
Lomse library. Tutorial 1 for MS Windows
This is meant to be an introduction to using Lomse in a Windows program. Before starting, ensure that you
have installed the Lomse library. See the installation page for detailed instructions.

In this first example we are just going to open a window and display the text "Hello world!" and an score on
it. You can download the full source code for this example from ../../examples/example_1_win32.cpp. After
building the program and running it you will see something as:

Table of content

How does Lomse work1.
Specifications: displaying a score2.
Header files to use Lomse3.
Helper class to create and manage bitmaps4.
Important variables5.
The application: main function6.
Initializing the Lomse library7.
Creating the score and the View8.
Creating the main window and the bitmap for the rendering buffer9.
Painting the window10.
Closing the application11.
Compiling your code and building12.
Conclusions13.

1. How does Lomse work

In this first example we are just going to open a window and display an score on it. The first and most

Lomse library. Tutorial 1 for MS Windows

Lomse library. Tutorial 1 for MS Windows 1

important thing to learn about Lomse is that is platform independent code, with no knowledge about
Microsoft Windows or CWindow classes. Therefore, Lomse can not directly render scores on any window
object.

Lomse works by rendering the scores on a bitmap buffer, that is, on an array of consecutive memory bytes. As
this buffer is provided by the user application, it can be any type of memory, such as a real bitmap, a
window's buffer, etc. This implies that before using Lomse you should decide what is the best approach for
using Lomse in your application.

The simplest and usual way of rendering scores on a window is just passing Lomse a bitmap in memory,
asking Lomse to render on that bitmap, and copying the bitmap onto the window. And this is the approach we
will follow for our MS Windows application.

2. Specifications: displaying a score

In this first example we are just going to open a window and display an score on it. For displaying a score the
work to do is minimal:

Initialize the Lomse library,1.
Pass Lomse the source code for the score to render and a bitmap. Lomse will render the score on the
bitmap.

2.

Finally, open a window and display the bitmap on it3.

In this example, the source code for the score is embedded in the code. In a real program you normally will
read a file containing the score to display or you will create, by program, the source code for the score. We
will do that in a more advanced tutorial.

With previous specifications, the structure of our program will be very simple. The application will be
modeled by class MyApp, derived from wxApp. When the app starts running it will create the main frame
(class MyFrame, derived from wxFrame) which, in turn, will create a window for displaying the score (class
MyCanvas). For it, we will pass Lomse a bitmap, and will ask Lomse to create the score. Then we will render
the bitmap on the window. And that's all.

Let's start programming.

3. Header files to use Lomse

Before we get into the heart of our basic example, we will include the needed headers. After the usual stuff
and headers for MS Windows, I've included the Lomse needed headers. At the time of writing this the Lomse
API is not yet fixed; therefore there is not a single header file (or set of headers) to include. Instead, the
headers to include will depend on the classes and functions you would like to use. Anyway, with current API
you will always include:

#include <lomse_doorway.h>
#include <lomse_document.h>
#include <lomse_graphic_view.h>
#include <lomse_interactor.h>
#include <lomse_presenter.h>
#include <lomse_events.h>

using namespace Lomse;

Lomse library. Tutorial 1 for MS Windows

2 1. How does Lomse work

LomseDoorway is the main interface with the Lomse library. Document represents the score to display and
is part of the Lomse Model-View-Controller (MVC) architecture. GraphicView is a kind of View (the
window in which the score is going to be displayed). Interactor is the controller for the View.
Presenter is also part of the MVC model, and is responsible for maintaining the relationships between a
Document and its different views and associated interactors. Finally, lomse_events.h is required to deal
with events received from the Lomse library.

4. Helper class to create and manage bitmaps

As Lomse works by rendering the scores on a bitmap buffer, there are two tasks your application have to do:

Create a new empty bitmap when necessary, and1.
Drawing the bitmap on your window2.

