
nDPI - Quick Start Guide
Open and Extensible LGPLv3 Deep Packet Inspection Library

Version 1.8
October 2016

© 2011-16

nDPI - Quick Start Guide

nDPI web http://www.ntop.org/products/ndpi/

ntop site www.ntop.org

nDPI License LGPLv3

!2

http://www.ntop.org/products/ndpi/

nDPI - Quick Start

Table of Contents

1. Introduction 4
1.1 Download Source 4
2. nDPI Library 5
2.1 Compiling nDPI Source Code 5
2.2 Compiling the demo pcapReader Source Code 5
2.3 pcapReader Command Line Options 5
2.4 Protocol File 6
3. Examples 8
3.1 Live Capture Mode 8
3.2 pcap Capture Mode 8
3.3 Protocol File 9
4. API nDPI 10
5. Developing nDPI custom protocol 13
5.1 Introduction 13
5.2 Creating new protocol 13
5.3 Add your protocol to nDPI 15

!3

nDPI - Quick Start Guide

1. Introduction

nDPI is a DPI library based on OpenDPI and currently maintained by ntop.

In order to provide you a cross-platform DPI experience, we also support Windows, in
addition to Unix/Linux. Furthermore, we have modified nDPI to make it more suitable for
traffic monitoring applications.We have achieved this by disabling specific features that
are unnecessary for network traffic monitoring, thereby speeding up the DPI engine.

nDPI allows application-layer detection of protocols, regardless of the port being used.
This means that it is possible to both detect known protocols on non-standard ports (e.g.
detect HTTP on ports other than 80), and also the opposite (e.g. detect Skype traffic on port
80). This is because nowadays the concept of port = application no longer holds.

Over the past few months we have added several features including:

• Enhancement of the demo ndpiReader application both in terms of speed/features and
encapsulations supported (for instance you can now analyse GTP tunnelled traffic).

• Ability to compile nDPI inside the Linux kernel so that you can use it for developing
efficient kernel-based modules.

• Various speed enhancements so that nDPI is now faster than its predecessor.

• Added many protocols (to date we support ~200 protocols) ranging from “business”
protocols such as SAP and Citrix, as well as “desktop” protocols such as Dropbox and
Spotify.

• Ability to define port (and port range)-based protocol detection, so that you can
complement protocol detection with classic port-based detection.

• In order to let nDPI support encrypted connections, we have added a decoder for SSL
(both client and server) certificates, thus we can figure out the protocol using the
encryption certificate. This allows us to identify protocols such as Citrix Online and
Apple iCloud that otherwise would be undetected.

• Ability to support sub-protocols using string-based matching

1.1 Download Source

nDPI is automatically downloaded when you build ntop and nProbe. However nothing
prevents you from using it as a standalone DPI library. The source code can be
downloaded from https://github.com/ntop/nDPI.

!4

http://code.google.com/p/opendpi/
https://github.com/ntop/nDPI/blob/dev/example/ndpiReader.c

nDPI - Quick Start

2. nDPI Library

2.1 Compiling nDPI Source Code

Start using nDPI Library is very simple. In order to compile this library you must meet
certain prerequisites such as:

 GNU autotools/libtool
 gawk
 gcc

To do this you need to install them using the following commands:

 Fedora yum groupinstall Development tools
 yum install automake libpcap-devel gcc-c++ libtool
 Debian apt-get install build-essential libpcap-dev
 Mac OSX port install XXX (Please install macports)

Once done that, you can compile the nDPI source code as follows:

cd <nDPI source code directory>
./autogen.sh
./configure
make

2.2 Compiling the demo ndpiReader Source Code

Starting using ndpiReader demo is also simple. In order to compile this you must use the
following command:

cd <nDPI source code directory>/example
make

2.3 ndpiReader Command Line Options

The demo ndpiReader application can be used both in terms of speed/features analysis
and encapsulations support. In particular, it is possible to specify a lot of command line
options.
The available options and a minimal explanation of each option are listed below:

ndpiReader -i <file|device> [-f <filter>][-s <duration>]
 [-p <protos>][-l <loops> [-q][-d][-h][-t][-v <level>]
 [-n <threads>] [-w <file>] [-j <file>]

