookup.

format
token format

token

For
m

at
 re

gi
st
ra

tio
n

For
m

at
 to

ke
n

FC

Form
at token

Form
at inform

ation

message

Format Server

Communication Mechanism
DecodingUnknown (to FFS)

Application
Encoding

Application

message

FC

Figure 5: Typical FFS format transfer operation.

Format handling happens at a layer of FFS called Format Manager (FM). The current version of FFS uses
12-byte format IDs which are purely derived from the marshaled format description. The largest component
of the format ID is a 64-bit hash of the format description, ensuring that the format ID is unique for each
architecture/structure description combination. That the format ID is a pure function of the marshaled
format description means that it the format ID can be calculated by the sender without reference to a third
party name server. In order to accomplish lookups, Format Manager includes a format server that listens for
requests on a well-known host and port. The first time a structure description is used in a process to encode
a message, the format ID/description pair must be registered with the format server. The location of the
format server is configurable at run-time, but all communicating FFS entities must share the same format
server. On the receiving side, FM caches format descriptions at several levels for efficiency. In particular,
all locally registered format descriptions are available in a per-process cache for queries. In homogeneous
transfers, the sender and receiver will both have the same format ID/description pair, so the receiver will
find the format description in its cache without having to go to an external server. If not, the format server
can be queried to retrieve the appropriate format description.

Typical FFS operation is shown in Figure 5. The format server may run anywhere in the reachable
network. When encoding messages applications perform the following basic steps: In format registration to
obtain the format token:

1. The local format cache is checked to see if the format being registered is already known.5 If the format
is known, the format token is taken from the known format.

2. If there is no current connection to the format server, a TCP/IP connection is established.

3. An marshalled version of the format information, including full field lists and native architecture
information, is sent to the format server.

5I.E. it has already been registered or an identical format is in the cache for other reasons. For formats to be identical all
field list entries must be the same, optional information (such as XML representation) must be identical, and the characteristics
of the registering architecture (pointer size, byte order, floating point format, etc.) must be the same.

4. The application waits on a read() call for the return message from the format server. The return
message contains the assigned format token.

5. The format information and format token are entered into the local cache.

6. The connection to the format server is left open for possible reuse. The format server may close it
asynchronously.

At this point, the format is available for use on the encoding side. During encoding, the format token is
associated with encoded data.

In the decoding application format information retrieved from the format server, typically when the
incoming buffer is passed to get format FMcontext() or similar call. This process follows steps similar to
those in the encoding application, specifically:

1. The local format cache is checked to see if the format token in the incoming message is already known.6

If the format token is known, the format information associated with that token is used.

2. If there is no current connection to the format server, a TCP/IP connection is established.

3. The format token is sent to the format server.

4. The application waits on a read() call for the return message from the format server. The return
message either contains the full format information that was registered by the encoding application, or
it indicates that the format token is not known. Among other reasons, the latter situation might result
from attempting to decode a corrupt message, the encoding and decoding applications using different
format servers, or the format server being restarted since the message was encoded.

5. If format information is retrieved from the format server, the information and format token are entered
into the local cache.

6. The connection to the format server is left open for possible reuse. The format server may close it
asynchronously.

Note that FFS’ interactions with the format server may impact application performance. Generally
interactions will occur at or near program startup, when message formats are registered, or upon the first
appearance of an incoming data item of a particular format, or from a particular architecture.

8.2 Operation without format servers

It is possible for FFS to operate entirely without a format server, if the application itself takes responsi-
bility for ensuring that formats are distributed appropriately. This can be particularly useful in situations
where the network is not easily available (such as in the kernel) or where the format server interaction is oth-
erwise undesirable. For example, FFS was used as part of the EVPath infrastructure[1] on tens of thousands
of nodes on the Cray “Jaguar” supercomputer at Oak Ridge National Labs. In order not to have tens of
thousands of nodes simultaneously hitting the format server to register their (identical) format descriptions,
EVPath transported them on the wire to collection sites, where one the first to arrive was sent to the format
server for later queries to return.

