
Contents

circRNA detection from RNA-seq reads 1

Author notes and preface . 1

License . 2

Brief version history . 2

Prerequisites . 2

How to use the unmapped2anchors.py script 4

How to use find_circ.py . 4

Output format . 5

How to filter the output . 6

Analyzing multiple samples . 7

Command line reference unmapped2anchors.py 7

Command line reference find_circ.py 8

circRNA detection from RNA-seq reads

This repository holds python code to detect head-to-tail spliced (back-spliced)
sequencing reads, indicative of circular RNA (circRNA) in RNA-seq data. It is
also used extensively by circbase.

Author notes and preface

The scripts in this package were designed by Nikolaus Rajewsky, Antigoni
Elefsinioti and Marvin Jens. The current implementation was written by Marvin
Jens.

This software is provided to you “as is”, without any warranty. We used this
code (v1) to produce the results presented in

Nature. 2013 Mar 21;495(7441):333-8.
doi: 10.1038/nature11928. Epub 2013 Feb 27.

Circular RNAs are a large class of animal RNAs with regulatory potency.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L,
Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U,
Landthaler M, Kocks C, le Noble F, Rajewsky N.

1

http://circbase.org

Have a look at Memczak et al. 2013 and the supplementary material for additional
information. Please don’t contact the authors, who are very busy, regarding this
software unless you have found a bug, wish to provide improvements to the code,
propose a collaboration, or use our code for commercial purposes. Thank you
very much for your understanding!

License

For non-commercial purposes the code is released under the General Public
License (version 3). See the file LICENSE for more detail. If you are interested
in commercial use of this software contact the authors.

Brief version history

The current code (v1.2) has some small bug fixes and improvements. Each
version deemed stable is tagged and a brief summary of the improvements is
given here:

• v1 : as used in Memczak et al. 2013
• v1.2 :

– fix the uniqueness handling. Occasionally reads would have either
anchor align uniquely, but never both. These rare cases now get
flagged as “NO_UNIQ_BRIDGES”.

– support all chromosomes in one FASTA file
– store the size of each chromosome upon first access, pad violations of

chromosome bounds by padding with ‘N’
– category labels have been extended for clarity (“UNAMBIGU-

OUS_BP” instead of “UNAMBIGUOUS”, etc.), in a manner which
preserves functionality of grep commands.

– by default no longer report junctions with only one uniquely aligned
anchor. Original behaviour can be restored using the --halfuniq
switch.

– by default no longer report junctions that lack a read where both
anchors align uniquely (NO_UNIQ_BRIDGES keyword). Original
behaviour can be restored using the --report_nobridge switch

• v2 : (under development): produce multiple anchor lengths to potentially
yield more junctions with unique anchor mappings.

Prerequisites

The scripts run on Ubuntu 12.04.2 on a 64Bit machine with python 2.7. We
do not know if it runs in different environments but other 64Bit unix versions
should run if you can get the required 3rd party software installed.

2

http://www.ncbi.nlm.nih.gov/pubmed/23446348
http://www.ncbi.nlm.nih.gov/pubmed/23446348

You need to install the python packages numpy and pysam. If there are no
packages in your linux distro’s repositories, try the very useful python installer
(building numpy requires many dependencies, so obtaining pre- compiled packages
from a repository is a better option).

pip install --user pysam

Next you need the short read mapper bowtie2 and samtools up and running.
samtools now is in the repositories of many distros, but here you can get the
most fresh versions:

http://samtools.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

At this point you should have everything to run a built-in test data set

cd test_data
make

If you get error messages here, first make sure the dependencies are really
installed correctly and run on their own. The authors of this code can not give
support bowtie2, samtools, python, or any other third-party packages! Sorry,
but not enough time for this. If you are sure that the problem is with our code,
just zip the test_data folder and e-mail it to us. MAYBE, we can help.

In case you are working with human data and have the hg19 genome and a
bowtie2 index around, there is an additional test/sanity-check you can run:

cd test_data
make hek_test2 \

GENOME_HG19=/path_to/hg19.fa \
INDEX_HG19=/path_to/bowtie2_hg19_index

(obviously, the paths to genome and index will have to be changed for this to
work) This will push known spliced reads, belonging to previously identified
junctions, through find_circ.py, then take the found spliced reads and run
them through find_circ.py a second time. Ultimately, it compares the detected
splice sites and ensures the two sets are identical.

