F1IOOOResearch F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

'.) Check for updates

SOFTWARE TOOL ARTICLE
Creating and sharing reproducible research code the workflowr

way [version 1; peer review: 3 approved]

John D. Blischak ““' 1, Peter Carbonetto ' 1.2, Matthew Stephens!:3

1Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
2Research Computing Center, University of Chicago, Chicago, IL, 60637, USA
3Department of Statistics, University of Chicago, Chicago, IL, 60637, USA

V1 First published: 14 Oct 2019, 8:1749 OPen Peer Review
https://doi.org/10.12688/f1000research.20843.1
Latest published: 14 Oct 2019, 8:1749 .
https://doi.org/10.12688/f1000research.20843.1 Reviewer Status " +/ +/
Abstract Invited Reviewers
Making scientific analyses reproducible, well documented, and easily 1 2 3
shareable is crucial to maximizing their impact and ensuring that others can
build on them. However, gccpmpllshlng these goals?‘ .|s .not gasy, requiring version 1 o o o
careful attention to organization, workflow, and familiarity with tools that are 14 0ct 2019 report report report
not a regular part of every scientist's toolbox. We have developed an R
package, workflowr, to help all scientists, regardless of background,
overcome these challenges. Workflowr aims to instill a particular
"workflow" — a sequence of steps to be repeated and integrated into 1 Peter F. Hickey "=, Walter and Eliza Hall
research practice — that helps make projects more reproducible and Institute of Medical Research, Parkville, Australia

accessible.This workflow integrates four key elements: (1) version control) o
(via Git); (2) literate programming (via R Markdown); (3) automatic checks ~ 2 Przemystaw Biecek "=, Warsaw University of

and safeguards that improve code reproducibility; and (4) sharing code and Technology, Warsaw, Poland

results via a browsable website. These features exploit powerful existing

tools, whose mastery would take considerable study. However, the 3 Peter Baker "=, University of Queensland,
workflowr interface is simple enough that novice users can quickly enjoy Herston, Australia

its many benefits. By simply following the workflowr "workflow", R users
can create projects whose results, figures, and development history are
easily accessible on a static website — thereby conveniently shareable with ~ ticle can be found at the end of the article.
collaborators by sending them a URL — and accompanied by source code

and reproducibility safeguards. The workflowr R package is open source

and available on CRAN, with full documentation and source code available

at https://github.com/jdblischak/workflowr.

Any reports and responses or comments on the

Keywords
reproducibility, open science, workflow, R, interactive programming, literate
programming, version control

R This article is included in the RPackage gateway.

Page 1 of 18

https://f1000research.com/articles/8-1749/v1
https://f1000research.com/articles/8-1749/v1
https://orcid.org/0000-0003-2634-9879
https://orcid.org/0000-0003-1144-6780
https://github.com/jdblischak/workflowr
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
https://f1000research.com/articles/8-1749/v1
https://orcid.org/0000-0002-8153-6258
https://orcid.org/0000-0001-8423-1823
https://orcid.org/0000-0002-1241-7263
https://doi.org/10.12688/f1000research.20843.1
https://doi.org/10.12688/f1000research.20843.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.20843.1&domain=pdf&date_stamp=2019-10-14

F1IOOOResearch F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Corresponding author: John D. Blischak (jdblischak@gmail.com)

Author roles: Blischak JD: Conceptualization, Software, Writing — Original Draft Preparation, Writing — Review & Editing; Carbonetto P:
Software, Writing — Original Draft Preparation, Writing — Review & Editing; Stephens M: Conceptualization, Funding Acquisition, Supervision,
Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Gordon and Betty Moore Foundation [4559].
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Blischak JD et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Blischak JD, Carbonetto P and Stephens M. Creating and sharing reproducible research code the workflowr way
[version 1; peer review: 3 approved] F1000Research 2019, 8:1749 https://doi.org/10.12688/f1000research.20843.1

First published: 14 Oct 2019, 8:1749 https://doi.org/10.12688/f1000research.20843.1

Page 2 of 18

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.20843.1
https://doi.org/10.12688/f1000research.20843.1

Introduction

A central tenet of the scientific method is that results should
be independently verifiable — and, ideally, extendable — by
other researchers. As computational methods play an increas-
ing role in many disciplines, key scientific results are often
produced by computer code. Verifying and extending such
results requires that the code be “reproducible”; that is, it can
be accessed and run, with outputs that can be corroborated
against published results'”. Unfortunately, this ideal is
not usually achieved in practice; most scientific articles
do not come with code that can reproduce their results'*-"".

