
User Documentation: CNValidator

Jon Yamato and Mary Kuhner

June 21, 2018

Overview

This program assesses the likely validity of somatic copy number calls, based on

two or more somatic samples from the same patient and a normal control sample.

The somatic samples need not be cancer; they could be neoplastic or benign or

even healthy tissues. However, the test will be uninformative unless there is

shared somatic copy-number variation among at least some of the samples. For

example, it is unlikely to be informative if just one sample is taken from each of

several unrelated tumors. It uses the haplotype coherency test as described in:

Smith LP, Yamato JA, Kuhner MK (2018). CNValidator: validating somatic

copy-number inference. Bioinformatics submitted.

Briefly, the logic of the test is that if the pattern of germ-line heterozygous

sites with increased or decreased allele frequencies corresponds between two or

more samples for the same genomic segment, that segment should be given an

unbalanced call for those samples; and if the pattern does not correspond, at

least one sample should receive a balanced call.

CNValidator checks the internal consistency of a pipeline that first divides

the genome into segments believed to have the same copy number (“segmenta-

tion”) and then assigns integer allele-specific copy number calls for each segment.

It assumes that cross-sample haplotype information was not used to inform the

copy-number calls. (If haplotype coherency was considered in making the calls,

considering it when validating the calls will not add anything; probably all calls

will be judged valid.)

1



It is written in Python 2 and has been tested on version 2.6. Minor changes

to print statements should allow it to run in version 3 if desired.

It can be run in two ways:

(1) If only one copy number calling algorithm is used, it will assess the

proportion of copy-number calls which passed the coherency test.

(2) If more than one copy number calling algorithm is used, a new set of

segments will be generated as the union of segment breakpoints across all algo-

rithms, and the proportion of these segments which are valid based on the calls

from each of the algorithms will be assessed. This allows multiple algorithms to

be assessed on the same underlying segmentation.

In both cases, some proportion of calls will not be validatable; the proportion

of validatable calls depends on the structure of the data, especially the number

of samples, but also the frequency of somatic copy-number variants and the

degree to which they are shared across samples.

Approach (1) is useful in determining whether specific calls, or the copy-

number calling as a whole, are likely to be correct. Approach (2) is useful in

deciding among multiple competing copy number calling algorithms, parameter

choices, or other variable factors. For example, it can be used to determine

whether treating a sample as diploid or tetraploid yields superior copy number

calls.

We define five outcomes for examinination of a segment in a given sample:

Unvalidatable (UN). The segment cannot be validated. This can be due to

too few samples having copy-number variation across the segment; not enough

heterozygous positions in the normal sample; or too much missing data. No

conclusion can be drawn about whether the copy number calls for this segment

are correct.

True Positive (TP). The segment was called as unbalanced (unequal numbers

2



of the two haplotypes) and the coherency test agrees that it is unbalanced.

False Positive (FP). The segment was called as unbalanced, but the co-

herency test suggests that it is balanced.

True Negative (TN). The segment was called as balanced (equal numbers of

the two haplotypes) and the coherency test agrees that it is balanced.

False Negative (FN). The segment was called as balanced, but the coherency

test suggests that it is unbalanced. Data that show a high proportion of FN

results can arise from the presence of unbalanced events that are subclonal

(present in only a fraction of the cells in the sample). Subclonal events which

fall below the detection threshold of the copy number calling algorithm may still

produce enough signal to be seen as unbalanced by the haplotype coherency test.

These outcomes are combined into an accuracy score:

A = TP + TN / (TP + TN + FP + FN)

The program assesses accuracy on both a per-segment and per-megabase ba-

sis. The per-segment accuracy indicates what proportion of segments are likely

to be called correctly; the per-megabase accuracy indicates what proportion of

the genome is likely to be called correctly. These can be quite different if, for

example, calls of long segments are reliable while calls of shorter segments are

noisy.

The higher the accuracy score, the better the quality of the copy number

calling (though the score should be interpreted cautiously if very few segments

could be validated). For human 2.5M Illumina SNP array data we found that

accuracies below 90% suggested a problem with data quality or an incorrect

ploidy call. When comparing two different calling algorithms or settings (such

as solutions assuming diploid versus tetraploid ploidy), the higher-accuracy so-

lution is preferable, but no significance test is available to determine whether

the accuracy difference is statistically significant.