In order to create an FMContext that is simply a cache with no connection to a format server, one can
simply call create local FMcontext() as a direct substitute for create FMcontext(). That leaves the
matter of APIs for extracting the appropriate information from the encoding FMContext and loading it into
the receiving.

6I.E. a message of that format has been seen before or an identical format is in the cache for other reasons. In this case only
the format tokens of known formats are compared.

extern char *
get_server_ID_FMformat(FMFormat ioformat, int *id_length);

extern char *
get_server_rep_FMformat(FMFormat ioformat, int *rep_length);

extern FMFormat
load_external_format_FMcontext(FMContext iocontext, char *server_id,

int id_size, char *server_rep);

The routine get server ID FMformat() is used to get the metadata token (format ID) associated with an
FMFormat. get server rep FMformat() returns the packaged representation of the field names, type and
underlying data layout. Each of these is a block of bytes that may contain zero bytes, so they should not be
treated as character strings in transmission. The application is free to transport these items to the receiving
FMContext with the only restriction being that they must be associated with the receiving context before
any data of that format is presented for processing. Once the items arrive at the future receiver of data,
they can be associated with the receiving FMContext with the routine load external format FMcontext()
above.

9 FFS and XML

FFS’s XML support had its origins in the observation that FFS and XML both provide similar semantics
to the receivers of data. Both formats are self-describing and allow third-parties to interpret and process
data about which they have no a priori knowledge. Both formats also allow readers to be relatively robust
to changes in the data that is sent. In particular, most mechanisms for reading XML (parsers, DOM
interfaces, etc.) do not depend upon the ordering of fields in the XML document and are not affected if
the XML document contains extra fields are attributes. FFS is similar because of the semantics of the
set IOConversion() and set conversion IOcontext() routines. In particular, the IOFieldList supplied
in the conversion call specifies the order and layout that the receiver want to see the data in. If the incoming
data contains fields in a different order or contains additional fields, those differences are resolved in the
conversion process. Fields are reordered and extraneous fields are dropped.

9.1 Just-In-Time Expansion to XML

Because FFS records are completely self-describing, it is possible to “print” them into XML (or virtu-
ally any ASCII form) at any point. Two subroutines in FFS specifically support the production of XML. One,
IOencoded to XML string() operates on data in its encoded form (as produced by encode IOcontext buffer()
for example). The second, IOunencoded to XML string() operates on unencoded data. Both routines re-
turn a char* string value that is the XML representation of the data. The string should be free’d when it
is no longer needed. The APIs of these routines are:

extern char *IOencoded_to_XML_string(IOContext iocontext, void *data);

extern char *IOunencoded_to_XML_string(IOContext iocontext, IOFormat ioformat, void *data));

By default, the XML expansion of FFS data is relatively simple and is governed by the format that describes
the data. The “format name” string provided in the original register IOcontext format() call is used
as the name in the surrounding begin/end XML tags for a structure. Within a structure, each fields name
is used in begin/end XML tags for that field. Within the field begin/end tags is XML that represents
the contents of that field. If the field type is a simple atomic type, the contents are simply printed in an
appropriate format. Integer types appear in decimal representations, characters as simple chars, booleans
appear as either “true” or “false”, strings appear directly and floating point types are printed using the

“appear as nested XML elements. Arrays appear as repeated XML elements. In arrays of atomic data types,
the field name appears as the standard begin/end XML tags where the element contents are the actual array
element values with whitespace separators. Fixed-length and variable-length arrays are treated identically.

For example, the record written in the simple encoding example of Section ?? expands to the following
XML if IOencoded to XML string() is called on the resulting encoded buffer.