There are many barriers to sharing reproducible code and cor-
responding computational results'’. One barrier is simply that
keeping code and results sufficiently organized and documented
is difficult — it is burdensome even for experienced program-
mers who are well-trained in relevant computational tools
such as version control (discussed later), and even harder for
the many domain scientists who write code with little formal
training in computing and informatics”. Further, modern inter-
active computer environments (e.g., R, Python), while greatly
enhancing code development'®, also make it easier to cre-
ate results that are irreducible. For example, it is all too easy to
run interactive code without recording or controlling the seed
of a pseudo-random number generator, or generate results
in a ‘“contaminated” environment that contains objects whose
values are critical but unrecorded. Both these issues can lead
to results that are difficult or impossible to reproduce. Finally,
even when analysts produce code that is reproducible in
principle, sharing it in a way that makes it easy for others
to retrieve and use (e.g., via GitHub or Bitbucket) involves
technologies that many scientists are not familiar with'*!".

In light of this, there is a pressing need for easy-to-use tools to
help analysts maintain reproducible code, document progress,
and disseminate code and results to collaborators and to the
scientific community. We have developed an open source
R'" package, workflowr, to address this need. The
workflowr package aims to instill a particular “workflow” — a
sequence of steps to be repeated and integrated into research
practice — that helps make projects more reproducible and
accessible. To achieve this, workflowr integrates four key
features that facilitate reproducible code development: (1)
version control'*?; (2) literate programming’'; (3) automatic
checks and safeguards that improve code reproducibility; and
(4) sharing code and results via a browsable website. These
features exploit powerful existing tools, whose mastery would
take considerable study. However, the workflowr interface is
designed to be simple so that learning it does not become another
barrier in itself and novice users can quickly enjoy its many
benefits. By simply following the workflowr “workflow”, R
users can create projects whose results and figures are easily
accessible on a static website — thereby conveniently shareable
with collaborators by sending them a URL — and accompanied
by source code and reproducibility safeguards. The Web-based
interface, updated with version control, also makes it easy to
navigate through different parts of the project and browse the
project history, including previous versions of figures
and results, and the code used to produce them. By using

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

workflowr, all this can be achieved with minimal experience in
version control systems and Web technologies.

The workflowr package builds on several software technolo-
gies and R packages, without which this work would have been
impossible. Workflowr builds on the invaluable R Markdown
literate programming system implemented in knitr’>* and
rmarkdown’'**, which in turn build on pandoc, the “Mark-
down” markup language, and various Web technologies such
as Cascading Style Sheets and Bootstrap”. Several popular R
packages extend knitr and rmarkdown for specific aims such
as writing blogs (blogdown’), monographs (bookdown”’),
and software documentation (pkgdown’). Analogously,
workflowr extends rmarkdown with additional features
such as the reproducibility safeguards, and adds integration
with the version control system Git'**. Git was designed to
support large-scale, distributed software development, but in
workflowr it serves a different purpose: to record, and provide
access to, the development history of a project. Work-
flowr also uses another feature of Git, “remotes”, to enable
collaborative project development across multiple locations,
and to help users create browsable projects via integration
with popular online services such as GitHub Pages and GitLab
Pages. These features are implemented using the R package
git2r”’, which provides an interface to the libgit2 C library.
Finally, beyond extending the R programming language,
workflowr is also integrated with the popular RStudio interactive
development environment™.

In addition to the tools upon which workflowr directly builds,
there are many other related tools that directly or indirectly
advance open and reproducible data analysis. A comprehen-
sive review of such tools is beyond the scope of this article, but
we note that many of these tools are complementary to work-
flowr in that they tackle aspects of reproducibility that workflowr
currently leaves to the user, such as management and deployment
of computational environments and dependencies (e.g., conda,
Homebrew, Singularity, Docker, Kubernetes, packrat’', check-
point”, switchr”, RSuite™); development and management
of computational pipelines (e.g., GNU Make, Snake-
make”, drake’); management and archiving of data objects
(e.g., archivist”, Dryad®, Zenodo); and distribution of open
source software (e.g., CRAN, Bioconductor’”’, Bioconda™).
Most of these tools or services could be used in combination
with workflowr. There are additional, ambitious efforts to
develop cloud-based services that come with many compu-
tational reproducibility features (e.g., Code Ocean, Binder,
Gigantum, The Whole Tale). Many of these platforms manage
individual projects as Git repositories, so workflowr could, in
principle, be installed and used on these platforms, possibly to
enhance their existing features. Other R packages with utilities
to facilitate reproducibility that could complement workflowr
include ProjectTemplate'', rrtools”’, and usethis”, as well as
many of the R packages listed in the “Reproducible Research”
CRAN Task View.