If everything goes well you can get started with your real data! :)
You need to have the reference genome and a bowtie2 index for it. As an example,
let’s assume you use C.elegans genome ce6 (WS190):

wget -c http://hgdownload.cse.ucsc.edu/goldenPath/ce6/bigZips/chromFa.tar.gz \
-O - | gzip -dc | tar -xO > ce6.fa

3

This will retrieve the genome from the UCSC website, unpack it into a single
fasta file with all chromosomes to build the index:

bowtie2-build ce6.fa bt2_ce6

How to use the unmapped2anchors.py script

It is recommended to map your RNA-seq reads against the genome first and
keep the part that can not be mapped contiguously to look for splice- junctions
afterwards. The genome alignments can be used for gene expression analysis
and the unmapped reads will represent a fraction of the input, thus downstream
analysis will be faster.

bowtie2 -p16 --very-sensitive --score-min=C,-15,0 --mm \
-x bt2_ce6 -q -U <your_reads.fastq.gz> 2> bowtie2.log \
| samtools view -hbuS - | samtools sort - test_vs_ce6

single out the unaligned reads and split those with good quality into anchors for
independent mapping (used to identify splice junctions)

get the unmapped and pipe through unmapped2anchors.py
samtools view -hf 4 test_vs_ce6.bam | samtools view -Sb - | \

./unmapped2anchors.py unmapped_ce6.bam | gzip \
> ce6_anchors.fastq.gz

How to use find_circ.py

Now we have everything to screen for spliced reads, from either linear or head-
to-tail (circular) splicing:

mkdir -p <run_folder>
bowtie2 -p 16 --score-min=C,-15,0 --reorder --mm \

-q -U ce6_anchors.fastq.gz -x bt2_ce6 |\
./find_circ.py \

--genome=ce6.fa \
--prefix=ce6_test_ \
--name=my_test_sample \
--stats=<run_folder>/stats.txt \
--reads=<run_folder>/spliced_reads.fa \

> <run_folder>/splice_sites.bed

The prefix ce6_test is arbitrary, and pre-pended to every identified splice junc-
tion. You may consider setting it to tmp or similar for single samples out of a

4

larger set. Note that find_circ.py outputs both, circRNA splice junctions (con-
taining the keyword CIRCULAR) linear splice junctions (containing the keyword
LINEAR). You may want to grep CIRCULAR <run_folder>/splice_sites.bed
> circs_sample1.bed or similar, to sort out the circRNAs.

Output format

The detected linear and circular candidate splice sites are printed to stdout. The
first 6 columns are standard BED. The rest hold various quality metrics about
the junction. Here is an overview:

column name description

1 chrom chromosome/contig name
2 start left splice site (zero-based)
3 end right splice site (zero-based).

(Always: end > start. 5’ 3’ depends on strand)
4 name (provisional) running number/name assigned to junction
5 n_reads number of reads supporting the junction (BED ‘score’)
6 strand genomic strand (+ or -)
7 n_uniq number of distinct read sequences supporting the junction
8 uniq_bridges number of reads with both anchors aligning uniquely
9 best_qual_left alignment score margin of the best anchor alignment

supporting the left splice junction (max=2 * anchor_length)
10 best_qual_right same for the right splice site
11 tissues comma-separated, alphabetically sorted list of

tissues/samples with this junction
12 tiss_counts comma-separated list of corresponding read-counts
13 edits number of mismatches in the anchor extension process
14 anchor_overlap number of nucleotides the breakpoint resides within one anchor
15 breakpoints number of alternative ways to break the read with flanking GT/AG
16 signal flanking dinucleotide splice signal (normally GT/AG)
17 strandmatch ‘MATCH’, ‘MISMATCH’ or ‘NA’ for non-stranded analysis
18 category list of keywords describing the junction. Useful for quick grep filtering

The following list of keywords is assigned to splice sites by find_circ.py for

5

easy filtering:

keyword description

LINEAR linear (mRNA) splice site, joining consecutive exons
CIRCULAR potential circRNA splice site. Exons are joint in reverse order.
UNAMBIGUOUS_BP demanding flanking GT/GA, only one way of splitting the spliced

read was found (only one possible breakpoint within the read)
PERFECT_EXT The read sequence between the anchors aligned perfectly during the

extension process.
GOOD_EXT The extension (see above) required not more than one mismatch or one

nucleotide overlap with an anchor
OK_EXT The extension (see above) required not more than two mismatches or two

nucleotides overlap with an anchor
ANCHOR_UNIQUE Unique anchor alignments have been found, supporting both sides

of the junction. Unless --halfunique is used, this should be
true for all reported results.

CANONICAL splice sites are flanked by GT/AG. Unless --noncanonical is
used, this should be true for all reported results.

NO_UNIQ_BRIDGES While both sides of the junction are individually supported by
unique anchor alignments, there is not a single read, where both
anchors align uniquely at the same time (bridging the junction).
Unless --report_nobridge is used, this should never appear.