<dynamic format>
<string field>Hi Mom!</string field>
<icount>5</icount>
<double_array>
0 2.717 5.434 8.151 10.868 </double_array>
</dynamic format>

9.2 Customizing the XML Representation

Note that in the default XML representation, all data is presented as an XML element without use of
XML attributes. In practice, users may require more control of the manner in which FFS-based records are
expanded as XML. In FFS’s model of XML support, additional XML markup information can be associated
with FMFormats at the time of registration.7 The mechanism for this is a special format registration call
that allows optional format information to be specified along with the registration. The optional format
information API is generalized for future extensions, though at the time of this writing the only optional
information supported is the XML markup information. The API for registering a format with optional
information and for retrieving the optional information associated with a format is shown below:

typedef struct _FMOptInfo {
int info_type;
int info_len;
char *info_block;

} FMOptInfo;

extern FMFormat register_opt_format(const char *format_name, FMFieldList field_list,
FMOptInfo *optinfo, FMContext fmcontext);

extern void * get_optinfo_IOFormat(FMFormat ioformat, int info_type, int *len_p);

The optinfo parameter to register opt format() is a list of optional information values to be associated
with the format. The list is terminated by an entry with an info type value of 0. To specify optional XML
markup information, the info type value must be XML OPT INFO, the info block value should point to an
XML markup string, and the info len parameter should be set to the length of the markup string. The
format of the markup string is described in the next sections.

9.2.1 Basic XML Markup

The XML markup string is essentially a template into which the values from the actual data will be
substituted. The substitution points are marked by XML-like FFS:data tags. Those tags contain as an
attribute the identity of the particular data field that is to be substituted, specified by either field name or
field id (a zero-based index into the field list). Except for FFS:* tags, all elements of the XML markup
string are copied directly from the template into the hydrated XML. Thus, any non-variant elements in
the XML, including tags, constant attributes, or whitespace, can be supplied with the XML markup. For
example, an XML markup string that will produce exactly the default output for the example above is:

7Note that this approach means that XML formatting is controlled at the time of encoding of data, not at the point at which
it is hydrated into XML.

"<dynamic format>
<string field><FFS:data field_name="string field"></string field>
<icount><FFS:data field_name=icount></icount>
<double_array>
<FFS:data field_id=2></double_array>
</dynamic format>"

Note the variations in the attribute associated with each FFS:data tag. Field names are used for the first
two tags, and in the case of string field the name must be surrounded by quotes because it contains a
space character. The last field is specified by its zero-based index in the field list (“double array” is field 2).

"<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dynamic [

<!ELEMENT dynamic (strfield, icount, doublearray)>
<!ELEMENT strfield (#PCDATA)>
<!ELEMENT icount (#PCDATA)>
<!ELEMENT doublearray (#PCDATA)>

]>
<dynamic>

<strfield><FFS:data field_name="string field"></strfield>
<icount><FFS:data field_name=icount></icount>
<doublearray><FFS:data field_name=double_array></doublearray>

</dynamic>"

A program that demonstrates this facility and its output appear in Figures 6 and 7.

9.2.2 XML Markup for Arrays

The simple template mechanism discussed is perfectly adequate for simple and nested structures, but
doesn’t allow complete control of how arrays are hydrated into XML. In particular, the use of a simple
FFS:data tag doesn’t allow control of the text that is to appear before and after each array element. In
order to attain that control, we again follow an XML style in the template and introduce two new tags,
FFS:array and FFS:array data mark. Essentially, where the basic use of FFS:data produces a template
with this conceptual behavior:

. . .<FFS:data field name=field a>
text between field a and field b (appears once)
<FFS:data field name=field b>
text between field b and field c¿ (appears once)
<FFS:data field name=field c> . . .

The new tags define the text in this manner:

. . .<FFS:data field name=field a>
text between field a and start of array (appears once)
<FFS:array>
text that appears before every array element
<FFS:array data tag field name=field b>
text that appears after every array element
</FFS:array>
text after array and before field c (appears once)
<FFS:data field name=field c> . . .