Of the available software tools facilitating reproducible research,
perhaps the closest in scope to workflowr are the R pack-

age adapr* and the Python-based toolkit Sumatra®. Like

Page 3 of 18

https://cran.r-project.org/view=ReproducibleResearch
https://cran.r-project.org/view=ReproducibleResearch

workflowr, both adapr and Sumatra use version control to
maintain a project development history. Unlike workflowr, both
place considerable emphasis on managing and documenting
dependencies (software and data), whereas workflowr only
records this information. In contrast, workflowr places more
emphasis on literate programming — the publishing of text
and code in a readable form — and more closely integrates
other features such as tracking project development history via
Git with literate programming.

The workflowr R package is available from CRAN and GitHub,
and is distributed under the flexible open source MIT license
(see Software availability). The R package and its dependencies
are straightforward to install while being highly customiz-
able for more dedicated wusers. Extensive documentation,
tutorials, and user support can be found at the GitHub site.
In the remainder of this article, we describe the workflowr
interface, explain its design, and give examples illustrating how
workflowr is used in practice.

A

myproject/

= workflowr.yml
e analysis/

= _site.yml

= index.Rmd

= about.Rmd

= license.Rmd
= visualize.Rmd
= model .Rmd

= final,Rmd

e CcOde /

e data/

e docCs/

= figure/

= index.html
= about.html
= license.html
j= visualize.html
= model.html
b final.html
—site libs/

= myproject.Rproj

— ouTput/

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Operation

In this section, we give an overview of workflowr’s main fea-
tures from a user’s perspective. For step-by-step instructions
on starting a workflowr project, see the “Getting started with
workflowr” vignette.

For basic usage, only five functions are needed (summarized
here, and described in more detail later):

e wflow start () initializes a new project, including the
template directory structure (Figure 1A);

e wflow build() renders webpages from R Markdown
(Rmd) analysis files, with reproducibility safeguards
in place;

e wflow publish() renders the webpages and
updates the project development history—it commits
the code, calls wflow build (), then commits the
webpages;

Home About License

myproject

ation

Modeling

Final result

Visualization
hn Blischak

Figure 1.The workflowr package helps organize project files and results. A) The function wflow start () populates a project directory
with all the files and subdirectories (shown in red) needed to begin a workflowr project. This default directory structure encourages users to
organize their files as the project progresses—as the project develops, additional Rmd files may be organized in the “analyses” folder. This
is only a suggested structure; users can change the names of most files and directories. Required files are shown in boldface. B) All results
are organized into a website (all HTML files generated by workflowr are automatically stored in docs/). The use of hyperlinks allows for
efficient access to the results. The screenshots above illustrate how a workflowr website can be navigated. Clicking a hyperlink in the main
page, index.html, (1) navigates the browser to a webpage containing some results, visualize.html; clicking on the “Home” hyperlink
(2) in the navigation bar brings the browser back to the main page. For larger projects, the navigation bar can be used to quickly access

different sections of a project.

Page 4 of 18

https://CRAN.R-project.org/package=workflowr
https://github.com/jdblischak/workflowr
https://jdblischak.github.io/workflowr/articles/wflow-01-getting-started.html
https://jdblischak.github.io/workflowr/articles/wflow-01-getting-started.html

e wflow status () reports the status of the project files;
and

e wflow git push () uploads the results from the user’s
local repository to a website hosting service.

The primary output of workflowr is a project website for
browsing the results generated by the Rmd analysis files
(Figure 1B). The use of websites to organize information is,
of course, now widespread. Nonetheless, we believe they are
under-utilized for organizing the results of scientific projects. In
particular, hypertext provides an ideal way to connect differ-
ent analyses that have been performed, and to provide easy
access to relevant external data (e.g., related work or helpful
background information); see Figure 1B and Use cases below.