3



The program also reports the outcome (UN, TP, TN, FP, FN) for each

segment in each sample. This can assist the user in judging which calls may be

unreliable, especially in genomic regions of special interest.

Input

This program was tested on segmentation and copy number calls from SNP array

data, but should be equally applicable to calls from DNA sequencing data. It

operates on files from a single patient. The patient’s germline is presumed to be

diploid, though the somatic samples need not be. Regions in which the germline

is not diploid should, if possible, be removed from the analysis; this includes Y

chromosomes and X chromosomes of males.

The program has a command line interface with the only argument being

the name of the master file. If the master file is not in the same directory or

folder as the program, then a full path to the master file must be provided.

Four types of input files are required:

(1) A master file that enumerates and groups all of the other input files. The

path to this master file is given as a command line argument to the program.

(2) A normal-control BAF file giving the B allele frequency (BAF) data for

the sample representing the patient’s germline. BAF is defined in this context as

B/(A+B) and can be taken from SNP array output or allele-specific sequencing

read counts.

(3) One or more sample BAF files giving BAF data for the somatic samples.

Each sample may have its own sample BAF file or multiple samples may be

present as separate columns in the same file.

(4) Multiple segmentation files, one per sample per copy-number algorithm

to be tested. These files represent the output of a segmentation and copy number

calling program such as ASCAT.

4



Sample input files for a small fictional data set are provided with the pro-

gram.

Input File Formats

As there is no clear consensus on the format of BAF files or, especially, seg-

mentation files, we have adopted a simple format which should be fairly easy to

reach from a variety of common bioinformatics formats.

(1) The master file must contain blocks of entries corresponding to file types

(2)-(4) above. The order of the blocks does not matter.

The block for the normal-control BAF file is as follows:

#NORMAL BAF

path/to/baffile

The block for the sample BAF file or files is as follows:

#SAMPLE BAF

path/to/firstbaffile

path/to/secondbaffile

...

There may be one or more than one block corresponding to segmentation

files, depending on whether one or more than one copy-number algorithm is

being tested. Each algorithm needs a separate segmentation block for which

the second header line is a user-defined name for the algorithm. (This will be

used in the output to identify the algorithm; short distinctive names work best.)

For example, the following block presents segmentation files for the “diploid”

version of the copy-number algorithm:

#SEGMENTATION

5



#diploid

path/to/sample1/segmentation

path/to/sample2/segmentation

path/to/sample3/segmentation

...

(2) The normal BAF file represents BAFs for the normal (blood or healthy

tissue) control for this patient. Such a sample is required as the haplotype

coherency test is limited to using positions at which the patient’s germ line was

heterozygous, and this is determined based on the normal sample.

This is a tab-separated file of the following format:

The first line should be a header as follows (note that this line starts with a

tab to meet expectations of R programmers):

Chr Position [SampleName]

where [SampleName] represents a name for the normal sample. Subsequent

lines should each contain BAF information for one position. Any positions not

listed in this file will not be used in the coherency test even if they are present

in the somatic samples.

The first entry (with no column header) is the name of the SNP at this

position, or a ”.” if names are unavailable (as for WGS). In some Illumina SNP

chip data, sites whose names begin with “cnvi” are present: these represent

normally-homozygous sites in regions of population variation in copy number.

Our program filters out such sites as they appear inappropriate for this test

since they do not have B alleles in the conventional sense. SNP names are not

required; they are maintained in our input format mainly for use in data quality

checks.

The second entry is the chromosome number or name. Any convention for

6



chromosome names may be used as long as it is consistent through all input

files (for example, the human first chromosome could be called ”1” or ”chr1” as

long as all files are consistent).

The haplotype coherency test should not be applied to data from haploid

regions of the genome such as the Y, the X in a male, or mtDNA. As the program

does not have the information to determine which genomic regions should be

removed, the user is responsible for insuring they are not used. This can either

be done by removing such regions from the normal BAF file, or by adding

chromosomes which should be disregarded to the list of such chromosomes in

the first section of the validate.py program.

The third entry is the chromosomal position as an integer. Any coordinate

system may be used as long as it is consistent throughout all input files. Watch

out for the difference between zero-based and one- based coordinates! In partic-

ular, BAM files are zero-based and VCF files are one-based; if the data originate

from a mix of file types a conversion will be needed. validate.py does not at-

tempt to do this conversion as it has no way to know the origins of its data

files.

