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Introduction

ACEis a software package designed to quickly and accurately infer Ising or Potts models
based on correlation data from a variety of biological and artificial systems. This software
makes use of the Adaptive Cluster Expansion (ACE) algorithm.

Given a set of correlation data or sequence input in FASTA format, ACE will produce a Ising
or Potts modelthat reproduces the input correlations to within the expected error due to
finite sampling.

NOT E: Mathematical expressions through MathJax are currently not supported on GitHub.


https://travis-ci.org/johnbarton/ACE
https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Potts_model
http://en.wikipedia.org/wiki/FASTA_format

To see these expressions rendered properly, please see README . pdf .

Installation

Download and unzip the package, then run the following commands in the terminalfrom
the new directory:

$ ./configure
$ make

If you’d like to be able to run the program from any directory, you can then enter:

S make dinstall

Required Input

Running the algorithm requires a set of correlations as input, to be computed from your
data.

As an example, let’s consider a system of IV variables described by the configuration
z ={x1,,...,2N}, with each variable x; taking one of g; possible values,

z; € {1,2,...,¢;}. From a set of Bobservations of the system, we can compute the
frequency of each variable as well as the pairwise correlations,

pi(a) = é(z;,a),
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Here § represents the Kronecker delta function. These correlations should be saved in a file
ending with the extension .p,inthe following format:


http://en.wikipedia.org/wiki/Kronecker_delta

; pn(1)pn(2) ...pv (g — 1)
P1 2E ,131?1,2( 2)..pi2(1,¢ — 1) P12(2,1) p12(2,2) ...p12(qn — 1,2 — 1)
D13 1,1

In other words, the first IV lines of the file record the frequency that each state is observed
at eachsite, and the next N(IN — 1) /2 lines record the pairwise correlations. Note that,
because Y % | p;(a) = 1, the frequency (and corresponding pair correlations) for one
state at each site need not be specified explicitly.

These values should be given in floating point or scientific format, with whitespace (e.g.

"\t')between successive values and a newline character( '\n' ) at the end of each line. In
order forthe correlations to be read in properly, there should be no whitespace between
the final correlation value and the newline character on each line.

Forexamples, see the examples/ directory. Instructions on how to automatically
generate correlations from a sequence alignment in FASTA format (and others) can be
foundin the Matlab file inthe scripts/ directory. The correlations can also be prepared
through a set of Python scripts, scripts/ACEtools.py , which also includes useful
auxiliary functions.

Running the program

Here we show a simple example of how to run the program and interpret the output, using
a set of sample data forthe HIV protein p7. Fullexplanations for the possible options are
given here.

Running ACE

We begin running the ACE algorithm on the example p7 dataset with the command:

$ ./bin/ace -d examples -i p7 -o p7-out -g2 0.0002 -b 4130



This creates two new files, examples/p7-out.sce and examples/p7-out.j , which
record generaloutput on the inference procedure and the current inferred Potts
parameters, respectively.

Output from the first file, examples/p7-out.sce, should appearsomething like the
following:

8.463532e-04 1.917385e+019.964734e+00 1.309919e+02 1.186601e+01 4 3321 364
8.060507e-04 1.911941e+011.019924e+01 1.334989e+02 1.186352e+01 4 3343 373
7.676673e-04 2.298425e+011.194769e+01 1.659755e+02 1.186115e+01 4 3353 380
7.311117e-04 2.550650e+011.277885e+01 1.768295e+02 1.185510e+01 4 3399 390
6.962969e-04 1.842427e+019.891297e+00 1.219612e+02 1.185371e+014 3442 406

These columns represent, respectively: the current value of the threshold 8, erroron the
one-point correlations €1, error on the pairwise correlations €,3, normalized maximum
error €y,x, CUrrent estimate of the entropy S, maximum cluster size, total number of
clusters in the expansion, and the number of selected clusters (i.e. those for which

IAS] > 6).