Organizing the project: wflow_start ()

The function wflow_ start() facilitates project organi-
zation by populating a directory with suggested subdirecto-
ries, scripts, and configuration files for a data analysis project
(Figure 1A). The subdirectories created by default are
analysis/, where the Rmd analysis files are stored; docs/,
which stores the website HTML files; code/, which is
intended for longer-running scripts, compiled code (e.g., C++)
and other source code supporting the data analyses; data/,
for storing raw data files; and output/, for saving processed
data files and other outputs generated by the scripts and analy-
ses. This setup is flexible and configurable; only two of the
directories, analysis/ and docs/, are required, and both
can be renamed later.

In addition to creating a default file structure for a data analy-
sis project, wflow start () also initializes the project
development history: it creates a Git repository, and com-
mits the files and directories to this repository. This is all done
behind the scenes so no familiarity with Git is needed. We give
more details about the Git repository in the Implementation
section below.

In some cases, a user will have an existing project (with files
that may or may not be tracked by Git), and would like to
incorporate workflowr into the project — wflow start ()
also easily accommodates this scenario, with additional argu-
ments to control how the workflowr files are added to the
existing project. See the package vignette, “Migrating an exist-
ing project to use workflowr,” for more details; it can be
accessed by running vignette ("wflow-03-migrating")
after loading the workflowr package in R.

Finally, wflow start() changes R’s working direc-
tory to the root of the project directory. Although this is a
simple step, it is important for correctly resolving file paths.
Forgetting to change the working directory is a very common
source of errors in data analyses.

Generating results reproducibly: wflow_build ()

In a workflowr project, analyses are performed using the R
Markdown literate programming system’'. The user develops
their R code inside Rmd files in the analysis/ directory,

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

then calls wflow build(), which runs the code and
renders the results as HTML files in the docs/ directory.
The wflow build() function extends the render
site () command from the rmarkdown package with several
reproducibility safeguards:

1. It creates a clean R session for executing the code. This is
critical for reproducibility—results should not depend on the
current state of the user’s R environment, and all objects neces-
sary to run the code should be defined in the code or loaded
by packages.

2. It automatically sets the working directory in a consist-
ent manner (the exact setting is controlled by a configuration
file; see Implementation below). This prevents one of the most
common failures to reproduce in R—not setting the working
directory before running the R script, resulting in incorrectly
resolved relative file paths.

3. It sets a seed for the pseudorandom number generator
before executing the code. This ensures that analyses that use
random numbers always return the same result.

4. It records information about the computing environment,
including the operating system, the version of R used, and
the packages that were used to produce the results.

Finally, wflow build() summarizes the results of these
reproducibility safeguards in a report at the top of the web-
page, along with additional “reproducibility checks”, which
alert the user to potential reproducibility issues, such as changes
that were not committed to the project development history,
and the wuse of (non-reproducible) absolute file paths
(Figure 2).

Keeping track of the project’s development:
wflow_publish()

As a project progresses, many versions of the results will
be generated as results are scrutinized, analyses are revised,
errors are corrected, and new data are considered. Keep-
ing track of a project’s evolution is important for document-
ing progress and retracing the development of the analyses.
This is sometimes done without version control tools by
copying code and results whenever an important change
is made. This typically results in a large collection of files
with names such as results-v2-final final.
pdf or anova_ analyses before adding new
samples.R. This approach is tedious and error-prone, and
makes it difficult to communicate changes to collaborators.

The version control system, Git, provides a more systematic
and reliable way to keep track of a project’s development his-
tory. However, Git was designed to manage source code
for large-scale software projects, and using it for scientific
analyses brings some specific challenges. The relative complex-
ity of Git provides a high barrier to entry, discouraging many
researchers from adopting it for their projects. And Git is not
ideally suited to data analysis projects where one wants to
coordinate the tracking of source code, data, and the results

Page 5 of 18

A
=0

Summary Checks ast versions

© R Markdown file: uncommitted changes @

The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you'll want to first commit it
to the Git repo. If you're still working on the analysis, you can ignore
this warning. When you're finished, you can run wflow publish to
commit the R Markdown file and build the HTML.

+ Environment: empty

+ Seed: set.seed(20190926)
+ Session information: recorded
+ Cache: none

+ File paths: relative

+ Repository version: 286ca22

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

=0
Summary Checks J@astversw’ons

+’ R Markdown file: up-to-date @

Great! Since the R Markdown file has been committed to the Git
repository, you know the exact version of the code that produced these
results.

