
Technische Universität München
Department of Mathematics
Mathematical Modeling of Biological Systems

Broad Institute of MIT and Harvard
Imaging Platform

Helmholtz Zentrum München
Institute of Computational Biology

Fluorescence Microscopy Image
Segmentation with Deep Learning

Master’s Thesis

Jonathan Roth
jonathan.roth@tum.de

Supervisors: Prof. Dr. Dr. Fabian J. Theis
Dr. Anne E. Carpenter
Dr. Juan C. Caicedo

Submission Date: June 30, 2017

I hereby declare that I have written this Master’s Thesis on my own.
No other than the referenced sources were used.

Used code and data are publicly available.

Garching, June 30, 2017
Jonathan Roth

Contents

1 Introduction 1

2 Background 3
2.1 Cytometry . 3

2.1.1 Motivation . 3
2.1.2 High-Content and High-Throughput Analysis 4
2.1.3 Applications . 6

2.2 Morphological Profiling with Fluorescence Microscopy 8
2.2.1 Experiment Setup . 8
2.2.2 Cell Painting . 10
2.2.3 Analysis Pipeline . 11

2.3 Image Segmentation . 13
2.3.1 Semantic Segmentation 14
2.3.2 Instance Segmentation 14
2.3.3 Image Segmentation in CellProfiler 15

2.4 Convolutional Neural Networks 17
2.4.1 Feed Forward Neural Networks 17
2.4.2 Single-Layer Perceptron 17
2.4.3 Multi-Layer Perceptron 19
2.4.4 Convolutions in Neural Networks 23

3 Methods 26
3.1 Image Segmentation with Deep Learning 26

3.1.1 Image Understanding 26
3.1.2 U-net . 26
3.1.3 Adaptions to U-net . 27
3.1.4 Implementation . 29

3.2 The BBBC022 Data Set . 31
3.2.1 Description . 31
3.2.2 Segmentation with CellProfiler 31
3.2.3 Building a Ground Truth Data Set 33

3.3 Computing Splits and Merges to Compare Segmentations . . . 35
3.3.1 Motivation . 35
3.3.2 Implementation . 37

4 Experiments and Results 42
4.1 Benchmarking CellProfiler . 43
4.2 Learning on Automatically Generated Annotations 43

4.2.1 Using Boundary Boost 47

4.2.2 Changing the Training Set Size 50
4.3 Removing Noise with Hand Annotations 50
4.4 Predicting Nuclei Outlines . 51

4.4.1 Reformulation of the Segmentation Problem 51
4.4.2 Getting Segmentations from Outlines 52
4.4.3 Improved Segmentations with Outline Prediction . . . 54

4.5 Improving Performance with Data Augmentation 56
4.5.1 Models Trained on Hand-Crafted Annotations 56
4.5.2 Improving Models in 3-Class Formulation 59
4.5.3 Optimizing the Running Time 64

5 Conclusion 68

6 Outlook 69

Abstract

In this Master’s Thesis, the segmentation of fluorescence microscopy images
with deep neural networks is discussed. In particular, the DNA stain of these
multi-channel images is used to segment cell nuclei.

Segmenting nuclei is challenging mainly because of clumped nuclei which are
the major reason for why current approaches do not yield satisfying segmen-
tations.

Here we show that using manually annotated data to train deep convolu-
tional neural networks for segmenting nuclei, instances of clumped nuclei
can be separated, and the number of undetected nuclei can be reduced from
15% to 6%.

Segmentations are crucial in the analysis of experiments in quantitative biol-
ogy. Thus, our suggested method, which yields higher quality segmentations,
can be used to make more precise measurements from biological images.

Acknowledgements

I want to thank Fabian Theis, Anne Carpenter, and Juan Caicedo for the
outstanding supervision of this Master’s Thesis, their helpful advice, and the
fruitful discussions. Working at the Imaging Platform was always a great ex-
perience. I’m especially thankful for Beth Cimini, Kyle Karhohs, and Minh
Doan for their support with the annotations, Allen Goodman and Claire Mc-
Quin for their assistance with programming, and Mark Bray for providing
the CellProfiler segmentation pipeline.

Thanks to my family and friends who made not only this project but also
my whole studies a truly unforgettable time.

This work was generously supported by a fellowship within the program "FIT
weltweit" of the German Academic Exchange Service (DAAD).

1

1 Introduction

Morphological profiling as a method of systems biology aims at quantifying
changes in the structure of cells as a result of biological perturbations [46, 19].
The basis of this technique is fluorescence microscopy which allows to capture
high-resolution images of a large number of cells. These images are used
to extract properties of single cells which are summarized in morphological
profiles. A statistical analysis can then be performed on these profiles.

To obtain single-cell profiles, microscopy images must be segmented such
that morphological features can be derived from single cells. Segmenting cell
nuclei from the DNA staining of fluorescence microscopy images is the first
step in the process. CellProfiler is a commonly used state-of-the-art software
tool for the segmentation of fluorescence microscopy images, and the extrac-
tion of single-cell profiles [11].

Due to the high density of cells in fluorescence microscopy images, nuclei of-
ten appear clumped. Thus, the main challenge for segmentation algorithms
is to separate different instances of nuclei. Traditional segmentation methods
such as the seeded watershed algorithm, which is implemented in CellPro-
filer, are slow and sometimes make errors. In addition, the user needs to
be experienced in order to use these algorithms as parameter tuning is re-
quired [70, 8]. The goal of this thesis is to overcome these dominant problems
in the segmentation of nuclei in microscopy images.

We use a deep convolutional neural network for segmenting nuclei of fluores-
cence microscopy images. We train the neural network on hand-annotated
images and evaluate its performance with object-based metrics.

With the support of experienced biologists, we created hand annotations for
200 images of a compound-profiling experiment. These ground truth anno-
tations are crucial for training the segmentation network, and are the basis
of our method which quantifies the quality of the obtained segmentations.

The neural network is trained to predict the probability of belonging to the

2 1 INTRODUCTION

outline of a nucleus for each pixel of the input image. A post-processing step
transforms these outlines into a segmentation. We obtain the best results
when using data augmentation techniques for training the neural network.
To evaluate the performance of our neural network, we refrain from using
pixel-based metrics. As computing object-based metrics such as the share of
undetected nuclei is more relevant to biologists, we adhere to metrics com-
mon in object detection [18].

Structure of this Thesis. The following sections of this thesis are struc-
tured as follows: In section 2, we give a brief introduction to the basic con-
cepts used in this project; cytometry, morphological profiling, image segmen-
tation, and convolutional neural networks.

Section 3 covers image segmentation with deep learning in more detail, intro-
duces BBBC022, the data set we’re working on, and presents the object-based
metric which we use to evaluate the performance of segmentation algorithms.

Our experiments and results are explained in section 4. We evaluate the
segmentation performance of CellProfiler before quantifying the quality of
segmentations obtained with different deep learning models.
We show that neural networks that were trained on automatically gener-
ated data do not yield satisfying segmentations. However, models trained
on hand-annotated images surpass the performance of CellProfiler. Finally,
we show that we can significantly improve our segmentations with data aug-
mentation.

3

2 Background

In this section, the main concepts and methods used in this Master’s The-
sis are explained. Concerning biology, basic concepts in cytometry such as
high-content analysis and high-throughput methods are explained as well
as morphological profiling based on fluorescence microscopy. On the math-
ematical side, image segmentation and deep convolutional neural networks
(CNNs) are introduced.

2.1 Cytometry

2.1.1 Motivation

Prominent genetic diseases such as cancer or Alzheimer’s disease are caused
of influenced by the genes encoded by our DNA. A crucial process within
each cell is transcribing the DNA into RNA which is translated into pro-
teins. Thus, the existence of a protein within a cell can be linked to a genetic
blueprint of the cell. In addition, diseases and natural fluctuations in the cell
state highly influence the cell’s morphological properties. For example, the
size of its nucleus will increase as DNA is replicated during the cell cycle.

Using fluorescent dyes or fluorescence-conjugated antibodies, virtually any
cellular component such as the cytoplasm or the cell’s nucleus can be flu-
orescently labeled. Microscopy images of cells thus allows researchers to
understand how cells work, to study cellular diseases, and to discover drugs
against them.

In fluorescence microscopy, cells are treated with dyes that highlight areas of
interest. These dyes are then excited by a light source, typically a laser, and
the fluorescence response is captured as an image. Fluorescence microscopy is
a popular tool used in cytometry as it is a high-throughput and high-content
method. These concepts are explained in the following section 2.1.2.

4 2 BACKGROUND

2.1.2 High-Content and High-Throughput Analysis

Fluorescence microscopy can combine the advantages of high-throughput and
high-content analysis. In the following, these two concepts are explained.

High-Content Analysis. In high-content analysis, rich information, such
as high-resolution images, is obtained from each sample. Most recent ad-
vancements of high-content analysis include super-resolution microscopy and
imaging mass spectrometry, which increase the amount of spatial information
or number of labels measured in a given sample, respectively [3, 33, 49].

High-Throughput Analysis. In high throughput analysis, a larger num-
ber of samples are analyzed quickly, though not necessarily at a single cell
resolution [21]. Examples for high-throughput methods are traditional flow
cytometry or fluorescence intensity measurement using plate readers that
yield a fluorescence response for each well in a plate. Thereby, thousands of
cells are contained in each well.

Combining High-Content and High-Throughput Analysis. Some
techniques combine the advantages of high-content and high-throughput anal-
ysis. Capturing biological images is now highly automated, which enables
methods that deliver rich information for a large number of cells at the same
time. Figure 1 shows how robots are used to automate the handling of mul-
tiwell plates.
Imaging flow cytometry and fluorescence microscopy are examples for meth-
ods that allow high-throughput and high-content analysis at the same time.

• Imaging Flow Cytometry
An imaging flow cytometer captures high resolution images of each
single cell passing through a flow channel and thus using dyes, one
can obtain spatial information about substances of interest [30, 4, 17].
Sample images are shown in Figure 2.

• Fluorescence Microscopy In fluorescence microscopy, high resolu-
tion microscopes capture the fluorescence response of multiple cells

2.1 Cytometry 5

Figure 1: A robot is used to automate fluorescence microscopy in a high-
throughput wet lab. This enables monitoring fluorescence responses over a
long period of time in regular time intervals, and high-throughput exper-
iments as shown here. The robot feeds a 384-well plate to a fluorescence
microscope.

Figure 2: Images of cells captured with an imaging flow cytometer. The
images were obtained with an ImageStreamX device from MilliporeSigma by
collaborators of the Imaging Platform.

6 2 BACKGROUND

Figure 3: In fluorescence microscopy, usually multiple different stains are
captured. These images were generated with images in BBBC022. The colors
correspond to the wavelengths of the light the dyes emit.

in one well at once. Images typically depict hundreds of cells. This
method’s spatial resolution is very high and thus morphological details
are visible for each cell. This is why this method is used in morphologi-
cal profiling which is covered in section 2.2. Compared to imaging flow
cytometers, fluorescence microscopes provide higher resolution images,
are more sensitive and allow higher magnifications.

Cell profiling experiments based on fluorescence microscopy and the
Cell Painting protocol which is a standard staining strategy for fluores-
cence microscopy experiments are explained in more detail in Section
2.2.

2.1.3 Applications

Analysis of fluorescence microscopy images, which this thesis aims to im-
prove, is a critical step in many biological applications [9]. In this chapter,
two popular examples for applications are presented.

Drug Discovery. To find new drugs against a given disease, sick cells are
treated with a chemical which could be a potential drug against the disease.
This experiment is performed with thousands or even millions of different
compounds in parallel using multi-well plates. The cells’ reactions to those
compounds are observed and compounds that do not seem beneficial to the
cure of the disease are ruled out.

2.1 Cytometry 7

Figure 4: Different fluorescence response channels can be combined into
highly multiplexed images.