#include "io.h"
typedef struct _dyn_rec {

char *string;
long icount;
double *double_array;

} dyn_rec, *dyn_rec_ptr;

char markup[] = "\
<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n\
<!DOCTYPE dynamic [\n\

<!ELEMENT dynamic (strfield, icount, doublearray)>\n\
<!ELEMENT strfield (#PCDATA)>\n\
<!ELEMENT icount (#PCDATA)>\n\
<!ELEMENT doublearray (#PCDATA)>\n\

]>\n\
<dynamic>\n\

<strfield><PBIO:data field_name=\"string field\"></strfield>\n\
<icount><PBIO:data field_name=icount></icount>\n\
<doublearray><PBIO:data field_name=double_array></doublearray>\n\

</dynamic>";

IOField dyn_field_list[] = {
{"string field", "string", sizeof(char *), IOOffset(dyn_rec_ptr, string)},
{"icount", "integer", sizeof(long), IOOffset(dyn_rec_ptr, icount)},
{"double_array", "float[icount]", sizeof(double), IOOffset(dyn_rec_ptr, double_array)},
{ NULL, NULL, 0, 0}

};
int main() /* sending program */
{

IOContext src_context = create_IOcontext();
IOFormat dyn_rec_ioformat;
dyn_rec rec;
int buf_size, fd, i;
char *encoded_buffer, *xml_hydration;
IOOptInfo opt_info[2];

opt_info[0].info_type = XML_OPT_INFO;
opt_info[0].info_len = strlen(markup);
opt_info[0].info_block = markup;
opt_info[1].info_type = 0;
dyn_rec_ioformat = register_opt_format("dynamic format", dyn_field_list, opt_info, src_context);
rec.string = "Hi Mom!";
rec.icount = 5;
rec.double_array = (double*) malloc(sizeof(double) * 5);
for (i=0; i<5; i++) rec.double_array[i] = i*2.717;
encoded_buffer = encode_IOcontext_buffer(src_context,

dyn_rec_ioformat, &rec, &buf_size);

xml_hydration = IOencoded_to_XML_string(src_context, encoded_buffer);
printf("encoded data is %d bytes, XML string is %d bytes\n", buf_size, strlen(xml_hydration));
printf("XML string is :\n%s", xml_hydration);

}

Figure 6: A program using explicit XML markup specified as optional information in format registration.

encoded data is 80 bytes, XML string is 341 bytes
XML string is :
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dynamic [

<!ELEMENT dynamic (strfield, icount, doublearray)>
<!ELEMENT strfield (#PCDATA)>
<!ELEMENT icount (#PCDATA)>
<!ELEMENT doublearray (#PCDATA)>

]>
<dynamic>

<strfield>Hi Mom! </strfield>
<icount>5 </icount>
<doublearray>0 2.717 5.434 8.151 10.868 </doublearray>

</dynamic>

Figure 7: Output for the program in the previous figure.

This is sufficient to allow complete control if the representation of arrays in lists in XML hydration. As an ex-
ample of using this facility, consider the program of Figure 6 and replace the line “<doublearray><FFS:data
field name=double array></doublearray>” with:

<doublearray><FFS:array>
<list_element>

<FFS:array_data_mark field_name=double_array>
</list_element></FFS:array>

</doublearray>

The modified portion of the output of the program is shown in Figure 8.

10 COD

CoD (from C-on-Demand) is a small programming language designed to facilitate dynamic computations,
typically performed on data that has been encoded with FFS, or at least described with FFS-based FMfield
lists. See [?] for the rationale that prompted the need for dynamic computation. FFS builds upon its
use of dynamic code generation for FFS conversion functions, preserving the expressiveness of a general
programming language and the efficiency of shared objects while retaining the generality of interpreted
languages. Functionality such as in situ and in-transit processing are expressed in CoD (C On Demand), a
subset of a general procedural language, and dynamic code generation is used to create a native version of
these functions on the host where the function must be executed. CoD is currently a subset of C, supporting
the standard C operators and control flow statements.

Like the DCG used for FFS format conversions, CoD’s dynamic code generation capabilities are based
on the Georgia Tech DILL package, to which are added a lexer, parser, semanticizer, and code generator.
The CoD/Dill system is a library-based compilation system that generates native machine code directly
into the application’s memory without reference to an external compiler, assembler or linker. Only minimal
optimizations and basic register allocation are performed, but the resulting native code still significantly
outperforms interpreted approaches.

10.1 The CoD Language

CoD may be extended as future needs warrant, but currently it is a subset of C. Currently it supports
the C operators, function calls, for loops, if statements and return statements.

