Lomse library. Tutorial 1 for Qt

Lomse library. Tutorial 1 for Qt

This is meant to be an introduction to using Lomse in a Qt program. Before starting, ensure that you have
installed the Lomse library. See the installation page for detailed instructions.

Table of content

. How does Lomse work

. Specifications: displaying a score

. Header files to use Lomse

. Declarations

. main() function implementation

. MainWindow constructor

. Initializing the Lomse library

. Creating the score and the View

. Creating the bitmap for the rendering buffer

. Painting the window

. Closing the application

. Compiling your code and building
¢ Building from command line
¢ Building from Qt Creator

13. Conclusions

001N Ut A WN—

—_ = =
N = O \O

1. How does Lomse work

In this first example we are just going to open a window and display an score on it. You can download the full
source code for this example from here: example_1_qt.cpp and example_1_qt.h.

The first and most important thing to learn about Lomse is that is platform independent code, with no
knowledge about your platform native windows. And, of course, Lomse knows nothing about Qt and its
classes QMainWindow, QApplication, etc. Therefore, Lomse can not directly render scores on any Qt
object.

Lomse works by rendering the scores on a bitmap buffer, that is, on an array of consecutive memory bytes. As
this buffer is provided by the user application, it can be any type of memory, such as a real bitmap, a
window's buffer, etc. This implies that before using Lomse you should decide what is the best approach for
using Lomse in your application.

The simplest and usual way of rendering scores on a window is just passing Lomse a bitmap in memory,
asking Lomse to render on that bitmap, and copying the bitmap onto the window. And this is the approach we
will follow for our Qt application.

But Lomse knows nothing about QBitmap, QImage, QLabel or other suitable Qt objects. For Lomse, a bitmap
is just an array of bytes containing the image pixels. But a QImage object can be created from an array of
bytes containing the image pixels:

QImage (uchar* data, int width, int height, Format format,
QImageCleanupFunction cleanupFunction = 0,
void* cleanupInfo = 0)

Lomse library. Tutorial 1 for Qt 1

Lomse library. Tutorial 1 for Qt

And this image can be rendered doing something as:

QPainter painter (this);
QImage image(...);
painter.drawImage (0, 0, image);

Therefore, for using Lomse in this Qt tutorial I will render the bitmap provided by Lomse by using a QImage
object.

The next step is deciding what pixel format should Lomse use. Lomse supports a lot of pixel formats but are
platform dependent because byte order is different in big endian and little endian architectures. Doing some
research on the formats supported by Qlmage, a suitable one is QImage::Format_RGBA8888. According to
Qt documentation this format uses 32 bits per pixel (one byte per pixel) and, as Lomse bitmap formats, the
byte ordering differs between big endian and little endian architectures, being respectively (0xRRGGBBAA)
and (0OxAABBGGRR). So this format matches Lomse format k_pix_format_rgba32.

Therefore, I will use pixel format the pixel format k_pix_format_rgba32 for Lomse and
QImage::Format_RGBAS8888 for Qt. Both are internally the same format: an array of pixels in the
top-to-bottom, left-to-right order, and each pixel is encoded in four bytes.

So, once we've learn that Lomse renders on bitmaps and once we have found a solution for communicating Qt
with Lomse, let's start with our application.

2. Specifications: displaying a score

In this first example we are just going to open a window and display an score on it. For displaying a score the
work to do is minimal:

1. Initialize the Lomse library,

2. Pass Lomse the source code for the score to render and a buffer for the bitmap. Lomse will render the
score on this memory.

3. Finally, open a window and display the bitmap on it

In this example, the source code for the score is embedded in the source code. In a real program you normally
will read a file containing the score to display or you will create, by program, the source code for the score.
We will do that in a more advanced tutorial.

With previous specifications, the structure of our program will be very simple. When the app starts running it
will create the main window (class MainWindow, derived from QMainWindow) which, in turn, will create a
window for displaying the score (class MyCanvas). For it, we will pass Lomse a bitmap, and will ask Lomse
to create the score. Then we will render the bitmap on the window. And that's all.

Let's start programming.