Usage:
 -i <file.pcap|device> | Specify a pcap file/playlist to read packets from or a
device for live capture (comma-separated list)
 -f <BPF filter> | Specify a BPF filter for filtering selected traffic
 -s <duration> | Maximum capture duration in seconds (live traffic
capture only)
 -p <file>.protos | Specify a protocol file (eg. protos.txt)
 -l <num loops> | Number of detection loops (test only)
 -n <num threads> | Number of threads. Default: number of interfaces in -i.
Ignored with pcap files.
 -j <file.json> | Specify a file to write the content of packets in .json
format
 -d | Disable protocol guess and use only DPI

!5

nDPI - Quick Start Guide

 -q | Quiet mode
 -t | Dissect GTP tunnels
 -r | Print nDPI version and git revision
 -w <path> | Write test output on the specified file. This is useful
for
 | testing purposes in order to compare results across
runs
 -h | This help
 -v <1|2> | Verbose 'unknown protocol' packet print. 1=verbose,
2=very verbose

-i <file.pcap|device>
 This specifies a pcap file to read packets from or a device for live capture. Only one
 of these two can be specified.

-f <BPF filter>
 It specifies a BPF filter for filtering selected traffic. It allows nDPI to take only those
 packets that match the filter (if specified).

-s <duration>
 It defines the capture duration in seconds, only for live traffic capture.

-p <file>.protos
 It specifies a protocol file (e.g. protos.txt) to expand the support of sub-protocols
 and port-based protocol detection. Be careful, the protocol defined to protos file
 overwrites the existing protocol.

-l <num loops>
 Number of detection loops (test only).

-d
 This flag disables the nDPI protocol guess and uses only DPI.

-t
 It dissects GTP tunnels

-h
 It prints the ndpiReader help.

-v <1|2>
 Using this flag, ndpiReader generates verbose output that can be used to tune its
 performance. Number one is the lowest level that displays the packets with
 ‘unknown protocol', number two is more verbose.
 UDP 62.101.93.101:53 > 192.168.1.132:56130 [proto: 5/DNS][2 pkts/260 bytes][chat.stackoverflow.com]
 TCP 192.168.1.132:59323 > 62.161.94.220:80 [proto: 7/HTTP][8 pkts/1925 bytes][]
 UDP 62.101.93.101:53 > 192.168.1.132:56682 [proto: 5/DNS][2 pkts/258 bytes][diy.stackexchange.com]
 UDP 62.101.93.101:53 > 192.168.1.132:56916 [proto: 5/DNS][2 pkts/524 bytes][conjugator.reverso.net]
 ...
 ...
 TCP 192.168.1.132:59323 > 62.161.94.220:80 [proto: 7/HTTP][8 pkts/1925 bytes][]

 Undetected flows:

 TCP 192.168.1.132:57995 > 157.55.133.142:12350 [proto: 0/Unknown][3 pkts/208 bytes][]
 TCP 65.55.223.47:33033 > 192.168.1.132:57997 [proto: 0/Unknown][8 pkts/547 bytes][]
 TCP 127.23.238.168:16384 > 240.199.103.219:0 [proto: 0/Unknown][11 pkts/1611 bytes][]
 TCP 127.23.238.168:0 > 240.199.103.219:16384 [proto: 0/Unknown][11 pkts/2734 bytes][]

!6

nDPI - Quick Start

2.4 Protocol File

nDPI has the ability to support sub-protocols using string-based matching. This is because
many new sub-protocols such as Apple iCloud/iMessage, WhatsApp and many others
use HTTP(S) that can be detected by decoding the SSL certificate host or the HTTP “Host:”.
Thus we have decided to embed in nDPI an efficient string-matching library based on the
popular Aho-Corasick algorithm for matching hundred of thousand sub-strings efficiently
(i.e. fast enough to sustain 10 Gbit traffic on commodity hardware).

You can specify sub-protocols at runtime using a protocol file with the following format:

 # Subprotocols
 # Format:
 # host:"<value>",host:"<value>",.....@<subproto>
 host:"googlesyndacation.com"@Google
 host:"venere.com"@Veneer

in addition you can specify a port-based protocol detection using the following format:

 # Format:
 # <tcp|udp>:,<tcp|udp>:,.....@
 tcp:81,tcp:8181@HTTP
 udp:5061-5062@SIP
 tcp:860,udp:860,tcp:3260,udp:3260@iSCSI
 tcp:3000@ntop

You can test your custom configuration using the ndpiReader (use -p option) application or
enhance your application using the ndpi_load_protocols_file() nDPI API call.