For performing these tasks I opted for creating a Bitmap class, enclosing the necessary methods and
knowledge. Although the Windows API provides many functions for creating and managing bitmaps, my
knowledge of managing bitmaps using the Windows API is null. So to write this tutorial I opted to borrow
code from the AGG project, instead of finding documentation and studying how to use the Windows API
functions. If you have good knowledge of the Windows API probably you would prefer a different solution
for managing bitmaps. In that case, I would appreciate if you could help me to improve this tutorial by sharing
your cleaner code. Thank you.

So, after the Lomse headers I have declared the auxiliary Bitmap class for creating and managing bitmaps.
The code is borrowed from AGG project, but I simplified the class removing all methods not needed for using
Lomse.

Next, after Bitmap class declaration, our real tutorial example starts.

5. Important variables

In this first example we are just going to display an score on the main window. For this, we need to define
some Lomse related variables:

LomseDoorway m_lomse; //the Lomse library doorway
Presenter* m_pPresenter; //relates the View, the Document and the Interactor

m_lomse is an important variable as it is the main interface with the Lomse library. As we will see later, we
have to use it for specifying certain Lomse initialization options. The two other variables, m_pPresenter
and m_pInteractor are pointers to two important components of the Lomse Model-View-Controller
(MVC) architecture. The Interactor is a kind of controller for the view. And the Presenter is
responsible for maintaining the relationships between a Document and its different Views and associated
interactors. Later, we will learn more about them.

Next we are going to declare a rendering buffer and its associated bitmap:

RenderingBuffer m_rbuf_window;
Bitmap m_bitmap;

As you know, Lomse knows nothing about MS Windows, so the Lomse View renders the music scores on a
bitmap. To manage the bitmap, Lomse associates it to a RenderingBuffer object. As Lomse only renders

Lomse library. Tutorial 1 for MS Windows

3. Header files to use Lomse 3

on bitmaps, it is your application responsibility to do whatever is needed with it: rendering it on a window,
exporting it as a file, printing it, etc. In our simple application, we are going to render the bitmap on the
application main window.

There are some more variables defined but we will see them later, when having to use them. After the
variables, I've also forward declared the main function. With this, we have finished the declarations. Lets's
now move to the implementation.

6. The application: main function

Let's move to near line 690 for looking at the WinMain function. It is the main entry point and it is very
simple:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 register_window_class(hInstance);
 initialize_lomse();

 //create a music score and a View. The view will display the score
 //when a paint event is received, once the main windows is
 //shown and the event handling loop is started
 open_test_document();

 //initialize and show main window
 if (!create_main_window(nCmdShow))
 return FALSE;

 //enter the main event handling loop
 int retcode = handle_events();

 //terminate the application
 free_resources();
 return retcode;
}

As you can see the process is quite simple:

Usual MS Windows stuff: registering the class1.
Initialize the Lomse library. It is necessary to do it before using Lomse.2.
Create an score and a Lomse View to display it.3.
Create the main window, and the rendering buffer for Lomse, connecting this window to the Lomse
rendering buffer.

4.

Finally, run the main events handling loop, for processing events, until the user request to close the
application. On of the firsts events will be a 'paint' event. And the event handler will display the
Lomse bitmap on the main window. That's all!

5.

Let's see in detail these steps.

7. Initializing the Lomse library

The first interesting line in WinProc function is the initialization of the Lomse library. As Lomse renders
music scores on a bitmap it is necessary to inform Lomse about the bitmap format to use, the resolution and
the y-axis orientation.

Lomse library. Tutorial 1 for MS Windows

4 5. Important variables

So, the first thing to do is to decide which bitmap format we are going to use. For MS Windows applications
you can use, for instance, pixel format BGRA, 32 bits per pixel, as this is one of the native formats for MS
Windows.

Next, we have to decide about resolution. As in our application the scores are going to be shown on screen,
we can use a value of 96ppi, typical for MS Windows systems. In a real application, probably you should get
this value by invoking some operating system related method to get the screen resolution.

