
Arcan
Free (BSDv3+a little GPLv2)

portable, scriptable
display “server”

game engine
realtime multimedia framework

{ }

Github
IRC
Twitter
Web
E-Mail

github.com/letoram/arcan
#arcan @ irc.freenode.net
@arcan_fe
arcan-fe.com
contact@arcan-fe.com

Forms of Contact ordered by estimated success-rate (high -> low)

http://github.com/letoram/arcan
mailto:contact@arcan-fe.com

Idea
* Look for a useful intersection between typically distinct

(display server, game engine, streaming multimedia
processing / low- mid- level graphics)

* Make the ‘last mile’ scriptable
* Emphasize minimalism and portability

?

Goal

“Special” Challenges
* Display Server (X.org, DWM, Quartz, SurfaceFlinger)

* Privileged (it’s not just about root)
* External producers & consumers (bad mix with privileged)
* Low level device integration (Monitors, Keyboards, ...)
* Power Management

* Game engine
* Complex input models
* Adaptive soft realtime (Quality of Experience)
* High variability in GPUs (and their drivers and APIs)

* Multimedia processing
* Assymetric Loads
* Complex / Insane Data Formats
* Timing sensitive, stream de-multiplexation
* Heavy / unsaitisfiable buffering requirements

Fast Forward A Few Thousand Hours
(and a terrifying amount of wine and coffee)

What the hell is this?

Recipe
1. Take a game-engine

Scene Graph

Realtime Graphics

Resource Management
Scripting
Interface

Audio Storage

Input Metering Network

Recipe
2. Make it Portable

Scene Graph

Resource Management
Scripting
Interface

Device Control

System Platform

Low Level Graphics File I/O

Realtime Graphics Audio Storage

Input Metering Network

Recipe
3. Add Streaming Media Support

Scene Graph

Resource Management
Scripting
Interface

System Platform

Realtime Graphics Audio Storage

Video Encode / Decode

Input Metering Network

Recipe
4. Add Process Separation (for resilience)

Video

IPC and Process Control

Networking

Scene Graph

Resource Management
Scripting
Interface

System Platform

Realtime Graphics Audio Storage Input Metering

Recipe
5. Expand Feature Set

[indirectly improve and harden IPC and related API]

Terminal

Emulator / Virtual Machine Integration
“frameservers”}Video

IPC and Process Control

Networking

Scene Graph

Resource Management
Scripting
Interface

System Platform

Realtime Graphics Audio Storage Input Metering

Recipe
6. Display Control + External Connections

System Platform

IPC and Process Control 3rd Party

Monitor Synch
Plug / Unplug

Terminal

Emulator / Virtual Machine Integration

Video Networking

Scene Graph

Resource Management
Scripting
Interface

Realtime Graphics Audio Storage Input Metering

Recipe
7. Allow nesting, chaining

System Platform

IPC and Process Control

Terminal

Emulator / Virtual Machine Integration

Video Networking

Scene Graph

Resource Management
Scripting
Interface

Realtime Graphics Audio Storage Input Metering

LWA

"Lightweight Arcan"
- build where A/V/I platform outputs to IPC interface

Meanwhile…
* Iteratively develop proof-of-concepts

* to (de,re)fine scripting interface
* establish support- scripts, code patterns
* locate, evaluate and improve design rough spots

Gridle
AWB
Senseye
Durden

Home-theater / Graphical FE
Classic “Fun” Desktop Interface
Debugging / Reversing tool
Desktop Environment

Abandoned

Supported

PoC Name: Role: Status:

Arcan<Gridle>
HTPC- like interface Improved:

• Input Model (support custom usb
gamepads, multiple keyboards)

• Tons of asynchronous- related
bugs squashed (background tiles
are all videos from separate
processes)

• State Management (suspend/
resume/serialize external
processes, minimizing resource
footprint)

• Helped Define the graphics API
that was needed for the
advanced effects (simulating
damaged CRTs, ..)

~2011

Arcan<AWB>

Demo Video @:

Inspired by some desktop from a more civilized age

• Performance / caching for
complex hierarchies

• Analog device management
• Synchronization between

multiple producers/
consumers

• Mouse gesture scripts
• API simplification
• A/V mixing when recording/

streaming/sharing

Improved:

https://www.youtube.com/watch?v=3O40cPUqLbU

~2013

https://www.youtube.com/watch?v=3O40cPUqLbU

Arcan<Senseye>

Presentation:

Intersection between rev.eng, data-vis, debugging, forensics …

https://speakerdeck.com/letoram/senseye

~2015

Details: https://github.com/letoram/senseye/wiki

https://speakerdeck.com/letoram/durden
https://github.com/letoram/senseye/wiki

Arcan<Durden>

Presentation:

(primarily) tiling++/keyboard driven desktop environment

https://speakerdeck.com/letoram/durden

~2015

https://speakerdeck.com/letoram/durden

Features (rough overview)

Moderately Advanced Graphics
Shaders + Uniform Mgmt
Offscreen Rendering
Streaming transfers
Recording
Allocation Contexts
Custom Resampling
Transform Scheduling

Basic Graphics
Rotate/Blend/Scale
Animations
Hierarchical Relations
Clipping
3D Models & basic geometry
Picking, Measuring
Image Loading / Saving
Draw Order Control
Filtering / Blending Controls