!7

http://multifast.sourceforge.net/
http://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm

nDPI - Quick Start Guide

3. Examples

In this section we show some ndpiReader use cases.

3.1 Live Capture Mode

The following example shows the ndpiReader live capture mode by using the
parameter -i to specify the device and the parameter -s to specify the live capture
duration.

$./ndpiReader -i eth0 -s 20

* NOTE: This is demo app to show *some* nDPI features.
* In this demo we have implemented only some basic features
* just to show you what you can do with the library. Feel
* free to extend it and send us the patches for inclusion
--

Using nDPI nDPI ($Revision: #### $)
Capturing live traffic from device eth0...
Capturing traffic up to 20 seconds

pcap file contains
 IP packets: 2390 of 2391 packets total
 IP bytes: 1775743
 Unique flows: 78
 nDPI throughout: 122.30 pps / 709.92 Kb/sec
 Guessed flow protocols: 0

Detected protocols:
 DNS packets: 57 bytes: 7904 flows: 28
 SSL_No_Cert packets: 483 bytes: 229203 flows: 6
 FaceBook packets: 136 bytes: 74702 flows: 4
 DropBox packets: 9 bytes: 668 flows: 3
 Skype packets: 5 bytes: 339 flows: 3
 Google packets: 1700 bytes: 619135 flows: 34

3.2 pcap Capture Mode

The most simple way to create a pcap file is to use tcpdump command as in the following
example:
ntop$ tcpdump -ni eth0 -s0 -w /var/tmp/capture.pcap -v
tcpdump: listening on en1, link-type EN10MB (Ethernet), capture size 65535 bytes
Got 0
Got 64
Got 75
Got 76
^C122 packets captured
122 packets received by filter
0 packets dropped by kernel

Once the pcap file has been created you will be able to launch the demo ndpiReader with
the parameter -i:
$./ndpiReader -i /var/tmp/capture.pcap

* NOTE: This is demo app to show *some* nDPI features.
* In this demo we have implemented only some basic features
* just to show you what you can do with the library. Feel
* free to extend it and send us the patches for inclusion
--

!8

nDPI - Quick Start

Using nDPI nDPI ($Revision: #### $)
Reading packets from pcap file /var/tmp/capture.pcap...

pcap file contains
 IP packets: 4911 of 4911 packets total
 IP bytes: 3321544
 Unique flows: 145
 nDPI throughout: 612.80 K pps / 3.09 Gb/sec
 Guessed flow protocols: 11

Detected protocols:
 Unknown packets: 6 bytes: 764 flows: 1
 DNS packets: 50 bytes: 6158 flows: 25
 HTTP packets: 2537 bytes: 841638 flows: 73
 SSL_No_Cert packets: 1522 bytes: 303380 flows: 10
 SSL packets: 24 bytes: 1648 flows: 8
 FaceBook packets: 644 bytes: 201216 flows: 17
 Skype packets: 11 bytes: 872 flows: 6

3.3 Protocol File

In order to clarify the features of the protocol file we are now going to explain how you can
identify the flow of ntop.org.

For instance it is possible to do it by editing protos.txt.

 ntop$ echo 'host:"ntop.org"@nTop'> protos.txt

Once the protocol file has been modified you will be able to launch the demo ndpiReader
with the parameter -p:

$./ndpiReader -i en1 -s 30 -p protos.txt

* NOTE: This is demo app to show *some* nDPI features.
* In this demo we have implemented only some basic features
* just to show you what you can do with the library. Feel
* free to extend it and send us the patches for inclusion
--

Using nDPI nDPI ($Revision: #### $)
Capturing live traffic from device en1...
Capturing traffic up to 30 seconds

WARNING: only IPv4/IPv6 packets are supported in this demo (nDPI supports both IPv4
and IPv6), all other packets will be discarded

pcap file contains
 IP packets: 4755 of 4757 packets total
 IP bytes: 1766370
 Unique flows: 245
 Guessed flow protocols: 16

Detected protocols:
 Unknown packets: 1 bytes: 94 flows: 1
 DNS packets: 38 bytes: 5160 flows: 19
 HTTP packets: 265 bytes: 59831 flows: 20
 SSDP packets: 20 bytes: 9564 flows: 14
 SSL packets: 33 bytes: 2572 flows: 13
 DropBox packets: 17 bytes: 2481 flows: 6
 Skype packets: 12 bytes: 944 flows: 2
 Google packets: 2544 bytes: 612765 flows: 94
 nTop packets: 407 bytes: 66765 flows: 32

!9

nDPI - Quick Start Guide

4. API nDPI

In this section the nDPI API is highlighted.