Methods from cytometry such as cell profiling, which is explained in Section
2.2 are used to measure the compounds’ influence on the cells [55].

Drug Repurposing. Testing drugs and getting them approved is a very
long and expensive process for pharmaceutical companies. Thus, there is
strong interest in reusing drugs that were already approved for one disease
to treat others. A well-known example is sildenafil, which is a drug used
against hypertension. It was discovered that sildenafil is also an efficient
treatment against erectile dysfunction, and is now marketed as Viagra by
Pfizer [62].

Generally speaking, drug repurposing is used to find new targets for well-
known drugs. In drug repurposing experiments based on cytometry, the
known drug’s effect on cells is measured. A drug can be tested on multiple
cell lines that model different diseases. It is then to be evaluated which of
the diseases are likely to be cured by the compound [2].

8 2 BACKGROUND

The Drug Repurposing Hub is a project promoting a systematic search for
new applications for existing drugs. It provides a large library of over 5 000
compounds and information about their targets, usage, and mechanism of
action [7, 14].

2.2 Morphological Profiling with Fluorescence Microscopy

In this chapter, we give a more detailed introduction to morphological cell
profiling with fluorescence microscopy images, which is the key application
relevant to this project.

The goal of each profiling experiment is to obtain a set of features for each
cell that describes its phenotype. This set of features is called the cell’s pro-
file. Cell profiles can be analyzed and compared to each other. In a drug
screening experiment for example, profiles of cells that were treated can be
compared against profiles of cells in the control set to quantify important
cellular changes. For example, cell profiles can reveal a cell’s disease state or
can be used for classification in cell states such as phases of the cell cycle or
hematopoietic differentiation [39].

Profiles can be of very different kinds. Examples include expression profiles
that quantify the transcription of genes and morphological profiles that quan-
tify the shape of the cell and its compartments. Fluorescence microscopy is
an important tool in morphological profiling and captures the images used
to obtain morphological cell profiles.

2.2.1 Experiment Setup

Assay Preparation. The cells of interest are usually grown in standard
culture flasks and then placed into plates, which consist of multiple wells
each holding cells. Usually, plates contain 96 or 384 wells. Figure 5 shows a
collection of plates that are part of a screening. In many experiments, cells
in different wells are treated with different compounds. The high degree of

2.2 Morphological Profiling with Fluorescence Microscopy 9

Figure 5: 384-well plates stacked on top of each other in a wet lab.

automation with liquid handling robots supports researchers in putting the
cells in the wells and treating them with compounds.

Staining. Different dyes are used to stain different compartments of the
cell. Each fluorescent dye is specified by the substance it binds to, an energy
at which it can be excited, and an emission spectrum. An example is shown
in Figure 6. By adding the dyes to the cells and exciting them at the required
wavelength one can highlight the substances to which the dye binds.
Multiple stains can be used in the same experiment. Usually, for each dye
a different channel is created for the resulting image. To ensure that the
response of a dye is visible in one channel only, the dyes are excited sequen-
tially and a different wavelength filter for each channel is used. When using
multiple stains whose excitement or emission spectra overlap, capturing the
fluorescence response from only one dye might be difficult. The unwanted
effect of capturing the response of multiple dyes in one channel is called bleed
through.
A popular combination of stains is defined in the Cell Painting protocol,

10 2 BACKGROUND

Figure 6: Emission and excitation spectrum of the Hoechst 33342 stain.
The dye can be excited at 355nm and emits visible light with a wavelength
between 400nm and 600nm. The figure is taken from the product’s descrip-
tion website of Thermo Fisher Scientific, a company selling biological dyes
[68].

which is covered in Section 2.2.2.

Image Capturing. Fluorescence microscopes are used to capture the im-
ages. The microscopes are equipped with light sources to excite the dyes,
optics that magnify the sample, and high resolution cameras which capture
the images. Depending on the experiment, the plates may be fed to the mi-
croscope by a robot as seen in figures 1 and 7. The fluorescence microscopy
data set that we are working on was captured with an ImageXpress Micro
microscope from Molecular Devices [50].

2.2.2 Cell Painting

For morphological profiling, it is crucial to highlight as many of the cell’s
structural elements as possible. Cell Painting uses six different dyes to high-
light eight cellular components [6]. As two of the dyes have the same ex-
citation and emission peak, they are imaged in a common channel. The

2.2 Morphological Profiling with Fluorescence Microscopy 11

Figure 7: A 96-well plate is placed in top of the objective lens of a Opera
Phenix fluorescence microscope from PerkinElmer [57].

dyes used are summarized in Table 1. Cell Painting thereby is unbiased in
the sense that the selection of dyes is independent from the experiment setup.

Cell Painting was developed at the Imaging Platform and is optimally de-
signed for the usage in morphological profiling [60]. The data set we are work-
ing with is a morphological profiling experiment and uses the Cell Painting
protocol.

2.2.3 Analysis Pipeline

In order to calculate morphological profiles from microscopy images, several
steps are necessary which are summarized by figure 8:

• Cell Segmentation
As a microscopy image may depict multiple cells, these must be de-
tected and segmented, such that an analysis can yield single cell mea-
surements. This step is the main focus of this thesis.

• Feature Measurement
Given the images depicting a single cell, these must be analyzed for

12 2 BACKGROUND

Dye name Excitation Emission Component
Hoechst 33342 387 417-477 Nucleus
Concanavalin A (Alexa Fluor 488) 472 503-538 Endoplasmic reticulum
SYTOTM14 531 573-613 Nucleoli, cytoplasmic RNA
Phalloidin (Alexa Fluor 568) 562 622-662 F-actin cytoskeleton
WGA (Alexa Fluor 555) 562 622-662 Plasma membrane
MitoTracker Deep Red 628 672-712 Mitochondria

Table 1: Dyes, their excitation wavelength, their emission spectrum, and
the components highlighted in a Cell Painting assay. For conjugate dyes,
the fluorescent marker is written in brackets. Wavelengths of excitation and
emission are given in nm.

Figure 8: An overview of the analysis pipeline of morphological profiling.

2.3 Image Segmentation 13

features to best describe them. An example feature is the size of the
cell’s nucleus. In a typical setting, thousands of features are calculated
per cell, yielding a morphological profiles for each.

• Feature Selection
As features might be redundant, negligible for the downstream analy-
sis or just too numerous, feature selection might be required. Often,
feature selection is performed to avoid the curse of dimensionality.1

• Profile Analysis
As the final step in the analysis pipeline, data analysis can detect
changes in morphology by comparing profiles. A simple analysis task
could be the classification of cells into treated and control cells based
on their cell profile.

The software tool CellProfiler covers the first two steps; object recognition
and feature measurement [11]. In the Imaging Platform, Cytominer is used
for pooling of single cell features to per-well profiles, feature selection and
feature extraction [66]. For analysis, CellProfiler Analyst is used [37, 15].
It offers data exploration, data visualization and supervised classification
features.
In our research, we focus on the object detection task. Many software pack-
ages have image segmentation functions, including CellProfiler. This thesis
covers a method to improve these segmentations.

2.3 Image Segmentation

As discussed in section 2.2.3, cell segmentation is an important step in the
pipeline of morphological profiling experiments [44]. Whereas image segmen-
tation in general describes only the partitioning of an image into subsets, one
can further distinguish between semantic segmentation and instance segmen-
tation.

1The curse of dimensionality describes the phenomenon that some data analysis tech-
niques developed for low-dimensional data fail for high-dimensional data sets. A popular
example is the k-nearest neighbors algorithm.

14 2 BACKGROUND

Figure 9: The difference of semantic and instance segmentation is crucial
when objects of the same class overlap or adjoin. In this case, instance
segmentation is able to tell them apart, semantic segmentation is not. Figure
adapted from [42].

2.3.1 Semantic Segmentation

Semantic segmentation describes the unique assignment of pixels to classes.
Thus, objects in the image are detected as connected regions of pixels that
were assigned to the same class by the segmentation algorithm. Semantic
segmentation can thus be seen as a pixel classification task.

The object representation capabilities of semantic segmentation is limited.
When it is required to separate overlapping objects, represent objects that
are not connected, or segment occluded objects, other segmentation strategies
need to be used.

2.3.2 Instance Segmentation

On the other hand, instance segmentation assigns pixels to objects [28]. Two
instances of the same class can thus be represented by different objects. This
enables the separation of objects of the same class even though they are
touching in the image. Figure 9 visualizes this difference to semantic seg-
mentation.

Instance segmentation is especially hard when a lot of instances of the same
class are depicted. In popular instance segmentation challenges such as Mi-
crosoft COCO, these cases are ignored for the result evaluation [43].

2.3 Image Segmentation 15

2.3.3 Image Segmentation in CellProfiler

As mentioned earlier, the goal of this project is to improve the segmenta-
tion of nuclei in the DNA channel. We compare the performance of our
segmentation algorithms against the current segmentations obtainable with
CellProfiler which is the standard approach. CellProfiler does a combina-
tion of semantic and instance segmentation for nuclei. It classifies pixels into
foreground and background pixels and then assigns the foreground pixels to
an object instance. CellProfiler’s current implementation for segmentation is
implemented in the module IdentifyPrimaryObjects and consists of three
steps:

1. Using thresholding, foreground regions are identified. Thus, CellPro-
filer distinguishes between pixels that belong to nuclei and background
pixels.

2. Clumped nuclei are identified and segmented. For the segmentation, a
seeded watershed algorithm is used [47]. The user can choose to either
apply it on the distance transform of the thresholded image or on pixel
intensity values. Other traditional computer vision methods such as
image smoothing are used to improve the segmentation results.

3. Nuclei whose features do not fall into user-specified ranges are dis-
carded. For example, CellProfiler offers to discard nuclei that are close
to the image’s boundary, or nuclei below a certain size.

The segmentation quality of this approach is highly affected by the choice
of parameters for the used algorithms. Thus, the user’s input is required for
choosing the parameters. The interface for the parameter selection of the
module is shown in figure 10.
For parameter optimization, users usually start off with a given set of param-
eters and adapt these empirically based on the obtained segmentation. The
user can then optimize the parameters in an iterative process. As ground
truth annotations are usually lacking, the user has no quantitative segmen-
tation quality measure and is relying on visual inspection only.

16 2 BACKGROUND

Figure 10: The module IdentifyPrimaryObjects in CellProfiler offers a
lot of flexibility.

This segmentation process has several downsides that we are trying to tackle:

• The traditional computer vision algorithms used within the segmenta-
tion pipeline lack computational efficiency when applied to large image
sets [51]. Parallelization is thus required for all but the smallest exper-
iments.

• As users usually choose the parameters such that a handful of images
is segmented in a satisfying way, no segmentation performance guaran-
tee can be given for images that the user has not used for parameter
optimization.

• As the choice of parameters is very involved, it requires a lot of expertise
with the software and can be quite time consuming.

We want to address these issues by segmenting nuclei with convolutional
neural networks which are explained in section 2.4. Artificial neural networks
can be easily parallelized and are thus fast in execution, they generalize well

2.4 Convolutional Neural Networks 17

when trained without overfitting the training data and they do not require
manual parameter tuning.

2.4 Convolutional Neural Networks

In this section, we give a short introduction to convolutional neural networks.
We start with a brief explanation of Feed Forward Neural Networks before
covering the single-layer perceptron and how it relates to logistic regression.
We then generalize to the multi-layer perceptron and finally introduce con-
volutional neural networks.

2.4.1 Feed Forward Neural Networks

The term artificial neural network describes systems of parametrized mathe-
matical operations that are applied on some input data in order to obtain out-
put values. These mathematical operations can be seen as synapses between
intermediate results which in turn are called neurons due to the similarity to
the function of the brain. It is to be noted that biological neural networks
indeed inspired the design of artifical neural networks, but the function is still
different. One central difference between both models is that biological nerve
cells have spikes in their action potential at discrete time points whereas ar-
tificial neural networks use continuous values to describe the excitement of a
neuron.
The models presented here are all feed-forward neural networks which is
an artificial neural network whose operations do not form loops. Recurrent
neural networks are artificial neural networks that contain loops and are not
covered here.