3. Header files to use Lomse

Before we get into the heart of our basic example, we will include the needed headers. After the usual stuff
and headers for Qt, I've included the Lomse needed headers. At the time of writing this the Lomse API is not
yet fixed; therefore there is not a single header file (or set of headers) to include. Instead, the headers to
include will depend on the classes and functions you would like to use. Anyway, with current API you will

2 1. How does Lomse work

Lomse library. Tutorial 1 for Qt

always include:

#include <lomse_doorway.h>
#include <lomse_document.h>
#include <lomse_graphic_view.h>
#include <lomse_interactor.h>
#include <lomse_presenter.h>
#include <lomse_events.h>

using namespace Lomse;

LomseDoorway is the main interface with the Lomse library. Document represents the score to display and
is part of the Lomse Model-View-Controller (MVC) architecture. GraphicView is a kind of View (the
window in which the score is going to be displayed). Interactor is the controller for the View.
Presenter is also part of the MVC model, and is responsible for maintaining the relationships between a
Document and its different views and associated interactors. Finally, Lomse_events.h is required to deal
with events received from the Lomse library.

These header files can be typically found in /usr/local/include/lomse.

4. Declarations

After headers we are going to declare our application classes: MainWindow and MyCanvas.

MainWindow is very simple. It has only a few methods. I will explain them when we arrive to the
implementation part, so forget about them for now and let's focus on declaring the variables:

LomseDoorway m_lomse; //the Lomse library doorway
MyCanvas* m_canvas;

m_lomse is an important variable as it is the main interface with the Lomse library. As we will see later, we
have to use it for specifying certain Lomse initialization options. The other variable, m_canvas is just the
window that we will use to render the score.

With this we have finished declaring MainWindow. Here is the code:

class MainWindow : public QOMainWindow

{
Q_OBJECT

public:
MainWindow () ;

private slots:
void on_about ();

public:
~MainWindow () ;

//commands
void open_test_document () ;

protected:

void create_actions () ;
void create_menu();

3. Header files to use Lomse 3

Lomse library. Tutorial 1 for Qt

//lomse related
void initialize_lomse();

protected:
//Qt stuff, for the GUI

MyCanvas* m_canvas;
QScrollArea* scrollArea;

QAction* m_aboutAction;
QAction* m_exitAction;

QMenu* m_fileMenu;
QMenu* m_helpMenu;

//Lomse stuff

LomseDoorway m_lomse; //the Lomse library doorway
}i

Next, we have the declaration of MyCanvas class. It is a window on which we show the scores. It derives
from QWidget. All the functionality for rendering scores and interacting with them will be in this class.
Therefore, we need to declare some event handlers and needed methods. Again, let's postpone the description
of them until we arrive to the implementation part. And let's focus on declaring some important variables
needed by Lomse:

LomseDoorwayé m_lomse; //the Lomse library doorway
Presenter* m_pPresenter; //relates the View, the Document and the Interactor

m_lomse is the main interface with the Lomse library. It was created by MainWindow, and MyCanvas
receives it as parameter in the constructor. The other variable, m_pPresenter is a pointers to one important
component of the Lomse Model-View-Controller (MVC) architecture. The Presenter is responsible for
maintaining the relationships between a Document and its different Views and associated interactors. Later,
we will learn more about them.

Next we are going to declare a rendering buffer and its associated bitmap:

RenderingBuffer m_rbuf_window;
unsigned char* m_pdata; //ptr to the bitmap
int m_nBufWidth, m_nBufHeight; //size of the bitmap

As learn, Lomse knows nothing about Qt, so the Lomse View renders the music scores on a raw bitmap in
memory. To manage this bitmap, Lomse associates it to a RenderingBuf fer object. It is responsibility of
the application using Lomse to provide this RenderingBuffer object and its associated memory for the bitmap.
Therefore, we had defined a variable, m_pdata, that will point to the memory that we will allocate for the
raw bitmap, and we will use variables m_nBufWidth and m_nBufHeight to store the size of the needed
bitmap.

With this we have finished declaring MyCanvas. Here is the code:

class MyCanvas : public QWidget

{

public:
MyCanvas (QWidget* parent, LomseDoorway& lomse);
~MyCanvas () ;

4 4. Declarations

Lomse library. Tutorial 1 for Qt

void update_view_content ();

//commands
void open_test_document () ;

protected:

bi

//event handlers
void paintEvent (QPaintEvent *event);
void resizeEvent (QResizeEvent* event);

void delete_rendering_buffer();
void create_rendering_buffer (int width, int height);
void update_rendering_buffer_if needed();

//Lomse stuff

// In this first example we are just going to display an score on a window.
// Let's define the necessary variables:

LomseDoorwayé m_lomse; //the Lomse library doorway

Presenter* m_pPresenter;

//the Lomse View renders its content on a bitmap. To manage it, Lomse
//associates the bitmap to a RenderingBuffer object.

