
Bachelor Thesis

Language-Agnostic
Subtitle Synchronization

September 30, 2019
Kaegi

Abstract

This thesis presents a two-step process to align subtitle files to movies using voice-activity-
detection and a novel alignment algorithm. All common errors related to shifts, splits and fram-
erate differences are corrected by the alignment algorithm in less than 30 seconds. The process
is language-agnostic and can therefore even align subtitles to movies in different languages.

Using this method on a database of more than 20 movies and 100 subtitles files resulted in
an error rate of 12% for subtitle-to-movie alignments and a 0% error rate for subtitle-to-subtitle
alignments. This unprecedented combination of speed and accuracy makes the algorithm suitable
for realtime post-processing of subtitles obtained from unreliable online databases.

Contents

1 Introduction 1

2 Subtitle Synchronization 3
2.1 Process overview . 3
2.2 Patterns of synchronization errors . 3
2.3 Subtitle Style Guide . 4
2.4 Voice-Activity-Detection . 4
2.5 Algorithms . 6

2.5.1 Preparation of subtitle spans . 9
2.5.2 Calculating score efficiently . 11
2.5.3 Optimal no-split alignment . 13
2.5.4 Optimal split alignment . 18
2.5.5 Correcting differences in framerate . 29

2.6 Results . 29

3 Conclusion 39

Chapter 1

Introduction

Subtitles play a central role for enjoyable video consumption. They improve comprehension
for fast or quiet speech, act as an audio substitute for hearing-impaired people and facilitate
watching a movie in a foreign language. Although subtitle files can be easily obtained online for
almost any movie, they are rarely synchronized with a movie file from a different source. Even a
time offset of a few hundred milliseconds degrades the movie experience – an offset of more than
a second make the subtitles unusable.

The most common approach to circumvent the problem is using an online database that
maps the exact version of the movie file to a perfectly synchronized subtitle. However, this
approach requires a constantly well-maintained database and even a slight change to the video
renders this approach ineffective. A different area of research is using an incorrect subtitle file in
conjunction with a synchronization algorithm. Although this concept is promising, state-of-the
art algorithms can only align subtitles to movies in the same language or only correct a small
set of error patterns.

This thesis presents a language-agnostic two-step process for real-time subtitle synchroniza-
tion based on the second approach. Independence of the of spoken language is achieved by only
extracting the intervals of speech in the first step, while ignoring the actual content of the audio.
In the second step, a custom synchronization algorithm is then used to align the timestamps
from the subtitle file to these intervals of speech. The algorithm can handle simple constant-
offset errors as well as problems due to additional breaks or cuts in the subtitle file compared
to the movie. With an additional post-processing step, even differences in playback speed can
be corrected. Since the synchronization algorithm handles all common error patterns, almost all
resulting subtitle files get perfectly synchronized to their respective movies.

The first section discusses the common errors and requirements for good subtitle synchro-
nizations in more detail. The second section explains all steps of the voice-activity detection and
synchronization algorithm. The last section provides fine tuning of the algorithms for real-world
data and analyzes the accuracy of the corrected subtitles.

Page 1

Chapter 2

Subtitle Synchronization

2.1 Process overview
The entire process of aligning an input subtitle to a reference video, audio or subtitle file consists
of multiple steps. First, the intervals of speech have to be identified for the input file as well
as the reference file. For audio and video data, voice-activity-detection is performed to generate
intervals that likely contain speech. For subtitle files this simply consists of extracting the time
spans with respect to the subtitle format. Secondly, both interval sequences are post-processed
to become sorted and non-overlapping, which is a requirement for the alignment algorithm. In the
last step, an alignment algorithm is performed on both interval sequence which returns time offset
for the input intervals. Different algorithms can correct different patterns of synchronization
errors (see section 2.2).

2.2 Patterns of synchronization errors
In the (easier) subtitle-to-subtitle alignment cases, a few problems frequently lead to incorrectly
synchronized subtitles:

1. Start Timestamp: Some versions of a movie start a few milliseconds to a few seconds
earlier or later compared to another version. Using a subtitle file on a movie that is
synchronized to a different version leads to an undesirable delay.

2. Director’s Cut: Two subtitle files can be synchronized to two differently edited versions of
the same movie. Usually these versions only differ by a low number scenes. This introduces
multiple lags of a few seconds each at several points during the movie.

3. Advertisement Breaks: Some subtitles are synchronized to a movie that contains ad-
vertisement breaks. This leads to breaks from a few seconds to several minutes in the sub-
title file and requires frequent readjustment of the subtitle offset when watching a movie
without advertisement breaks.

4. Frame Rate Differences: Common frame rates are 23.976 frames per second, 24 frames
per seconds and 25 frames per second. If the playback speeds of the subtitle and video
differ, the user has to frequently readjust the subtitle offset during the movie, as the subtitle
file gets increasingly out of sync.

Page 3

Chapter 2. Subtitle Synchronization

Apart from differences in presentation timestamps, the number of lines in different subtitle
files for the same movie can vary greatly. This complicates finding the alignment. Some differ-
ences include:

• Content Differences: Subtitles may or may not include translations for visual informa-
tion such as street signs. Some subtitles contain interjections, while they are omitted in
others. Sometimes even extra information like the name of the subtitle creator is embed-
ded inside a subtitle.

• Split/Unified Lines: Long sentences might be a single subtitle line in one file, and two
different subtitle lines in another file.

• Song Lyrics: One of the subtitle file might include lyrics for songs while the other does
not. This can account for several minutes of differing content in these subtitle files. A
special case of this are songs during the film intro or the credits, as the resulting subtitle
files might have severely different start and end timestamps.

If the reference is a video or audio file, the voice-activity detection introduces even more errors.
Since the audio landscape is very complex in movies, the detection will often wrongly classify
ambient sounds as speech and vice versa. This makes simple matching algorithms unsuitable for
this kind of automatic subtitle synchronization.

2.3 Subtitle Style Guide
An interesting question for subtitle synchronization is what a defines a ”good subtitle” as this is
a subjective measure. Netflix provides a subtitle style guide [1] which requires following:

• a subtitle event should have a length between 5/6 seconds to 7

• the subtitle event should start within 3 frames (125ms for 24 frames per second) of the
audio

• the subtitle event should end within 3 frames after the the audio or up 12 frames (500ms
for 24 frames per second) if this improves readability

• a subtitle event should not cross a shot change

2.4 Voice-Activity-Detection
A voice-activity-detection (VAD) module generally consists of audio feature extraction and a
classifier. The reference implementation for this thesis uses the pre-trained WebRTC VAD [2],
which is heavily optimized for speed. The WebRTC VAD was chosen as it is easy-to-use and
available under an open source license.

This section summarizes its approach. The WebRTC calculates the energy on several fre-
quency bands and then uses a Gaussian mixture model (GMM) to calculate probabilities of speech
and non-speech, which are then combined into a single VAD decision. Although no explicit
references to literature are included in the source code, similar methods have been presented
in various papers [3][4]. More complex approaches using Recurrent Neural Networks as classi-
fiers have been proposed for voice-activity-detection specifically in movies [5][6]. Unfortunately
no pre-trained models have been published.

Page 4

2.4. Voice-Activity-Detection

Filtering audio

Any input audio in the WebRTC VAD module is firstly downsampled to 8000 samples per second.
This is done as the data of interest - human speech - occurs between 300Hz and 3400Hz [7]. To
satisfy the Nyquist–Shannon sampling theorem, the actual sample rate has to be at least twice
as high. A VAD decision is made for every 10 milliseconds of audio data, which corresponds to
only 80 audio samples.

After downsampling, the audio is filtered to yield sample data on the following sub-bands:

• 80Hz - 250Hz

• 250Hz - 500Hz

• 500Hz - 1000Hz

• 1000Hz - 2000Hz

• 2000Hz - 3000Hz

• 3000Hz - 4000Hz

This is done by two all-pass filters, which shift the phase of the signal dependent on the fre-
quency without changing the amplitude. By adding or subtracting the result of slightly different
all-pass filters, constructive or destructive interference occurs dependent on the frequency. This
way the 0 - 4000Hz band is split into a 0 - 2000Hz band and a 2000Hz - 4000Hz band. In this fil-
tering step, only half the samples are retained for each sub-band as the bandwidth of the signal
was also reduced by this factor.

This splitting filter is afterwards applied again on the sub bands to split the first band on
1000Hz and the second band on 3000Hz. Similarly the resulting 0 - 1000Hz band was processed
to yield the first three of the six final frequency bands. The the 80Hz - 250Hz band is obtained
by high-pass filtering the 0 - 250Hz.

This approach is very efficient as both the all-pass filters and the high pass filter only have
to iterate over each input sample once and each iteration only requires a few additions, multipli-
cations and integer shifts.

Classification

After generating the sub-bands, the logarithm of the energies on each band is calculated. If xi,_
is the sample data on the sub-band i, the logarithm of the energy on band i is given by

Ei = log
∑
j

x2
i,j

Using the logarithm of the energy instead of the energy itself correlates with human hearing,
where loudness is also perceived logarithmic with respect to the energy of a sound.

The classifier assumes that the logarithmic energies of speech and nonspeech on the sub-
bands obey a Gaussian distribution. Two Gaussian distributions for each bands are assigned for
nonspeech and speech. The probabilities for each speech and nonspeech of a Gaussian distribution
with mean µ and standard deviation σ is given by

p(Ei|µ, σ) =
1√
2πσ2

· e−
(x−µ)2

2σ2

Page 5

Chapter 2. Subtitle Synchronization

The total probability of speech (or nonspeech respectively) on a band is the sum of proba-
bilities for both Gaussian distributions. Let pj,speech and pj,nonspeech be the total speech and
nonspeech probabilities on band j and swj a spectral weighting factor. If the formula

log

6∏
j=1

(pj,speech/pj,nonspeech)
swj

=

6∑
j=1

log(pj,speech/pj,nonspeech) · swj

crosses a certain threshold, the 10 millisecond audio segment is assumed to contain speech.
In the last step the decision is smoothed for consecutive audio segments, meaning a few

intermediate nonspeech segments are still counted as speech segments.
Additionally to the presented formulas, the WebRTC VAD also features an adaption of the

parameters of the Gaussian distributions at runtime within predetermined bounds. A detailed
derivation and analysis of these adjustment formulas can be found in [3].

