Shared Code

Sumedh Kanetkar

Microsoft Confidential

1Namespace

1Internal Access Only

1Resources

2Shared Resources

2FxCop "AvoidBuildingNonCallableCode" violation

Namespace

All shared code must live in the Microsoft.Build.Shared namespace.

Internal Access Only

Shared code gets compiled into every assembly it is referenced by. However this does not mean that the shared types can migrate across the assemblies they are in.

Even if two types in different assemblies have the same name and are in the same namespace, the CLR does not recognize the types to be the same, because their assembly identities are different.
As a result all shared code must have internal access only. There should be no public types in shared code.

Resources
Shared code needs access to assembly resources e.g. for loading error messages for exceptions. Each assembly that shares code, must define a class called AssemblyResources in the shared namespace, with an internal static readonly member of type ResourceManager called resources. Each sharing assembly is required to do this because only it knows what the manifest resource name (a.k.a. logical name) of its resources is. Shared code can then statically reference the assembly’s resources. If the AssemblyResources class is not defined, it is a compile-time error.

The AssemblyResources class at a minimum must look like this:

using System.Resources;

using System.Reflection;

namespace Microsoft.Build.Shared

{

 internal static class AssemblyResources

 {

 internal static readonly ResourceManager resources =
new ResourceManager(

"<manifest resource name>",

Assembly.GetExecutingAssembly());

 }

}
NOTE: the class is explicitly marked static, because it only contains static members and methods – making the class static prevents it from being instantiated, and allows the compiler to flag the (accidental) addition of instance members
Shared Resources

Shared code sometimes needs to define its own resources. If this were not allowed, then each sharing assembly would have to redefine the same set of resources on behalf of the shared code. As with code, maintaining multiple copies of the same resources is not desirable.
Shared resources must be placed in the file Strings.shared.resx in the shared code directory. All resource names must be prefixed with “Shared.” to distinguish the shared resources from an assembly’s primary resources. Each sharing assembly must add an internal static readonly member of type ResourceManager, called sharedResources, to the AssemblyResources class. This is necessary because only the sharing assembly can assign the correct manifest resource name to the shared resources. Shared code can then statically reference the shared resources. The absence of either the AssemblyResources class, or the sharedResources member is a compile-time error.
For assemblies that share resources, the AssemblyResources class at a minimum must look like this:

using System.Resources;

using System.Reflection;

namespace Microsoft.Build.Shared

{

 internal static class AssemblyResources

 {

 internal static readonly ResourceManager resources =
new ResourceManager(

"<manifest resource name>",

Assembly.GetExecutingAssembly());

 internal static readonly ResourceManager sharedResources =
new ResourceManager(

"<manifest resource name of shared resources>",

Assembly.GetExecutingAssembly());

 }

}
To simplify the retrieval of resources, the AssemblyResources class can optionally define a method called GetString() that searches both the assembly’s primary resources as well as its shared resources for a given string. For example:
internal static string GetString(string name)

 {
string resource = resources.GetString(name,

CultureInfo.CurrentUICulture);

 if (resource == null)

 {

 resource = sharedResources.GetString(name,

CultureInfo.CurrentUICulture);

 }

 return resource;

}

NOTE: if the above method is added to the AssemblyResources class, it is advisable to make both resources and sharedResources private (instead of internal) to unify access to assembly resources

FxCop "AvoidBuildingNonCallableCode" violation

FxCop may fire the "AvoidBuildingNonCallableCode" violation for methods in a shared class that are used in one assembly but not in another. It is ok to exclude these violations with a note saying that the code is shared.