//It is your responsibility to render the bitmap on a window.

//Here you define the rendering buffer and its associated memory
//for this View

RenderingBuffer m_rbuf_window;
unsigned char* m_pdata; //ptr to the bitmap
int m_nBufWidth, m_nBufHeight; //size of the bitmap

//some additional variables
bool m_view_needs_redraw; //to control when the View must be re-drawn

With this, we have finished the declarations. Lets's go now to the implementation.

5. main() function implementation

The main() function is standard stuff in Qt. We only have to create the MainWindow instance and display it.
Here is the code:

int main(int argc, char* args|[])

{

QApplication app(argc, args);
app.setOrganizationName ("LenMus") ;
app.setApplicationName ("Lomse. Tutorial 1");

MainWindow window;
window.show () ;

return app.exec();

6. MainWindow constructor

5. main() function implementation

Lomse library. Tutorial 1 for Qt

MainWindow is a simple class having the only responsibility of managing the GUI main controls: the menu
and the window for displaying the scores. Therefore, in constructor we will do only a few things:

MainWindow: :MainWindow ()
: QMainWindow ()
, m_canvas (NULL)

// create our one and only child: the canvas to display the score
m_canvas = new MyCanvas (this, m_lomse);

setCentralWidget (m_canvas) ;

m_canvas—->setMinimumSize (100, 100);

setWindowTitle (tr ("Lomse sample 1 for Qt"));
create_actions () ;

create_menu();

initialize_lomse();

resize (790, 400);

// load the score to display
open_test_document () ;

As you can see it is just a few tasks: create the canvas window, create the main menu, initialize the Lomse
library and open the score to display. Methods create_actions and create_menu () are the typical Qt
stuff. In this first example, the menu is not necessary but I have included it to set up the foundations for
adding more functionality in following tutorials. In this first tutorial we are going to include only two menu
items "File > Exit" and "Help > About". Here is the code:

vold MainWindow: :create_actions ()

{

m_aboutAction = new QAction(tr ("&About"), this);

connect (m_aboutAction, SIGNAL(triggered()), this, SLOT (on_about()));
m_exitAction = new QAction(tr ("E&xit"), this);

connect (m_exitAction, SIGNAL(triggered()), gApp, SLOT(quit()));

}

void MainWindow: :create_menu()

{
m_fileMenu = menuBar () ->addMenu (tr ("&File"));
m_fileMenu->addAction (m_exitAction);

m_helpMenu = menuBar () —>addMenu (tr ("&Help"));
m_helpMenu->addAction (m_aboutAction);

7. Initializing the Lomse library

The interesting part in Ma inWindow constructor is the initialization of the Lomse library. As Lomse renders
music scores on a bitmap it is necessary to inform Lomse about the bitmap format to use, and about other
related parameters that are platform dependent. As explained, for this Qt application I will use bitmaps in
RGBA, 32 bits format (Lomse format k_pix_format_rgba32). Apart of specifying the bitmap format to use,
Lomse needs to know the resolution to use and the y-axis orientation. In our application, the scores are going
to be shown on screen. Therefore, we can use a value of 96ppi, typical for Linux and Windows systems. In a
real application, probably you should get this value by invoking some operating system related methods.

6 6. MainWindow constructor

Lomse library. Tutorial 1 for Qt

As to the y-axis orientation, Lomse needs to know if your presentation device follows the standard convention
used in screen displays in which the y coordinates increases downwards, that is, y-axis coordinate 0 is at top
of screen and increases downwards to bottom of screen. This convention is just the opposite of the normal
convention for geometry, in which 0 coordinate is at bottom of paper and increases upwards. Lomse follows
the standard convention used in displays (y-axis 0 coordinate at top and increases downwards). Therefore, in
our application, we have to inform Lomse that the y-axis follows the standard convention for screens and,
therefore, we won't Lomse to reverse it.