2.5 Algorithms
To synchronize subtitles to a reference file, a measure of the quality of an alignment - its score
- has to be defined. This requires explaining the the fundamental building blocks of alignments
which are time units and spans and offsets.

• A time unit is a length of time that is used to define one discrete ”step” for the algorithms.
By using smaller time units the maximum reachable accuracy of the alignment increases -
as it is expressed in time units - at the cost of efficiency or increased memory requirements.
All common subtitle formats use milliseconds as time units so this value was also chosen as
the default in the reference implementation (but can be easily changed). One millisecond is
also less than the length of one video frame, which 16.7ms for a 60Hz video, and therefore
provides enough accuracy for the resulting alignment.

• A span can be modeled as an half-open interval with integer start and end values. Spans
can be converted to actual start and end times of subtitle lines using a conversion factor.
For example, given a subtitle line from a subtitle file which starts at second 1 and ends at
second 3 with together with a conversion factor of 2 milliseconds per time unit, the resulting
span would be [500, 1500). Non-integer values have to be rounded to the nearest integer
values to create a valid span. Consecutive spans that have the same start and end value do
not overlap. For example [0, 10) and [10, 20) do not overlap, while [0, 11) and [10, 20) do
overlap with one time unit. All spans [a1, a2) are assumed to be non-empty with a1 < a2.

• An offset is the difference in time units between of two points of time and is used in the
context of shifting spans. For example shifting the span [500, 1500) with an offset of 20
results in the span [520, 1520).

A few additional definitions are needed to allow precisely defining the score of an alignment.

Definition 2.5.1. Given two time spans a = [a1, a2) and b = [b1, b2), the functions start, end,
length, overlap and iscore are defined as:

Page 6

2.5. Algorithms

start(a) = a1

end(a) = a2

length(a) = a2 − a1

overlap(a, b) = max(min(a2, b2)− max(a1, b1), 0)

iscore(a, b) =
overlap(a, b)

min(length(a), length(b))

The definition of iscore was chosen so that the graph of f(σ) = iscore(a, b+ σ) contains 5
linear segments with a the maximum value of exactly 1 (see Figure 2.1). The offsets where the the
segments start and end can be easily calculated using start and end for a and b. These segments
will be used as the basis for optimizations in alignment algorithms, as only the 5 segments have
to be calculated to characterize the score for all offsets σ.

Figure 2.1: Visualizing the graph of f(σ) = iscore(a, b+ σ) for some a and b

Definition 2.5.2. Let r = (r1, r2, . . . , rK) and a = (a1, a2, . . . , aN) be two non-empty finite
sequences of spans. r is called the reference sequence and a is called the input sequence. An
alignment of the input sequence a to the reference sequence r is a sequence σ = (σ1, ..., σN) of
offsets. The offsets σ1 to σn represent the number of time units each input sequence span is
shifted. a+ σ is added component-wise (a1 + σ1, . . . , an + σn).

The symbols r, a, K and N will be used with the given semantics throughout the thesis. σ
will either be a sequence of offsets or a single offset depending on the context.

Page 7

Chapter 2. Subtitle Synchronization

Definition 2.5.3. A sequence of spans c = (c1, . . . , cM) is called valid if end(c1) ≤ start(c2),
end(c2) ≤ start(c3), ..., end(cM−1) ≤ start(cM) is satisfied. This is equivalent with requiring
the spans in c to be sorted by their start times and to be non-overlapping.

By assuming r and a to be valid, various statements can be derived which form the basis of
the alignment algorithms. No algorithm is allowed to reorder the input sequence span; a + σ,
where σ is the resulting alignment, is always valid again.

Subtitle files as well as voice activity data will almost exclusively produce non-intersecting
intervals. If this is not the case, a pre-processing of the subtitle files is done to yield valid
sequences r and sequences a.

Definition 2.5.4. The number of splits of the alignment splits(σ) is defined as

splits(σ) =
N−1∑
n=1

{
1 if σn 6= σn+1

0 if σn = σn+1

By fixing the number of splits, the ”degrees of freedom” can be limited. A low number of
splits results in large segments of input intervals moved by the same offset. On the other hand,
a large number of splits allows for many intervals to be placed individually, independently of the
offset of preceding and subsequent intervals as long as they remain in the same order and are
non-overlapping.

Definition 2.5.5. The similarity of reference interval to an input interval is expressed with the
weighting function w : {1, . . . ,K} × {1, . . . , N} → R≥0.

The weighting function w used by the reference implementation is

w(k, n) =
min(length(rk), length(an))
max(length(rk), length(an))

This function yields the weight 1 for equally long spans and lower scores the more unequal
the ratio between the respective lengths is. To increase or diminish this effect, an additional
parameter s could be introduced with ws(k, n) = (min(length(rk),length(an))

max(length(rk),length(an))
)s.

Definition 2.5.6. The parameter p is called the split penalty. The score of the alignment σ is
defined as:

score(r, a, σ, w, p) =
N∑

n=1

K∑
k=1

iscore(rk, an + σn) · w(k, n)− p · splits(σ)

Given r, a, w and p where r and a are valid, an optimal alignment σ∗ is an alignment that
satisfies

score(r, a, σ∗, w, p) = max
σ where a+σ is valid

(score(r, a, σ, w, p))

To illustrate how this scoring function works, assume the split penalty p is zero. The optimal
alignment will then move all input intervals completely independently. Each input interval is
moved to a position that maximizes the intersection length (high value of iscore(rk, an + σn))
with reference intervals that have a high similarity (high value of w(k, n)). There might be many
combinations of reference intervals and input intervals that do not intersect and therefore do not
contribute to the score.

Page 8

2.5. Algorithms

Moving all input intervals independently is often not desirable since only local information
is used. For example, if reference interval sequence contains additional spans, a near input span
might be incorrectly associated with one these additional reference spans.

To make use of global information and exploiting the coherence between consecutive input
intervals, unnecessary splits need to be discouraged. This is why p · splits(σ) influences the
score negatively. Every split then has to improve the first part of the score by at least a value of
p, otherwise the additional split does not yield a more optimal alignment.

If the alignment does not contain any splits, it is called a no-split alignment. A simpler
scoring function can be used in this case.

Definition 2.5.7. Given valid sequences of spans r and a, the weighting function w and a single
offset σ, let nosplit_score(r, a, σ, w) be defined as

nosplit_score(r, a, σ, w) : = score(r, a, (σ)Nn=1, w, 0)

=

N∑
n=1

K∑
k=1

iscore(rk, an + σn) · w(k, n)

For the runtime complexity of the algorithms the total length of time units for each subtitle
plays an important role. These are named Tr and Ta.

Definition 2.5.8. Let Tr and Ta be defined as

Tr = end(rK)− start(r1)
Ta = end(aN)− start(a1)

The last values that have to be defined are the minimum offset σmin and maximum offset
σmax. The smallest sensible value for an offset σ is where a+σmin is completely before r. This is
the case if end(aN +σmin) = start(r1). On the other hand the largest useful value for σ is when
a + σmax is behind r, resulting in start(a1 + σmax) = end(rK). This results in the following
definition:

Definition 2.5.9.

σmin = start(r1)− end(aN)

σmax = end(rK)− start(a1)

The total number of time units between σmax and σmin is then

σmax − σmin = (end(rK)− start(a1))− (start(r1)− end(aN))

= (end(rK)− start(r1)) + (end(aN)− start(a1))
= Tr + Ta

2.5.1 Preparation of subtitle spans
Subtitle files might contain lines that overlap (i.e. characters speaking at the same time), un-
ordered subtitle lines or degenerate lines time stamps. This can be fixed by first sorting the spans
by their start time, repairing or discarding degenerate spans and then combining consecutive
overlapping spans. A mapping from the original spans to the corrected spans has to be created
in order transfer alignments from the corrected spans back to the original subtitle spans.

Page 9

Chapter 2. Subtitle Synchronization

Algorithm 1 Transforming arbitrary span sequences into valid span sequences
Input: A arbitrary sequence of (degenerate) subtitle spans x = (x1, . . . , xMx)
Output: A valid sequence of spans a = (a1, . . . , aN) where N ≤ M and a mapping m :
{1, . . . ,M} → {1, . . . , N} from the spans in x to their representative in a

1: ys← []
2: for i from 1 to M do . (Save original index before sorting by start time)
3: ys[i]← (x[i], i)
4: end for
5:
6: ys← sort(ys, by = λ(y, i) : start(y)) . Sort lines by start time
7:
8: zs = []
9: mxz = []

10: zi = 1
11: for (y, xi) in ys do . Discard zero-length lines
12: mxz[xi] = zi . Map xith entry of x to zith entry of zs
13:
14: if start(y) < end(y) then . Sort start(y) in front of end(y)
15: zs[zi] = [start(y), end(y)]
16: zi = zi+ 1
17: else if end(y) < start(y) then
18: zs[zi] = [end(y), start(y)]
19: zi = zi+ 1
20: end if . Ignore case start(y) == end(y)
21: end for
22:
23: if j = 1 then return error end if . If no non-zero-length span was found, abort.
24:
25: a← []
26: mza ← []
27: n← 1
28: zi = 1
29: for z in zs do . Combine intersecting spans
30: mza[zi] = n . Map zith entry of z to nth entry of a
31: zi← zi+ 1
32:
33: if a 6= [] and start(z) < end(a[l − 1]) then . Do z and a[n− 1] overlap?
34: new_end = max(end(a[n− 1]), end(z)) . Extend a[n− 1] to include z.
35: a[n− 1] = [start(a[n− 1]), new_end]
36: else
37: a[n] = z;
38: n = n+ 1
39: end if
40: end for
41:
42: mxa = []
43: for i in 1 to M do . Create mapping from x to a
44: mxa[i] = mza[mxz[i]]

Page 10

2.5. Algorithms

45: end for
46:
47: return (a and mxa)

Combining the intersecting lines and fixing degenerate spans is done in linear time O(M).
Since most subtitles are already sorted, Timsort can be used with a best case performance of
O(M) for sorted arrays and worst case complexity of O(M logM).