<doublearray>
<list_element>

0
</list_element>
<list_element>

2.717
</list_element>
<list_element>

5.434
</list_element>
<list_element>

8.151
</list_element>
<list_element>

10.868
</list_element>

</doublearray>

Figure 8: New output with array expansion explicitly controlled.

In terms of basic types, it supports C-style declarations of integer and floating point types. That is, the
type specifiers char, short, int, long, signed, unsigned, float and double may be mixed as in C. void
is also supported as a return type. CoD does not currently support pointers, though the type string is
introduced as a special case with limited support.

CoD supports the C operators !,+,-,*,/,%,〉,〈,〈=,〉=,==,!=,&&,‖,= with the same precedence rules as in
C. Paranthesis can be used for grouping in expressions. As in C, assignment yields a value which can be used
in an expression. C’s pre/post increment/decrement operators are not included in CoD. Type promotions
and conversions also work as in C.

As in C, semicolons are used to end statments and brackets are used to group them. Variable declarations
must preceed executable statements. So, a simple CoD segment would be:

{
int j = 0;
long k = 10;
double d = 3.14;

return d * (j + k);
}

10.2 Generating Code

The subroutine which translates CoD to native code is cod code gen(). The sample program below
illustrates a very simple use of cod code gen() using the previous CoD segment.

#include "cod.h"

char code_string[] = "\
{\n\

int j = 4;\n\
long k = 10;\n\
short l = 3;\n\

\n\
return l * (j + k);\n\

}";

main()
{

cod_parse_context context = new_cod_parse_context();
cod_code gen_code;
long (*func)();

gen_code = cod_code_gen(code_string, context);
func = (long(*)()) gen_code->func;

printf("generated code returns %ld\n", func());
cod_free_parse_context(context);
cod_code_free(gen_code);

}

When executed, this program should print “generated code returns 42.” Note that code generation
creates a function in malloc’d memory and returns a pointer to that function. That pointer is cast into the
appropriate function pointer type and stored in the gen code variable. It is the programs responsibility to
free the function memory when it is no longer needed. This demonstrates basic code generation capability,
but the functions generated are not particularly useful. The next sections will extend these basic capabilities.

10.3 Parameters and Structured Types

10.3.1 Simple Parameters

The simplest extensions to the subroutine generated above involve adding parameters of atomic data
types. As an example, we’ll add an integer parameter “i”. To make use of this parameter we’ll modify the
return expression in the code string to l * (j + k + i). The subroutine cod add param() is used to add
the parameter to the generation context. It’s parameters are the name of the parameter, it’s data type (as a
string), the parameter number (starting at zero) and the cod parse context variable. To create a function
with a prototype like long f(int i) the code becomes:

cod_parse_context context = new_cod_parse_context();
cod_code gen_code;
long (*func)(int i);

cod_add_param("i", "int", 0, context);
gen_code = cod_code_gen(code_string, context);
func = (long(*)()) gen_code->func;

printf("generated code returns %ld\n", func(15));
cod_free_parse_context(context);
cod_code_free(gen_code);

}

When executed, this program prints ‘‘generated code returns 87.’’ Additional parameters of atomic
data types can be added in a similar manner.

As a simpler alternative to multiple calls to cod add param(), and to provide a mechanism for specifying
the return type of the generated routine, CoD also provides :

extern void
cod_subroutine_declaration(const char *decl, cod_parse_context context);

cod subroutine declaration() allows the full profile of the generated routine to be specified at once. So,
the simple example code above can be modified as below to use this call:

cod_subroutine_declaration("int proc(int i)", context);
gen_code = cod_code_gen(code_string, context);
func = (long(*)()) gen_code->func;

10.3.2 Structured Types

Adding structured and array parameters to the subroutine is slightly more complex, but builds upon the
structure declarations used in FFS. For example consider the structure test struct and its FMField list as
below:

typedef struct test {
int i;
int j;
long k;
short l;