STRANDMATCH Only appears when --stranded is used and GT/AG were found in the
correct orientation

How to filter the output

It is usually a good idea to demand at least 2 reads supporting the junction,
unambiguous breakpoint detection and some sane mapping quality:

To get a reasonable set of circRNA candidates try:

grep CIRCULAR <run_folder>/splice_sites.bed | \
grep -v chrM | \
grep UNAMBIGUOUS_BP | grep ANCHOR_UNIQUE | \

6

./maxlength.py 100000 \
> <run_folder>/circ_candidates.bed

This selects the circular splice sites with unambiguous detection of the breakpoint
(i.e. the exact nucleotides at which splicing occurred), and unique anchor
alignments on both sides of the junction. The last part subtracts start from end
coordinates to compute the genomic length, and removes splice sites that are
more than 100 kb apart. These are perhaps trans-splicing events, but for sure
they are so huge they can seriously slow down any downstream scripts you may
want to run on this output.

Analyzing multiple samples

If you intend to analyze multiple samples, it is now strongly advised to run
them individually through find_circ.py, and merge the separate outputs later!
Use the find_circ.py --name <sample_name> flag to assign sample IDs, tissue
names, etc. to each sample.

Merging should then be done with merge_bed.py:

./merge_bed.py sample1.bed sample2.bed [...] > combined.bed

This will deal properly with the various columns: quality scores will be assigned
the maximum value of all samples, total read counts will be summed up, tissue
column will contain a comma-separated list, etc..

Command line reference unmapped2anchors.py

./unmapped2anchors.py -h
Usage:

unmapped2anchors.py <alignments.bam> > unmapped_anchors.qfa

Extract anchor sequences from unmapped reads. Optionally permute.

Options:
-h, --help show this help message and exit
-a ASIZE, --anchor=ASIZE

anchor size
-q MINQUAL, --minqual=MINQUAL

min avg. qual along both anchors (default=5)
-r REV, --rev=REV P-ermute read parts or reverse A,B,R,C,N for control
-R, --reads instead of unmapped reads from BAM, input is

7

sites.reads from find_circ.py
-F, --fasta instead of unmapped reads from BAM, input is FASTA

file

Command line reference find_circ.py

Usage:

bowtie2 [mapping options] anchors.fastq.gz | find_circ.py [options] > candidates.bed

Options:
-h, --help show this help message and exit
-v, --version get version information
-S SYSTEM, --system=SYSTEM

model system database (optional! Requires byo
library.)

-G GENOME, --genome=GENOME
path to genome (either a folder with chr*.fa or one
multichromosome FASTA file)

-n NAME, --name=NAME tissue/sample name to use (default='unknown')
-p PREFIX, --prefix=PREFIX

prefix to prepend to each junction name (default='')
-q MIN_UNIQ_QUAL, --min_uniq_qual=MIN_UNIQ_QUAL

minimal uniqness for anchor alignments (default=2)
-a ASIZE, --anchor=ASIZE

anchor size (default=20)
-m MARGIN, --margin=MARGIN

maximum nts the BP is allowed to reside inside an
anchor (default=2)

-d MAXDIST, --maxdist=MAXDIST
maximum mismatches (no indels) allowed in anchor
extensions (default=2)

--noncanonical relax the GU/AG constraint (will produce many more
ambiguous counts)

--randomize select randomly from tied, best, ambiguous hits
--allhits in case of ambiguities, report each hit
--stranded use if the reads are stranded. By default it will be

used as control only, use with --strandpref for
breakpoint disambiguation.

--strandpref prefer splice sites that match annotated direction of
transcription

--halfunique also report junctions where only one anchor aligns
uniquely (less likely to be true)

--report_nobridges also report junctions lacking at least a single read

8

where both anchors, jointly align uniquely (not
recommended. Much less likely to be true.)

-R READS, --reads=READS
write spliced reads to this file instead of stderr
(RECOMMENDED!)

-B BAM, --bam=BAM filename to store anchor alignments that were recorded
as linear or circular junction candidates

-r READS2SAMPLES, --reads2samples=READS2SAMPLES
path to tab-separated two-column file with read-name
prefix -> sample ID mapping

-s STATS, --stats=STATS
write numeric statistics on the run to this file

9

	circRNA detection from RNA-seq reads
	Author notes and preface
	License
	Brief version history
	Prerequisites
	How to use the unmapped2anchors.py script
	How to use find_circ.py
	Output format
	How to filter the output
	Analyzing multiple samples
	Command line reference unmapped2anchors.py
	Command line reference find_circ.py