The reference subtitle can be preprocessed in the same way, although the mapping function
is not needed.

After transforming the input span sequence and reference span sequence into a valid ones, an
alignment algorithms computes an alignment (σ1, . . . , σN) for the sequence a. The alignments
for the original spans x from the subtitle file can be obtained with the mapping function m as
(σm(1), . . . , σm(M)).

2.5.2 Calculating score efficiently
Calculating of score(r, a, σ, w) as given by the definition calls iscore(rk, an+σn)·w(k, n) exactly
N ·K times and therefore has a run time complexity of O(N ·K).

By exploiting the properties of a valid sequence r and a+σ the complexity can be reduced to
O(N +K) without needing additional memory. The important observation is that only a small
number of iscore(rk, an + σn) is non-zero, because only very few spans in r and a+ σ overlap.

Algorithm 2 Calculate the score efficiently
Input: r and a, σ and split penalty p where r and a+ σ are valid sequences
Output: score(r, a, σ, w, p)

1: k ← 1
2: n← 1
3: sum← 0
4: while k ≤ K and n ≤ N do
5: sum← sum+ iscore(rk, an + σn) · w(k, n)
6:
7: // invariant 1: sum is here score((r1, . . . , rk), (a1, . . . , an), (σ1, . . . , σn), w, 0)
8: // invariant 2: end(rk−1) ≤ end(an + σn) if k > 1
9: // invariant 3: end(an−1 + σn−1) ≤ end(rk) if n > 1

10:
11: if end(rk) ≤ end(an + σn) then
12: k ← k + 1
13: else
14: n← n+ 1
15: end if
16: end while . sum is now score((r1, . . . , rK), (a1, . . . , aN), (σ1, . . . , σN), w, 0)
17:
18:
19: for n in 1, . . . , N − 1 do . Count the number of splits
20: if σn 6= σn+1 then sum← sum− p end if
21: end for
22:
23: return sum

Page 11

Chapter 2. Subtitle Synchronization

It is easy to see why the algorithm terminates. The first loop increments either k or n and
the while condition requires k + n ≤ K + N . The second loop terminates after exactly N − 1
iterations.

Theorem 2.5.1. The algorithm is correct.

Proof. First we prove inductively that the three invariants do indeed hold. It is easy to see that
for the first iteration with k = 1 and n = 1 all invariants are satisfied.

Now assume we already know score((r1, . . . , rk), (a1, . . . , an), (σ1, . . . , σn), w, 0) for a given n
and k and all invariants are satisfied.

Case 1: end(rk) ≤ end(an + σn). After line 12 invariant 2

end(rk−1) ≤ end(an + σn) if k > 1

holds as it is simply the condition on the if-branch with a shifted index invariant 3

end(an−1 + σn−1) ≤ end(rk) if n > 1

still holds, because of end(rk) ≤ end(rk+1) the right side can only increase. end(rk) ≤
start(rk+1) together with invariant 3 we obtain end(ak−1+σk−1) ≤ start(rk+1). This
means that rk+1 can not overlap with ak−1 + σk−1 or any preceding spans.
As a consequence it suffices to calculate the iscore between rk+1 and an + σn when going
from (r1, . . . , rk) to (r1, . . . , rk+1):

score((r1, . . . , rk+1), (a1, . . . , an), (σ1, . . . , σn), w, 0)

= score((r1, . . . , rk), (a1, . . . , an), (σ1, . . . , σn), w, 0) + iscore(rk+1, an + σn)

This means that in the next iteration of the loop, invariant 1 is satisfied as well.
If k = K, the loop terminates with

sum = score((r1, . . . , rK), (a1, . . . , an), (σ1, . . . , σn), w, 0)

No subsequent spans an+1 + σn+1 to aN + σN can overlap with rK (or preceding reference
spans), because end(rK) ≤ end(an + σn) and a+ σ is a valid sequence.
It follows for the loop termination:

sum

= score((r1, . . . , rK), (a1, . . . , an), (σ1, . . . , σn), w, 0)

= score((r1, . . . , rK), (a1, . . . , aN), (σ1, . . . , σN), w, 0)

Case 2: end(rk) > end(an + σn). This case is analog to case 1 with reversed roles of k and n,
K and N , and r and a+ σ.

The second loop then subtracts the split penalty p exactly splits(σ) according to the defi-
nition. sum then holds the value score(r, a, σ, w, p).

The first loops does at most K + N iterations and the second exactly N − 1 with a worst
case complexity of O(1) each. The total worst-case complexity is then indeed O(K +N).

Page 12

2.5. Algorithms

2.5.3 Optimal no-split alignment
Naive algorithm

The naive algorithm tries all offsets from σmin to σmax and applies algorithm 2 to calculate the
score for each offset.

Algorithm 3 Naive no-split algorithm
Input: r, a, weighting function w and split penalty p where r and a are valid sequences
Output: offset σ and nosplit_score(r, a, σ, w)

1: scoremax ← 0
2: σ ← σmin

3:
4: for σcurrent from σmin to σmax do
5: // evaluate as score(r, a, (σcurrent)

N
n=1, w, 0) using algorithm 2

6: scorecurrent ← nosplit_score(r, a, σcurrent, w)
7:
8: if scorecurrent > scoremax then
9: sigma← sigmacurrent

10: scoremax ← scorecurrent
11: end if
12: end for
13:
14: return (σ, scoremax)

When calculating nosplit_score as described in 2.5.2, the resulting runtime is O((Tr +Ta) ·
(K +N)) as there are σmax − σmin evaluations of the scoring function.

Unfortunately a dependency on Tr or Ta is not desirable for the run time complexity, as
the number of time units for subtitles is very large. An alternative algorithm brings down the
runtime to O(KN logmin(K,N)).

Efficient algorithm

The key idea behind a more efficient algorithm is identifying segments where σcurrent stays
constant, or rises or falls by a constant factor from each iteration to the next. It turns out that
there can be at most 4KN +1 of such segment and most 4KN points where this constant factor
changes. This becomes apparent when considering each summand of nosplit_score(r, a, σ, w) =∑K

k=1

∑N
n=1 iscore(rk, an + σ) separately (see Figure 2.2).

Let fk,n(σ) := iscore(rk, an + σ). As one can easily see in Figure 2.1, there are only four
σk,n|1,σk,n|2,σk,n|3 and σk,n|4 where the slope of fk,n changes.

For length(rk) ≥ length(an) these positions (with σk,n|1 < σk,n|2 < σk,n|3 < σk,n|4) are
given by

end(an) + σk,n|1 = start(rk)
start(an) + σk,n|2 = start(rk)
end(an) + σk,n|3 = end(rk)

start(an) + σk,n|4 = end(rk)

Page 13

Chapter 2. Subtitle Synchronization

Figure 2.2: Visualization of the sum of two nosplit_scores. Note how in each segment
the slope of nosplit_score(r, a, σ) is the sum of the slopes of nosplit_score(r, (a1), σ) and
nosplit_score(r, (a2), σ), and slope changes for nosplit_score(r, a, σ) can only occur for σ
where one of its summands has a slope change.

For length(rk) ≤ length(an) the second and third position are switched:

end(an) + σk,n|1 = start(rk)
end(an) + σk,n|2 = end(rk)

start(an) + σk,n|3 = start(rk)
start(an) + σk,n|4 = end(rk)

Interestingly, the since start(a1) ≤ end(a1) ≤ start(a2) ≤ . . . ≤ start(aN) ≤ end(aN) and
start(r1) ≤ end(r1) ≤ start(r2) ≤ . . . ≤ start(rK) ≤ end(aK) we obtain not only

σk,n|1 < σk,n|2 < σk,n|3 < σk,n|4

for all k and n, but also
σ1,n|1 ≤ σ2,n|1 ≤ . . . ≤ σK,n|i

for all n and i and even
σk,1|i ≥ σk,2|i ≥ . . . ≥ σk,N |i

for all k and i. This can later be used for further optimizations.
fk,n rises to and falls from value w(k, n) in min(length(rk), length(an)) so the slope value is

δk,n =
w(k, n)

min(length(rk, an))

Page 14

2.5. Algorithms

. We can now define the slope function hk,n(σ) so that frk,an(σ) =
∫ σ

σmin
hk,n(t) dt.

hk,n(σ) =



0 σmin ≤ σ < σk,n|1

δk,n σk,n|1 ≤ σ < σk,n|2

0 σk,n|2 ≤ σ < σk,n|3

−δk,n σk,n|3 ≤ σ < σk,n|4

0 σk,n|4 ≤ σ < σmax

The slope function can also be represented as a series of jumps i.e. the change of the con-
stant value at a specific offset σ. This representation is helpful later for adding two slope
functions as their jump arrays simply have to be merged. The array of jumps for hk,n is
[(σk,n|1, δk,n), (σk,n|2,−δk,n), (σk,n|3,−δk,n), (σk,n|4, δk,n)].

We now define f(σ) := nosplit_score(r, a, σ, w). The offset σ∗ where f(σ∗) = maxσ(f(σ))

is the best no-split alignment for a to r. f can be expressed as the sum of all
∑K

k=1

∑N
n=1 fk,n :

f(σ)

= nosplit_score(r, a, σ, w)

=

K∑
k=1

N∑
n=1

iscore(rk, an + σ)

=

K∑
k=1

N∑
n=1

fk,n(σ)

=

K∑
k=1

N∑
n=1

∫ σ

σmin

hk,n(t) dt

=

∫ σ

σmin

K∑
k=1

N∑
n=1

hk,n(t) dt

Since all single slope functions jump exactly 4 times the sum of all slope functions can only
jump at most 4KN times. By sorting all jumps by their offset, one can evaluate the integral
piecewise between two adjacent jumps. If two adjacent jumps occur for example on σx and σy

and the sum of all slope functions has the value c on [σx, σy) then
∫ σy

σx
c dt is simply (σy −σx) · c.