The inferred Potts parameters inthe second file, examples/p7-out.j , are output inthe
same format as the input correlations, as shown above. In this case, the first IV lines record
the Potts fields h;(a), and the following N(IN — 1) /2 lines record the couplings J;;(a,b).

The finalline of examples/p7-out.sce should then appear something like:
1.338016e-053.641289e-011.674574e-019.498217e-011.169706e+016 202934773

The error forthe Potts parameters is low (the errorterms €1, €,2, €max < 1), but we can
follow this initialinference step by running the Monte Carlo (MC) learning algorithm to
ensure convergence. This is particularly usefulwhen convergence is difficult to obtain in the
cluster algorithm alone. Typically we find that MC learning is more likely to be successful
when the entropy has nearly converged (see column 6 in examples/p7-out.sce).

Running the MC learning algorithm QLS

We now run the MC algorithm on the output we previously obtained from ACE, using the
command:



$ ./bin/qls -d examples -c p7 -i p7-out -o p7-out-learn -g2 0.0002
-b 4130

This creates two additional output files, examples/p7-out-learn.fit and
examples/p7-out-learn.j , which record progress on the MC learning procedure and the
current refined Potts parameters, respectively.

Output from the first file, examples/p7-out-learn.fit,should appearsomething like
the following:

11.877327e-011.266454e-011.303780e+00 1.900000e+00
21.976668e-011.284943e-011.329022e+00 3.610000e+00
31.956319€-011.276321e-011.340715e+00 6.859000e+00

4 1.959972e-011.282958e-011.279392e+00 1.303210e+01
52.073654e-011.295238e-011.377221e+00 2.476099%e+01

These columns represent, respectively: the current iteration, error on the one-point
correlations €1, error on the pairwise correlations €,2, normalized maximum error €y, and
the maximum size of the weight parameter used in the MC learning update step. Note that
the erroris slightly different in this case than at the end of the cluster algorithm. This is
because, by default, the MC learning algorithm computes the correlations using a larger
number of samples.

After about 15iterations the MC learning algorithm should converge and the program will
terminate. The Potts parameters recorded in the second file, examples/p7-out-
learn.j , now specify a modelthat accurately recovers the input correlations to within
fluctuations expected due to finite sampling.

Verifying the output with QGT

If the input correlations are generated using the matlab script included in this package (for
instructions, see the script itself, which lies inthe scripts/ directory), auxiliary
measurements such as higher order correlations can be checked comprehensively. By
default, this routine compares the one- and two-point correlations for the modeland data,
as wellas the probability P(k) of observing k differences between sampled configurations
and the “consensus” (determined from input read in to the program). It is also possible to
compute the three-point correlations, the energy distribution, and a set of sample
configurations.



This routine can be run using, for example:

$ ./bin/qgt -d examples -c p7 -m p7 -w p7 -i p7-out -o p7-out-fit
-g2 0.0002 -b 4130

This program also gives the RMS error and Pearson correlation between the modeland data
correlations.

Note that the output correlations from this program include not just the input ones, but
also the ones corresponding to the “gauged” states, which are implicit in the input data.
We also note that by default the output of smallthree-point correlations is trimmed in
order to prevent generating extremely large files. For more information, see the options
below.

Troubleshooting

Ondifficult data sets (for example, systems of very large size, those with many states,
and/or high variability), ACE may be more slow to converge. Below are a few common
potential problems and suggestions for how to fix them.

The one- and two-point error terms have converged (e < 1), but the maximumerror
remains > 1. Obtaining a normalized maximum error < 1 is the most stringent statistical
check of the inferred model performed by the ACE and QLS routines. It is possible to obtain
avery good generative modelof the data evenin cases where this erroris largerthan 1 -
use QGT to verify an acceptable fit.

The entropy is oscillating. Large oscillations of the entropy can be observed when whole
collections of variables strongly interact. One common source is strongly-correlated gaps
at the beginning and end of sequences from protein families. In such cases, filling in gaps
while computing the correlations, using stronger compression, orincreasing the
regularization strength can help to reduce oscillations and improve convergence.