2.4.2 Single-Layer Perceptron

Idea. A basic task in supervised machine learning is the binary classifica-
tion of data. Given two classes A and B and data points x ∈ Rd that belong
to exactly one of these classes, the goal is to learn a model that classifies new
data points correctly [20].

18 2 BACKGROUND

The simplest form of classification is finding a hyperplane wTx + b = 0 in
the d-dimensional space that separates the data. Thus, one wants to find
weights W and a bias b such that wTx + b > 0 for x ∈ A and wTx + b < 0

for x ∈ B. Thus, the model summarizes as follows:

f(x) = sgn{wTx+ b}

Without loss of generality, if f(x) = 1, x is classified as belonging to class A
and belonging to class B if f(x) = −1. This model is called a single-layer
perceptron [67].

Distinction from Logistic Regression. In contrast to logistic regression,
a single-layer perceptron does a hard assignment of the data points to one
of the two classes. Logistic regression performs a soft assignment in the
sense that a probability p ∈ (0, 1) for the data point belonging to class A is
predicted.

P (Y = c|x,Θ) = Ber(c|σ(x,Θ))

Ber hereby denotes the Bernoulli distribution, Θ summarizes the model pa-
rameters w and b. The logistic function σ is defined as follows:

σ(x,Θ) :− 1

1 + e−(wT x+b)

However, the model of logistic regression is similar to a single-layer percep-
tron. Assuming a maximum a posteriori estimator, a linear decision bound-
ary wTx+ b = 0 can be obtained at p = 1

2
. As the logistic function is applied

on the distance to this hyperplane, the model’s predicted probability of the
data point belonging to class A becomes more degenerate with increasing
distance to the hyperplane [36].

Fitting. The parameters of a single-layer perceptron can be optimized with
Rosenblatt’s perceptron learning algorithm. It tries to minimize the sum D

of the distances di between the decision boundary and the misclassified data
points xi : i ∈M := {i|ŷi 6= yi}. As the distance between a data point and a

2.4 Convolutional Neural Networks 19

hyperplane can be easily calculated as di = wTx+ b, the loss function of the
training algorithm can be written as follows:

D = −
∑
i∈M

yi · (wTxi + b)

Thereby, yi denotes the true label for x, thus yi = 1 if x ∈ A and yi = −1

if x ∈ B. For this loss function, the gradient can be easily calculated and
gradient descent can be performed:

∂D

∂w
= −

∑
i∈M

yi · xi

∂D

∂b
= −

∑
i∈M

yi

In practice, online learning is performed by updating the model’s weights
after each classification [54]:(

w

b

)
←

(
w

b

)
+ ρ ∗

(
yi · xi
yi

)
The learning rate ρ can be used to control the speed of convergence. It can
be shown that the model is guaranteed to converge if the data is linearly
separable as depticted in figure 11 [67].

As this condition is not necessarily fulfilled, a non-linear decision boundary
can be obtained by expanding the model to multiple layers and introducing
non-linear activation functions in intermediate layers.

2.4.3 Multi-Layer Perceptron

Idea. As already discussed in section 2.4.2, introducing non-linearities in
models sometimes is required. A multi-layer perceptron (MLP) is a parallel
and sequential concatenation of single-layer perceptrons. Two consecutive
layers of an MLP are connected by a series of parallel single-layer percep-
trons. The layers are stacked sequentially and instead of applying the sign

20 2 BACKGROUND

Figure 11: The two clusters of data points are linearly separable.

function to the output of each layer as in a single-layer perceptron, non-linear
activation functions are used. The transformed outputs of a given layer serve
as the input data for the subsequent layer. A simple MLP is visualized in
figure 12.

Activation Function. Layers which are neither the input nor the output
layer are called hidden and denoted with sequential indices starting at h1.
The output layer is denoted with ŷ, the input layer denoted with x. An MLP
with four layers as depicted in figure 12 can then be written as follows:

ŷ = g3(W3h2 + b3)

h2 = g2(W2h1 + b2)

h1 = g1(W1x+ b1)

Hereby, the activation functions are denoted with g1, g2 and g3. In practice,
the same activation function is used for all hidden layers. A very popular
example is the ReLU function [52]:

2.4 Convolutional Neural Networks 21

ReLU(z) = max{0, z}

Depending on the task, a special activation function is used for the out-
put layer. In binary classification, the output ŷ is supposed to model the
probability of the data point x belonging to a class c:

P (Y = c|x,Θ) = Ber(c|ŷ)

Hereby, Y := {0, 1} denotes the set of all possible classes. To ensure a
valid probability distribution, the logistic function is used as an activation
function:

σ(z) =
1

1 + e−z

Whereas in binary classification only one probability value is predicted, a
different activation function must be used in multi-class classification. The
softmax activation function ensures the validity of the probability distribu-
tion:

σ(z)i =
ezi∑
i e

zi

For regression problems, a different formulation is used:

P (Y = y|x,Θ) = N (y|ŷ, σ2)

Whereas the outputs of classification models are restricted to the interval
[0, 1], the regression model can take arbitrary values. Thus, the identity
function is commonly used as the activation function for the last layer.

All activation functions need to be differentiable almost everywhere as this
property is required by the back propagation algorithm used to fit the model
parameters.

22 2 BACKGROUND

Figure 12: A simple multi-layer perceptron with four layers. There are
nine single-layer perceptrons in total. Four perceptrons are used between the
input and the first hidden layer, four between the two hidden layers, and one
perceptron calculates the output value. Reprinted from [41]

Loss Function. A loss function is used to evaluate the network’s error.
Given a tuple of a data point in the training set with its true output (x, y),
the loss functions is used to penalize the deviation of the predicated output
ŷ from y.

In general, maximum likelihood estimation is performed which is equivalent
of minimizing the negative log-likelihood [24]:

l(Θ) := − logP (data|Θ)

For classification problems the negative log-likelihood simplifies to a categor-
ical cross-entropy loss. The formulation for problems with n different classes
is as follows:

L(y, ŷ) = −
∑
i∈[n]

yi log(ŷi)

For a two class problem for which only one probability y is predicted, this
can be written as

L(y, ŷ) = −y · log(ŷ)− (1− y) · log(1− ŷ)

For regression problems, minimizing the mean squared error is equivalent to

2.4 Convolutional Neural Networks 23

maximizing the log likelihood:

L(y, ŷ) = ‖ŷ − y‖2

Back Propagation. The advanced structure of an MLP does make fitting
it to the training data more difficult compared to fitting a single-layer percep-
tron. The basic concept, stochastic gradient descent, is still used. However,
the computation of the gradient is different. The gradient is computed in
two steps. In a forward pass, values of all neurons are computed for a given
data point. In addition, an error value is computed. In a second step, the
partial derivatives of the loss function with respect to the models parame-
ters are computed. This requires all used activation functions and the loss
function to be differentiable. This second step is called the backward pass
as the gradient is calculated by exploiting the chain rule. Gradients of layers
closer to the output layer have to be computed first before the computation
of the gradients of parameters in preceding layers. Going back to the exam-
ple in figure 12, the chain rule for differentiation of the loss with respect to
a parameter in the weight matrix of the first layer W1ij is applied as follows:

∂L
∂W1ij

=
∂L
∂y
· ∂y
∂h2
· ∂h2
∂h1
· ∂h1
∂W1ij

In modern deep learning frameworks, the analytical derivatives of all used
activation functions and loss functions are implemented. Thus, gradient com-
putation is efficient.

2.4.4 Convolutions in Neural Networks

Traditional computer vision models heavily rely on image filters. A very
popular example are edge detectors such as the Canny filter [10]. Another
example is a Gaussian filter that is frequently applied as a preprocessing step
in image analysis.
All these filters have in common that they can be written as a convolutional
operation of an image I with a kernel K. In the one-dimensional continuous
space, the convolutional operation is well known from signal processing. A

24 2 BACKGROUND

signal x(t) is convolved with a weighting function w(t):

s(t) = (x ∗ w)(t) :=

∫
x(a) · w(t− a) da

In one-dimensional discrete space, one can write:

s(t) = (x ∗ w)(t) :=
a=∞∑
a=−∞

x(a) · w(t− a)

As microscopy images by nature are two-dimensional signals and filters are
of limited size, we use a 2D convolution here:

S(i, j) = (I ∗K)(i, j) :=
∑
m

∑
n

I(m,n) ·K(i−m, j − n)

In neural networks, the kernel flipping is not important, so in machine learn-
ing frameworks the following definition of convolution is implemented:

S(i, j) = (I ∗K)(i, j) :=
∑
m

∑
n

I(i+m, j + n) ·K(m,n)

The usage of filters in neural networks is implemented by parameter shar-
ing. Thus, the implementation of a convolutional neural network (CNN) is
equivalent with adding special constraints on the weight matrices of fully
connected layers.
The usage of convolutions in artificial neural networks has multiple advan-
tages. First, it mimics traditional computer vision algorithms and the func-
tional mechanics of the primary visual cortex in human brains. Second, the
number of parameters used is drastically reduced by parameter sharing as
size of the filters used is small in typical settings. Finally, learning filters
makes the neural network invariant to translation of the input data. This
obviously is a desired property when dealing with images. For example, in
image classification, a network should not need to remember the exact posi-
tion of on object, but rather the significant features of it independent from
its position on the image.
Convolutional neural networks are designed such that they learn multiple
filters in each layer. Thus, for each layer, the input can be seen as an image

2.4 Convolutional Neural Networks 25

Figure 13: An input image with five channels is convolved with three small
filters. Thus, the output image has three channels. The output images
are smaller in resolution than the input images if the region in which the
definition of convolution is valid is used only. Padding with zero can extend
the valid region such that the output image has the same resolution as the
input.

with a certain number of channels. Filter kernels that range over all channels
of the input image are learned and the output image consists of an image
with one channel per filter learned. Figure 13 illustrates one convolutional
layer.

26 3 METHODS

3 Methods

3.1 Image Segmentation with Deep Learning

3.1.1 Image Understanding

As we have seen in section 2.3, image segmentation has many different facets
and is not a trivial problem to solve. Thus, many different deep learning
models were developed in recent years to tackle different image segmentation
tasks.
Deep learning models evolved from image classification [41]. In image clas-
sification, a whole image is given one single label. A popular example for an
image classification task is the classification of the images in the ImageNet
data set [63, 29].

A next step in image understanding is the localization of objects within an
image. Usually, the location of an object is given with bounding boxes [64].

Pixel-wise segmentation is the most involved task in image understanding.
Many different papers have been published for instance segmentation and
semantic segmentation tasks [65, 56, 27]. A popular approach for semantic
segmentation that we pursue here, is to treat semantic segmentation as pixel
classification. For this project, we consider two different formulations. In the
first formulation, we classify each pixel as either nucleus, boundary or back-
ground pixel with multinomial classification [40]. We call this formulation
the 3-class formulation. In a second formulation, we use binary classification
to predict whether a given pixel belongs to the boundary of a nucleus. This
formulation is referred to as boundary formulation.

3.1.2 U-net

We want to use a convolutional neural network based on the architecture
of U-net, a network used for semantic segmentation of microscopy images
[13, 61].
U-net has a multi-level architecture and uses skip connections. It consists of

3.1 Image Segmentation with Deep Learning 27

a downscaling branch and an upscaling branch.
In the downscaling branch, each step consists of two convolutional layers
followed by a downsampling operation. Downsampling operations are oper-
ations that reduce the data dimension by summarizing features. The down-
sampling operation is a max pooling layer which is an operation that sum-
marizes each neighborhood of two by two neurons with it’s maximum value.
Thus, it reduces the dimension of the data by a factor of 1

4
.