The last step is filtering f for its maximum, which can only occur on jump offsets (as f rises or
falls between jumps). Combining all steps together into one algorithm yields:

Algorithm 4 Calculating the optimal no-split alignment
Input: Valid sequences r and a
Output: σ∗ and nosplit_score(r, a, σ∗, w)

1: jumps = array(N,K, 4)
2: for k from 1 to K do . Generate jump value and jump offsets for all hk,n

3: for n from 1 to N do
4: if length(rk) ≥ length(an) then
5: δ ← w(k, n) / length(an)
6:
7: jumps[k, n, 1]← (start(rk)− end(an), δ)

Page 15

Chapter 2. Subtitle Synchronization

8: jumps[k, n, 2]← (start(rk)− start(an),−δ)
9: jumps[k, n, 3]← (end(rk)− end(an),−δ)

10: jumps[k, n, 4]← (end(rk)− start(an), δ)
11: else
12: δ ← w(k, n) / length(rk)
13:
14: jumps[k, n, 1]← (start(rk)− end(an), δ)
15: jumps[k, n, 2]← (end(rk)− end(an),−δ)
16: jumps[k, n, 3]← (start(rk)− start(an),−δ)
17: jumps[k, n, 4]← (end(rk)− start(an), δ)
18: end if
19: end for
20: end for
21:
22: jumps1d← sort(jumps, by = λ(σ, δ) : σ) . Flatten 3d array to 1d array sorted by offset
23:
24: σlast = σmin

25: slope = 0
26: fvalue = 0
27: fmax = 0
28: σ∗ = σmin

29: for (σ, δ) in jumps1d do
30: fvalue = fvalue + slope ∗ (σ − σlast) . integrate slope to obtain increase/decrease of f
31:
32: if fmax < fvalue then
33: fmax = fvalue
34: σ∗ = σ
35: end if
36:
37: slope = slope+ δ
38: σlast = σ
39: end for
40:
41: return (σ∗, fmax)

This algorithm terminates on every input. The correctness follows from the notes above.
Filling and iterating the 4KN entries in jump and jump1d array have has complexity O(KN).
Sorting the jump array as a simple 1D-array with merge sort or heap sort would have a

worst case complexity O(KN log(KN)). Since all 1D slices jump[k, n,_], jump[k,_, i] and
jump[_, n, i] are already sorted individually, one can also merge either 4K slices of length N in
O(KN logK) time or alternatively 4N slices of length K in O(KN logN) time. This can either
be done as ”merge sort” (with the already sorted sequences as leaves) or ”heap sort” (maintaining
a min-heap of the ”current minimum” of each slice). Both sorting methods, and thus the whole
algorithm, have a space complexity of O(KN) . By choosing the faster direction of the sort, we
obtain a total worst case complexity of O(KN logmin(K,N)).

Using Vec::sort_unstable() [8] (pattern-defeating quicksort[9]) or Vec::sort()[10] (stable
merge-sort variant[11]) from the Rust standard library on the jump array was about twice as
fast on real-world data than the pre-sorted heap-sort approach and slightly faster than a custom
O(KN logmin(K,N)) merge-sort.

Page 16

2.5. Algorithms

Optimal no-split alignment in O(Tr + Ta +KṄ) time and O(Tr + Ta) space

A two hour movie has around N = K = 1200 subtitles. The number of of possible jump positions
with one millisecond per time unit is about Ta + Tr = 2 · 2h · 3600 s

h · 1000
ms
s · 1

time unit
ms =

14, 400, 000 time units There are exactly K ·N = 1300 · 1300 · 4 = 6, 760, 000 jumps. This means
every few offsets there will be a jump in the jump array. Also Ta + Tr will rises linearly while
N · K will rise quadratic with respect to the length of the movie. This makes a counting sort
variant a viable alternative.

Algorithm 5 Calculating the optimal no-split alignment with counting sort
Input: Valid sequences r and a
Output: σ∗ and nosplit_score(r, a, σ∗, w)

1: jumps = array(init from σmin to σmax with 0)
2: for k from 1 to K do . Generate jump value and jump offsets for all hk,n

3: for n from 1 to N do
4: δ ← w(k, n) / min(length(an), length(rk))
5: jumps[start(rk)− end(an)] += δ
6: jumps[start(rk)− start(an)] −= δ . Order of σk,n|2 and σk,n|3 is not relevant
7: jumps[end(rk)− end(an)] −= δ
8: jumps[end(rk)− start(an)] += δ
9: end for

10: end for
11:
12: slope = 0
13: fvalue = 0
14: fmax = 0
15: σ∗ = σmin

16: for σ from σmin to σmax do
17: fvalue = fvalue + slope . integrate slope for only one time unit
18:
19: if fmax < fvalue then
20: fmax = fvalue
21: σ∗ = σ
22: end if
23:
24: slope = slope+ jump[σ]
25: end for
26:
27: return (σ∗, fmax)

Inserting all jumps into the jump array takes O(KN) iterations with O(1) complexity each.
Iterating all offsets takes O(Tr + Ta) operations. This algorithm has therefore a runtime com-
plexity of O(KN +Tr +Ta). In practice iterating over the jump array takes a negligible amount
of time compared to inserting the jump values, possibly because of more efficient utilization of
CPU caches. It is about 3 times faster for real data than algorithm 4 (see section 2.6). This
algorithm usually also takes less space than algorithm 4 since only the jump values and not the
jump offsets have to be saved.

If the ratio between between 4KN and Tr +Ta is especially low then this algorithm performs
worse and requires more memory than algorithm 4. In that case it makes sense to switch back
algorithm 4. If we choose counting sort if 4NK > c · (Tr + Ta) for some constant factor c and

Page 17

Chapter 2. Subtitle Synchronization

merge/heap-sort for 4NK ≤ c · (Tr + Ta) then the space complexity is O(min(NK,Tr + Ta)).

2.5.4 Optimal split alignment
A brute-force search for the optimal alignment for the general scoring function is not practically
possible. Even enumerating all possible splits has a complexity of O(2N) and is clearly not suited
for a real-world data (N = 1500). Instead, an algorithm using dynamic programming was chosen,
which reduces the complexity to O((Tr + Ta) ·N).

In the first section the recursion will be derived, the second section describes the algorithm
for the optimal split alignment and the third section explains methods to reduce runtime and
memory requirements.

Recursion formulas

The idea is to create a table of size N · (Tr+Ta) where each t(n, σ) represents the score only the
sub-sequence (a1, . . . , an) where the alignment’s σn is fixed to a given σ. To efficiently compute
this table, a second function s(n, σ) is needed. This function calculates the maximum score for
the first n−1 input sequence entries, where an−1+σn−1 has to end before the next span an with
offset σ. This means σn−1 can be at most start(an) − end(an−1) greater than σ. For brevity
this ”offset shift” function is called shift(n, σ).

Definition 2.5.10. For all 1 ≤ n ≤ N and all σ the functions shift, t, s are defined as

shift(n, σ) = σ + start(an)− end(an−1)

t(n, σ) = max
(σ1,...,σn) where σn=σ

and (a1,...,an)+(σ1,...,σn) is valid

score(r, (a1, . . . , an), (σ1, . . . , σn), w, p)

s(n, σ) = max
(σ1,...,σn−1) where

σn−1+end(an−1)≤σ+start(an) and
(a1,...,an−1)+(σ1,...,σn−1) is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

= max
(σ1,...,σn−1) where σn−1≤shift(n,σ)
and (a1,...,an−1)+(σ1,...,σn−1) is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

Lemma 2.5.1. For all σ ≤ σmin and 1 ≤ n ≤ N

t(n, σ) = 0

is true. For all σ ≥ σmax and 1 ≤ n ≤ N

t(n, σ) ≤ max
σmin≤σ∗<σmax

t(n, σ∗)

is satisfied.

Proof. For σ ≤ σmin all spans are positioned before any spans in r. Therefore no overlap between
sub-sequences from a and r are possible. It follows t(n, σ) = 0 for all 1 ≤ n ≤ N and σ ≤ σmin.

Let us assume σ ≥ σmax. For t(n, σ) = 0 there is σmin with t(n, σ) = t(n, σmin). So let us
additionally assume t(n, σ) > 0. For offsets greater or equal than σmax, the respective spans
can not overlap with any spans in r. An alignment (σ1, . . . , σn−1, σ) with a positive score from
t(n, σ) therefore has to have a split. Let the index of the last offset below σmax be m so that
the alignment can be written as (σ1, . . . , σm, σ, . . . , σ). The alignment (σ1, . . . , σm, σm, . . . , σm)
will then have a score greater of equal than the score of of (σ1, . . . , σm, σ, . . . , σ) because there
is one less split and possibly more overlaps with spans in r. Therefore t(n, σ) ≤ t(n, σm) where
σmin < σm < σmax.

Page 18

2.5. Algorithms

Lemma 2.5.2. For all 2 ≤ n ≤ N and all σ the recursion formula

s(n, σ) =

max

{
t(n− 1, shift(n, σ))

s(n, σ − 1)
if shift(n, σ) < σmax

s(n, σ − 1) if shift(n, σ) ≥ σmax

is satisfied.