ACE slows down as the size of clustersincreases. This can occur if the number of states
is very large. Stronger compression can allow the cluster expansion algorithm to proceed
further. In addition, QLS can often converge rapidly after the network of strong
interactions has been inferred by ACE, even if the errors are high and ACE has not yet
advanced to a low value of the threshold (see the lattice protein model here foran
example).


http://dx.doi.org/10.1093/bioinformatics/btw328

Additional questions? Please contact us for more information or advice on dealing with
difficult data sets.

Command line options

Options for all programs

-d gives the path to the directory where data files are located, and where output will
be written (default: “.” (current directory))

-i specifies the name of the input file (excluding the extension, default: “input”)

-o specifies the name of the output file (excluding the extension, default: “output”)

-v enables verbose output

-b tells the program how many samples were used to generate the input
correlations, so that the expected error in the correlations due to finite sampling can
be estimated (default: 1000)

-mcb gives the number of Monte Carlo steps used to estimate the inference error
(default: 40000 (ace), 800000 (qls, qgt))

-mcr gives the number of independent Monte Carlo trajectories to use when
estimating the inference error (default: 1)

-g2 setsthe Ly-norm regularization strength (note that a naturalvalue for this
parameteris 1/ B, where Bis the number of samples used to generate the input
correlations - for contact prediction, it may be best to use strong regularization ~ 1,
regardless of the number of samples, default: 0)

-ag automatically sets the Ly-norm regularization strength equalto 1/ B, using
the number of samples B passed with the -b option

-gi enable the alternate gauge-invariant form of the Ly regularization for
couplings (see here for details)

Additional ACE options

-kmin sets the minimum cluster size required before the program will terminate
(default: 0)

-kmax sets the maximum cluster size; the program terminates automatically after
a cluster of this size is created (default: none)

-t specifies a single value of the threshold 8 at which the algorithm will run, then


http://dx.doi.org/10.1093/bioinformatics/btw328

exit

-tmax specifies the maximum (starting) value of the threshold (default: 1)

—-tmin specifies the minimum allowed value of the threshold; the program
terminates automatically after 8 falls below this minimum value (default: 1e-10)

-ts specifies the logarithmic step size to for between successive values 8, through
0,11 = 0; /Ostep (default: 1.05)

-r enables the expansion of the entropy S around a mean-field reference entropy
Sp, which may be helpfulin particular for inferring models described by dense
networks of weak interactions (note: works only if all variables are binary)

-g0 sets the Ly-norm regularization strength, and turns on Ly-norm regularization,
enforcing sparsity for Potts couplings (default: 1e-4)

-10 turns on Ly-norm regularization, but without setting the regularization
strength

-ss specifies aninput “secondary structure” file used to specify the initial set of
clusters to consider in the expansion

-lax enables a laxer cluster construction rule, increasing the number of clusters
included in the cluster expansion routine

Additional QLS options

-c specifies the set of (true) correlations to compare with for the MC learning
routine (default: “input”)

-e sets the maximum tolerable error threshold; the program will run until all of the
errorterms €,1, €2, €max < € (default: 1)

Additional QGT options

-c specifies the file giving the consensus sequence (default: “input”)

-m specifies the file containing the compressed representation of the data (i.e. the
compressed MSA, default: “input”)

-w specifies the file with weights for each configurationin the data (default:
“input”)

-pthresh sets the threshold for three-point correlations that will be printed
(default: 10 x (p), where (p) is the average one-point correlation)

-p3 enables computation and comparison of three-point correlations; note that by
default not allcorrelations are printed (see —-pthresh option above)

-p3full enables computation and comparison of three-point correlations and sets
pthresh to zero

-nmax set the maximum number of three-point correlations to print, another way



to controlfile size (default: none)
® -msaout enables output of sample configurations from the modeland their

energies
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