The demo ndpiReader will be now taken has a basic example to show how to
initialize the library. It is required to have a compiled library and a properly
configured Makefile (i.e the demo Makefile).

To start to using the API of nDPI within your application - in addition to your includes
- you must also add the following include file:

#include "ndpi_main.h"

The library can be initialized as follows:

1. Declare the protocol bitmask and initialise the detection module

NDPI_PROTOCOL_BITMASK all;
ndpi_struct = ndpi_init_detection_module(
 detection_ticks_resolution,
 malloc_wrapper,
 free_wrapper,
 debug_printf);

This function will allow you to initialise the detection module. The fields have the
following meanings:
• u_int32_t ticks_per_second;  
 The timestamp resolution per second (like 1000 for millisecond resolution).
• void* (*__ndpi_malloc)(unsigned long size); 
 Function pointer to a memory allocator.
•void* (*__ndpi_free)(void* prt); 
 Function pointer to a debug output function, use NULL in productive environments.

2. Enable all protocols (note that you can enable a subset of the protocols if you)
via the appropriate macro and set them within the detection module.

// enable all protocols
NDPI_BITMASK_SET_ALL(all);
ndpi_set_protocol_detection_bitmask2(ndpi_struct, &all);

This function will allow you to set the protocol bitmask already defined within the
detection module.

3. In order to load an existing protocol file you must use the following function:

dpi_load_protocols_file(ndpi_struct, _protoFilePath);

4. Once captured the flows from your pcap file or ingress device, they can be
analyzed by using the following function:

protocol = (const u_int32_t)ndpi_detection_process_packet(

!10

nDPI - Quick Start

 ndpi_struct,
 ndpi_flow,iph ? (uint8_t *)iph : (uint8_t *)if,
 ipsize,
 time,
 src,
 dst);

The fields have the following meanings:

• struct ndpi_detection_module_struct *ndpi_struct; 
 The detection module.

• struct ndpi_flow_struct *flow; 
 Flow void pointer to the connection state machine.

• const unsigned char *packet;  
 The packet as unsigned char pointer with the length of packetlen. The pointer 
 must point to the Layer 3 (IP header).

• const unsigned short packetlen;  
 Packetlen the length of the packet.

•const u_int32_t current_tickt; 
 The current timestamp for the packet.

• struct ndpi_id_struct *src; 
 Void pointer to the source subscriber state machine.

• struct ndpi_id_struct *dst; 
 Void pointer to the destination subscriber state machine.

5. Once the flows have been analysed, it is necessary to destroy the detection
module via the use of the following function:

ndpi_exit_detection_module(ndpi_struct, free_wrapper);

The fields have the following meanings:

• struct ndpi_detection_module_struct* ndpi_struct; 
 The detection module to be cleared.

• void (*ndpi_free) (void *ptr); 
 Function pointer to a memory free function.

!11

nDPI - Quick Start Guide

For further information we suggest to read the files

nDPI/example/ndpiReader.c,

nDPI/src/include/ndpi_structs.h,

nDPI/src/include/ndpi_public_functions.h

nDPI/src/ndpi_main.c.

The protocol dissector files are contained in the nDPI/src/protocols directory.

!12

nDPI - Quick Start

5. Developing nDPI custom protocol

In this section we show the way to include your protocol inside nDPI.

5.1 Introduction

Each nDPI protocol is implemented as an entry function to be used at runtime by
nDPI. The nDPI comes with several protocols that can be used as example for this
activity. Below, we list the main concepts you need to know if you plan to develop
an nDPI protocol.

5.2 Creating new protocol

Each protocol has to have a corresponding #define inside the following include file

<nDPI source code directory>/src/include/ndpi_protocols_osdpi.h

as follow

#define NDPI_PROTOCOL_MY_PROTOCOL 171

where NDPI_PROTOCOL_MY_PROTOCOL is the protocol “name” and 171 is the protocol
ID that must be unique.