Proof. The key observation is that going from s(n, σ − 1) to s(n, σ) there is only one additional
offset value for σn:

s(n, σ) = max
(σ1,...,σn−1) where

σn−1)≤shift(n,σ) and
(a1,...,an−1)+(σ1,...,σn−1) is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

= max



max
(σ1,...,σn−1) where

σn−1+end(an−1)=shift(n,σ) and
(a1,...,an−1)+(σ1,...,σn−1) is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

max
(σ1,...,σn−1) where

σn−1+end(an−1)≤shift(n,σ)−1 and
(a1,...,an−1)+(σ1,...,σn−1) is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

= max

{
t(n− 1, shift(n, σ))

s(n, σ − 1)

The problem with this form is that shift(n, σ) might be greater or equal σmax for some
σ < σmax which would result in an out-of-bounds access in the final algorithm. Fortunately 2.5.1
states the maximum of t(n, σ) has already occurred for σ < σmax. Therefore it is not necessary
to compute t(n− 1, shift(n, σ))) for shift(n, σ)) ≥ σmax:

s(n, σ) =

max

{
t(n− 1, shift(n, σ))

s(n, σ − 1)
if shift(n, σ) < σmax

s(n, σ − 1) if shift(n, σ) ≥ σmax

Lemma 2.5.3. For all 2 ≤ n ≤ N and all σ

t(n, σ) = score(r, (an), (σ), w, 0) + max

{
t(n− 1, σ)

s(n, σ)− p

is satisfied.

Proof. For t(n, σ) we can derive a recursion formula by separating the score calculation of an
from the score calculation preceding sequence. For that we have to differentiate the case the

Page 19

Chapter 2. Subtitle Synchronization

offset where the no-split bonus is added from the offsets where it is not added:

t(n, σ) = max
(σ1,...,σn) where σn=σ

and (a1,...,an)+(σ1,...,σn) is valid

score(r, (a1, . . . , an), (σ1, . . . , σn), w, p)

=

K∑
k=1

iscore(rk, an)w(k, n)

+ max



max
(σ1,...,σn−1) where σn−1=σ

and (a1,...,an−1)+(σ1,...,σn−1)
is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)

max
(σ1,...,σn−1) where

end(an−1)+σn−1≤start(an)+σ
and (a1,...,an−1)+(σ1,...,σn−1)

is valid

score(r, (a1, . . . , an−1), (σ1, . . . , σn−1), w, p)− p

= score(r, (an), (σ), w, 0) + max

{
t(n− 1, σ)

s(n, σ)− p

By combining all recursion formulas we obtain the central theorem to efficiently calculate the
optimal split alignment.

Theorem 2.5.2. For all 1 ≤ n ≤ N and all σ

s(n, σmin) = 0

t(1, σ) = score(r, (a1), (σ), w, p)

is true. For all 2 ≤ n ≤ N the recursion formulas

s(n, σ) =

max

{
t(n− 1, shift(n, σ))

s(n, σ − 1)
if shift(n, σ) < σmax

s(n, σ − 1) if shift(n, σ) ≥ σmax

t(n, σ) = score(r, (an), (σ), w, 0) + max

{
t(n− 1, σ)

s(n, σ)− p

are satisfied. The optimal split score is given by maxσmin≤σ<σmax t(N, σ). If σ∗
N is an offset

where t(N, σ∗
N) = maxσmin≤σ<σmax t(N, σ) then the optimal alignment σ∗ is given by (σ∗

1 , . . . , σ
∗
N)

where σ∗
n−1 = to(n, σ

∗
n) for all 2 ≤ n ≤ N and to is defined as

so(n, σ) =


shift(n, σ)

if shift(n, σ) ≤ σmax

and s(n, σ − 1) < t(n− 1, shift(n, σ))

or if σ = σmin

so(n, σ − 1) otherwise

to(n, σ) =

{
σ if t(n− 1, σ) ≥ s(n, σ)− p

so(n, σ) otherwise

Page 20

2.5. Algorithms

Proof. s(n, σmin) = 0 is zero as the condition for the offsets is σn−1 + end(an − 1) ≤ σ +
start(an). This means an + σmin is shifted in front of all spans in r and an−1 has to end
before an. Together with the condition that (a1, . . . , an−1) + (σ1, . . . , σn−1) is valid, all spans
in (a1, . . . , an−1) + (σ1, . . . , σn−1) do not overlap with any spans in r and therefore the score is
zero. t(1, σ) = score(r, (a1), (σ), w, p) since no split can occur for only one input sequence span
and σ1 is equal σ.

The recursion formulas are given by 2.5.2 and 2.5.3. From 2.5.1 directly follows that the
maximum t(N, σ) for any σ occurs for a σ within σmin ≤ σ < σmax.

The derivations of the recursion formulas contain for a given σn = σ how σn−1 has to be
chosen to obtain the maximum score. For s(n, σ) the score is the same as s(n, σ − 1) except if
t(n − 1, shift(n, σ)) is larger than s(n, σ − 1). t(n − 1, shift(n, σ)) represents the score where
σn−1 = shift(n, σ). If the score is unchanged from σ − 1 to σ, so is the offset for so(n, σ − 1)
and so(n, σ). σmin has to serve as a starting point for the recursion. Since s(n, σmin) = 0, we
can choose the offset σn−1 = shift(n, σmin) as the resulting score is zero (first statement of this
theorem). All cases combined yield

so(n, σ) =


shift(n, σ)

if shift(n, σ) ≤ σmax

and s(n, σ − 1) < t(n− 1, shift(n, σ))

or if σ = σmin

so(n, σ − 1) otherwise

Similarity for to(n, σ) the offset depends on whether t(n−1, σ) is greater or equal s(n, σ)−p.
If t(n−1, σ) is indeed greater or equal then the best score is achieved by not splitting the subtitle
sequence, therefore σn−1 = σ. In the other case the best offset for σn−1 is calculated with
so(n, σ). This yields

to(n, σ) =

{
σ if t(n− 1, σ) ≥ s(n, σ)− p

so(n, σ) otherwise

Algorithm

The recursion formula can be evaluated by the dynamic programming method from the bottom
up. For each phase n from 1 to N there are Tr + Ta sub-steps for σ from σmin up to σmax − 1.
The data for t in phase n is not needed after phase n+1 and can therefore be discarded. s(n, σ)
is only needed for t(n, σ) and computed using the last s(n, σ − 1). It can therefore simply be
implemented as single variable.

By using algorithm 5 to calculate nosplit_score we obtain the following algorithm. As we
will later see it is too inefficient and requires too much memory to be useful, but provides a
starting point for optimization.

Algorithm 6 Computing the optimal split alignment
Input: valid span sequences r and a, the weighting w and split penalty p
Output: optimal split alignment σ∗ = (σ∗

1 , . . . , σ
∗
n) and score(r, a, σ∗, w, p)

1: function Scores(n) . calculates nosplit_score(r, an, σ, w) for σ from σmin to σmax − 1
2:

Page 21

Chapter 2. Subtitle Synchronization

3: jumps← array(from σmin to σmax − 1)
4: for k from 1 to K do . Fill jumps array like in algorithm 5
5: δ ← w(k, n) / min(length(an), length(rk))
6: jumps[start(rk)− end(an)] += δ
7: jumps[start(rk)− start(an)] −= δ . Order of σk,n|2 and σk,n|3 is not relevant
8: jumps[end(rk)− end(an)] −= δ
9: jumps[end(rk)− start(an)] += δ

10: end for
11:
12: slope← 0
13: score← NewArray(σmin to σmax − 1)
14: score[σmin] = 0
15: for σ from σmin + 1 to σmax − 1 do . Fill score using jumps (algorithm 5)
16: score[σ]← score[σ − 1] + slope . Integrate slope for one time unit
17: slope← slope+ jumps[σ]
18: end for
19:
20: return score
21: end function
22:
23: tn−1 ← Scores(1)
24: to ← InitArray((2 to N)× (σmin to σmax − 1))
25: for n from 2 to N do . Phase n calculates t(n,_) and s(n,_)
26: scores← Scores(n)
27: s← 0 . Initialize running variable s with value s(n, σmin) = 0
28: so ← σmin . Initialize running variable so with value so(n, σmin) = σmin

29: for σ from σmin to σmax − 1 do
30: // Variable s is equal to s(n, σ) and variable so is equal to so(n, σ)
31:
32: /*

33:

Calculate

t(n, σ) = score(r, (an), (σ), w, 0) + max

{
t(n− 1, σ)

s(n, σ)− p

to(n, σ) =

{
σ if t(n− 1, σ) ≥ s(n, σ)− p

so(n, σ) otherwise

34: */
35:
36: if tn−1[σ] ≥ s− p then
37: tn[σ]← scores[σ] + tn−1[σ]
38: to[n, σ]← σ
39: else
40: tn[σ]← scores[σ] + s− p
41: to[n, σ]← so
42: end if
43:
44: /*

Page 22

2.5. Algorithms

45:

Calculate for σ + 1 the new

s(n, σ) =

max

{
t(n− 1, shift(n, σ))

s(n, σ − 1)
if shift(n, σ) < σmax

s(n, σ − 1) if shift(n, σ) ≥ σmax

so(n, σ) =


shift(n, σ)

if shift(n, σ) ≤ σmax

and s(n, σ − 1) < t(n− 1, shift(n, σ))

or if σ = σmin

so(n, σ − 1) otherwise

46: */
47: if shift(n, σ) < σmax then
48: if s < tn−1[shift(n, σ)] then
49: s← tn−1[shift(n, σ)]
50: so ← shift(n, σ)
51: end if
52: end if
53: end for
54: end for
55:
56: σ∗ ← Array(from 1 to N)
57: σ∗[N]← σmin

58: score∗ ← 0 . t(N, σmin) is 0 (lemma 2.5.1)
59: for σ from σmin to σmax do . Find σ∗

N where t(N, σ∗
N) = maxσmin≤σ<σmax t(N, σ)

60: if score∗ < tn−1[σ] then
61: score∗ ← tn−1[σ]
62: σ∗[N]← σ
63: end if
64: end for
65:
66: for n from N to 2 do . Evaluate σ∗

n−1 = to(n, σ
∗
n) for all 2 ≤ n ≤ N

67: σ∗[n− 1]← to[n, σ
∗[n]]

68: end for

This algorithm is correct as it simply evaluates theorem 2.5.2. In this form it is unfortunately
not very practical.