One we have decided on the values to use, let's write the code:

vold MainWindow: :initialize_lomse ()

{
//the pixel format
int pixel_format = k_pix_format_rgba32;

//the desired resolution. For Linux and Windows 96 pixels per inch works ok.
int resolution = 96; //96 ppi

//Normal y axis direction is 0 coordinate at top and increase downwards. You
//must specify if you would like just the opposite behavior. For Windows and
//Linux the default behavior is the right behavior.

bool reverse_y_axis = false;

//Now, initialize the library with these values
m_lomse.init_library(pixel_format, resolution, reverse_y_axis);

8. Creating the score and the View

The final step in MainWindow constructor is to invoke method open_test_document (). Thisis a
facade method that just delegates on the canvas:

void MainWindow: :open_test_document ()

{

m_canvas—->open_test_document () ;

open_test_document () method is the equivalent for the typical open_document method in which
your application opens a dialog for requesting the file to open, and then, processes and displays it. In our
example, the score is in a string, so the only thing to do is to request Lomse to create a new document with the
specified content. When creating a document, Lomse automatically, creates a View to display it and an
Interactor (a kind of Controller for the View). The open_documented () method is as follows:

void MyCanvas: :open_test_document ()

{
//Normally you will load the content of a file. But in this
//simple example we will create an empty document and define its content
//from a text string

//First, we will create a 'Presenter' object. It takes care of creating
//and maintaining all objects and relationships between the document,
//its views and the interactors to interact with the view
delete m_pPresenter;
m_pPresenter = m_lomse.new_document (ViewFactory::k_view_vertical_book,
" (lenmusdoc (vers 0.0)"
" (content "

7. Initializing the Lomse library 7

Lomse library. Tutorial 1 for Qt

"(para (txt \"Hello world!\"))"
"(score (vers 2.0) "
" (instrument (musicData (clef G) (key C) (time 2 4) (n c4 qg))))"

ll)ll
ll)ll’
Document: :k_format_1ldp
)

//get the pointer to the interactor, set the rendering buffer and
//register for receiving desired events
if (SpInteractor splnteractor = m_pPresenter->get_interactor (0).lock())

{
//connect the View with the window buffer
spInteractor->set_rendering buffer (&m_rbuf_window) ;

The Presenter is the key object that relates a Document with its Views and Interactors. Also is the access
point to get pointers to the Document and its Interactors. Deleting the Presenter also deletes all other related
objects.

For creating the Presenter (and associated objects) we invoke LomseDoorway method new_document (),
passing as arguments, the type of View to create and the content for the document (note: there are other
methods, oriented to create the View from a file or programatically, but we will not study them in this simple
example).

The View type is just a Lomse enum. In this example, value ViewFactory: :k_view_vertical_book
means that we would like to display the score as book pages, one page after the other in a vertical layout.
Other View formats are possible out-of-the-box, such as horizontal book or not paginated (the score in a
single system) but, in any case, its not complex to develop your own View format.

The next parameter is a C string containing the score, and the last parameter is a constant

Document : : k_format_1dp that specifies the language in which this score is written. In this example it is
written in LenMus LDP language. Currently, also scores in MusicXML format are supported, although the
MusicXML importer is not yet finished and currently it only can deal with very very simple scores.

Let's analyse the string with the score. Fort this, I will split it into lines:

(lenmusdoc (vers 0.0)
(content
(para (txt "Hello world!"))
(score (vers 2.0)
(instrument
(musicData
(clef G)
(key C)
(time 2 4)
(n c4 q)

First line means that it is a LenMus document, with version 0.0 format. Next line describes the content of the
document. The content is just two elements: a paragraph ('para’ element) containing text "Hello world!" and a

8 8. Creating the score and the View

Lomse library. Tutorial 1 for Qt

'score' element. Other types of content are possible: headers, images, tables, lists, etc. You can see LenMus
documents as HTML documents, but allowing also a new type of content: scores.

The score element contains one instrument (this implies, by default, one staff). Finally, element 'musicData’
describes the content for this instrument. In the example, a G clef, a C key signature, a 2/4 time signature and
a quarter C4 note.

For a detailed description of the LDP language see the LDP Reference Manual.