+’ Environment: empty

+ Seed: set.seed(20190926)
+ Session information: recorded
+/ Cache: none

+ File paths: relative

+' Repository version: b804beb

Figure 2. The workflowr reproducibility report summarizes the reproducibility checks inside the results webpage. (A) A button is
added to the top of each webpage. Clicking on the button (1) reveals the full reproducibility report with multiple tabs. If any of the
reproducibility checks have failed, a red warning symbol (!) is shown. Clicking on the “Checks” tab (2) summarizes the reproducibility
checks, with icons next to each check indicating a pass or failure. Clicking on an individual item (3) reveals a more detailed description
of the reproducibility check, with an explanation of why it passed or failed. In (A), the Rmd file contains changes that have not yet been
committed, so one of the reproducibility checks has failed (uncommitted changes are acceptable during active development, but not
acceptable when results are published). In this case, the recommendation is given to run wflow publish () to fix the issue. (B) If
all the workflowr reproducibility checks pass, the workflowr button shows a green check mark (¢/), and clicking an individual item in the

reproducibility report (3) gives more detail on the reproducibility check.

generated by the code and data. Using Git commands to iden-
tify the version of the code that was used to generate a result
can be non-trivial.

The wflow publish() function is designed to address
these challenges: it takes the steps necessary to coordinate
tracking of code and results, and reduces these steps to call-
ing a single, easy-to-use function. The command performs
three steps, detailed in Figure 3. These steps are designed to
ensure that each new collection of results added to the project
development history has been produced by a unique and
identifiable version of an Rmd analysis file.

Even experienced Git wusers will benefit from using
wflow publish(). Besides the convenience of a single
function, wf1low_publish () ensures that:

1. Every commit to an (Rmd) analysis file is associated with
a commit to the results file generated by that analysis file.

2. An analysis file is only published and committed if it
runs successfully; on failure, wflow publish ()

aborts, and neither code nor results are commit-
ted to the Git repository (R code that does not work
can still be committed to a workflowr project via
other methods, e.g., directly using Git, but it will not
be associated with a committed results file).

Publishing an analysis is not necessarily final — after call-
ing wflow publish(), the analysis can be repeatedly
updated and re-published using wflow publish (). Each
time wflow publish() succeeds in committing a new ver-
sion of the code and results, a link to previously published
versions of the analysis are embedded in the webpage so
that readers can easily access previous versions and compare
with the latest results.

Checking in on the project’s development:
wflow_status()

As a workflowr project grows, it is important to be able to get
an overview of the project’s status and identify files that may
need attention. This functionality is provided by the wflow
status () command, which gives the status of each Rmd

Page 6 of 18

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

> wflow publish("analysis/results.Rmd")

r N
Commit changes to source R Markdown file
;;;le: "Results"
output: workflowr::wflow_html ;
Plot
These are the results.
“**{r figure, echo=FALSE}
d <- "data/raw.txt"
x <- read.delim(d)
boxplot (x$yvar ~ xSxvar,
) col = levels (xxvar))

. J/
4 , . N\
Build HTML results file

\
Results
- code version: rsi2rdi
title: "Results"
output: workflowr::wflow html Plot
These are the results.
Plot
These are the results. —’
“*{r figure, echo=TALSE} * %
d <= "data/raw.txt"
X <- read.delim(d)
boxplot (x$yvar ~ xSxvar, ﬁ
col = levels(x$xvar))

Y J \ J Y,
4 i] I
Commit changes to results HTML file

.
code version: rsi2rdi
Plot
These are the results.
. J

Figure 3.The function wElow_publish () simplifies and coordinates tracking of the source code and results files in a Git repository.
The function performs a three-step procedure to store the code and results in a project development history, and ensure that the results
HTML file is always created from a unique and identifiable versioned Rmd analysis file. (1) The first step commits the changes to the Rmd
analysis file. (2) The second step builds the results HTML file from the Rmd file. These two steps ensure that the results were generated from
the committed version of the Rmd file. Furthermore, the unique version of the Git repository is inserted directly into the HTML file so that the
source code used to generate the results is easily identified and accessed. If the code generates an error, the entire process is aborted and
the previous commit made in the first step is undone. (3) The results HTML file, as well as any related figure files, are committed to the Git
repository. Thus, the versioning of Rmd analysis files and corresponding HTML results files are coordinated whenever wflow publish ()

is used.

file in the project — either “scratch”, “unpublished”, or “pub-
lished”, whose definitions are given in Figure 4. The “published”
Rmd files, which are those that have been run through wflow
publish (), are further recorded as either ‘“up-to-date” or
“modified” depending on whether the Rmd file has been modified
since wflow publish () was run. The wflow status()
function highlights all Rmd files in the “scratch”, “unpublished” or
“modified” states, and suggests suitable next steps.