Each step in the upscaling branch also consists of two convolutional layers
followed by an upsampling operation which doubles the output layer’s image
resolution by repeating each neuron’s value twice over both output image
dimensions. So called skip connections are used which are operations that
merge the output of the of the last convolutional layer of each step in the
downsampling branch onto the output of the upsampling layer of the same
resolution in the upsampling branch. Finally, The output of the upsampling
branch is the input for a sequence of three additional convolutional layers.
Figure 14 visualizes the network.

3.1.3 Adaptions to U-net

In our model, we introduce a small number of adaption to U-net:

• To save memory during the training process, we use a smaller input
image resolution of 256 by 256 pixels.

• The output of our model has three channels in our 3-class formulation
and one channel in our boundary formulation.

• As in U-net, we use filters of size three by three. However, we pre-
fer a model in which the input resolution matches the output resolu-
tion. This makes handling the data much easier. Our experiments have
shown that U-net still provides outstanding results when the input im-
age of each convolutional layer is padded with zeros of width one. In
this case, the input resolution matches the output image resolution.

28 3 METHODS

Figure 14: The architecture of U-net. The naming of this network is in-
spired by its shape in this visualization. On the left, the downsampling
branch consists of four steps. The upsampling branch on the right has four
steps too. The skip connections in gray merge intermediate layers to the
input images of each step in the upsampling branch as additional channels.
Figure reprinted from [61].

3.1 Image Segmentation with Deep Learning 29

With this model, we ignore that convolutions at the image boundary
are strictly speaking not valid.

• To account for the smaller input image size, we only use three steps in
both branches. We hence use only three max pooling layers and three
upsampling layers.

• Batch normalization is used after each convolution as a regularization
technique and to avoid the vanishing gradient problem. A momentum
value for the moving average computation of 0.9 is used [35].

• We observed that the RMSprop optimizer with a learning rate of 10−4

worked best for all models [32]. Recommendations from [41] were fol-
lowed for the optimization of hyperparameters.

The trunk of the network for both formulation is the same and is outlined in
table 2. For the 3-class formulation, we add a convolutional layer with three
layers and a softmax activation the ensure the validity of the predicted prob-
ability distribution. For the boundary formulation, we add a convolutional
layer with a single channel and the sigmoid function as an activation.

3.1.4 Implementation

We use the toolbox Keras to implement our variant of U-net [12]. Training
and inference is performed with neural network framwork TensorFlow and
monitored with TensorBoard [1]. For preprocessing the data we make use of
the libraries scikit-image, NumPy, and Pandas [69, 71, 48]. For visualization,
we use Matplotlib [34].

We save our data and code on a cluster available at the Imaging Platform.
On the same cluster, we train or models making use of one of the available
graphic cards:

• Nvidia GeForce GTX TITAN X

• Nvidia TITAN X (Pascal)
Two GPUs of this type are available on the machine.

30 3 METHODS

Layer Name Layer Type Output Shape
input_1 InputLayer (256, 256, 1)
conv2d_1 Conv2D (256, 256, 64)
conv2d_2 Conv2D (256, 256, 64)
max_pooling2d_1 MaxPooling2D (128, 128, 64)
conv2d_3 Conv2D (128, 128, 128)
conv2d_4 Conv2D (128, 128, 128)
max_pooling2d_2 MaxPooling2D (64, 64, 128)
conv2d_5 Conv2D (64, 64, 256)
conv2d_6 Conv2D (64, 64, 256)
max_pooling2d_3 MaxPooling2D (32, 32, 256)
conv2d_7 Conv2D (32, 32, 512)
conv2d_8 Conv2D (32, 32, 512)
up_sampling2d_1 UpSampling2D (64, 64, 512)
merge_1 Merge (64, 64, 768)
conv2d_9 Conv2D (64, 64, 256)
conv2d_10 Conv2D (64, 64, 256)
up_sampling2d_2 UpSampling2D (128, 128, 256)
merge_2 Merge (128, 128, 384)
conv2d_11 Conv2D (128, 128, 128)
conv2d_12 Conv2D (128, 128, 128)
up_sampling2d_3 UpSampling2D (256, 256, 128)
merge_3 Merge (256, 256, 192)
conv2d_13 Conv2D (256, 256, 64)
conv2d_14 Conv2D (256, 256, 64)

Table 2: Trunk of the architecture used in our model. The batch normaliza-
tion layers used after each convolutional layer are not depicted in the table.
In addition, one last layer is added, depending on the problem formulation.
In total, the model’s trunk has 14 convolutional layers and less than eight
million parameters.

3.2 The BBBC022 Data Set 31

• Nvidia GeForce GTX 1080 Ti

All our code is publicly availble on GitHub. The code can be cloned from
the following repository:

https://github.com/jr0th/segmentation.git

3.2 The BBBC022 Data Set

3.2.1 Description

The BBBC022 data set is a compound profiling experiment using the Cell
Painting assay [45]. It was run for 1600 bioactive substances on human U2OS
cells. The cells were stained with six different dyes using the Cell Painting
protocol described in section 2.2.2. Each compound was used to treat cells
in 4 different wells and in addition, 64 wells per plate were used as a control
experiment. In total, 20 384-well plates were used.
As 9 different sites were captured per well, the data set contains images of
20 · 384 · 9 = 69 120 sites. As two dyes (WGA and phalloidin) share the
same wavelength for excitation and emission, 5 different wavelengths were
captured. However, we only use the DNA staining for our experiments.
In the analysis of this data set, the compounds were clustered using mor-
phological features of the cells that were treated with it. It was shown that
compounds which were similar in protein targets and chemical structure were
likely to end up in the same cluster. This emphasizes that Cell Painting can
be used in combination with CellProfiler to extract meaningful morphological
features from fluorescence microscopy images.
Further information about the experiment can be found in the corresponding
paper [26].

3.2.2 Segmentation with CellProfiler

We want to compare the nucleus segmentations obtained with the deep learn-
ing model to outputs obtained with the traditional segmentation algorithms

https://github.com/jr0th/segmentation.git

32 3 METHODS

Parameter Value
Typical diameter of objects in pixel, Min 15
Typical diameter of objects in pixel, Max 150
Threshold strategy Global Otsu
Method to distinguish clumped objects Shape
Maxima suppression distance in pixel 20

Table 3: Parameters for the module IdentifyPrimaryObjects in the Cell-
Profiler pipeline used for segmenting BBBC022

currently implemented in CellProfiler. In addition, we want to use CellPro-
filer to generate training data for the deep learning model.

Therefore, we segment not only a test set consisting of 50 images but the
DNA channel of all images contained in BBBC022 with a CellProfiler pipeline
specifically designed for BBBC022. This simplistic pipeline contains the fol-
lowing modules:

• LoadData

Loads data from disk.

• IdentifyPrimaryObjects

Performs the segmentation. Parameters such as the thresholding method
are set here and summarized in table 3.

• ConvertObjectsToImage

Converts the segmented nuclei from IdentifyPrimaryObjects into a
mask that can be stored as an image.

• SaveImages

This module saves the mask to file.

The main parameters used for the segmentation are listed in table 3. The
pipeline contains all further details and is publicly available in our GitHub
repository under code/segmentation.cppipe.

3.2 The BBBC022 Data Set 33

3.2.3 Building a Ground Truth Data Set

Annotation Purpose. We hand-annotate 200 images from BBBC022 for
the following reasons.

• Ground truth data is needed to evaluate the performance of a segmen-
tation algorithm. We use ground truth annotations to evaluate both
the performance of the deep learning model and the performance of
CellProfiler.

• Data for training and validating the deep learning model is needed.

The 200 annotated images are split into a training set of 100 images, a
validation set of 50 images and a test set of 50 images. The test set is used
for performance evaluation only. This ensures that the deep learning model
has not seen any of these images during the training process.

Hand-Annotating 200 Images.

Choosing Images for Annotation. We chose 200 images out of 69 120
available images in such a way that for each compound there is at most one
single annotated image. This minimizes the correlation between the images in
the training, validation and test data sets. The publicly available metadata
of BBBC022 contains the information about which well was treated with
which compound.

Ensuring Highest Annotation Accuracy. As we require the ground
truth annotations to be very accurate, we asked experts for their support
with the image annotations. Two biologists and a medical doctor marked the
boundaries of nuclei on printouts of all 200 images that were to be annotated.
An example of a printout is give in Figure 15
The marked printouts were used to annotate nuclei in an annotation tool [25].
The output of the annotation tool is a mask that assigns each pixel to a
class. Background pixels were annotated with 0, pixels belonging to nuclei
were annotated with positive integers in such a way that touching nuclei were

34 3 METHODS

Figure 15: A printout of a fluorescence microscopy image was annotated
by an expert. For clumped nuclei, red lines separate two nuclei, a blue line
connects regions that belong to the same nucleus. The image was processed
with the open source image processing software GIMP for better readability.
The colors were inverted and a yellow tint was added [23].

3.3 Computing Splits and Merges to Compare Segmentations 35

assigned different numbers. Figure 16 depicts a fully annotated image in the
annotation tool.
Annotating a printout took the experts roughly 10 minutes per image. An
additional 15 minutes were spent on creating the masks with the annotation
tool.
We filter out small objects, and thus micronuclei, for the experiments as they
are not annotated consistently and the evaluation metrics for the segmenta-
tion introduced in section 3.3 are heavily influenced by the number of objects
detected, independent of their size. The filter requires every object in the an-
notation to cover an area of at least 100 pixels which is larger than a typical
micronucleus in the data set and smaller than a typical cell. Since micronu-
clei have biological significance, a different segmentation strategy should be
considered for experiments in which they are to be analyzed.

3.3 Computing Splits and Merges to Compare Segmen-

tations

To benchmark our model, we compare the segmentations obtained with Cell-
Profiler and those obtained with deep learning models against the ground
truth segmentations. As a test set, 50 hand-annotated images are used that
the deep learning models are not allowed to use during the training process.

This section describes a method we implemented to compare two segmenta-
tions. This approach is commonly used in computer vision for evaluation of
instances segmentation algorithms and we adapted it to objectively measure
the quality of segmentations [43, 72, 18].

3.3.1 Motivation

Segmenting a fluorescence microscopy image in foreground and background
regions is solved relatively well by thresholding the image on pixel intensity
values. However, splits and merges of nuclei are common errors in segmen-
tations of DNA stains of crowded cell populations. These two type of errors
are most troublesome to biologists.

36 3 METHODS

F
igu

re
16:

A
n
annotation

tool
w
as

used
to

create
a
m
ask

for
the

im
age.

D
ifferent

colors
in

the
annotation

tool
represent

different
integers

that
the

pixels
are

assigned
to.

O
ne

can
observe

that
touching

nucleiare
annotated

w
ith

different
integers.

3.3 Computing Splits and Merges to Compare Segmentations 37

• Split
A split is an oversegmentation of a nucleus. Even though the image
just depicts one nucleus, the method’s segmentation detects two or
more nuclei that combined usually cover the area of the real nucleus in
the ground truth. Examples of splits are visualized in figure 17.

• Merge
A merge is an undersegmentation of multiple nuclei. The method finds
only one nucleus whereas there are multiple touching nuclei in the im-
age. A typical merge that occurred during training of our deep learning
models is depicted in figure 18 with the image and its ground truth an-
notations as a reference in figures 19 and 20 respectively.

Thus, by calculating the number of split and merge errors made by a method
compared to the ground truth, we can estimate its performance.
We generalize splits and merges to overdetections and underdetections. Overde-
tections are cases where the method predicts a nucleus that is not present in
the ground truth data. An underdetection occurs if a nucleus present in the
ground truth data is not detected by the segmentation algorithm.

3.3.2 Implementation

To implement this kind of error measure, we agreed on a function that has
the method’s segmentation and a ground truth segmentation as an input and
outputs the number of overdetections and underdetections.
Our implementation is publicly available and can be found in the GitHub
repository in the file metrics.py in the directory /code/helper/.