Scores has a runtime complexity of O(K + Tr + Ta) but since K < Tr, it can be simplified
to O(Tr + Ta). Scores also creates two arrays with Tr + Ta each and therefore has a space
complexity of O(Tr + Ta). The main loop iterates N − 1 times where each iteration has a
O(Tr + Ta) time complexity. The last two loops in the algorithm have a runtime of O(Tr + Ta)
and O(N) and are therefore negligible. The total runtime complexity is then O(N · (Tr + Ta)).
In practice synchronizing a subtitle to a full-length movie takes several minutes, which is too
slow to be useful.

The memory requirements also prevent this algorithm to run in the main memory of current
computers. The problem is table to which has (N − 1) · (Tr + Ta) entries. For a two hour movie
with one millisecond per time unit and N = 1000 we obtain 13.4 billion entries. If every offset is
saved in 4 bytes, the table contains about 53.6GB of data.

Page 23

Chapter 2. Subtitle Synchronization

Reducing memory footprint

The amount of needed memory can be greatly reduced by only combining offsets into segments
where the ”slope” stays constant. If for example for a given n and all values σ the value tn−1[σ] is
always greater or equal than s− p then to[n, σ] is always set to σ. The whole data of to[n,_] can
then be compressed into the single information ”starts at σmin and increases by 1 time unit from
one value to the next”. Similarly for so[n,_] if s ≥ tn−1[shift(n, σ)] is satisfied repeatedly, then
so[n,_] has large segments where it stays constant. If on the other hand s < tn−1[shift(n, σ)] is
repeatedly satisfied, then sn[n, σ] = shift(n, σ) and so[n,_] has again a segment where difference
between subsequent entries is exactly 1.

This means if the data is stored in segments, a new entry only has to be created if the
evaluation condition switches between t[n, σ] and t[n, σ−1], or if the evaluation condition switch
from s[n, σ − 1] to s[n, σ]. Although a theoretical limit on the number of switches is hard to
establish, the amount of data stayed well below 150MB for all 118 tested subtitle alignments.

Similar to algorithm 4 and the described memory optimization, the performance can be
increased by also processing the score data for t[n,_] and s[n,_] as single segments whenever
the slope of the score is constant.

A segment containing score information is needed, as well as a segment type that contains
score and offset information (which for example combines the data from t(n, σ) and to(n, σ)).

struct ScoreSegment{
s t a r t : Of f se t ,
end : Of f se t ,

s c o r e : Score ,
s l ope : Score

}

// a ’ dua l segment ’ con ta ins both score and o f f s e t in format ion
struct DualSegment{

s t a r t : Of f se t ,
end : Of f se t ,

s c o r e : Score ,
s l ope : Score ,

// ’ o f f s e t ’ i s the o f f s e t when the segment s t a r t s . . .
o f f s e t : Of f se t ,
// . . . and i f drag i s true , the o f f s e t s have a s l o p e o f one
drag : boolean

}

// d e f i n e arrays o f segments where each segment
// s t a r t s where the l a s t segment ends
type ScoreBuf f e r = Vec<ScoreSegment >;
type DualBuffer = Vec<DualSegment >;

Instead of returning buffers, the functions’ inputs and outputs are iterators and segment
processing is done in an online fashion. This way much less memory has to be allocated and
deallocated, and most operations can be done in the CPU registers if the compiler inlines all
iterator steps into one function.

Page 24

2.5. Algorithms

A score segment iterator is denoted by [ScoreSegment] and a dual segment iterator is denoted
by [DualSegment].

A few functions which are very simple on their own are needed to elegantly implement the
optimal split algorithm. Their uses becomes apparent when composed.

• [ScoreSegment]→ shift(σshift)→ [ScoreSegment]: Adds σ to start and end attribute.
This results in setting the score of out[σ] to in[σ − σshift] for all σmin to σmax − 1.

• [ScoreSegment] → fix_bounds(σmin, σmax) → [ScoreSegment]: Cut off and delete all
segments before σmin and append a zero-score segment to the end which goes to σmax. It
is only used after a shift(σ) where σ is non-positive to restore the original boundaries.

• [ScoreSegment] → add_score(s) → [ScoreSegment]: Adds s to score value resulting in
out[σ] = in[σ] + s.

• [DualSegment] → add_score_iter(in2 : [ScoreSegment]) → [DualSegment]: Add the
score of another score iterator to the scores of the dual segment iterator (out[σ] = in[σ] +
in2[σ]). The resulting number of segments is at most the sum of the segment counts of
both input iterators together. The offsets in the dual iterator are not changed.

• [ScoreSegment] → annotate_with_offset(σshift) → [DualSegment]: Transform the
ScoreSegment iterator into a DualSegment iterator, by setting offset ← start + σ and
drag ← true. This means the offset of out[σ] is set to σ + σshift.

• [DualSegment] → left_to_right_maximum() → [DualSegment]: Go over all segments
and save maximum encountered score smax. If the subsequent segment drops below smax,
return a segment with score smax and the offset where smax occurred until a segment again
has a higher score than smax.

• maximum([DualSegment], [DualSegment]) → [DualSegment]: Two takes two input itera-
tors and return the segments which has the higher score.

• [ScoreSegment] → save_score() → ScoreBuffer This function actually executes all
iterators and stores the score segments in an array.

• [DualSegment]→ save_dual()→ (ScoreBuffer,OffsetBuffer) This function actually
executes all iterators and stores the segments in two arrays. It separates the score data
from the offset data. It also combines subsequent segments if the end score/offset of one
segment is the start score/offset of the next segment and the segments have the same slope.

Algorithm 7 Optimal split alignment with segment iterators
Input: valid span sequences r and a, the weighting w and split penalty p
Output: optimal split alignment σ∗ = (σ∗

1 , . . . , σ
∗
n) and score(r, a, σ∗, w, p)

1: tn−1 ← GetScoreIter(r, (an)).save_score()
2:
3: for n in 2 to N do
4: // t_iter has at position σ the score t(n− 1, σ) and the offset σ
5: t_iter ← tn−1.as_iter() . tn−1[σ] is t(n− 1, σ).
6: .annotate_with_offset(0) . Attaches offset σ to t_iter[σ]
7:
8: // s_iter has at position σ the score t(n− 1, shift(n, σ))
9: // and the offset shift(n, σ)

Page 25

Chapter 2. Subtitle Synchronization

10: shift_value← start(an)− end(an−1)
11: s_iter ← tn−1.as_iter()
12: .shift(−shift_value) . Set score of s_iter[σ] to t(n− 1, shift(n, σ)).
13: .fix_bounds(σmin, σmax) . Restore boundaries as σmin to σmax − 1.
14: .annotate_with_offset(shift_value) . Set offset of s_iter[σ] to

shift(n, σ).
15:
16: /*

17:

Sweep across s_iter from left to right and only copy scores/offsets
if the new score is higher than all previous scores. Otherwise
keep the previous high score and its offset. This is done segment-
wise and has the potential to greatly reduce the number of
segments if the current s_iter has many valleys. Afterwards the
score of s_iter[σ] is s(n, σ) and the offset of s_iter[σ] is so(n, σ).

18: */
19: s_iter ← s_iter.left_to_right_maximum()
20:
21: /*

22:

Creates an score segment iterator with

score_iter[σ] = score(r, (an), (σ), w, p)

like algorithm 4. Since there only need to be merged 4 jump slices
with K jumps each, this is done in O(K). The resulting number of
score segments is 4K + 1 as there are 4K slope changes.

23: */
24: score_iter ← GetScoreIter(r, (an))
25:
26:
27: /*

28:

Calculate

tn[σ] = score(r, (an), (σ), w, 0) + max

{
t(n− 1, σ)

s(n, σ)− p

to[n][σ] =

{
σ if t(n− 1, σ) ≥ s(n, σ)− p

so(n, σ) otherwise

29: */
30: (tn, to[n])← maximum(t_iter, s_iter.add_score(−p))
31: .add_score_iter(score_iter)
32: .save_dual()
33:
34: tn−1 ← tn
35: end for
36:
37: σ∗ ← InitArray(from 1 to N)
38:
39: // Get the highest score in the ScoreBuffer and the σ where it occurs.

Page 26

2.5. Algorithms

40: (σ∗[N], score)← tn−1.get_maximum_point()
41: for n in 2 to N do . Extract the optimal alignment σ∗ from to.
42: σ∗[n− 1]← to[n].get_offset_at(σ∗[n])
43: end for
44:
45: return (σ∗, score)

Further improvements in memory usage can be made by discarding the start attribute in
ScoreBuffers for the segments as it is simply end of the next segment. The start of the first
segment in the buffers is always σmin.

Although this algorithm greatly reduces the memory usage, the runtime performance is not
increased compared to algorithm 6. The problem is that the number of output segments of the
maximum operation has an upper bound of the sum of the number of input segments. This means
tn might have twice as many segments as tn−1. add_score_iter can also introduce up to 4K
new segments. tn will also always have at least as many segments as tn−1. The observed behavior
is that each iteration of the main loop takes more time than the previous iteration until each
score segment has the length of one time unit. When that happens, algorithm 7 becomes slower
than 6 because of the overhead of ”segment” processing.

Since each iteration of the main loop takes time proportional to the number of segments of
tn−1, a large speedup can be achieved by reducing this number. The central idea is merging
segments which have only slightly different slopes. This merging of segments only changes the
implementation of save_dual(), which is presented in the next section.

Increasing performance by merging score segments

The merging of score segments should not introduce an error of more than ε, where ε is a constant
which trades alignment accuracy for algorithm speed.

Although there exist several algorithms for line simplification like the Douglas-Peucker-
Algorithm or Visvalingam–Whyatt-Algorithm, they require random access to all points on the
line and always reuse a subset of these points (which is not required in this case). The typically
also have a runtime complexity of more than O(m) for m line segments. Instead we will use a
custom line simplification algorithm.