The fourth and final entry is the BAF score for that position as a floating-

point number between 0.0 and 1.0 inclusive. This could be the BAF estimate

from SNP chip processing software, or the fraction of reads showing the B allele

from sequencing data. It does not matter which allele is defined as B but for

any given position the same allele must be defined as B in all samples, or the

program’s results will be meaningless. The BAF score may also be NA to

indicate missing data; such positions will be discarded for the test.

(3) The sample BAF file or files contain BAF values, defined as above, for the

somatic tissue samples. One or more samples may be present in each somatic

BAF file, but each sample must be in just one file, not split across multiple files.

7



The format for these files is the same as for the normal BAF file, except

that it may have more than one column for the BAF values, each headed by the

name of the sample to which those BAFs apply. For example, a file with two

samples might start like this:

Chr Position Sample1 Sample2

rs32 1 100 0.43 0.98

This represents a (fictional) position named rs32 on chromosome 1, position

100, which has a BAF of 0.43 in Sample1 and a BAF of 0.98 in Sample2.

As noted above, be careful of differences in coordinate systems, and make

sure that the same allele is defined as the B allele across all samples. ”NA” for

a sample BAF value will cause that position to be disregarded for that sample,

but it may still be used for other samples.

(4) The segmentation files must be one file per sample per algorithm. It is

an error if any sample/algorithm combination is missing, or if the set of samples

differs between the sample BAF files and the segmentation files.

These are tab-separated files with the following format:

The first line is a header as follows:

patient sample chr startpos endpos intA intB

The first column is a patient identifier, and must be the same in every

segmentation file (as an error check against inclusion of material for a different

patient, which spoils the test). The second column is the sample name, and

must exactly match the corresponding sample name in the header of one of the

sample BAF files. The third position is chromosome identifier, as before.

The fourth and fifth columns are the starting and ending genomic positions

of the segment. These positions are understood to be inclusive on both ends (a

closed interval): that is, both the position at startpos and the one at endpos

8



are understood to be part of the segment. These positions do not have to be

the positions of SNPs, nor to be mentioned in the BAF files.

The sixth and seventh columns are the allele-specific integer copy number

estimates for this segment, with intA representing the A-allele copy number

and intB representing the B-allele copy number. The designation of A and B

is arbitrary but must be consistent among all samples. It is not acceptable to

define B as the rarer haplotype in each sample! intA and intB must be greater

than or equal to zero, or NA indicating missing data. (Segments with NA for

either or both of intA and intB will be treated as unvalidatable for that sample.)

Output

The validate.py program writes two types of output files.

(1) A single Summary output file is produced covering all results. The name

of this file is “PID overall output.tsv” where PID is the user-specified patient

identifier.

This is a tab-separated file with the following entries:

Sample: the user-specified sample name.

Method: the user-specified copy-number algorithm name (important when

more than one algorithm is being compared in a run).

MB total: the total genome length in the segments considered by the pro-

gram, in megabases (MB).

MB validated: the total length of segments that were deemed valid.

MB contradicted: the total length of segments that were deemed invalid.

MB accuracy: the length-based accuracy score (MB validated/MB validat-

able).

Segments total: the total number of segments considered by the program.

Segments validated: the number of segments that were deemed valid.

9



Segments contradicted: the number of segments that were deemed invalid.

Segments accuracy: the segment-based accuracy score (segments validated/segments

validatable).

Caution should be used in evaluating the accuracy scores if the length of

genome and/or number of segments that could be validated is very low. For

example, 100% validation is not impressive if only one segment could be vali-

dated. If no segments could be validated, the accuracy scores will be given as

“NA”.

(2) Multiple detailed output files, one per sample. These files show the score

(TP, TN, FP, FN, UN) for each segment, for each copy-number algorithm.

The names of these files are “PID SID detail output.tsv” where PID is the

patient ID and SID is the sample ID.