Once the protocol has been defined, you must create a new protocol source file
like

<nDPI source code directory>/src/lib/protocols/my_protocol.c

with the following content

#include "ndpi_utils.h"

#ifdef NDPI_PROTOCOL_MY_PROTOCOLS

.....

#endif

where it will be necessary to define an entry function as a follow

void ndpi_search_my_protocol(

 struct ndpi_detection_module_struct *ndpi_struct,

 struct ndpi_flow_struct *flow)

{

 struct ndpi_packet_struct *packet = &flow->packet;

 NDPI_LOG(NDPI_PROTOCOL_MY_PROTOCOL, ndpi_struct, NDPI_LOG_DEBUG, "my
protocol detection...\n");

 /* skip marked packets by checking if the detection protocol stack */

!13

nDPI - Quick Start Guide

 if (packet->detected_protocol_stack[0] != NDPI_PROTOCOL_MY_PROTOCOL) {

 ndpi_check_my_protocol(ndpi_struct, flow);

 }

}

and a detection core function to process a packet of a flow with the following
content

static void ndpi_check_my_protocol(
struct ndpi_detection_module_struct *ndpi_struct,
struct ndpi_flow_struct *flow)
{
 struct ndpi_packet_struct *packet = &flow->packet;
 u_int32_t payload_len = packet->payload_packet_len;

 if(“Found Protocol”) {

 NDPI_LOG(NDPI_PROTOCOL_MY_PROTOCOL, ndpi_struct,
 NDPI_LOG_DEBUG, "Found my protocol.\n");

 ndpi_int_my_protocol_add_connection(ndpi_struct, flow);

 return;
 }

 /*Exclude Protocol*/
 NDPI_LOG(NDPI_PROTOCOL_MY_PROTOCOL, ndpi_struct, NDPI_LOG_DEBUG,
 “exclude my protocol.\n");

 NDPI_ADD_PROTOCOL_TO_BITMASK(
 flow->excluded_protocol_bitmask,
 NDPI_PROTOCOL_MY_PROTOCOL);
 }

}

and a specific function to report the correct identification of the protocol as follow

static void ndpi_int_my_protocol_add_connection(
 struct ndpi_detection_module_struct *ndpi_struct,
 struct ndpi_flow_struct *flow,
 u_int8_t due_to_correlation)
{
 ndpi_int_add_connection(ndpi_struct, flow,
 NDPI_PROTOCOL_MY_PROTOCOL,
 /*Choose the type of your protocol*/
 NDPI_CORRELATED_PROTOCOL or NDPI_REAL_PROTOCOL);
}

!14

nDPI - Quick Start

5.3 Add your protocol to nDPI

Once the protocol has been created, you must declare your entry function in the
following include file

<nDPI source code directory>/src/include/ndpi_protocols.h

with the following content

/* my protocol entry */
void ndpi_search_my_protocol(
 struct ndpi_detection_module_struct *ndpi_struct,
 struct ndpi_flow_struct *flow);

Each protocol must be associated with a NDPI_SELECTION_BITMASK. The full list of
NDPI_SELECTION_BITMASK is contained in the file

<nDPI source code directory>/src/include/ndpi_define.h

After choosing the selection bitmask for your protocol, you must inform nDPI of the
new protocol by editing the file

<nDPI source code directory>/src/lib/ndpi_main.c

it is necessary to add your protocol to the the function as follow

void ndpi_set_protocol_detection_bitmask2(
 struct ndpi_detection_module_struct *ndpi_struct,
 const NDPI_PROTOCOL_BITMASK * dbm)
.....
.....
.....

#ifdef NDPI_PROTOCOL_MY_PROTOCOL
 ndpi_set_bitmask_protocol_detection(ndpi_struct,detection_bitmask,a,
 NDPI_PROTOCOL_MY_PROTOCOL,
 ndpi_search_my_protocol,
 NDPI_SELECTION_BITMASK_MY_PROTOCOL,
 SAVE_DETECTION_BITMASK_AS_UNKNOW,
 ADD_TO_DETECTION_BITMASK);

 /* Update callback_buffer index */
 a++;
#endif

.....

.....

.....

ndpi_struct->callback_buffer_size = a;

 NDPI_LOG(NDPI_PROTOCOL_UNKNOWN, ndpi_struct, NDPI_LOG_DEBUG,
 "callback_buffer_size is %u\n", ndpi_struct-
>callback_buffer_size);

!15