The function compare_two_labels checks each pair (ngt, nmeth) consisting
of a nucleus ngt in the ground truth segmentation Sgt and a nucleus nmeth of
the method’s segmentation Smeth for overlap. The overlap of the two nuclei
is defined by the intersection over union [53]:

IoU =
#pixels in ngt ∩ nmeth

#pixels in ngt ∪ nmeth

38 3 METHODS

Figure 17: Splits suggested by a CellProfiler pipeline with bad parameter
tuning. The nuclei in the image center are erroneously split into multiple
parts as observed not only in the mask image on the top right but also with
the nuclei outlines in the bottom left visualization.

3.3 Computing Splits and Merges to Compare Segmentations 39

0 50 100 150

0

25

50

75

100

125

150

175

Prediction after 1 epoch

Figure 18: Merge predicted by deep learning model. Two predicted nuclei
close to the image center actually consist of multiple nuclei.

0 50 100 150

0

25

50

75

100

125

150

175

Original Image

Figure 19: Raw image used for segmentation. Nuclei touch frequently in
fluorescence microscopy images and segmenting them correctly is not trivial.

40 3 METHODS

0 50 100 150

0

25

50

75

100

125

150

175

Annotation Boundaries

Figure 20: Boundaries of the corresponding ground truth segmentation
according to an expert.

If the IoU exceeds 1
2
, we consider the corresponding pair as a true positive

detection, a match between the algorithm’s segmentation and the ground
truth segmentation. Obviously, a nucleus, no matter which segmentation
it is contained in, can at most be matched with one other nucleus in the
other segmentation as it can not overlap by more than 1

2
with more than one

nucleus.

Finally, an unmatched nucleus in Sgt is an underdetection, an unmatched
nucleus in Smeth is an overdetection.

To compare segmentation algorithms across data sets, we consider the al-
gorithms’ task as object detection and thus calculate object-level precision
and recall metrics [72]. Precision represents the share of matches among all
detected objects, the recall measures the share of matches among all nuclei
in the ground truth annotation:

3.3 Computing Splits and Merges to Compare Segmentations 41

Precision =
#matches

#nuclei in algorithm’s segmentation

Recall =
#matches

#nuclei in ground truth annotation

To summarize these two metrics in a single scalar, we make use of the F1

score which is the harmonic mean of precision and recall [5]:

F1 = 2 · Precision ·Recall

Precision + Recall

The F1 score gives us a proxy for the performance of a segmentation algo-
rithm; the higher the better. To get more insights about the F1 score, we use
bootstrapping to evaluate the robustness of this measure [59]. We draw 20
out of all 50 test images for 10 000 iterations and calculate the F1 score for
each sampled subset. We report the mean F1 score and its standard devia-
tion. Precision and recall are not computed with bootstrapping, a statistic
across the whole test data is reported.
In the following section, we benchmark the algorithms against the ground
truth annotations with this method.

42 4 EXPERIMENTS AND RESULTS

4 Experiments and Results

This section summarizes the results we obtained for training the CNN, how
we optimized it, and how its segmentation performance compares against
the quality of segmentations obtained with CellProfiler. We thereby use the
method described in section 3.3. We train the deep learning models on 100
images and perform validation on 50 images for which ground truth annota-
tions were created as discussed in section 3.2.3. The remaining 50 images of
the ground truth data set were used as the test set.

First, we evaluate the segmentation performance of CellProfiler on the test
set for BBBC022. Next, we present the results obtained with deep learning
models that were trained on CellProfiler segmentations of the training im-
ages. As these segmentations are considered noisy, we improve our model
by training on hand-annotations. We show that one can obtain better seg-
mentations than CellProfiler when training a deep learning model on a rela-
tively small hand-annotated data set consisting of 100 images depicting about
10 000 cells. We show results of this model in both formulations introduced
in section 3.1.1, the 3-class formulation and the boundary formulation.
Finally, we show that we can increase the model’s performance by using data
augmentation.
All benchmarking experiments can be found in the GitHub repository under
/experiments/ and are structured in the following way. <Model> hereby
stands for the concrete model which is evaluated.

• Model to Segmentation
A notebook named <Model>_2_label performs the prediction of the
deep learning model and creates the segmentations for the test images.
This obviously is not needed for benchmarking CellProfiler. We used
CellProfiler’s output directly in this case.

• Segmentation Comparison
The obtained segmentations are compared against the ground truth
annotations in a notebook called <Model>_vs_GT.

4.1 Benchmarking CellProfiler 43

• Visualizing Errors
In the notebooks called visualize_errors, we visualize the errors
made by the model with error images. The error images are to be
read as follows. Pixels that belong to an underdetected nucleus are
colored in brown, pixels belonging to an overdetection in light blue. In
the special case in which a pixel is part of an underdetection and an
overdetection, it is colored in pink. This is often encountered where
merges occur.

4.1 Benchmarking CellProfiler

As discussed in section 3.2.2, we use CellProfiler to segment a test set of 50
images of BBBC022 which were also hand-annotated. We use the calculation
of splits and merges described in section 3.3 to evaluate the quality of these
segmentations. By bootstrapping 10 000 samples from our test set results,
we compute statistics for the F1 score. We obtain a mean F1 score of 0.90
with a standard deviation of 0.013. The precision across the whole test set
95%, the recall 85%. This means that 15% of all nuclei in the ground truth
data set are undetected and 5% of all detected objects are not annotated in
the ground truth segmentation. Figure 21 visualizes the distribution of the
F1 score.

Figure 22 shows a ground truth segmentation of a test image, Figure 23
a segmentation obtained by CellProfiler, Figure 24 the corresponding error
image.

4.2 Learning on Automatically Generated Annotations

As obtaining manual annotations of images is time-consuming, we evaluate
the performance of a model which was trained on automatically generated
annotations. We therefore train a CNN on segmentations generated by Cell-
Profiler. In addition we are interested in whether a CNN can actually provide
better segmentations than those on which it was trained.

44 4 EXPERIMENTS AND RESULTS

0

500

1000

1500

0.84 0.86 0.88 0.90 0.92 0.94

F1 Score

C
o

u
n

t

Distribution of F1 Score

Figure 21: The distribution of the F1 score for the quality of the segmenta-
tions obtained with CellProfiler. We sampled 20 of all 50 test images 10 000
times.

Ground Truth Segmentation

Figure 22: Ground truth segmentation. A full image (BBBC022, plate
20589, well D20, site 3) is depicted here with its full resolution of 696x520
pixels.

4.2 Learning on Automatically Generated Annotations 45

CellProfiler Segmentation

Figure 23: Segmentation obtained with CellProfiler. It shows merges for
clumped cells. These merges are detected as multiple underdetections and
an overdetection. This is the same input image as in figure 22 (BBBC022,
plate 20589, well D20, site 3).

Error Image for CellProfiler Segmentation

Figure 24: Error image for CellProfiler segmentation of the same image
(BBBC022, plate 20589, well D20, site 3). Cells in brown are underde-
tections, cells in blue are overdetections, and pixels that are contained in
overdetections and underdetections are colored in pink.

46 4 EXPERIMENTS AND RESULTS

Experiment Setup. We formulate the segmentation problem as a 3-class
problem introduced in section 3.1.1 which predicts the probability of each
pixel belonging to either a nucleus, a nucleus’ boundary or the image’s back-
ground. We use the images from the training and validation set, but we do
not use their ground truth annotations for training. Instead, we use seg-
mentations generated by CellProfiler as described in section 3.2.2. For test
purposes, we compared against the ground truth segmentations. The seg-
mentations generated by CellProfiler are preprocessed in such a way that the
boundaries around nuclei have a width of 2 pixels. We heavily make use of
the skimage.segmentation library [69]. To generate training data of size
256 by 256 pixels, we use four non-overlapping crops from each image. Thus,
in total we train our model on 400 patches of the required input size.

The post processing step is trivial for the 3-class formulation. As the network
predicts a probability distribution across the three classes for each pixel, we
use the class for which the network predicted the highest probability. We
ignore the background and boundary channel, and connected components
in the nucleus channel are detected nuclei. We filter connected components
which are smaller than 100 pixels as discussed in section 3.2.3 to not take
into account micronuclei. A further optimization that can be performed is
dilating the detected nuclei by half of the boundary width. This is crucial
for optimizing the intersection over union with the ground truth annotation.

This model uses the softmax function introduced in section 2.4.3 as the ac-
tivation function for the last layer and categorical cross-entropy as the loss
function. The hyperparameters are chosen as described in section 3.1.3. The
classification accuracy gives us an additional metric on the model’s perfor-
mance. We want to mention here, that both, categorical cross-entropy and
classification accuracy are pixel-based metrics and not object-based, even
though object-based metrics are more relevant to biologists. Thus, we use
differentiable metrics for training the network but switch to the method de-
scribed in section 3.3 to evaluate the model’s performance

4.2 Learning on Automatically Generated Annotations 47

Results. Pixel-wise, we can achieve a classification accuracy close to 100%
on the test set and a validation accuracy of more than 98% as visualized in
figure 25. Even though the accuracy is high, the segmentation results on the
test set are not satisfying as many merges occur. We conclude that this is
because the classification of only few pixels, namely those between clumped
nuclei, defines whether split or a merges error occur. These few crucial are
misclassified by the network and we see a large number of merges occur with
this model as visualized in figure 27. We see that classification accuracy thus
is not a good metric for the performance of the model as discussed in section
3.3. The learning curve is visualized in figure 26. Training this network takes
roughly two hours for 200 epochs.

The object-based metrics show a precision of 94%, a recall of 80% and a
mean F1 score of 0.86 with a standard deviation of 0.018. We conclude that
this model performs worse than CellProfiler.

4.2.1 Using Boundary Boost

To improve the segmentations generated by the network, we changed the post
processing step. In this experiment, we multiply the probability of a pixel be-
longing to a boundary with a factor before taking the argmax over the three
class probabilities to assign pixels to classes. This increased the number of
boundary pixels. As a consequence, more pixels between two clumped nuclei
were assigned to the boundary class and thus we achieved fewer merges. A
boundary boost factor of 100 worked best in our experiments.

Using this boundary boost factor, we could slightly improve the performance
of this model. We achieved a similar precision of 94%, an improved recall of
82% and thus a better F1 score of 0.88 with a standard deviation of 0.015.
However, this performance is still worse than the performance of CellProfiler
measured in section 4.1.

48 4 EXPERIMENTS AND RESULTS

0.94

0.96

0.98

1.00

0 50 100 150 200

Epoch

C
a
te

g
o
ri

c
a
l
A

c
c
u
ra

c
y

Training

Validation

Figure 25: The categorical accuracy of the 3-class model trained on auto-
matically generated segmentations.

0.0

0.1

0.2

0.3

0 50 100 150 200

Epoch

L
o
s
s Training

Validation

Figure 26: The learning curve of the 3-class model discussed in section 4.2.
One can see that overfit occurs already after a few epochs.

4.2 Learning on Automatically Generated Annotations 49

Prediction Truth

Errors 0 1 2

prediction

0

1

2

tru
th

43757 0 303

0 17062 45

29 330 4010

Confusion Matrix

Figure 27: The segmentations of the model trained on CellProfiler segmen-
tations shows a large number of merged nuclei even though the confusion
matrix on the right shows a low classification error. The true labels are Cell-
Profiler segmentations here and thus also show merged nuclei. Pixels labeled
with 0 are background pixels, 1 encodes nuclei and 2 boundaries. In the error
image, one can clearly observe that the network does not predict boundaries
between nuclei even though the CellProfiler segmentation does.

50 4 EXPERIMENTS AND RESULTS

4.2.2 Changing the Training Set Size

Previous works about segmentation with deep learning state that very little
training data is needed to achieve satisfying results [70, 61].

To test this assumption in our context, we trained CNNs on training data
sets with different sizes in further experiments. Training sets with 10, 100,
1 000 and 69 120 images were used.