As to the y-axis orientation, Lomse needs to know if your presentation device follows the standard convention
used in screen displays in which the y coordinates increases downwards, that is, y-axis coordinate 0 is at top
of screen and increases downwards to bottom of screen. This convention is just the opposite of the normal
convention for geometry, in which 0 coordinate is at bottom of paper and increases upwards. Lomse follows
the standard convention used in displays (y-axis 0 coordinate at top and increases downwards). Therefore, in
our application, we have to inform Lomse that the y-axis follows the standard convention for screens and,
therefore, we won't Lomse to reverse it.

One we have decided on the values to use, let's see the code to initialize Lomse:

void initialize_lomse()
{
 // Lomse knows nothing about windows. It renders everything on a bitmap and the
 // user application uses this bitmap. For instance, to display it on a window.
 // Lomse supports a lot of bitmap formats and pixel formats. Therefore, before
 // using the Lomse library you MUST specify which bitmap formap to use.
 //
 // For native MS Windows applications you can use, for instance, pixel format
 // BGRA, 32 bits. Screen resolution, in MS Windows, is 96 pixels per inch.
 // Let's define the requiered information:

 //the pixel format
 int pixel_format = k_pix_format_bgra32; //BGRA, 32 bits
 m_bpp = 32; //32 bits per pixel

 //the desired resolution. For MS Windows use 96 pixels per inch
 int resolution = 96; //96 ppi

 //Lomse default y axis direction is 0 coordinate at top and increases
 //downwards. You must specify if you would like just the opposite behaviour.
 //For MS Windows the Lomse default behaviour is the right behaviour.
 bool reverse_y_axis = false;

 //initialize the Lomse library with these values
 m_lomse.init_library(pixel_format, resolution, reverse_y_axis);
}

8. Creating the score and the View

After initializing the Lomse library we can use it. The next line we find in WinProc function is a call to
open_test_document();. This function is the equivalent for the typical open_document method in
which your application opens a dialog for requesting the file to open, and then, processes and displays it. In
our example, the score is in a string, so the only thing to do is to request Lomse to create a new document with
the specified content. When creating a document, Lomse automatically, creates a View to display it and an
Interactor (a kind of Controller for the View). The open_test_document() method is as follows:

void open_test_document()

Lomse library. Tutorial 1 for MS Windows

7. Initializing the Lomse library 5

{
 //Normally you will load the content of a file. But in this simple example we
 //will create an empty document and define its content from a text string

 //first, we will create a 'presenter'. It takes care of creating and maintaining
 //all objects and relationships between the document, its views and the interactors
 //to interact with the view
 delete m_pPresenter;
 m_pPresenter = m_lomse.new_document(ViewFactory::k_view_vertical_book,
 "(lenmusdoc (vers 0.0)"
 "(content "
 "(para (txt \"Hello world!\"))"
 "(score (vers 1.6) "
 "(instrument (musicData (clef G)(key C)(time 2 4)(n c4 q))))"
 ")"
 ")",
 Document::k_format_ldp);

 //get the pointer to the interactor, set the rendering buffer and register for
 //receiving desired events
 if (SpInteractor spInteractor = m_pPresenter->get_interactor(0).lock())
 {
 //connect the View with the window buffer
 spInteractor->set_rendering_buffer(&m_rbuf_window);
 }
}

The Presenter is the key object that relates a Document with its Views and Interactors. Also is the access
point to get pointers to the Document and its Interactors. Deleting the Presenter also deletes all other related
objects.

For creating the Presenter (and associated objects) we invoke LomseDoorway method new_document(),
passing as arguments, the type of View to create and the content for the document (note: there are other
methods, oriented to create the View from a file or programatically, but we will not study them in this simple
example).