Once the Document and a View for it are created, we just get pointers to the Interactor, so that we can
'communicate’ with the Document and its View:

//get the pointer to the interactor
if (SpInteractor splnteractor = m_pPresenter->get_interactor (0).lock())

{

Lomse architecture is based on the Model-View-Controller pattern, and supports multiple simultaneous Views
for a Document. By default, when creating a Document also a View and its associated Interactor are
created. So, parameter '0' in get_interactor (0) refers to first Interactor, in this case, the only
one created.

Once we've got the Interactor we only have one important tasks to do: to inform the Interactor
about the rendering buffer that must be used for its associated View:

//connect the View with the window buffer
spInteractor->set_rendering buffer (&m_rbuf_window) ;

9. Creating the bitmap for the rendering buffer

In last line of open_test_document () we passed to the interactor the address of the rendering buffer
but, we have not yet allocated any memory for the bitmap! Don't worry, the bitmap will not be used until we
ask Lomse to render something, so we can delay its creation until really needed. But let's study now the code
for creating the rendering buffer. As we will render the bitmap on the QWidget area, the required bitmap size
will change if the window is resized. Therefore, the method for creating the rendering buffer needs to receive
as parameters the desired bitmap size. Here is the code:

void MyCanvas::create_rendering_buffer (int width, int height)

//allocate memory for the Lomse rendering buffer.
//Any existing buffer is automatically deleted by Lomse.

#define BYTES_PER_PIXEL 4 //the chosen format is RGBA, 32 bits

// allocate a new rendering buffer

delete_rendering_buffer();

m_nBufWidth = width;

m_nBufHeight = height;

m_pdata = (unsigned char*)malloc (m_nBufWidth * m_nBufHeight * BYTES_PER_PIXEL);

//Attach this memory to be used as Lomse rendering buffer

int stride = m_nBufWidth * BYTES_PER_PIXEL; //number of bytes per row
m_rbuf_window.attach (m_pdata, m_nBufWidth, m_nBufHeight, stride);

9. Creating the bitmap for the rendering buffer 9

Lomse library. Tutorial 1 for Qt

m_view_needs_redraw = true;

In this method we start allocating memory for the bitmap:

// allocate a new rendering buffer

delete_rendering_buffer();

m_nBufWidth = width;

m_nBufHeight = height;

m_pdata = (unsigned char*)malloc (m_nBufWidth * m_nBufHeight * BYTES_PER_PIXEL);

And then we attach this memory to the Lomse rendering buffer:

//Attach this memory to be used as Lomse rendering buffer
int stride = m_nBufWidth * BYTES_PER_PIXEL; //number of bytes per row
m_rbuf_window.attach (m_pdata, m_nBufWidth, m_nBufHeight, stride);

The need to create a new rendering buffer comes from two events: either because the window is being created
or because the window size has changed. And in any case, before displaying this new bitmap we need to ask
Lomse to paint something on it! So, as a final step we raise a flag to signal that the window has to be
repainted:

m_view_needs_redraw = true;

With this, we have finished this method.

10. Painting the window

In function open_test_document () we have created a Lomse Document and its associated View. But
Lomse has not yet rendered the score on the bitmap and nothing has been yet displayed in MyCanvas. We
will study now how the score is displayed in the window.

After invocation of open_test_document (), instances of MainWindow and MyCanvas are already
created and there are no more work to do. So the application enters in the main loop for handling events. In
the queue there are several events waiting for execution. One of them is a QResizeEvent that takes place
before painting the QWidget window. Therefore, this event is dispatched and finally arrives to
MyCanvas: :resizeEvent () handler method. Here is the code for dealing with it:

void MyCanvas: :resizeEvent (QResizeEvent* event)

{
QSize size = event->size();
create_rendering_buffer (size.width (), size.height());

The only thing to do whenever the window is resized is to create a new bitmap. After a QResizeEvent Qt will
generate a QPaintEvent. And when the QPaintEvent arrives we only have to repaint the window. Here is
the code for dealing with paint events:

void MyCanvas: :paintEvent (QPaintEvent* event)

{

if (m_pPresenter)

{
update_rendering_buffer_if needed();
if (!m_pdata)

10 10. Painting the window

Lomse library. Tutorial 1 for Qt

return;

QPainter painter (this);

QImage image (m_pdata, m_nBufWidth, m_nBufHeight, QImage::Format_RGBA8888);
QRect dirtyRect = event->rect();

painter.drawImage (dirtyRect, image, dirtyRect);

If there is no Presenter is because the window has just been created and nothing else has been done. In this
case, just ignore the event, as there is nothing to paint. This can never happen in our sample code but it can be
a safeguard to avoid spurious crashes in more complex applications.

