
Lomse library. Tutorial 4 for wxWidgets
In previous tutorial we learn hoe to implement score playback. But we didn't include any visual effects during
score playback (visual tracking by highlighting notes being played and/or by displaying a vertical tempo line
marking beats). In this tutorial we are going to learn how to do this. You can download the full source code
for this example from ../../examples/example_4_wxwidgets.cpp.

Table of content

Lomse playback: score highlight events1.
Changes for receiving score highlight events2.
Defining our application events3.
Changes for handling our application events4.
Compiling your code and building5.
Conclusions6.

1. Lomse playback: score highlight events

As we learn in previous tutorial, invocation of ScorePlayer::play() method will trigger all the
playback machinery. As a consequence, Lomse will start playback and will generate two types of events:
sound events and score highlight events. Sound event must always be handled by your application code, but
handling score highlight events is optional.

When your application handles score highlight events it is important to return control to Lomse as soon as
possible. This is because, currently, Lomse does not implement an event subsystem with its own thread.
Instead Lomse sends events to your application by invoking a callback. This implies that your application
code for handling the event is processed by the Lomse thread. As this thread is dealing with sound generation,
any delay will cause delays in the music tempo, which will be unacceptable. Therefore, to avoid delays, the
suggested way for handling score highlight events is to generate an application event and to enqueue it in the
application events system.

In your application, processing an score highlight event can be as complex as needed for generating any fancy
visual feedback. Alternatively, it can be a trivial task, as Lomse provides standard event handlers for creating
standard visual effects (coloured notes, tempo line or both). If you would like to use Lomse standard visual
effects, your application code should just pass the event to the interactor, and it will take care of all necessary
tasks. Finally, your application will receive an update view event, and all you have to do is to copy the already
updated rendering bitmap onto the window.

As you can see, handling score highlight events in your application is a round trip to, finally, delegate its
handling on Lomse! But this round trip has an important gain: the code for implementing visual highlight is
executed in your application thread instead of in Lomse playback thread. As a consequence, all concurrency
problems automatically disappear!

To avoid this burden in your application, probably the best solution will be to implement, in Lomse, an event
subsystem with its own thread. But there is a lot of work to do and I have to prioritize the necessities. If you
would like to contribute to Lomse project by working on this issue you are welcome. Please post me a
message. Thank you.

Lomse library. Tutorial 4 for wxWidgets

Lomse library. Tutorial 4 for wxWidgets 1

2. Changes for receiving score highlight events

In this tutorial we will use the code from tutorial 3 and modify it for handling score highlight events. First step
is to prepare our application to handle these events. For this, we will define a callback method in MyFrame.
This is the standard procedure for handling events, of any type, sent by Lomse. As explained in tutorial 2 (see
section Events sent by Lomse) setting a callback requires defining two methods: an static one (the wrapper
method) and the real one that will do the job. Here is our definition:

class MyFrame: public wxFrame
{
public:
 ...
 //callback wrappers
 ...
 static void wrapper_lomse_event(void* pThis, SpEventInfo pEvent);

protected:
 ...
 void on_lomse_event(SpEventInfo pEvent);

Apart of defining the callback method we have to inform Lomse about its existence!. We do it at Lomse
initialization:

void MyFrame::initialize_lomse()
{
 ...
 //set required callbacks
 ...
 m_lomse.set_notify_callback(this, wrapper_lomse_event);
}

Implementing these methods is straightforward. The wrapper method is just invoking the real one:

void MyFrame::wrapper_lomse_event(void* pThis, SpEventInfo pEvent)
{
 static_cast(pThis)->on_lomse_event(pEvent);
}

As to the method doing the real work, it has to create an application event and to enqueue it in the application
events system, as explained in Lomse playback: score highlight events. Therefore, before coding this method
we have to define our own application event.

3. Defining our application events

As we have to deal with Lomse events of type k_highlight_event, we will define an equivalent
wxWidgets event: MyScoreHighlightEvent. It will wrap the Lomse event. As this is standard
wxWidgets coding, I will not enter into details. Here is the declaration:

//---
// MyScoreHighlightEvent
// An event to signal different actions related to
// highlighting / unhighlighting notes while they are being played.
//---

DECLARE_EVENT_TYPE(MY_EVT_SCORE_HIGHLIGHT_TYPE, -1)

Lomse library. Tutorial 4 for wxWidgets

2 2. Changes for receiving score highlight events

class MyScoreHighlightEvent : public wxEvent
{
private:
 SpEventScoreHighlight m_pEvent; //lomse event

public:
 MyScoreHighlightEvent(SpEventScoreHighlight pEvent, int id = 0)
 : wxEvent(id, MY_EVT_SCORE_HIGHLIGHT_TYPE)
 , m_pEvent(pEvent)
 {
 }