The View type is just a Lomse enum. In this example, value ViewFactory::k_view_vertical_book
means that we would like to display the score as book pages, one page after the other in a vertical layout.
Other View formats are possible out-of-the-box, such as horizontal book or not paginated (the score in a
single system) but, in any case, its not complex to develop your own View format.

The next parameter is a C string containing the score, and the last parameter is a constant
Document::k_format_ldp that specifies the language in this score is written. In this example it is
written in LenMus LDP language. I have plans for supporting scores in MusicXML format. Lomse is starting
to support MusicXML but the importer is not yet finished and currently it only can deal with very very simple
scores.

Let's analyse the string with the score. Fort this, I will split it into lines:

(lenmusdoc (vers 0.0)
 (content
 (para (txt "Hello world!"))
 (score (vers 1.6)
 (instrument
 (musicData
 (clef G)
 (key C)

Lomse library. Tutorial 1 for MS Windows

6 8. Creating the score and the View

 (time 2 4)
 (n c4 q)
)
)
)
)
)

First line means that it is a LenMus document, with version 0.0 format. Next line describes the content of the
document. The content is just two elements: a paragraph ('para' element) containing text "Hello world!" and a
'score' element. Other types of content are possible: headers, images, tables, lists, etc. You can see LenMus
documents as HTML documents, but allowing also a new type of content: scores.

The score element contains one instrument (this implies, by default, one staff). Finally, element 'musicData'
describes the content for this instrument. In the example, a G clef, a C key signature, a 2/4 time signature and
a quarter C4 note.

For a detailed description of the LDP language see the LDP Reference Manual. I have plans for supporting
scores in MusicXML format, as well as to move the LDP language to XML syntax. But other more urgent
task force me to always postpone these objectives. Any help is welcome!

Once the Document and a View for it are created, we just get pointers to the Interactor, so that we can
'communicate' with the Document and its View:

 //next, get the pointers to the relevant components
 m_pInteractor = m_pPresenter->get_interactor(0);

Lomse architecture is based on the Model-View-Controller pattern, and supports multiple simultaneous Views
for a Document. By default, when creating a Document also a View and its associated Interactor are
created. So, parameter '0' in get_interactor(0) refers to first Interactor, in this case, the only
one created.

Once we've got the Interactor we have one important task to do. It is to inform the Interactor about the
rendering buffer that must be used for its associated View. But Presenter returns a weak_pointer that has to be
converted to a valid pointer before using it:

 //get the pointer to the interactor, set the rendering buffer and register for
 //receiving desired events
 if (SpInteractor spInteractor = m_pPresenter->get_interactor(0).lock())
 {

In the previous line, we pass to the interactor the address of the rendering buffer but, we have not yet created
any bitmap. Don't worry, the bitmap will not be used until we ask Lomse to render something, so we can
delay its creation until really needed. We will see later hao the bitmap is created.

9. Creating the main window and the bitmap for the
rendering buffer

The next step, in WinProc function, is to create the main window. The code is as follows:

BOOL create_main_window(int nCmdShow)
{
 m_hWnd = CreateWindow("Lomse_Example1" //class name

Lomse library. Tutorial 1 for MS Windows

9. Creating the main window and the bitmap for the rendering buffer 7

 , "Lomse tutorial 1 for win32" //window caption
 , WS_OVERLAPPEDWINDOW //wflags
 , CW_USEDEFAULT //pos-x
 , 0 //pos-y
 , 840 //width
 , 600 //height
 , NULL //parent Window
 , NULL //menu, or windows id if child
 , m_hInst
 , NULL //ptr to window specific data
);

 if (!m_hWnd)
 return FALSE;

 //display the window
 ShowWindow(m_hWnd, nCmdShow);
 UpdateWindow(m_hWnd);
 return TRUE;
}

Creating the main window and displaying it is typical MS Windows stuff, so there is nothing to comment
unless you are a beginer. In this case, please notice that functions ShowWindow and UpdateWindow don't
display anything. They just generate events (i.e. window resize, window paint) that we will have to process at
due course.