Process Control
State transfers
Life tracking
Configuration
Launching

Display Management
Hotplug
Resolution Switching
Mapping Output
Synchronization

Audio
Streaming Sources
Sample Playback
Gain Control
Input Mixing

Device Control
Keyboards, Gamepads,
Mice, Touch
Configurable Filtering
LEDs

Database
Key / Value
Execution Model

Media Control
Video Playback
Video Recording
Webcams, Streams, …

Networking (experimental)
Client / Server
Local Discovery
Simple Messaging
Block Transfer
Streaming

Hopes & Ambition
• Key Component for “different” Desktop Environments:

- Customizing support for Specific / Complex Disabilities
- Losely coupled support scripts, pick and place / share
- Virtual Reality (useful ones, not just ‘lets make it 3D’)
- Increasing public interest for graphics on (BSDs & Linux)
- Enabling the Security Paranoid e.g.alpine-linux (good: grsec,  

musl-libc, minimal), direct boot to signed/static arcan on  
ro- base-system, dev whitelist, that’s how I use it...)

• Embedded And Specialized Graphics Applications:
- Lightweight Computer Vision
- UI for low-end (raspberry pi-level) electronics projects
- Research Targets e.g. Secure UI design - data sharing in sandboxed  

environments, Data Visualization, Monitoring Systems, Debugging)

or “what would this (ideally) be used for/bring”

Status / Roadmap
(past releases, roadmap @ github.com/letoram/arcan/wiki)

0.1 0.2 0.3 0.4

(2011) “Public” Release
First refactor into ‘not entirely embarrassing’ state
API feature set @ gridle level
no 'real' dissemination: upload to sforge
preload- hacks on SDL1.2 for games + video decode

(2012) emulators via “libretro” (see libretro.com)
used as testing model for performance, latency, audio, I/O
video encoding (offscreen gpu + readback over IPC)

(2013-14) Lua api improvement focus
AWB developed, tons of performance and design
quirks fixed, analog device filtering and mouse gestures
documentation and refactoring work. Last versions that
supported Microsoft OSes...

(~2003+) Private
Mostly learning experiments from
old programming experiences
(90ies emulators, software 3D,
codec development etc.)

http://github.com/letoram/arcan/wiki
http://libretro.com

Status / Roadmap
(current + future releases, roadmap @ github.com/letoram/arcan/wiki)

0.5 0.6 0.7 0.8 0.9

Senseye 0.1 - 0.3

Durden 0.1

(2016 - may) current release
* Nested (arcan_lwa connecting to arcan disp. server)
* Remoting, (VNC client + server)
* Heavy refactoring (db/namespace/platforms)
* tons of doc / Q&A work
* non-auth connections
* much improved egl/dri/kms (multimonitor, …)

0.5.1

* Qemu (soon, Bhyve?) integration
* Shmif- improvements (proxy, monitor, debug)
* New backends: Vulkan

(q2-q3 2016)

* Finish Networking Support
* Package Format / Loader
* FUSE- based i/o intercept
* Seccmp, CloudABI,

Capsicum …

* Audio rework / improvements
* HMD integration /support scripts
* 3D pipeline improvements
* Wayland Client / Server

“feature complete”

(q3 2017)

* all testing automated
* profile- based optimization builds
* heavy functions all vectorized
* structures reordered and compacted for

cache

(q1 2018)

* memory allocations type-pooled
* image/font parsers sandboxed
* reproducible builds
* lib-ify engine components
* fuzzers and models for all  

privsep interfaces
* critical path CFG enforcement

(q4 2016)

(q2 2017)

“optimal”

“secure”

http://github.com/letoram/arcan/wiki

Obvious Questions #1 - Wayland
• Support Planned, lack of resources / time / motivation / ... / - contributors welcome :-)

• Tight QEmu/KVM integration higher priority as means for legacy X/etc. support

• Heavy lifting (API model, input device management, EGL/KMS/DRI) done

• Arcan internal IPC (Shmif), feature superset - same internal code-paths can be used

• Either by adding support for an optional libarcan_shmif build path that enabled
libwayland-client needed- entry points (A) and have clients dynamic link to that or
mapping engine features to libwayland-server ("proper" but interface- design mix very
poorly with engine codebase)

SG/RM Scripting

System Platform

Realtime Graphics Audio Storage

Arcan Shmif

libwayland-client

A (client-if)
B (using -server)

Used as LWA platform

Obvious Questions #2 - Vulkan
• Planned for arcan- side support in next release

• Used graphics operations already abstracted as part of AGP platform layer

• With GL21, GLES2, GLES3 backends

• Vulkan benefits will primarily be in GPU<->CPU transfer coordination and
storage management, where current GL cost is bad/broken to “insane” but
still(?) missing things for ideal conditions (MAP_SHARED) 

System Platform

AGP EGI-DRI

StubGL21 Vulkan

GLES

For testing“Preferred”

“Works” as long as decent FBO/PBO isn’t needed, full feature-set not available

LWA(arcan)

Other References
Slides
Online:
Design: https://speakerdeck.com/letoram/arcan-design
Devel-intro: https://speakerdeck.com/letoram/arcan-appl

or offline in the arcan-git @:
doc/slides_devintro.pdf
doc/slides_devmodel.pdf
doc/arcan_presentation.pdf (these slides)

Much More @ Wiki
https://github.com/letoram/arcan/wiki

https://speakerdeck.com/letoram/arcan-design
https://speakerdeck.com/letoram/arcan-appl
https://github.com/letoram/arcan/wiki