 // copy constructor
 MyScoreHighlightEvent(const MyScoreHighlightEvent& event)
 : wxEvent(event)
 , m_pEvent(event.m_pEvent)
 {
 }

 // clone constructor. Required for sending with wxPostEvent()
 virtual wxEvent *Clone() const { return new MyScoreHighlightEvent(*this); }

 // accessors
 SpEventScoreHighlight get_lomse_event() { return m_pEvent; }
};

typedef void (wxEvtHandler::*ScoreHighlightEventFunction)(MyScoreHighlightEvent&);

#define MY_EVT_SCORE_HIGHLIGHT(fn) \
 DECLARE_EVENT_TABLE_ENTRY(MY_EVT_SCORE_HIGHLIGHT_TYPE, wxID_ANY, -1, \
 (wxObjectEventFunction) (wxEventFunction) (wxCommandEventFunction) (wxNotifyEventFunction) \
 wxStaticCastEvent(ScoreHighlightEventFunction, & fn), (wxObject *) NULL),

And the definition:

DEFINE_EVENT_TYPE(MY_EVT_SCORE_HIGHLIGHT_TYPE)

Having defined our event, now we can code the required MyFrame::on_lomse_event method. Here is
the code:

void MyFrame::on_lomse_event(SpEventInfo pEvent)
{
 MyCanvas* pCanvas = get_active_canvas();

 switch (pEvent->get_event_type())
 {
 case k_highlight_event:
 {
 if (pCanvas)
 {
 SpEventScoreHighlight pEv(
 boost::static_pointer_cast(pEvent));
 MyScoreHighlightEvent event(pEv);
 ::wxPostEvent(pCanvas, event);
 }
 break;
 }

 default:
 ;

Lomse library. Tutorial 4 for wxWidgets

3. Defining our application events 3

 }
}

As you can see, what we do is to transform the Lomse event into a wxWidgets event, and to inject the
wxEvent into the application event handling loop. That's all. Control returns immediately to Lomse, so that
Lomse playback thread is not delayed. And our wxWidgets event will be processed when Lomse is idle. But
for processing these wxWidgets events we have to define event handler.

4. Changes for handling score highlight events

Our playback events will be processed in MyCanvas. For this, first thing to do is to modify our events table,
adding a new handler:

BEGIN_EVENT_TABLE(MyCanvas, wxWindow)
 ...
 MY_EVT_SCORE_HIGHLIGHT(MyCanvas::on_visual_highlight)
END_EVENT_TABLE()

Next, we will define the handler method:

class MyCanvas : public wxWindow, public PlayerNoGui
{
 ...
protected:
 //event handlers
 ...
 void on_visual_highlight(MyScoreHighlightEvent& event);

As we will implement standard visual effects, the implementation of this method is trivial, as it is just
delegating in Lomse:

void MyCanvas::on_visual_highlight(MyScoreHighlightEvent& event)
{
 SpEventScoreHighlight pEv = event.get_lomse_event();
 WpInteractor wpInteractor = pEv->get_interactor();
 if (SpInteractor sp = wpInteractor.lock())
 sp->on_visual_highlight(pEv);
}

And this is all. Our code is now finished and our application is ready for building and testing. You can
download the full source code for this example from ../../examples/example_4_wxwidgets.cpp.

5. Compiling your code and building

At this point, we could compile and tests all these changes. Open a terminal window at enter (adjust paths if
necessary):

gcc example_4_wxwidgets.cpp ./wxMidi/wxMidi.cpp ./wxMidi/wxMidiDatabase.cpp -o example-4-wx \
 `wx-config --cflags` `pkg-config --cflags liblomse` -I ./wxMidi/ \
 `pkg-config --libs liblomse` -lstdc++ -lportmidi -lporttime `wx-config --libs`

When executing example-4 and playing the score you will hear the music and you will see that notes get
coloured in red as they are being played. You should see something as:

Lomse library. Tutorial 4 for wxWidgets

4 4. Changes for handling score highlight events

6. Conclusions

In this tutorial I have shown the way to implement visual effects during score playback. It also opens the door
for creating your own visual effects, as you are not limited by standard visual effects canned in Lomse.

If you would like to contribute with more tutorials or by adapting this tutorial for other platforms, you are
welcome!. Join the Lomse list and post me a message.

Lomse library. Tutorial 4 for wxWidgets

5. Compiling your code and building 5

Lomse library. Tutorial 4 for wxWidgets

6 6. Conclusions

	Lomse library. Tutorial 4 for wxWidgets