After creating the main window WinMain() enters in the main loop for handling events (function
handle_events) and remains in that loop until a 'quit application' event arrives. This loop is the typical
MS Windows stuff and when an event is received, the DispatchEvent function sends it to our WndProc
function.

As a consequence of having created the main window, a WM_SIZE event arrives to our WndProc function.
Here is the code for handling it:

case WM_SIZE:
 create_bitmap_for_the_rendering_buffer(LOWORD(lParam), HIWORD(lParam));
 break;

The only thing we have to do is to create the bitmap for lomse. We couldn't create it before as we didn't know
the window size. And this is the right place for creating it, as we will have to create a new bitmap whenever
the window size changes, and it is the place at which we are informed about the new window size. The code
for creating the rendering buffer is as follows:

void create_bitmap_for_the_rendering_buffer(unsigned width, unsigned height)
{
 //creates a bitmap of specified size and associates it to the rendering
 //buffer for the view. Any existing buffer is automatically deleted

 m_bitmap.create(width, height, m_bpp);
 m_rbuf_window.attach(m_bitmap.buf(),
 m_bitmap.width(),
 m_bitmap.height(),
 -m_bitmap.stride()
);
 m_view_needs_redraw = true;
}

Lomse library. Tutorial 1 for MS Windows

8 9. Creating the main window and the bitmap for the rendering buffer

The code is simple: we create a new bitmap, ask the rendering buffer to use it, raise a flag to signal that the
bitmap is empty, that is, that Lomse has to paint something on it before displaying the bitmap on the window.
Painting the bitmap takes place when a WM_PAINT event arrives to our WndProc function. We will see this
in next section.

10. Painting the window

For handling a paint event we have to do two things: 1) to ask Lomse to render the score in the bitmap, and 2)
to display the bitmap in the window. Here is the code:

case WM_PAINT:
{
 update_rendering_buffer_if_needed();

 PAINTSTRUCT ps;
 HDC paintDC = ::BeginPaint(m_hWnd, &ps);
 display_view_content(paintDC);
 ::EndPaint(m_hWnd, &ps);
 break;
}

Firts, notice that there is no need to ask Lomse to paint the bitmap whenever a paint event arrives. These
events are generated because several reasons. The most frequent is when our window image is damaged (i.e.
another window covering our window has moved). But in these cases the image is preserved in the bitmap so
it is enough to re-display the bitmap. Other cases for receiving paint events are because the window has
changed: when the window is created or when it is resized or when our program changes its content (i.e.
because the if the user asks to open a different score). In our application this last case is not possible and so,
the only source for additional paint event comes from size events. And we have a flag to signal when the
bitmap needs to be repainted by Lomse. Therefore, the logic for updating the rendering buffer is simple: if
flag m_view_needs_redraw is raised, ask Lomse to render the document on the bitmap. Here is the code:

void update_rendering_buffer_if_needed()
{
 //request the view to re-draw the bitmap

 if (!m_pPresenter) return;

 if (m_view_needs_redraw)
 {
 if (SpInteractor spInteractor = m_pPresenter->get_interactor(0).lock())
 spInteractor->force_redraw();
 m_view_needs_redraw = false;
 }
}

Once we have ensured that the bitmap has the right content, we create a DC and copy the bitmap on it:

void copy_buffer_on_dc(HDC dc)
{
 m_bitmap.draw(dc);
}

An that's all. Our sample score should be now visible on the user screen.

Lomse library. Tutorial 1 for MS Windows

10. Painting the window 9

11. Closing the application

Finally, the last important point to comment is to remind you that, to avoid memory leaks, it is necessary to
delete the rendering buffer and the Presenter (which in turn will delete all Lomse related objects, such as the
View, the Document and the Interactor). This code has been included in the last line of our WinMain
function:

void free_resources()
{
 //delete the Presenter.
 //This will also delete the Interactor, the Document and the View
 delete m_pPresenter;
}

With this, I finish the explanation of the code. You can download the full source code for this example from
../../examples/example_1_win32.cpp. In the next section we are going to build and run our sample.