} test_struct, *test_struct_p;

ecl_field_elem struct_fields[] = {
{"i", "integer", sizeof(int), IOOffset(test_struct_p, i)},
{"j", "integer", sizeof(int), IOOffset(test_struct_p, j)},
{"k", "integer", sizeof(long), IOOffset(test_struct_p, k)},
{"l", "integer", sizeof(short), IOOffset(test_struct_p, l)},
{(void*)0, (void*)0, 0, 0}};

The cod add struct type() routine is used to add this structured type definition to the parse context.
If we define a single parameter “input” as this structured type, the new return value in code string is
input.l * (input.j + input.k + input.i) and the program body is:

main() {
cod_parse_context context = new_cod_parse_context();
test_struct str;
cod_code gen_code;
long (*func)(test_struct *s);

cod_add_struct_type("struct_type", struct_fields, context);
cod_add_param("input", "struct_type", 0, context);

gen_code = cod_code_gen(code_string, context);
func = (long(*)()) gen_code->func;

str.i = 15;
str.j = 4;
str.k = 10;
str.l = 3;
printf("generated code returns %ld\n", func(&str));
cod_code_free(gen_code);
cod_free_parse_context(context);

}

Note that the structured type parameter is passed by reference to the generated routine. However in
code string fields are still referenced with the ‘.’ operator instead of ‘-〉’ (which is not present in CoD).

10.4 External Context and Function Calls

With the exception of a few built-in subroutine calls, CoD routines have no ability to reference external
routines or data. That is, the only items visible to them are their own parameters. However, applications
can add to the set of visible extern entities by declaring those items to CoD and providing their addresses.
For example, to make a subroutine accessable in CoD requires defining both the subroutine’s profile (return
and parameter types) and its address. To specify the subroutine profile, CoD parses C-style subroutine and
function declarations, such as:

int printf(string format, ...);
void external_proc(double value);

This is done through the subroutine cod parse for context().

However, to associate addresses with symbols requires a somewhat different mechanism. To accomplish
this, CoD allows a list of external symbols to be associated with the codl parse context() value. This list
is simply a null-terminated sequence of 〈symbolname, symbolvalue〉 pairs of type codl extern entry. The
symbol name should match the name used for the subroutine declaration. For example, the following code
sequence makes the subroutine “printf” accessable in CoD:

extern int printf();
static ecl_extern_entry externs[] =
{

{"printf", (void*)printf},
{NULL, NULL}

};

static char extern_string[] = "int printf(string format, ...);";

{
ecl_parse_context context = new_ecl_parse_context();
ecl_assoc_externs(context, externs);
ecl_parse_for_context(extern_string, context);
...

Note that some compiler/OS combinations might disallow initializing a data item with the address of a
subroutine (as the second item in the externs[0] initialization) because some linkers won’t resolve sym-
bolic references in data segments. In this case, the externs[0].extern value must be initialized with an
assignment statement.

10.5 ’Magic’ Assignments and Memory Allocation

Section 3.3 introduced FFS’ dynamic array capability, in which an integer-typed field in a structure is
identified as the size of a dynamic array in that structure. CoD directly supports this capability in that if field
A is the size value of some dynamic array, and A appears on the left hand side of an assignment statement,
CoD will automatically realloc() the dynamic array to correspond to the new size value. Generally, this is
the preferred memory allocation mechanism in CoD because it’s nicely type-safe. However, one has to be
a bit careful with it. In this circumstance in particular, it is important to make sure that input data to
CoD has been reasonably initialized (for example using memset() to zeros). Because if that field A and the
pointer to the dynamic array have some random garbage value, then an assignment to field A will cause the
random garbage pointer to be submitted to realloc(), likely causing a segmentation fault.

malloc() is not generally a visible operation in CoD because whether or not it is appropriate or safe
depends upon the environment in which CoD is used. If CoD is deployed as a processing infrastructure
inside a middleware, using malloc() may inevitably leak memory because the middleware has no mechanism
for tracking and deallocating the created blocks. The details of memory tracking and allowable memory
allocation mechanisms will be left to the manuals of that middleware.