Sharing code and results: wflow_git_push()

The version-controlled website created by workflowr is self-
contained, so it can be hosted by most Web servers with little
effort. Once the website is available online, the code and
results can be shared with collaborators and colleagues
by providing them with the website’s URL. Similarly, the
workflowr repository can also serve as a companion resource
for a manuscript by referencing the website URL in the paper.

Page 7 of 18

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Q &
~o°e'oo o oé‘{l’\g.
6‘6 e-°\ c? &®/ & $ \fo 9‘§\
o EFS T O
& 2 @6\ N e & F N
& & & K ¥ &K & 3®
Scratch x x NA
Unpublished V x NA
Published V V V
(Up-to-date)
Published V V x
(Modified)

Figure 4. The workflowr package is an R Markdown-aware version control system. The function wflow status () assigns a state to
each Rmd file in the workflowr project based on its status in the Git repository’s working tree, and based on the Git status of the associated

HTML results file.

Since a workflowr project is also a Git repository, the most
convenient way to make the website available online is to use a
Git hosting service. The workflowr package includes func-
tions wflow use github() and wflow use git-
lab () to simplify the setup process on two of the most
widely used services, GitHub and GitLab. Once a user has
created a Git repository on one of these online platforms, the
project can be easily uploaded using wflow git push ()
(there is also a companion function wflow git pull(),
which is used when multiple people are collaborating on
a workflowr project, or when a project is being updated
from multiple computers).

The results files in a workflowr website include links to
past versions of analysis and figures, making it easy for
collaborators to benefit from the versioning of analyses with-
out knowing anything about Git. For example, if a collabora-
tor wants to download a previous version of a figure generated
several months ago, this can be done by navigating the links
on the workflowr website.

Installation

The workflowr package is available on CRAN. It works
with R versions 2.3.5 or later, and can be installed on any
major platform that is supported by R (Linux, macOS, Win-
dows). It is regularly tested on all major operating systems
via several continuous integration services (AppVeyor,
CircleCl, Travis CI). It is also regularly tested by CRAN
using machines running Debian GNU/Linux, Fedora, macOS,
Solaris, and Windows.

Because workflowr uses the rmarkdown package to build the
HTML pages, it requires the document conversion software

pandoc to be installed. The easiest way for R users to
install pandoc is to install RStudio.

Installing Git is not required because the R package dependency
git2r includes libgit2, a minimal Git implementation (nonethe-
less, installing Git may be useful for occasional management
of the Git repository outside regular workflowr usage).

Customization

Workflowr projects are highly customizable. For example, the
look of the webpages can be customized, via options provided
by the rmarkdown package, by editing the analysis/ site.
yml configuration file. Additional settings specific to work-
flowr, such as setting the seed for the pseudorandom number
generator, or setting the working directory for the Rmd files, can
be controlled in the _workflowr.yml file.

Implementation

Here we give an overview of the workflowr package imple-
mentation. All workflowr commands can be invoked from
R (or RStudio) so long as the working directory in R is set
to the directory containing a workflowr project, or any sub-
directory of a workflowr project (this is similar to how Git
commands are invoked). To determine the root directory of a
workflowr project from a subdirectory, whenever a command
is called from the R console, workflowr uses the rprojroot
R package to search for the RStudio project file stored at the
root of the project (the RStudio project file is a required file, so
if this file is deleted, the workflowr commands will not work).

Organizing the project: wflow_start ()

The function wflow start () populates the project direc-
tory using predefined template files (see Figure 1). It uses the

Page 8 of 18

glue’” R package to insert relevant variables, e.g., the name
of the project, directly into the newly created files. When
wflow start() is called with git = TRUE (which is
the default), a Git repository is created in the project directory,
and all newly created or modified files are committed to the
repository. If the user has never previously created a Git
repository on their computer, they may need to first call
wflow git config() to configure Git.

Generating results reproducibly: wf low_build ()

The wflow build() function generates a respon-
sive website from a collection of Rmd files. Both
wflow build() and wflow publish() support file
patterns, also known as “wildcard expansion”; for example,
wflow build("analysis/*.Rmd") will generate web-
pages for all the Rmd files in the analysis/ directory.

