Supplementary Note

Equivalence of M, definitions

M, can be defined in 3 equivalent ways. First, it can be defined in terms of fourth moments of the effect
size distribution:
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where f3 is the causal effect size distribution (i.e., Y = X3 +¢), and a = RS.
Second, it can be defined in terms of the average unit of heritability. Suppose that 8~ N(0,X), where &
is a diagonal matrix with entries 0%, ...,0%,. The average unit of heritability is defined as:
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where h? = Tr(X). Ej2(a?) is proportional to xg:
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where we have used the fact that E(S#|2) = 30}. Rearranging,
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where h? = M E(af3), and we have a second definition of M,:
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Third, define S = X2R¥Y2. Then:
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Thus, we obtain another equivalent definition:
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where Tr(S) = h?. This definition is slightly more general than definition (5), since it does not require that
Y is a diagonal matrix. (Note that in the diagonal case, Tr(S) = Tr(X); more generally, these definitions
are different, corresponding to the difference between E(?) and E(af3).) We remark that this definition of
M, is symmetric with respect to the dual fixed objects in the model, R and ¥ (i.e. M,(R,X) = M,(%, R)).
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Derivation of moment condition

We assume that:
cov(a?, 532‘|€§2)’€§4)) ~ r?jcov(a?, ,6?|€§2),€§4)). (8)
We use this approximation as follows. First, we split up F (a?):
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Next, we use the fact that
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Now, we are ready to use (8) to break down E(a?ﬂ?) = cov(oz?,ﬂ?) + E(af)E(ﬂ?):
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Similar to LD score regression, we assume that SNPs in LD with regression SNPs (i.e. SNPs j which are in
LD with SNP i) are representative of a larger population of SNPs (e.g. all common SNPs), allowing us to

replace E([(2, ¢%)) with E(-):
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We restate this equation for a randomly chosen SNP (rather than for a particular SNP ¢):
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where

K = 3E(8%)[Bye(0?) - B(a®)]. (13)



Polygenic prediction accuracy

If ¥ is given, then it is clear what the optimal risk prediction scheme is. Given an estimate & of «, the

expected phenotypic value of an individual with genotype X is:
E(XB|a, 2, X) = XE(a|a,X).

The prediction 72 is:
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If & ~ N(o, + R), then:
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and taking an expectation over SNPs,
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When N is large, 72 converges to h?; when N is small, 72 is approximately Nh2Ej2(a?).

(14)