12. Compiling your code and building

Now the sometimes troubling part: compiling your code and running it! Your proyect makefile must include
the path for Lomse header files. For instance:

 C:\Program Files\LenMus\lomse\include\

Some Lomse headers include references to Boost and FreeType2 libraries. Therefore, it is necessary to
include the headers from these libraries. For me, guessing were things are installed in Windows is a
nightmare. Therefore, replace the paths I use here for the proper ones:

 C:\Program Files\boost\
 C:\Program Files\freetype\include
 C:\Program Files\freetype\include\freetype2

As to the libraries to link, you will have to include Lomse and the required support libraries. Take into
account that appart from any library required by your application, the Lomse library needs to be linked with
some libraries (boost, zlib, libpng and freetype2). In summary, you need to link with the following libraries:

libboost_date_time-vc71-mt-sgd-1_42.lib (or later)•
zlib.lib•
libpng.lib•
freetype.lib•

Also, you will have to specify the paths for these libraries, for instance:

 C:\Program Files\boost\lib
 C:\Program Files\freetype\bin
 C:\Program Files\freetype\lib
 C:\Program Files\zlib
 C:\Program Files\libpng

Warning

A common problem of building for Microsoft Windows is caused because there are several C++ run-time

Lomse library. Tutorial 1 for MS Windows

10 11. Closing the application

libraries available. If you have to link your code against two or more libraries, you have great chances that
each library is using a different run-time. And you will have a problem (LNK4098 - defaultlib "library"
conflicts with use of other libs; use /NODEFAULTLIB:library).

The "solution" is to rebuild all the required libraries, ensuring that they are built with the same options.

You are warned!

Using MS Visual Studio, the steps to create the project file and build our example code are the following:

From Visual Studio's File menu, select New > Project...•
In the left-hand pane of the resulting New Project dialog, select Visual C++ > Win32.•
In the right-hand pane, select Win32 Project.•
In the name field, enter "example-1-win32"•
Right-click example-1-wx in the Solution Explorer pane and select Properties from the resulting
pop-up menu

•

In Configuration Properties > C/C++ > General > Additional Include Directories, enter the path to
the required include directories, for example

 C:\Program Files\LenMus\lomse\include
 C:\Program Files\boost
 C:\Program Files\freetype\include
 C:\Program Files\freetype\include\freetype2

•

In Configuration Properties > C/C++ > Precompiled Headers, change Use Precompiled Header
(/Yu) to Not Using Precompiled Headers.

•

In Configuration Properties > Linker > General > Additional Library Directories, enter the path to
Lomse library and to the required libraries. For instance:

 C:\Program Files\LenMus\lomse\bin
 C:\Program Files\boost\lib
 C:\Program Files\freetype\bin
 C:\Program Files\freetype\lib
 C:\Program Files\zlib
 C:\Program Files\libpng

•

In Configuration Properties > Linker > Input > Additional Dependencies, enter the names of the
required libraries:

 lomse.lib
 freetype.lib
 libpng.lib
 zlib.lib

•

Replace the contents of the example-1-win32.cpp generated by the IDE with the code of our
example_1_win32.cpp file.

•

From the Build menu, select Build Solution.•

When running the program you should see something as:

Lomse library. Tutorial 1 for MS Windows

12. Compiling your code and building 11

13. Conclusions

This document is a very basic introduction. In the second tutorial I will add more code to our sample
application for interacting with the score (zooming, dragging, selecting objects, etc.).

If you would like to contribute with more tutorials or by adapting this tutorial for other platforms, you are
welcome!. Join the Lomse list and post me a message.

Lomse library. Tutorial 1 for MS Windows

12 13. Conclusions

	Lomse library. Tutorial 1 for MS Windows