The wflow build() function extends the render site ()
function from the rmarkdown package. The render site ()
function in turn builds on the Bootstrap framework to cre-
ate a responsive website with a navigation bar. This render-
ing step includes downloading and linking to the required
CSS and JavaScript files. Many website settings, such as
the labels and URLSs included in the navigation bar, can be adjusted
in the analysis/ site.yml configuration file (these options
can also be set individually inside the Rmd files, which will over-
ride the default options set in analysis/ site.yml). Like
other R packages that extend rmarkdown (e.g., bookdown),
workflowr provides a custom site generator in the function
wflow site (), which alters the website generation proc-
ess. For example, one change to this process is that the generated
website files (the HTML, CSS, JavaScript and figures) are moved
instead of copied from analysis/ to docs/. This reduces
unnecessary duplication of files. Most of workflowr’s key fea-
tures, including the reproducibility report, are implemented
inwflow html (), which we describe next.

In the rmarkdown package, the rendering of individual web-
pages from Rmd files is controlled by a separate function,
html document (). The workflowr package provides an
analogous function, wflow html (). This function also
extends html document (), so all features implemented
in rmarkdown (e.g., code chunk folding, generating a table
of contents from the section headings) are inherited by
wflow html ().

Most of the workflowr content is added as a preprocessing step
prior to executing the R code in the Rmd file. To achieve this,
wflow html () copies the original Rmd file to a temporary
directory, incorporates the additional content, then executes
the code. The content embedded into the Rmd file includes
a code chunk that calls set.seed (), a code chunk toward
the end of the file that calls sessionInfo (), and inline
HTML tags for elements such as the reproducibility report
(Figure 2) and links to previous versions of figures. There
is also a brief postprocessing step to incorporate additional
HTML, CSS, and JavaScript elements needed to display the
workflowr elements added in the preprocessing step. This
postprocessing is done when pandoc converts the generated
markdown to the final webpage.

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

The process for embedding links to past versions of files
— that is, files added to previous commits in a Git repository
— requires some additional explanation. Links to past versions
are included only if the user has set up a remote repository
hosted by either GitHub or GitLab. Clicking on a link to a past
version of an Rmd file (or figure file) in a Web browser will
load a webpage displaying the R Markdown source code (or fig-
ure file) as it is saved in the given commit. For past versions of
the webpages, we use an independent service raw.githack.com,
which displays the HTML file in the browser like any
other webpage (this 1is because GitHub and GitLab
only show the raw HTML code). These links will point to
valid webpages only after the remote repository (on GitHub
or GitLab) is updated, e.g., using wflow git push().
In the current implementation, when an Rmd file (and its
corresponding HTML file) is renamed, the webpage does
not include links to past versions prior to renaming. So
renaming files will limit the ability to browse the project
development history.

The wflow html () function allows for considerable cus-
tomization of the workflowr reproducibility report, and other
features. The settings in the analysis/ site.yml
configuration file are passed to function html docu-
ment () in the rmarkdown package, whereas the settings
in workflowr.yml are read by wflow html(); see
help (wflow_html) for a full details on all workflowr set-
tings that can be customized in this file. For example, the default
function used to record the session information at the bottom
of each webpage, sessionInfo (), can be overridden by
adding the YAML field sessioninfo (e.g., the function
from the devtools” package could be used instead by setting
sessioninfo: devtools::session info()).

To execute the code, wflow build() first creates a new
R session to execute the code. This is implemented using

49

the R package callr.

By default, the rmarkdown package renders an Rmd file
in the directory where the Rmd file is stored; that is, the R
working directory is automatically changed to the directory
containing the target Rmd file. By default, wflow html ()
overrides the behaviour, and instead executes the R code with
respect to the root project directory. This default is intended to
improve reproducibility by resolving file paths from a
consistent reference point. This execution directory can be
controlled by the knit root dir option, which is set in
the workflowr.yml configuration file. By default, new
projects execute the R Markdown code chunks in the root direc-
tory. If this setting is not configured, workflowr reverts to
the rmarkdown default. It is also possible to have a different
knit root dir setting for different files, but this is gen-
erally not recommended as it will make the code more
difficult to follow.

Keeping track of the project’s development:
wflow_publish()

One of the steps in wflow publish(), as we have men-
tioned, is a call to wflow build(). It also runs Git com-
mands to commit the source code and rendered HTML files

Page 9 of 18

https://raw.githack.com/

(Figure 3). These Git commands are executed behind the scenes.
We have also implemented many checks and extensive error han-
dling to make sure that the Git repository and R environment
are in an acceptable state for committing the results. When
an issue arises, wflow publish () attempts to detect the
issue as early as possible, then it reverts the Git repository to
the initial state and, when possible, suggests how to fix the
issue. For example, wflow publish () will stop if any
of the files contain conflicts from a previous merge using
Git.