We observed that increasing the size of the training data set did not yield
significantly better results in the sense that the network still yielded segmen-
tations with merge errors. Furthermore, when reducing the data set size, we
observed that the model overfits the training data. We thus train our CNNs
on hand-annotated data instead of automatically generated segmentations in
the following experiments.

4.3 Removing Noise with Hand Annotations

As observed in the previous experiment, training on CellProfiler’s segmenta-
tions does not lead to a network that can provide improved segmentations.

We also observed that adding more training data or using a more sophisti-
cated preprocessing function did not significantly improve the results.

Thus, in a next step we remove the noise in the training data by using
the ground truth annotations of 100 hand-annotated training images and 50
hand-annotated validation images in our following experiment.

Experiment Setup. Analogously to the previous experiment described
in section 4.2, we use the 3-class formulation here. The annotations from
the annotation tool are processed in such a way that between nuclei and
boundary, as well as between touching nuclei, there’s a boundary of width 2
pixels. The hyperparameters remain unchanged and we refrain from using
boundary boost. Also, training time remains about two hours.

4.4 Predicting Nuclei Outlines 51

Results. Using hand-annotated data for training, we can surpass the per-
formance of CellProfiler with a mean F1 score of 0.91 ± 0.011 with a precision
of 95% and a recall of 87%.
Similar learning curves as when training on automatically generated annota-
tions can be observed.

4.4 Predicting Nuclei Outlines

As we’ve seen in section 4.2, the pixels classified as boundary or background
are ignored in the transformation of the network’s output to a segmenta-
tion when using the 3-class model. Common errors occurring with this ap-
proach are merge errors which are due to the lack of boundary pixels between
clumped nuclei. To resolve these errors, predicting only the outline of nuclei
is a promising approach.

In addition, with the previously discussed models, we observed that the CNN
had no difficulties with classifying background and nucleus pixels correctly.
Errors were mainly due to the misclassification of boundary pixels. Thus, we
force the network to focus on outlines of nuclei only by removing the other
classes and using the boundary formulation discussed in section 3.1.1. Thus,
in this and the following experiment, the probability for a pixel to belong to
an outline of a nucleus is predicted.

4.4.1 Reformulation of the Segmentation Problem

Outline Prediction as Classification Problem. As the boundary pix-
els are not naturally present in the data, but artificially generated, we tried
multiple different variants for generating these. Instead of generically having
a boundary width of two pixels as in the previous experiments, we consider
experiment setups with boundary widths of two, four, six and eight pixels.
The skimage.morphology library was used for that purpose [69].

For this model, we use the binary cross-entropy as a loss function and as
already mentioned in section 2.4.3, we use the sigmoid function as the acti-

52 4 EXPERIMENTS AND RESULTS

vation function of the last layer. Again, we report pixel-wise classification
accuracy as an additional metric.

Outline Prediction as Regression Problem. In addition to this clas-
sification problem, we also framed the outline prediction formulation as a
regression model. In this problem, we allowed the annotations to be continu-
ous instead of categorical and thus represent a probability with which a pixel
belongs to a nucleus’ outline. The closer a given pixel is to the boundary, the
higher we set its probability to belong to it. This boundary was created in a
preprocessing step as a linear combination of the boundaries with two, four,
six and eight pixels. The coefficients of the linear combinations were chosen
in such a way that the probability of a pixel belonging to the outline follows
a Gaussian bell in the distance of the pixel to the boundary. It is thereby
assumed that the boundary is in between the two pixels of the boundary of
width two. The Gaussian bell was scaled such that the two pixels adjoint to
the boundary had a probability of 1 to belong to the boundary.

For this model, we keep the setup as previously defined for the classification
problem. The only difference is that the mean squared error is used as a loss
function.

4.4.2 Getting Segmentations from Outlines

As the outline prediction model does not distinguish between background
pixels and pixels that belong to a nucleus, the postprocessing step must map
all non-boundary pixels to either the background class or the nucleus class.
For the final segmentation, only pixels belonging to nuclei are of relevance.
This section discusses how the postprocessing function can detect nuclei given
a probability map for outlines.

We tried several methods to transform a probability map into a segmentation.
All methods threshold the probability map obtained by the CNN at p = 1

2
.

A sample probability map is outlined in figure 28.

4.4 Predicting Nuclei Outlines 53

Predicted Probability Map

0.2

0.4

0.6

0.8

Figure 28: A probability map for boundary pixels predicted by the CNN.
One can observe that the neural network is able to detect clumped nuclei.

• An intuitive approach is to threshold the original image and subtract
the thresholded probability map and use the remaining foreground pix-
els as segmented nuclei. This would separate clumped nuclei if the pix-
els in between them are correctly classified as boundary. However, this
would also classify debris and other artifacts that are assigned as fore-
ground by the thresholding method and correctly undetected as nuclei
by the deep learning method.

• A second method we considered is finding connected components among
pixels that are not classified as boundary and filtering the largest con-
nected component as background. This method was unsatisfactory
because it failed for cases where the background was not connected,
which is often the case at the image’s boundaries.

• We implemented a method that is very similar but uses a more involved
filtering strategy. Among all connected components in the pixels not
classified as boundary, those whose mean image intensity is above a
threshold are defined as nucleus. The threshold can be learned using
the training data. Figure 29 shows the histogram for the DNA channel
on fluorescence microscopy images from which we learned a threshold
of 50 for this purpose using an 8 bit encoding that yields values ranging
from 0 to 255.

54 4 EXPERIMENTS AND RESULTS

0 50 100 150 200 250
Intensity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Re

la
tiv

e
Fr
eq

ue
nc

y

Histogram of Training Images

Figure 29: The histogram for intensity values of the images contained in
our training set. Images were normalized before being processed. One can
easily separate background and foreground pixels. We used a threshold of 50
in our analysis.

Again, objects smaller than 100 pixels are removed to exclude micronuclei.
To further optimize the postprocessing, one could grow the detected regions
by half of the boundary width analogously to the postprocessing step used
with the 3-class formulation.

4.4.3 Improved Segmentations with Outline Prediction

Classification Problem. For a boundary width of two pixels, one can
observe very sparse (5%) signal in the thresholded probability map. Thus,
sometimes the outlines in the thresholded image are not closed due to small
errors. These open outlines lead to underdetections. The visualization of test
data revealed that this is the main reason for many underdetections. Figure
30 displays this.

We observe a better performance for the models with higher boundary width.
Their segmentations do not show many unclosed contours. Among the thick
boundaries, the model using a thickness of 4 delivered the best segmentations

4.4 Predicting Nuclei Outlines 55

Im
ag

e
Gr
ou

nd
 T
ru
th

Pi
xe
lw
ise

 E
rro

rs

Pr
ed

ict
io
n
(n
ot
 th

re
sh
ol
de

d)
Pr
ed

ict
io
n
(th

re
sh
ol
de

d)
0

1

pr
ed

ict
io
n

0 1truth

59
77

4
13

78

10
19

33
65

Co
nf
us
io
n
M
at
rix

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig
u
re

30
:
So

m
e
ou

tl
in
es

of
nu

cl
ei
ar
e
no

t
cl
os
ed

in
th
e
pr
ed
ic
ti
on

of
th
e
de
ep

le
ar
ni
ng

m
od

el
tr
ai
ne
d
on

bo
un

da
ri
es

w
it
h
w
id
th

tw
o
as

ca
n
be

se
en

in
th
e
bo

tt
om

ce
nt
er

pl
ot
.
E
ve
n
th
ou

gh
th
e
co
nf
us
io
n
m
at
ri
x
on

th
e
bo

tt
om

ri
gh

t
sh
ow

s
a
hi
gh

pi
xe
l-w

is
e
ac
cu
ra
cy
,
th
e
op

en
co
nt
ou

rs
re
su
lt

in
un

de
rd
et
ec
ti
on

s
as

no
n-
bo

un
da

ry
pi
xe
ls

of
a
nu

cl
eu
s

ar
e
co
nn

ec
te
d
to

th
e
ba

ck
gr
ou

nd
.
A
ls
o,

a
se
pa

ra
ti
on

of
cl
um

pe
d
nu

cl
ei

is
no

t
ac
hi
ev
ed
.

56 4 EXPERIMENTS AND RESULTS

with a mean F1 score of 0.92 with a standard deviation of 0.010. Thereby,
the precision is 96%, the recall over the whole test set is 88%.

Similar to the 3-class models, we can achieve a training accuracy close to
100% and a validation accuracy of more than 97% as depicted in figure 31.
Figure 32 shows the loss curves of the model trained on outlines of nuclei.
For this model, the time needed for training is also roughly two hours on A
Nvidia TITAN X (Pascal), the fastest GPU available to us.

Regression Problem. Besides being more complex, the model treating
the outline detection problem as a regression problem performs worse than
the models trained with a categorical boundary. Thus we drop this approach
and focus on optimizing the outputs obtained with the model using a bound-
ary width of four pixels in the next section.

4.5 Improving Performance with Data Augmentation

In a last optimization step, we change the training procedure in such a way
that for each training step, we sample a random crop from all training images
which is in addition rotated by a multiple of 90◦ and flipped randomly.
This approach seemed promising to us, as we achieved very high pixel-wise
accuracy with the previous models. However, a common error on the test set
for this models is the misclassification of boundary pixels between clumped
nuclei as pixels belonging to a nucleus. On the training set, these pixels were
correctly classified as boundary, which is an indicator for a model overfit
on the training data. Thus, by using data augmentation, we avoid this
overfit, and show that boundaries between nuclei get correctly classified as
boundaries with this technique. Figures 33 and 34 show that much less overfit
occurs when using data augmentation.

4.5.1 Models Trained on Hand-Crafted Annotations

Results. For clumped nuclei, we see a drastic performance improvement
compared to the model without random sampling of the training crops.

4.5 Improving Performance with Data Augmentation 57

0.92

0.94

0.96

0.98

1.00

0 50 100 150 200

Epoch

B
in

a
ry

 A
c
c
u
ra

c
y

Training

Validation

Figure 31: The binary accuracy of the model in boundary formulation
trained on hand-annotated data with a boundary width of four pixels.

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200

Epoch

L
o
s
s Training

Validation

Figure 32: The learning curve for the training process of the CNN using the
boundary formulation and hand annotations for training. The model starts
overfitting after roughly 10 epochs.

58 4 EXPERIMENTS AND RESULTS

0.92

0.94

0.96

0.98

1.00

0 50 100 150 200

Epoch

B
in

a
ry

 A
c
c
u
ra

c
y

Training

Validation

Figure 33: The binary accuracy of the model in boundary formulation with
a boundary width of four pixels trained with data augmentation.

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200

Epoch

L
o
s
s Training

Validation

Figure 34: The learning curve for the training process of the CNN using
the boundary formulation and data augmentation. We can observe much
less overfit than when training the network without data augmentation as
visualized in figure 32

4.5 Improving Performance with Data Augmentation 59

0

500

1000

1500

0.93 0.94 0.95 0.96 0.97 0.98

F1 Score

C
o
u
n
t

Distribution of F1 Score

Figure 35: The distribution of the F1 score of the neural network trained
on nucleus outlines with data augmentation. The statistics were obtained
with bootstrapping 10 000 subsets of size 20 from all 50 test images.

As the F1 score of 0.96 ± 0.006 as shown in figure 35 is higher compared to
all other methods, we can conclude that this deep learning method by far
outperformed CellProfiler on this test data set. We obtain a precision of 98%
and a recall of 94% for the whole test data set. Thus, with this setup, only
6% of nuclei in the ground truth segmentation are missed, and only 2% of
detected objects are not annotated in the ground truth data.
For the original image in figure 22, figures 36 and 37 show the segmentation
and the error image for the deep learning model respectively.