The key function for a simple O(m) online algorithm is the slopes(p, t, ε) function, which
takes a pivot point p, a ”target point” t and a maximum error ε as input. It returns an interval
of slopes where all lines through p with a slope s ∈ slopes(p, t, ε) have a maximum error of ε at
position tx.

slopes(p, t, ε) = [

(ty + ε− py)/(tx − px),

(ty − ε− py)/(tx − px)

]

Now the simplification can be done in three steps:

1. For the current segment with start point start0 end end point end0 choose the pivot point
p as middle segment middle point p = (start0 + end0)/2. Calculate slopes s = (p, end0, ε).
This means all lines through p with slopes in s stay within the error ε compared to the
current segment.

Page 27

Chapter 2. Subtitle Synchronization

2. Pull next segment with start point start and end point end from the preceding iterator.
Calculate s′ = s ∩ slope(p, start, ε) ∩ slope(p, end, ε). If s′ is non-empty there exists a line
l through pivot point p so that the error between l and the segments is less or equal ε.
Repeat this step, until...

3. ...s′ is empty, so no such line through p exists. In that case all previous segments can be
merged to a single segment which goes through p and has slope in s (for example choosing
the middle of the slope interval). The current segment is then used as starting point in
step 1.

This approach reduces the runtime from several minutes to a few seconds without sacrificing
much of the alignment quality (see section 2.6).

It is possible to choose ε different in each iteration of the main loop of algorithm 7. Since
the number of segments is very small in the first iterations, it is not necessary to aggressively
merge segments. The error εn for iteration n was chosen as εn = (0.2 + 0.8 n

N) · 0.05 · E in the
reference implementation for a user defined constant E. The (0.2 + 0.8 n

N) leads to an almost
constant time per iteration and 0.05 is a scaling factor so that useful values for E start from 1
(see section 2.6).

To analyze the upper bound on the total introduces score error, note that all operations
except save_dual do not increase the maximum error value:

• shifting: This case is trivial. If all scores have at most an error of ε, after shifting all scores
have an error of ε afterwards.

• adding x̃ = x + δ and y where |δx| ≤ ε: if the input value is x + δ, where x is the actual
value and δ the error, the result is x̃ + y = x + y + δ will exactly have an error of δ. So
add_score() and add_score_iter() preserve the maximum error ε.

• maximum of x̃ = x + δx and ỹ = y + δy where |δx| ≤ ε and |δy| ≤ ε: Without loss of
generality let’s assume x ≥ y:

|max(x+ δx, y + δy)−max(x, y)|
= |max(x+ δx, y + δy)− x|
= |max(x+ δx − x, y + δy − x)|
= |max(δx, y − x+ δy)|

Since y − x ≤ 0 we have δx ≤ ε and y − x+ δy ≤ ε and therefore max(δx, y − x+ δy) ≤ ε.
On the other hand we have ε ≤ δx which results in ε ≤ max(δx, y − x+ δy).
Both cases combined together prove |max(δx, y − x+ δy)| ≤ ε.
So left_to_right_maximum() and maximum() preserve the maximum error ε.

The error of the optimal split alignment score is therefore at most
∑N

n=2 εn. Note that for
higher N the error rises, but so does the optimal split alignment score.

Normalizing the split penalty by video length

Larger N and K result in higher scores. If the same split penalty p is used for longer subtitles
and movies, more splits will be introduced in total. To avoid this behavior, a normalized split
penalty P is divided by the maximum possible score, which is min(K,N) (given all w(k, n) ≤ 1):

p = 0.001 · P/min(K,N)

Page 28

2.6. Results

The 0.001 is a constant factor to shift useful values for P into the single digit range (see
section 2.6). If P = 1000, it is guaranteed that the optimal split score is the same as the optimal
no-split score.

2.5.5 Correcting differences in framerate
Although modern container formats can save video streams with an arbitrary framerate, due to
the legacy of analog television almost all videos use one a few common framerates.

Differences in playback speed are assumed to be a result of re-encoding a video stream with a
slightly different common framerate. Only a few common fractions are therefore possible, which
are

• 24/23.976 = 30/29.97 = 60/59.94 = 1001/1000

• 25/24

• 25/23.976

and their reciprocal values. In total there are 7 ratios, including the ratio 1. The ratio can
be guessed by calculating the optimal alignment for each skew factor. For each ratio the scaled
input file is aligned using the fast no-split hybrid of algorithm 4 and algorithm 5. The alignment
with the highest score is assumed to have to the correctly scaling for the input file.

For the default weighting function, the iscore is dependent on the ratio of the input span
and reference, which is changed if only the input spans are stretched or compressed. Therefore
the weighting function w(a, b) = min(length(a), length(b)) was chosen, so that iscore(a, b) =
overlap(a, b). In the test database there was at least one case where the standard weighting
function lead to guessing the wrong ratio, while iscore(a, b) = overlap(a, b) resulted in the
right skew factor.

For 118 subtitle files downloaded from an online subtitle database by movie id, 27 subtitle files
had a wrong playback speed compared to the their reference video. This method was able to guess
the correct ratio in every case. For the other 91 subtitle files with an already correct framerate,
3 subtitles were guessed to have non-unit ratio between the playback speeds. Comparing the
highest score to the second highest score yielded an average increase of 3%.

Given a reference subtitle instead of the VAD spans from the movie, the framerate was
corrected in every case. The highest score was on average about 50% higher than the second
best score. This suggests an improved voice-activity detection might increases the accuracy and
avoid the 3 incorrectly classified subtitle files.

2.6 Results
A test database containing 29 full-length movies in German, English and Japanese, was created
to analyze accuracy of the algorithms on real subtitle and movie data. Perfectly synchronized
English subtitles were picked to act as references. Additional 118 English subtitles for the movies
with arbitrary synchronizations were then aligned using the different algorithms and compared
to the respective reference subtitle.

The 29 references subtitles were obtained online using the API of the popular OpenSubtitles.
org subtitle database [12]. The API provides searching subtitles using the hash of the movie file
as well as listing other subtitle files for the same movie. By querying with a movie hash, a list
of supposedly perfectly synced subtitle files for the requested movie file is returned. In practice
the results were very inaccurate. Of 39 movie files

Page 29

OpenSubtitles.org
OpenSubtitles.org

Chapter 2. Subtitle Synchronization

• 10 hashes could not be found

• 2 hashes returned badly timed subtitle files with a no-split offset of 3 seconds and 17 seconds

• 5 hashes returned the subtitles of a different movie

The 2 subtitle files were manually corrected and are included in the following tests. The
problematic 5 wrong subtitle files were circumvented by analyzing all subtitles in the response.
Only subtitles that referenced the movie which occurred the most in the response were accepted.
The highest-scoring accepted subtitle was chosen as ground-truth subtitle for the movie. In the
5 cases this approach picked the right subtitle. This statistics highlights the importance of an
offline synchronization algorithm if subtitles are obtained using this method.

To objectively compare the different configurations of alignment (no-split, split, high/low
values of P , ...) only the 115 of the 118 subtitles where the framerate was guessed correctly
are included in the generation of the following figures. For the wrong framerates, the resulting
subtitles were unusable no matter the algorithm configuration. The discussion of optimal values
for E and P are therefore chosen under the assumption that the framerate is correctly guessed.

A performance figures were created on a notebook with an Intel™i7-6500U processor and a
Crucial SATA SSD.

Distance metric

In the following tests the possibly unsynchronized subtitles were synchronized to their respective
movie or reference subtitle. The distance between corresponding lines after synchronization was
used as indicator of the quality of the synchronization.

The distance of lines was defined as

min(length(r\a), length(a\r)))

where r\a denotes the interval of r excluding the interval a. This distance metric is defined as
0, if and only if one line contains the other. This accounts for different lengths of the same line
in the two subtitles.

Finding corresponding lines

The reference subtitles and arbitrarily synchronized input subtitles might differ considerably. A
map of corresponding lines has to be generated for each relevant pair of reference and input
subtitles to be able to measure the quality of the alignment.

The similarity of subtitle lines was calculated as edit distance (obtained by the Smith-
Waterman-Algorithm) divided by the text length of the longer subtitle sentence.

Afterwards an ”Edit Distance” between the subtitle files itself was generated, again using the
Smith-Waterman-Algorithm. If lines with a similarity over 80% were combined the score was
increased by 1. Otherwise the score was not increased, as there was no penalty for ”deletions”
or ”insertions”.

This yields a 1:1 mapping, 1:n mapping or n:1 mapping of some reference lines to some input
lines while respecting their order in the subtitle files. Lines that are part of a 1:n or n:1 mapping
are discarded and not considered for a corresponding line pair (mainly caused by split lines in
one subtitle).

Of the 1:1 mappings the reference subtitle line was compared to all other input subtitle lines
and vice versa. If there was at least one line line that yielded a similarity above 40%, this pair
was also discarded. This prevents false pairings for common lines like ”Okay”.

In total only 25% of lines of the 118 subtitles are part of a pairing.

Page 30

2.6. Results

Discarding small spans given by the WebRTC VAD

Figure 2.3 shows a large discrepancy in the distribution of span lengths when comparing subtitle
data to the result of the WebRTC VAD. While real subtitle files rarely include lines with a length
of less than one second, most of the spans from the voice activity detection are smaller than half
a second.

Figure 2.3: Lengths of subtitle spans and VAD spans

Inspecting the spans generated by the WebRTC VAD shows that it is very sensitive to noises
like footsteps, opening/closing of doors, background music, etc. Interestingly, discarding smaller
VAD spans actually improves the alignment accuracy (figure 2.4) as well as improving the runtime
(since K is smaller). The optimum is reached when discarding spans shorter than 500ms, as 99%
of all spans are within 1250ms of their corresponding reference and 90% of all spans are within
800ms of their corresponding reference.

All following statistics were therefore gathered with a minimum VAD span length of 500ms.