If the Presenter is already created, the only thing to do is to ask Lomse to paint the bitmap and then copy it to
the window. But notice that we don't have to ask Lomse to paint the bitmap whenever a QPaintEvent
event arrives. These events are generated because several reasons. The most frequent is when our window
image is damaged (i.e. another window covering our window has moved). But in these cases the image is
preserved in the bitmap so it is enough to re-display the bitmap. Other cases for receiving paint events are
because the window has changed: when the window is created or when it is resized or when our program
changes its content (i.e. because the if the user asks to open a different score). In our application this last case
is not possible and so, the only source for additional paint event come from resize events.

But as we have seen, whenever the window is resized a new bitmap is automatically created, and flag
m_view_needs_redraw is set. Therefore, this flag can be used to determine if have to ask Lomse to
repaint the bitmap. Here is the code:

void MyCanvas: :update_rendering_buffer_if needed()

{
if (m_view_needs_redraw)
update_view_content ();

m_view_needs_redraw = false;

}

void MyCanvas: :update_view_content ()
{

if (!m_pPresenter) return;

if (SpInteractor splnteractor = m_pPresenter->get_interactor (0).lock())
spInteractor->redraw_bitmap () ;

Finally, the execution of method MyCanvas: : paintEvent continues to refresh the display:

QPainter painter (this);

QImage image (m_pdata, m_nBufWidth, m_nBufHeight, QImage::Format_RGBA8888);
QRect dirtyRect = event->rect();

painter.drawImage (dirtyRect, image, dirtyRect);

That's all !

11. Closing the application

Finally, the last important point to comment is to remind you that, to avoid memory leaks, when closing the
application it is necessary to delete the rendering buffer and the Presenter (which in turn will delete all Lomse

11. Closing the application 11

Lomse library. Tutorial 1 for Qt

related objects, such as the View, the Document and the Interactor). This code has been included in
MyCanvas destructor:

MyCanvas: :~MyCanvas ()

{
delete_rendering_buffer();
//delete the Presenter. This will also delete the Document, the Interactor,
//the View and other related objects

delete m_pPresenter;

}

With this, I finish the explanation of the code. You can download the full source code for this example from
here: example_1_qt.cpp and example_1_qt.h. In the next section we are going to build and run our code.

12. Compiling your code and building

Most Qt tutorials seem to assume you want to use Qt Creator. But the build process from the command line is
simple and gives better understanding about what you are doing. Here, I will describe both approaches.

12.1 Building from the command line

To build from the command line, normally you use a file, named MakeFile, which directs the compiler to
compile and build your programs. And all you have to do is move into the directory containing the 'MakeFile'
and your program, and run make command.

So to build our example we need first to create a MakeFile.

Generating a MakeFile

Qt has an easy way of generating a MakeFile. Here is how you do it:

Step 1. Move into the directory containing the .cpp and .h files that we have just created:
cd /path-to-this-example-code/

Step 2. Create a Qt project by running gmake command with option —pro ject. The project will contain all
the .cpp and .h files in current directory. Therefore, ensure that current folder only contains the sources for
this example. Then execute:

gmake -project -o example-l-gt.pro

This will create a project file called example-1-qt.pro and include our files example-1-qt.cpp and
example-1-qt.h into it.

Step 3. The project file (.pro) has to be modified for including the Qt and Lomse headers and linking to the Qt
and Lomse libraries. For this, the best way is to use the pkg-config tool. Open the .pro file created in previous
step and add the following lines:

QT += core gui
greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

CONFIG += link_pkgconfig

12 12. Compiling your code and building

Lomse library. Tutorial 1 for Qt

PKGCONFIG += liblomse
Step 4. Save the file and call gmake on the project file (.pro) to create a platform specific MakeFile:
gmake example-l-qgt.pro
At this stage if you do a listing of the contents of the directory, you will find a new file named MakeFile.
Building the program
To compile and build our program, it is now as simple as running make:
make
Executing your compiled program

After running make, you will find a executable file, named example-1-qt, in current directory. For executing
your first Qt program using Lomse just do:

./example-1-gt

You should see something as:

Lomse sample for gt e ml
File Heip

Hello world!