4.5.2 Improving Models in 3-Class Formulation

Random sampling significantly improved the results for the outline prediction
model. We conducted experiments to evaluate if random sampling also im-
proves the performance of a model using the 3-class formulation. In addition,
we trained all models using the 3-class formulation with different boundary

60 4 EXPERIMENTS AND RESULTS

Deep Learning Segmentation

Figure 36: Segmentation obtained with the CNN trained on hand-
annotated images with data augmentation (BBBC022, plate 20589, well D20,
site 3).

Error Image for Deep Learning Segmentation

Figure 37: Error image for the deep learning segmentation. One can observe
the underdetections on the top image boundary (BBBC022, plate 20589, well
D20, site 3). For comparison with the segmentation of the same image with
CellProfiler, see figure 23

4.5 Improving Performance with Data Augmentation 61

Or
ig
in
al
 Im

ag
e

Gr
ou

nd
 T
ru
th
 S
eg

m
en

ta
tio

n
Ce

llP
ro
fil
er
 S
eg

m
en

ta
tio

n

CN
N
Ou

tli
ne

s
CN

N
Se

gm
en

ta
tio

n
Er
ro
rs
 o
f C

NN
 S
eg

m
en

ta
tio

n

F
ig
u
re

38
:
C
om

pa
ri
so
n
be

tw
ee
n
se
gm

en
ta
ti
on

s
ob

ta
in
ed

w
it
h
C
el
lP
ro
fil
er

an
d
ou

r
be

st
de
ep

le
ar
ni
ng

m
od

el
fo
r
an

ex
am

pl
e
im

ag
e
(B

B
B
C
02

2,
pl
at
e
20

64
6,

w
el
lC

07
,s

it
e
5)
.

62 4 EXPERIMENTS AND RESULTS

Original Im
age

Ground Truth Segm
entation

CellProfiler Segm
entation

CNN Outlines
CNN Segm

entation
Errors of CNN Segm

entation

F
igu

re
39:

C
om

parison
betw

een
segm

entations
obtained

w
ith

C
ellP

rofiler
and

our
best

deep
learning

m
odelfor

an
exam

ple
im

age
(B

B
B
C
022,plate

20592,w
ellC

14,site
8).

4.5 Improving Performance with Data Augmentation 63

Or
ig
in
al
 Im

ag
e

Gr
ou

nd
 T
ru
th
 S
eg

m
en

ta
tio

n
Ce

llP
ro
fil
er
 S
eg

m
en

ta
tio

n

CN
N
Ou

tli
ne

s
CN

N
Se

gm
en

ta
tio

n
Er
ro
rs
 o
f C

NN
 S
eg

m
en

ta
tio

n

F
ig
u
re

40
:
C
om

pa
ri
so
n
be

tw
ee
n
se
gm

en
ta
ti
on

s
ob

ta
in
ed

w
it
h
C
el
lP
ro
fil
er

an
d
ou

r
be

st
de
ep

le
ar
ni
ng

m
od

el
fo
r
an

ex
am

pl
e
im

ag
e
(B

B
B
C
02

2,
pl
at
e
20

59
6,

w
el
lI
12

,s
it
e
1)
.

64 4 EXPERIMENTS AND RESULTS

widths.

Even though we could slightly increase the 3-class model’s performance by
random sampling, it still performs worse than the boundary detection model
with random sampling. The change of boundary width did not have any
effect on the performance of the 3-class model.
We thus conclude that training the CNN with boundary formulation and
using data augmentation gives us the best results. Figures 38, 39 and 40
show a comparison between segmentations obtained by CellProfiler and our
CNN.

4.5.3 Optimizing the Running Time

Experiment Setup. A downside of current segmentation approaches is
the computational complexity of the watershed algorithm. As a result, seg-
menting images with CellProfiler takes multiple seconds. In this section, we
show that our model is significantly faster.

The following experiments are conducted on the best-performing version of
the model, the network in boundary formulation trained with boundaries of
size 4 and random sampling of the training data.

All experiments were carried out on a Nvidia GeForce GTX TITAN X. The
IPython notebook used for these experiments can be found in the GitHub
repository in the directory experiments/timing/.

• Prediction and Post Processing

We tested the computation time required for the prediction of the prob-
ability map given an input image. As the post processing step required
to get a segmentation from outline probability map is rather involved,
the computation time spent on this is measured as well.
For the post processing, as explained in section 4.4.2, the output of the
model is thresholded at 1

2
and connected components in non-boundary

pixels are filtered by their intensity.

4.5 Improving Performance with Data Augmentation 65

Setup Resolution Prediction Time Post Processing Time
Full images 696x530 9.7× 10−2s± 3.4× 10−3s 1.1× 10−1s± 3.8× 10−2s
Patches 256x256 2.0× 10−2s± 8.3× 10−4s 9.4× 10−3s± 2.9× 10−3s

Table 4: Running times for model prediction (outlines) and post process-
ing. Mean time measurements and standard deviations are given. One can
clearly observe the higher variance in the post processing timing as the post
processing is dependent on what is displayed in the image. On the other
hand, the prediction time is independent from what is displayed in the image
and thus has a low variance. This experiment was carried out with 1000
repetitions and random samples of images across the test data set.

• GPU Usage

To ensure the efficient usage of the GPU during prediction, we ana-
lyzed the effect of changing the number of samples that are processed
simultaneously. For an efficient usage of processing power and mem-
ory, it is required that the processing time needed per image does not
change with the number of samples processed simultaneously. Also, this
should hold true when exceeding the batch size with which predictions
are made.

Results.

• Prediction and Post Processing As the model is run in two differ-
ent setups – training with patches and prediction with full images –
we measure computation time for both cases. The time measurement
results are summarized in table 4.

One can observe that both prediction and post processing takes signif-
icantly longer for larger images. For patches, the post processing time
is much lower than the prediction time. For full images, prediction
and post processing roughly take equally long. The relative durations
of prediction and post processing are depicted in figure 41 for full im-
ages and figure 42 for patches. Compared to CellProfiler, which needs
multiple seconds for the segmentation of a single full-resolution image,

66 4 EXPERIMENTS AND RESULTS

Forward Pass Post Processing
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225
tim

e
in
 se

co
nd

s

Running Time

Figure 41: Running time for images of size 696x520. The high standard
deviation in the post processing time is visualized. N=1000.

we achieve running times of less than half a second with deep learning
models.

• GPU Usage

The prediction time as a function of the size of the processed data set
is visualized in figure 43. We did not observe a significant increase or
decrease in the prediction time per image with increasing data set size,
even when increasing the data set size beyond the batch size, which is
expected for an efficient usage of the computing power of the GPU.

4.5 Improving Performance with Data Augmentation 67

Forward Pass Post Processing

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
tim

e
in
 se

co
nd

s
Running Time

Figure 42: Running time for patches of size 256x256. One can observe that
post processing time is much shorter than prediction time in this experiment.
N=1000.

1 2 3 4 5 6 7 8 9 10 11 12 13
data set size (batch size = 10)

0.150

0.155

0.160

0.165

0.170

in
fe

re
nc

e
tim

e
pe

r i
m

ag
e

in
 se

co
nd

s

Running Time

Figure 43: Running time for whole images depending on number of samples
simultaneously processed by the GPU. The running time measurements were
repeated 100 times for each data set size.

68 5 CONCLUSION

5 Conclusion

Improved Method for Quantifying Segmentations. A method com-
monly used in object detection was used for comparing segmentations for flu-
orescence microscopy images. It is an object-based measure and thus much
more relevant to biologists than a pixel-based comparison. We used this
method to evaluate the performance of different deep learning models for
segmentations.

Declumping Nuclei with Semantic Segmentation. Clumped nuclei
are common in fluorescence microscopy and thus separating touching nuclei
is crucial for segmentation algorithms. By introducing an artificial boundary
class between touching nuclei and between nuclei and background pixels, we
could separate clumped nuclei using semantic segmentation with convolu-
tional neural networks. The fully convolutional networks we used here allow
end-to-end training and can do predictions on an arbitrary input size.

Outperforming Current Segmentation Methods. The neural networks
we trained easily surpass the performance of seeded watershed algorithms
used with a CellProfiler segmentation pipeline designed by experts. We could
lower the share of overdetected nuclei from 5% to 2% and the share of un-
detected nuclei from 15% to 6%. Table 5 summarizes the performance of all
our experiments.

Model Training Data Precision Recall F1

(if applicable)

CellProfiler 95% 85% 0.90
3-Class CNN (boundary boost) CellProfiler Outputs 94% 82% 0.88
3-Class CNN Manual Annotations 95% 87% 0.91
Boundary CNN Manual Annotations 96% 88% 0.92
Boundary CNN (data augmentation) Manual Annotations 98% 94% 0.96

Table 5: Summary of the performance metrics of all models presented in
section 3.3.

69

6 Outlook

To further increase the performance of deep neural networks for segmenting
nuclei in fluorescence microscopy images, networks need to yield segmenta-
tions with even fewer merge errors. Thus, more research should be conducted
on cost functions that put more weight on areas where clumped nuclei are
depicted in the input image.

In addition, using object detection approaches or instance segmentation in-
stead of semantic segmentation as discussed in this thesis, might yield better
results. However, these models are significantly harder to implement and
train.

Before algorithms based on neural networks can be made available in software
tools, their robustness should be tested. We suggest testing the segmenta-
tion performance on different cell types, input image sizes, and microscopy
magnifications.

The usability of segmentation algorithms can further be increased as well.
Even though the presented method does not require parameter tuning, the
user either has to provide annotated images and train a convolutional net-
work, or use a network with corresponding weights trained by others. Both
approaches currently require experience with deep learning models. A ser-
vice that hosts various deep learning models and provides segmentations
for a wide variety of images might significantly increase the usage of deep
convolutional neural networks for segmentation of fluorescence microscopy
images.

70 6 OUTLOOK

References
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y., and Zheng, X. TensorFlow: Large-Scale machine learning on
heterogeneous distributed systems.

[2] Ashburn, T. T., and Thor, K. B. Drug repositioning: identifying
and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3,
8 (Aug. 2004), 673–683.

[3] Bates, M., Huang, B., Dempsey, G. T., and Zhuang, X. Multi-
color super-resolution imaging with photo-switchable fluorescent probes.
Science 317, 5845 (21 Sept. 2007), 1749–1753.

[4] Blasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira,
J., Patterson, J. O., Davies, D., Filby, A., Carpenter, A. E.,
and Rees, P. Label-free cell cycle analysis for high-throughput imaging
flow cytometry. Nat. Commun. 7 (7 Jan. 2016), 10256.

[5] Bray, M.-A., Fraser, A. N., Hasaka, T. P., and Carpenter,
A. E. Workflow and metrics for image quality control in large-scale
high-content screens. J. Biomol. Screen. 17, 2 (Feb. 2012), 266–274.

[6] Bray, M.-A., Singh, S., Han, H., Davis, C. T., Borgeson, B.,
Hartland, C., Kost-Alimova, M., Gustafsdottir, S. M., Gib-
son, C. C., and Carpenter, A. E. Cell painting, a high-content
image-based assay for morphological profiling using multiplexed fluores-
cent dyes. Nat. Protoc. 11, 9 (25 Aug. 2016), 1757–1774.

[7] Broad Institute of MIT and Harvard. The drug repurposing
hub. clue.io/repurposing. Accessed: 2017-6-10.

[8] Buggenthin, F., Marr, C., Schwarzfischer, M., Hoppe, P. S.,
Hilsenbeck, O., Schroeder, T., and Theis, F. J. An automatic
method for robust and fast cell detection in bright field images from
high-throughput microscopy. BMC Bioinformatics 14 (4 Oct. 2013),
297.

clue.io/repurposing

[9] Caicedo, J. C., Singh, S., and Carpenter, A. E. Applications
in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39
(June 2016), 134–142.

[10] Canny, J. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell. 8, 6 (June 1986), 679–698.

[11] Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke,
C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H.,
Lindquist, R. A., Moffat, J., Golland, P., and Sabatini, D. M.
CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. 7, 10 (31 Oct. 2006), R100.