These are tab-separated files with the following entries:

chrom: chromosome of segment.

startpos, endpos: boundaries of segment. The segment is closed (contains

both startpos and endpos). Note that when multiple copy-number algorithms

with different segmentation are used, new segments will be produced represent-

ing the union of existing segment breakpoints. This may cause segments to

start or end on positions which are not SNPs. For example, if one method saw

a segment from 1-10, and a different method saw a segment from 1-20, this will

result in output describing segments from 1-10 and 11-20, even if site 11 is not

mentioned anywhere in the input data.

nBAFs: the number of sites heterozygous in blood that fall within this seg-

ment. This gives some information on how well-founded the finding of validation

or non-validation is: ten BAF scores will occasionally vary in the expected di-

rection by chance, whereas ten thousand BAF scores should not. Note that this

number does not take into account missing data in the somatic samples, which

10



may contribute to a segment being unvalidatable in a particular sample even

though it could be validated in other samples.

These fields are followed by a pair of fields for each method being tested. The

first field is called methodname call (where methodname is the user-specified

name of the calling method) and gives that method’s allele specific copy number

call, written as A/B. For example a call of 2/3 means that two A haplotypes and

three B haplotypes were inferred to be present in this segment by this method.

The second field is called methodname evaluation, and gives the validation

result corresponding to that method. For example, if method 1 called a segment

unbalanced, the evaluation will be either TP, FP, or UN, corresponding to the

copy number call being valid, invalid, or unvalidatable.

Sample output files generated for the example input data are supplied with

the program. As there is no stochastic component to this program, running the

sample input files should exactly replicate the sample output files.

Program Parameters

At the top of the python program file (validate.py) there are several program

paramenters. The default values were chosen based on data derived from Illu-

mina 1.0M and 2.5M SNP arrays, and if your data were derived in some other

way, adjusting these parameters may be helpful.

The two parameters min useable baf and max useable baf give the limits

within which a position will be considered to be heterozygous in the normal

sample. Good values for these parameters can be found by making a histogram

of BAF values; the min useable baf and max usable baf should fall in the valleys

between heterozygous positions around 0.5 and homozygous positions around 0

and 1.

The list variable badbafvals contains the strings which will be considered to

11



represent missing data (normally ”NA”). If your data use a different value such

as ”?” for missing data, you can add it to this list.

The integer variable min bafcount gives the minimum number of valid BAF

positions within a segment in order for that segment to be validatable. A

valid BAF position must be heterozygous in the normal sample (as defined

by min useable baf and max useable baf above) and non-missing in the somatic

sample. A segment which has fewer than this number of valid BAF positions

will be treated as unvalidatable in this sample. We do not recommend setting

this value below its default of 10, but values above 10, which lead to treating a

larger proportion of short segments as unvalidatable, might be useful for very

noisy data such as DNA data from a degraded sample.

The variable min matching defines the degree of agreement between the BAF

pattern in two samples required to consider them as representing the same

haplotypes. For example, the default value of 0.95 means that 95% of the BAF

values (at sites heterozygous in normal) must co-vary in the same direction, or

95% must co-vary in the opposite direction, in order for the BAF patterns to

be considered as indicating the same haplotypes. This value must be strictly

greater than 0.5 for the test to work at all. If the user wishes to be particularly

skeptical of unbalanced calls, min matching can be set higher, but this will

render the test less sensitive to unbalanced regions that were called as balanced.

If the user wishes to spot as many missed unbalanced regions as possible, or

for very noisy data, min matching can be set lower, but we recommend setting

min bafcount higher if this is done, to avoid spurious matching in short segments.

For example, if min matching were reduced to 0.90, min bafcount should be

increased, perhaps to 20.

The list variable invalid chromosomes lists the names of chromosomes which

should not be used in validation, most commonly because they are not diploid

12



(e.g. Y, X in a male, mtDNA). Any chromosome names inserted into this list

will be disregarded; conversely, the X chromosome can be removed from this

list in order to allow validation of X chromosome segments, though this is only

appropriate if all samples included in validation come from females. The code

is not able to handle a mix of male and female X chromosome data.

Authorship and Contact Information

This program was written by Jon Yamato and Mary Kuhner based on code

by Lucian P. Smith. It is released under the MIT License (see the LICENSE

file distributed with the software). We would be delighted to hear about any

projects or publications using this code.

The authors can be contacted with questions, bug reports, or suggestions

for improvement at:

Mary Kuhner

Department of Genome Sciences, University of Washington

Box 355065

Seattle, WA 98195-5065

mkkuhner@uw.edu

13