12.2 Building from Qt Creator

The first step is to use the Project Wizards to create the project. Open QtCreator and click on "New Project"
button.

Select "Other Project”" and "Empty gmake project” and click button "Choose" at bottom:

Generating a MakeFile 13

Lomse library. Tutorial 1 for Qt

Choose a template: | All Templates - |
j Unit Test . .
Ligiecs . Qt Unit Tes i . Creates a gmake-based project without
Application B at custom Designer widget any files. This allows you to create an
Library <] Ot Quick UL application without any default classes.

Other Project <] Qt Quick Controls Ul Supported Platforms: neskrop

. Subdirs Project
MNon-0t Project m UBCIrS Frojec

Import Project = P .

J Code Snippet
Files and Classes

[Chocse... H Cancel |

Next, you select the location for the project. In the "Name" specify the folder that contains the .cpp and .h

files, and in "Create in" specify the path to that folder. A warning message in yellow will appear at bottom.
Ignore it an click button "Next":

Empry gmake Project

Project Location
&> Location

This wizard creates an empty .pro file.

Mame: } example-1-gt ’

Create in: !/datns}USR/lm}projecis}iomse)‘trunkfexamplesjot ! [Browse...]

Use as default project location

The project already exists.

| MNext> | Cancel |

After a few more steps, Qt Creator automatically generates the project as defined by the wizard. And will
create the project file example-1-qt.pro (see next image):

14 12.2 Building from Qt Creator

Lomse library. Tutorial 1 for Qt

L T e e e e e B
File Edit Build Debug Analyze Tools Window Help

Projects <no document=
v [example-1-qt

Welcome @ example-1-gt.pro
resion
Debug Open a document
freleee = Eile = Onen File o Project (Cl O
Analyze = File > Recent Files
» Tools > Locate {(Ctri+K) and
Al - type to open file from any open project
- type to jump to a class defipition
- type imp to a function definition

- type

- select one of the other

= {0 open file fiom file system
liters for jumping to a location
» Drag and drop files here

£~ Type to locate {Ctri+K) lssuesSearch Applicat\,.Compile...QMijS ... 5| General

Add the files example-1-qt.cpp and example-1-qt.h to the project (right click on project folder and select "Add
Existing Files ...").

Finally, the project file, example-1-qt.pro has to be modified for including the Qt and Lomse headers and
linking to the Qt and Lomse libraries. For this, the best way is to use the pkg-config tool. Open the .pro file
created in previous step and add the following lines:

QT += core gui
greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

CONFIG += link_pkgconfig
PKGCONFIG += liblomse

example-1-qtpro-example 1-qt- Qt Creator.
File Edit Build Debug Analyze Tools Window Heip

Projects s v e o« % o i examplelgtpror
v B example-lgt | HEADERS += \ E

Welcome 5 example:i-ot pro example 1 qt.h

n| example_1_qgth
A @ Sources SOURCES += \
Fesinn o example_1_gt.cpp example 1 gt.cpp
Debug QT += core gui

greaterThan(QT_MAJOR VERSION, 4): QT += widgets

Projects

CONFIG += link pkgconfig
11{PKGCONFIG += liblomse

Analyze
Help

exant:d-gt

-

LB O- Type Lo locate (Clri+K) |55ue55&arch Applicat\..nCompile...QML/]S HGeneral _

12.2 Building from Qt Creator 15

Lomse library. Tutorial 1 for Qt

Now build the program (a lot of warning messages will be displayed in the "Issues" panel but are not
relevant). Now you are ready to run your first Qt program using Lomse. When running the program you

should see something as:

File Heip

Hello world!

Lomse sample for gt

)

13. Conclusions

This document is a very basic introduction. In the second tutorial I will add more code to our sample
application for opening files with scores and interacting with the scores (zooming, dragging, selecting objects,

etc.).

If you would like to contribute with more tutorials or by adapting this tutorial for other platforms, you are
welcome!. Join the Lomse list and post me a message.

16

13. Conclusions

	Lomse library. Tutorial 1 for Qt