Page 31

Chapter 2. Subtitle Synchronization

Figure 2.4: Alignment accuracy of algorithm 7 when discarding small spans from voice-activity-
detection

Comparing approximation values E

Figure 2.5 shows that the approximation values E less or equal 1 do not influence the resulting
alignment quality. For E between 2 and 5 the resulting alignment quality fluctuates slightly
but stays within reasonable amounts. For approximation values above 5 the alignment quality
degrades quickly. The approximation value generally influences alignments to audio data more
than alignments to subtitle data.

Figure 2.6 shows the time required by the algorithm depending the approximation bound
E. Using larger bounds clearly reduces the required runtime of the approximate optimal split
algorithm. A good speed-to-quality ratio is given by values from 2 to 4.

Page 32

2.6. Results

Figure 2.5: Alignment accuracy for different approximation bounds E

Figure 2.6: Runtime of approximate optimal split algorithm 7 with approximation bound E

Page 33

Chapter 2. Subtitle Synchronization

Comparing split penalties P

Figure 2.7: Alignment accuracy for different split penalties

Figure 2.7 shows the accuracy for different split penalties P . Values below 20 yield the best
results both when aligning to audio and aligning to subtitles.

When choosing the the split penalty too low, the split algorithm will introduce splits in the
wrong positions which degrades the alignment quality. A large difference for this minimum split
penalty can be observed between aligning to audio and aligning to subtitles.

The accuracy decreases for audio data when P is lower than 6, and creates large errors for
values lower than 1. When aligning to the reference subtitle instead, on the other hand, a lower
alignment quality can not be observed until P is lowered to 0.1.

Even when allowing more splits for subtitle-to-subtitle alignments the the same offset is chosen
for each split segment. This suggests that the similarity reference subtitle spans and the input
spans is much higher than the similarity between the WebRTC VAD spans and the input spans.

Comparing algorithm variants

Figure 2.8 show the alignment accuracy for all combinations of the following configurations:

• using a no-split algorithm or a split algorithm (algorithm 7; E = 2, P = 6)

• correcting framerate differences (denoted by FPS) and not correcting framerate differences

Page 34

2.6. Results

• aligning to the reference subtitle or aligning to the WebRTC VAD spans from the audio
(with a minimum length of 500ms)

Figure 2.8: Alignment accuracy for different algorithm variants

The no-split alignment to the reference subtitle with framerate correction yields exceptional
results (see figure 2.8). 99% of all lines are within 800ms of its target position and 95% of all
lines are even placed within 400ms of their corresponding reference span. Switching to a no-split
alignment, the accuracy degrades for 4% of the spans, while remaining about the same for the
best 95% of the spans. Without performing framerate correction, the alignment quality degrades
severely. That the difference between the no-split and split alignment is higher if no framerate
correction occurs, suggests that the split algorithm can substitute as a crude framerate correction.

Aligning the subtitles to the audio yields very similar data to aligning to the reference subtitle.
All subtitle spans are generally 300ms to 500ms farther from the reference spans compared to
directly aligning to the reference subtitle.

Page 35

Chapter 2. Subtitle Synchronization

Figure 2.9: Runtime comparison of algorithm variants for full-length movies

An important criterion for the alignment algorithms is their total runtime. All alignment
algorithms finish within 8 seconds (see figure 2.9).

Generating the optimal no-split alignment done in only 200 to 300 milliseconds. Generating
the approximate optimal split alignment takes about 2 seconds. Correcting the framerate take
additional 1.5 to 2 seconds (as this computes the no-split alignment 7 times). The spans for
the audio are generated by the WebRTC VAD module in 1 to 1.5 seconds. Extracting and re-
sampling the audio to 8000 samples per second using FFmpeg [13] generally takes longer than
any alignment algorithm and is mainly limited by the speed of the hard drive. The complete
process of aligning a subtitle to a 2-hour movie therefore takes less than 30 seconds in any case.

Classifying subtitles

A ”good subtitle” is defined here as

• less than 25% of lines having a distance of at most 300ms

• less than 70% of lines having a distance of at most 500ms

• less than 95% of lines having a distance of at most 1000ms

• less than 99% of lines having a distance of at most 1300ms

The more relaxed constraints to the ones given by Netflix’ style guide are due to the reference
file itself being slightly inaccurate. Stricter conditions result in a large percentage of subtitle
files to be classified as ”bad”, even though they are not distinguishable from the reference sub-
title. Figure 2.10 also includes the subtitles in the database where the framerate was guessed
incorrectly.

Page 36

2.6. Results

Figure 2.10: Alignment error rates using algorithm 7 (P = 6, E = 2) with framerate correction

Page 37

Chapter 3

Conclusion

Synchronizing subtitles to reference subtitles using the presented algorithms shows exceptional
results. All 118 subtitles in the database could be aligned perfectly.

The more complicated problem of synchronizing subtitles to the audio of a movie exhibits
a higher error rate of about 12%, which is still well above the 50% error rate of using possibly
unsynchronized subtitles from online databases. The largest problem with movie alignments
is the low confidence when guessing differences of playback speed between the movie and the
subtitle file. To solve this problem, a more accurate voice-activity-detection than the one of the
WebRTC module is needed. Since the same alignment algorithm is used for audio-synchronization
and subtitle-synchronization, a good voice-activity-detection module likely also results in all
subtitles being perfectly aligned with the movie.

Since the complete process of aligning a subtitle file takes less than 30 seconds for full-length
movies, it is suitable for real-time correction in video players.

An approach that was not discussed in this paper is exploiting a closer relationship between
the voice-activity-detection and the alignment algorithms. The alignment algorithms in this
thesis assume binary decisions for each segment of time. When analyzing segments of audio, the
resulting probability of a segment containing speech is a real value. Using this value directly
instead of its relationship to a certain threshold provides the alignment algorithm with much more
fine-grained data. Unfortunately, the algorithm speed optimizations rely on the low number of
switches between the speech and nonspeech segments. Using the probabilities directly therefore
needs additional research.

Another way to achieve more robust subtitle correction is to include content similarity in
the the weights between reference spans and input spans. For subtitles as reference data, the
edit distance of the respective lines could serve as a basis. For audio data as reference data, for
example syllables could be analyzed. Although this approach is not language-agnostic, it might
yield superior alignment quality if a same-language synchronization is performed.

Page 39

Bibliography

[1] Timed text style guide: General requirements. https:
//partnerhelp.netflixstudios.com/hc/en-us/articles/
215758617-Timed-Text-Style-Guide-General-Requirements, 2019. accessed Septem-
ber 28, 2019.

[2] Source code of the webrtc voice-activity-detection. https://github.com/dpirch/libfvad, 2019.
accessed September 23, 2019.

[3] Ying Dongwen, Junfeng Li, Qiang Fu, Y. Yan, and Jianwu Dang. Voice activity detection
based on a sequential gaussian mixture model. APSIPA ASC 2011 - Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference 2011, pages 861–866,
01 2011.

[4] Z. Shen, J. Wei, W. Lu, and J. Dang. Voice activity detection based on sequential gaussian
mixture model with maximum likelihood criterion. In 2016 10th International Symposium
on Chinese Spoken Language Processing (ISCSLP), pages 1–5, Oct 2016.

[5] F. Eyben, F. Weninger, S. Squartini, and B. Schuller. Real-life voice activity detection
with lstm recurrent neural networks and an application to hollywood movies. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 483–487, May
2013.

[6] Bernhard Lehner, Gerhard Widmer, and Reinhard Sonnleitner. Improving voice activity
detection in movies. In Sixteenth Annual Conference of the International Speech Communi-
cation Association, 2015.

[7] Ronald J Baken and Robert F Orlikoff. Clinical measurement of speech and voice. Cengage
Learning, 2000.

[8] Rust language documentation of Vec::sort_unstable(). https://doc.rust-lang.org/
std/vec/struct.Vec.html#method.sort_unstable, 2019. accessed September 18, 2019.

[9] Orson Peters. Pattern-defeating quicksort. https://github.com/orlp/pdqsort, 2019. ac-
cessed September 18, 2019.

[10] Rust language documentation of Vec::sort(). https://doc.rust-lang.org/std/vec/
struct.Vec.html#method.sort, 2019. accessed September 18, 2019.

[11] Implementation of stable merge sort in the rust standard library. https://github.com/
rust-lang/rust/commit/721609e4ae50142e631e4c9d190a6065fd3f63f7, 2019. accessed
September 18, 2019.

Page 41

https://partnerhelp.netflixstudios.com/hc/en-us/articles/215758617-Timed-Text-Style-Guide-General-Requirements
https://partnerhelp.netflixstudios.com/hc/en-us/articles/215758617-Timed-Text-Style-Guide-General-Requirements
https://partnerhelp.netflixstudios.com/hc/en-us/articles/215758617-Timed-Text-Style-Guide-General-Requirements
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.sort_unstable
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.sort_unstable
https://github.com/orlp/pdqsort
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.sort
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.sort
https://github.com/rust-lang/rust/commit/721609e4ae50142e631e4c9d190a6065fd3f63f7
https://github.com/rust-lang/rust/commit/721609e4ae50142e631e4c9d190a6065fd3f63f7

Bibliography

[12] Documentation of opensubtitles’ xmlrpc api. https://trac.opensubtitles.org/
projects/opensubtitles/wiki/XMLRPC, 2019. accessed September 28, 2019.

[13] Ffmpeg: A complete, cross-platform solution to record, convert and stream audio and video.
https://www.ffmpeg.org/, 2019. accessed September 28, 2019.

Page 42

https://trac.opensubtitles.org/projects/opensubtitles/wiki/XMLRPC
https://trac.opensubtitles.org/projects/opensubtitles/wiki/XMLRPC
https://www.ffmpeg.org/

	Introduction
	Subtitle Synchronization
	Process overview
	Patterns of synchronization errors
	Subtitle Style Guide
	Voice-Activity-Detection
	Algorithms
	Preparation of subtitle spans
	Calculating score efficiently
	Optimal no-split alignment
	Optimal split alignment
	Correcting differences in framerate

	Results

	Conclusion