10.6 Operating on Unknown Data

All of the examples presented so far in this manual involve data structures that are statically known to the
application. However, this has been done for simplicity in the programs and in the exposition, not because
FFS/CoD has any restriction or preference for operating only with structures that are known at compile-time.
In fact, FFS and CoD do not rely upon any compile-time knowledge of the data structures/messages that
they operate upon. The static FMField lists in the examples can be replaced with dynamically generated
field lists without invalidating any operations.

10.6.1 FFS-encoded Parameters

There are a several approaches to operating on data whose exact nature is not known to the application
at compile-time. One of the simplest is to use CoD’s ability to operate directly upon FFS-encoded data. For
example, consider this modified program, modified from Section 4.2:

int main() /* receiving program */
{

FFSTypeHandle second_rec_handle;
FMContext fmc = create_FMcontext();
int fd, encode_size;
char encoded_buffer[2048]; /* hopefully big enough */

/* "receive" encoded record over a file */
fd = open("enc_file", O_RDONLY, 0777);
encode_size = read(fd, encoded_buffer, sizeof(encoded_buffer));

cod_add_encoded_param("input", encoded_buffer, fmc, context);

gen_code = cod_code_gen("{return input.j", context);
if (!gen_code) {

printf("The input did not have an acceptable field ’j’\n");
} else {

func = (long(*)()) gen_code->func;
printf("Field ’j’ in the input has value %d\n", func(encoded_buffer));

}
}

Here, we use the FFS routine cod add encoded param(), both adds a structured type (the type of the actual
encoded data) and a parameter of that type. In this case we give the parameter the name ’input’. The call
to cod code gen() will succeed if the incoming data has a field named ’j’ of an acceptable type (I.E. not an
array, a pointer, etc.). If the cod code gen() call succeeds, then the generated function (here, func expects
a pointer to the encoded buffer as its first parameter. Note that while we do this code generation using an
exemplar data block, once generated the subroutine func can be used with any data block with the same
FFS format ID.8

The approach of operating on FFS-encoded values has the advantage of simplicity and efficiency. In
particular, the incoming data is not transformed into a local native format, but instead values are converted
upon demand. This can be a considerable efficiency if only a fraction of the incoming data is referenced.
However, it also has significant limitations. In particular, the CoD code must not make changes in the
parameter. I.E. it shouldn’t be on the left hand side of an assignment, be indirectly operated on via pointers,
etc. (Strictly speaking, CoD should declare it const, but CoD does not currently have const support.)

10.6.2 Operating on data after decoding to ‘local’ formats

There is a somewhat more complex alternative approach that allows generated CoD routines to make
changes in the incoming data. Structurally, the approach is quite similar to the decoding program of
Section 4.2, but if we’re dealing with data about which we have no a priori knowledge, we don’t have the
information necessary to perform the call to FFSset simple target(). So, the first step is to acquire this
information. Several routines will be useful here:

extern FFSTypeHandle
FFSTypeHandle_from_encode(FFSContext c, char *b);

extern FMFormat
FMFormat_of_original(FFSTypeHandle h);

8A more complete program would keep track of format IDs for which it has generated a routine, storing them in a data
structure for later re-use. Upon encountering new data, it would extract the FFS format ID from the data, compare it to those
that were stored and attempt new code generation it not found. This program is left as an exercise for the reader.

extern FMStructDescList
get_localized_formats(FMFormat f);

Of these, FFSTypeHandle from encode() causes FFS to extract the format ID from the encoded data,
query the format server to acquire full meta-information about the data and return a handle to the informa-
tion. FMFormat of original() returns the format information as it was provided by the original encoder of
the data. This encoder-side format information may be incompatible with the data representation in use by
the receiver. For example, pointer sizes, data alignment requirements, and other important aspects of data
representation may differ. The FFS routine get localized formats() will extract the FMStructDescList
of the encoder and massage it so that the structure descriptions are acceptable to the receiver. At this point,
these modified format lists can be used in a call to FFSset simple target() as below;

int main() /* receiving program */
{

FFSTypeHandle handle;
FMFormat fmf;
FMStructDescList local_struct;
FFSContext ffsc = create_FFSContext();
int fd, encode_size, decode_size;
char encoded_buffer[2048]; /* hopefully big enough */
void *unknown_record;
cod_parse_context context = new_cod_parse_context();
cod_code gen_code;
int (*func)(void *);