[12] Chollet, F. Keras. github.com/fchollet/keras, 2015.

[13] Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and
Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation
from sparse annotation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2016 (17 Oct. 2016), S. Ourselin,
L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds., Lecture
Notes in Computer Science, Springer International Publishing, pp. 424–
432.

[14] Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCar-
ren, P., Hirschman, J. E., Johnston, S. E., Vrcic, A., Wong,
B., Khan, M., Asiedu, J., Narayan, R., Mader, C. C., Sub-
ramanian, A., and Golub, T. R. The drug repurposing hub: a
next-generation drug library and information resource. Nat. Med. 23, 4
(7 Apr. 2017), 405–408.

[15] Dao, D., Fraser, A. N., Hung, J., Ljosa, V., Singh, S., and
Carpenter, A. E. CellProfiler analyst: interactive data exploration,
analysis and classification of large biological image sets. Bioinformatics
32, 20 (15 Oct. 2016), 3210–3212.

[16] Eulenberg, P. Extraction of morphological features with artifi-
cial neural networks and their relation to the kadanoff renormalization
group. Master’s Thesis, 30 Dec. 2016.

[17] Eulenberg, P., Koehler, N., Blasi, T., Filby, A., Carpenter,
A. E., Rees, P., Theis, F. J., and Alexander Wolf, F. Deep
learning for imaging flow cytometry: Cell cycle analysis of jurkat cells.
17 Oct. 2016.

github.com/fchollet/keras

[18] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
and Zisserman, A. The pascal visual object classes (VOC) challenge.
Int. J. Comput. Vis. 88, 2 (1 June 2010), 303–338.

[19] Feng, Y., Mitchison, T. J., Bender, A., Young, D. W., and
Tallarico, J. A. Multi-parameter phenotypic profiling: using cellu-
lar effects to characterize small-molecule compounds. Nat. Rev. Drug
Discov. 8, 7 (July 2009), 567–578.

[20] Friedman, J., Hastie, T., and Tibshirani, R. The elements of
statistical learning, vol. 1. Springer series in statistics Springer, Berlin,
2001.

[21] Fulwyler, M. J. Electronic separation of biological cells by volume.
Science 150, 3698 (12 Nov. 1965), 910–911.

[22] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-
Martinez, V., and Garcia-Rodriguez, J. A review on deep learn-
ing techniques applied to semantic segmentation.

[23] GIMP. GNU image manipulation program. www.gimp.org.

[24] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 10 Nov. 2016.

[25] Goodman, A. Annotation tool for fluorescence microscopy images.

[26] Gustafsdottir, S. M., Ljosa, V., Sokolnicki, K. L., An-
thony Wilson, J., Walpita, D., Kemp, M. M., Petri Seiler,
K., Carrel, H. A., Golub, T. R., Schreiber, S. L., Clemons,
P. A., Carpenter, A. E., and Shamji, A. F. Multiplex cytologi-
cal profiling assay to measure diverse cellular states. PLoS One 8, 12
(2 Dec. 2013), e80999.

[27] Hariharan, B., Arbel, P., Girshick, R., and Malik, J. Simul-
taneous detection and segmentation.

[28] He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask R-
CNN.

[29] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(2015), pp. 1026–1034.

www.gimp.org

[30] Hennig, H., Rees, P., Blasi, T., Kamentsky, L., Hung, J., Dao,
D., Carpenter, A. E., and Filby, A. An open-source solution for
advanced imaging flow cytometry data analysis using machine learning.
Methods 112 (1 Jan. 2017), 201–210.

[31] Hilsenbeck, O., Schwarzfischer, M., Loeffler, D., Dimopou-
los, S., Hastreiter, S., Marr, C., Theis, F. J., and Schroeder,
T. fastER: a user-friendly tool for ultrafast and robust cell segmentation
in large-scale microscopy. Bioinformatics (22 Feb. 2017).

[32] Hinton, G. CSC321, neural networks for machine learning, lecture
slides.

[33] Huang, B., Wang, W., Bates, M., and Zhuang, X. Three-
dimensional super-resolution imaging by stochastic optical reconstruc-
tion microscopy. Science 319, 5864 (8 Feb. 2008), 810–813.

[34] Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci.
Eng. 9, 3 (1 May 2007), 90–95.

[35] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift.

[36] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Intro-
duction to Statistical Learning: with Applications in R. Springer Texts
in Statistics. Springer New York, 2013.

[37] Jones, T. R., Kang, I. H., Wheeler, D. B., Lindquist, R. A.,
Papallo, A., Sabatini, D. M., Golland, P., and Carpenter,
A. E. CellProfiler analyst: data exploration and analysis software for
complex image-based screens. BMC Bioinformatics 9 (15 Nov. 2008),
482.

[38] Köhler, N. Automatic measurement of the ejection fraction of the
human heart with deep learning algorithms on the basis of magnetic
resonance imaging. Master’s Thesis, 3 Mar. 2017.

[39] Kroiss, M. Using deep neural networks to predict the lineage choice of
hematopoietic stem cells from Time-Lapse microscopy images. Master’s
Thesis, 24 June 2014.

[40] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature
521, 7553 (28 May 2015), 436–444.

[41] Li, F.-F. CS231n: Convolutional neural networks for visual recognition,
lecture notes.

[42] Liang, X., Wei, Y., Shen, X., Yang, J., Lin, L., and Yan, S.
Proposal-free network for instance-level object segmentation. arXiv
preprint arXiv: (2015).

[43] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Lawrence Zitnick, C.,
and Dollár, P. Microsoft COCO: Common objects in context.

[44] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi,
F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken,
B., and Sánchez, C. I. A survey on deep learning in medical image
analysis.

[45] Ljosa, V., Sokolnicki, K. L., and Carpenter, A. E. Annotated
high-throughput microscopy image sets for validation. Nat. Methods 9,
7 (28 June 2012), 637.

[46] Loo, L.-H., Wu, L. F., and Altschuler, S. J. Image-based multi-
variate profiling of drug responses from single cells. Nat. Methods 4, 5
(May 2007), 445–453.

[47] Malpica, N., de Solórzano, C. O., Vaquero, J. J., Santos,
A., Vallcorba, I., García-Sagredo, J. M., and del Pozo, F.
Applying watershed algorithms to the segmentation of clustered nuclei.
Cytometry 28, 4 (1 Aug. 1997), 289–297.

[48] Mc Kinney, W. Data structures for statistical computing in python.

[49] McDonnell, L. A., and Heeren, R. M. A. Imaging mass spec-
trometry. Mass Spectrom. Rev. 26, 4 (July 2007), 606–643.

[50] Molecular Devices. High content imaging devices from
molecular devices. www.moleculardevices.com/systems/
high-content-imaging. Accessed: 2017-6-24.

[51] N. Moga, A., Cramariuc, B., and Gabbouj, M. Parallel watershed
transformation algorithms for image segmentation. Parallel Comput. 24,
14 (1 Dec. 1998), 1981–2001.

[52] Nair, V., and Hinton, G. E. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10) (2010), pp. 807–814.

www.moleculardevices.com/systems/high-content-imaging
www.moleculardevices.com/systems/high-content-imaging

[53] Neverova, N., Luc, P., Couprie, C., Verbeek, J., and LeCun,
Y. Predicting deeper into the future of semantic segmentation.

[54] Ng, A. CS 229: Machine learning, lecture notes.

[55] Nichols, A. High content screening as a screening tool in drug discov-
ery. Methods Mol. Biol. 356 (2007), 379–387.

[56] Noh, H., Hong, S., and Han, B. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE International
Conference on Computer Vision (2015), pp. 1520–1528.

[57] PerkinElmer. Fluorescence microscopes from
PerkinElmer. www.perkinelmer.co.uk/category/
high-content-screening-instruments-microscopes. Accessed:
2017-6-20.

[58] Quan, T. M., Hilderbrand, D. G. C., and Jeong, W.-K. Fu-
sionNet: A deep fully residual convolutional neural network for image
segmentation in connectomics.

[59] Rizzo, M. L. Statistical Computing with R. CRC Press, 15 Nov. 2007.

[60] Rohban, M. H., Singh, S., Wu, X., Berthet, J. B., Bray, M.-A.,
Shrestha, Y., Varelas, X., Boehm, J. S., and Carpenter, A. E.
Systematic morphological profiling of human gene and allele function via
cell painting. Elife 6 (18 Mar. 2017).

[61] Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolu-
tional networks for biomedical image segmentation.

[62] Roundtable on Translating Genomic-Based Research for
Health, Board on Health Sciences Policy, and Institute of
Medicine. Drug Repurposing and Repositioning: Workshop Summary.
National Academies Press (US), Washington (DC), 30 May 2014.

[63] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115, 3 (1 Dec. 2015), 211–252.

[64] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,
and LeCun, Y. OverFeat: Integrated recognition, localization and
detection using convolutional networks.

www.perkinelmer.co.uk/category/high-content-screening-instruments-microscopes
www.perkinelmer.co.uk/category/high-content-screening-instruments-microscopes

[65] Shelhamer, E., Long, J., and Darrell, T. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 39, 4 (Apr. 2017), 640–651.

[66] Singh, S. Cytominer GitHub repository. www.github.com/
cytomining/cytominer. Accessed: 2017-6-15.

[67] Theis, F. J. Statistical learning, lecture notes, 3 Feb. 2016.

[68] Thermo Fisher Scientific. Fluorescence SpectraViewer. www.
thermofisher.com. Accessed: 2017-6-24.

[69] van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu,
T., and scikit-image contributors. scikit-image: image processing
in python. PeerJ 2 (19 June 2014), e453.

[70] Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N.,
Quach, N. T., DeFelice, M. M., Maayan, I., Tanouchi, Y., Ash-
ley, E. A., and Covert, M. W. Deep learning automates the quan-
titative analysis of individual cells in Live-Cell imaging experiments.
PLoS Comput. Biol. 12, 11 (Nov. 2016), e1005177.

[71] Walt, S. v. d., Colbert, S. C., and Varoquaux, G. The NumPy
array: A structure for efficient numerical computation. Comput. Sci.
Eng. 13, 2 (1 Mar. 2011), 22–30.

[72] Wolf, C., and Jolion, J.-M. Object count/area graphs for the eval-
uation of object detection and segmentation algorithms. IJDAR 8, 4
(1 Sept. 2006), 280–296.

www.github.com/cytomining/cytominer
www.github.com/cytomining/cytominer
www.thermofisher.com
www.thermofisher.com

	Introduction
	Background
	Cytometry
	Motivation
	High-Content and High-Throughput Analysis
	Applications

	Morphological Profiling with Fluorescence Microscopy
	Experiment Setup
	Cell Painting
	Analysis Pipeline

	Image Segmentation
	Semantic Segmentation
	Instance Segmentation
	Image Segmentation in CellProfiler

	Convolutional Neural Networks
	Feed Forward Neural Networks
	Single-Layer Perceptron
	Multi-Layer Perceptron
	Convolutions in Neural Networks

	Methods
	Image Segmentation with Deep Learning
	Image Understanding
	U-net
	Adaptions to U-net
	Implementation

	The BBBC022 Data Set
	Description
	Segmentation with CellProfiler
	Building a Ground Truth Data Set

	Computing Splits and Merges to Compare Segmentations
	Motivation
	Implementation

	Experiments and Results
	Benchmarking CellProfiler
	Learning on Automatically Generated Annotations
	Using Boundary Boost
	Changing the Training Set Size

	Removing Noise with Hand Annotations
	Predicting Nuclei Outlines
	Reformulation of the Segmentation Problem
	Getting Segmentations from Outlines
	Improved Segmentations with Outline Prediction

	Improving Performance with Data Augmentation
	Models Trained on Hand-Crafted Annotations
	Improving Models in 3-Class Formulation
	Optimizing the Running Time

	Conclusion
	Outlook