/* "receive" encoded record over a file */
fd = open("enc_file", O_RDONLY, 0777);
encode_size = read(fd, encoded_buffer, sizeof(encoded_buffer));

handle = FFSTypeHandle_from_encode(ffsc, encoded_buffer);
fmf = FMFormat_of_original(handle);
local_struct = get_localized_formats(fmf);

/* decode the data into an acceptable local format */
FFSset_fixed_target(ffsc, local_struct);
FFS_target_from_encode(ffsc, encoded_buffer);
decode_size = FFS_est_decode_length(ffsc, encoded_buffer, encode_size);
unknown_record = malloc(decode_size);
FFSdecode(ffsc, encoded_buffer, unknown_record);

/* generate code to operate on it */
cod_add_struct_type(local_struct, context);
cod_add_param("input", FFSTypeHandle_name(handle), 0, context);
gen_code = cod_code_gen("{return input.j", context);
if (!gen_code) {

printf("The input did not have an acceptable field ’j’\n");
} else {

func = (long(*)()) gen_code->func;
printf("Field ’j’ in the input has value %d\n", func(unknown_record));

}
}

The two just preceeding code segments have demonstrated some of the abilities that FFS and CoD have
in operating on unknown data. However, there are still dangers in combining some types of operations.

Our experience with FFS has shown that most programs do not operate upon data that they have no
prior knowledge about. While FFS IOFieldLists can be created and used dynamically, it is a rare practice

because it is only necessary if the structures to be manipulated are dynamic and that is not a semantic
that is directly supported by common programming environments. Therefore, FFSs routines that query and
manipulate field lists will not be described in detail here. Instead we will just enumerate them below:

extern IOFieldList field list of IOformat(IOFormat format) returns the NULL-terminated IOFieldList
associated with a given

extern int compare field lists(IOFieldList list1, IOFieldList list2) compares two field lists for
strict equality.

extern IOFieldList copy field list(IOFieldList list) returns a copy of an IOFieldList

extern IOFieldList localize field list(IOFieldList list) this routine assigns “reasonable” values
to the size and offset values for the given field list. Here “reasonable” means acceptable to the current
underlying machine architecture. This routine is used to support higher-level dynamic code generation
routines in doing third-party data processing and filtering.

extern int struct size field list(IOFieldList list, int pointer size) returns the size of the “base”
structure described by a field list. The pointer size parameter is required because that information
is implicit in format registration and not carried with the field list.

11 Standard Tools for FFS Files

The meta-information contained in a FFS data stream allows the construction of general tools to operate
on FFS files. Two such tools are provided with the FFS library, FFSdump and FFSsort.

FFSdump is a “cat” program for FFS files. FFSdump takes as arguments a set of options and a filename.
By default FFSdump prints an ascii representation of all data records and comments in the FFS file. Dumping
of record format information as well as header information in the file is enabled by specifying options of
+formats and +header respectively. In general, printing for any record type can be turned on or off by
specifying options of the form {+,-}{header, comments, formats, data}.

FFSsort is a generalized sorting program for FFS files. It takes three parameters, the name of the field
to sort upon, the name of the input file and the name of the output file. The sort field can be of any FFS
atomic data type, but it must be the same basic type in all records. Any records in which the sort field does
not appear will not appear in the output file.

References

[1] Hasan Abbasi, Matthew Wolf, Fang Zheng, Greg Eisenhauer, Scott Klasky, and Karsten Schwan. Scalable
data staging services for petascale applications. In Proceedings of the International Symposium on High
Performance Distributed Computing 2009 (HPDC’09), June 2009.

[2] Sandip Agarwala, Greg Eisenhauer, and Karsten Schwan. Lightweight morphing support for evolving
data exchanges in distributed applications. In Proc. of the 25th International Conference on Distributed
Computer Systems (ICDCS-25), June 2005.