Checking in on the project’s development:
wflow_status()

The wflow status () function checks the status of each
Rmd file in the project by comparing the state of the file in the
Git repository’s working tree against the Git status of the
corresponding HTML file. In Git terminology, a ‘“scratch”
Rmd file in a workflowr project is an uncommitted file
in a Git repository; “unpublished” means that the Rmd file
is committed to the Git repository but the corresponding
HTML is not; a “published” Rmd file and its HTML file are
both committed to the Git repository; and a “modified” Rmd
file has changes — these changes can be unstaged, staged, or
committed — that were made since the last time the corresponding
HTML file was committed (Figure 4).

Using git2r, it is mostly straightforward to determine the
status of each file. The only complicated step is determin-
ing whether published Rmd files have been modified. If all
changes to an Rmd file have been committed to the Git his-
tory, an Rmd file is considered “modified” if it has modify-
ing commits that are more recent than commits modifying the
corresponding HTML file.

Sharing the code and results: wflow_git_push()

To use wflow git push(), the remote Git repository
must first be configured. The user can configure the remotes
manually using the git remote subcommand or using

wflow git remote (). Alternatively, the workflowr pack-
age provides two functions, wflow use github() and
wflow use gitlab (), that simplify the creation and con-

figuration of remote repositories hosted on GitHub and GitLab.
These two convenience functions also add a navigation bar link
with the URL of the remote source code repository. The wflow
use gitlab () function takes the additional step of activat-
ing the GitLab Pages by creating a file .gitlab-ci.yml with
the proper configuration (GitHub Pages must be set up
manually; there is currently no way to automate this via the
GitHub API).

Use cases

Workflowr was officially released on CRAN in April 2018.
As of September 2019, it has been downloaded from CRAN
over 7,000 times, and it has been adopted by many research-
ers. The most common use cases are 1) documenting research
development and including the project website in the accompany-

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

ing academic paper, and 2) developing reproducible course mate-
rials to share with students. Here we highlight some successful
examples.

Repositories for research projects
Human dermal fibroblast clonality project

https://davismcc.github.io/fibroblast-clonality

A workflowr project accompanying a scientific paper on com-
putational methods for decoding the clonal substructures
of somatic tissues from DNA sequencing data®. The web-
pages describe how to reproduce the data processing and
analysis, along with the outputs and plots.

Characterizing and inferring quantitative cell cycle phase
in single-cell RNA-seq data analysis

https://github.com/jdblischak/fucci-seq

A workflowr project supporting a paper on measuring cell
cycle phase and gene expression levels in human induced
pluripotent stem cells’. The repository contains the proc-
essed data and the code implementing the analyses. The full
results can be browsed on the website.

Flexible statistical methods for estimating and testing
effects in genomic studies with multiple conditions

https://github.com/stephenslab/gtexresults

A workflowr project containing the code and data used to pro-
duce the results from the GTEx data set that were presented
in Urbut et al.”.

Investigations on ‘“truncated adaptive shrinkage”
https://github.com/LSun/truncash

A workflowr project created by a Ph.D. student created to
keep track of his investigations into controlling false discover-
ies in the presence of correlation and heteroskedastic noise.
This repository illustrates the use of workflowr as a scientific
notebook — the webpages contain written notes, mathemati-
cal equations, source code, and the outputs generated from
running the code.

Repositories for courses
Stanford STATS 110
https://xiangzhu.github.io/stanford-statsl110

A workflowr website for a statistics course taught at
Stanford. The website includes working R examples, homework,
the course syllabus, and other course materials.

Single-cell RNA-seq workshop

https://github.com/crazyhottommy/scRNA-seq-
workshop-Fall-2019

Page 10 of 18

https://davismcc.github.io/fibroblast-clonality/
https://github.com/jdblischak/fucci-seq
https://github.com/stephenslab/gtexresults
https://github.com/LSun/truncash
https://xiangzhu.github.io/stanford-stats110
https://github.com/crazyhottommy/scRNA-seq-workshop-Fall-2019
https://github.com/crazyhottommy/scRNA-seq-workshop-Fall-2019

A workflowr website for a workshop on analysis of single-
cell RNA-seq data offered by the Harvard Faculty of Arts and
Sciences Informatics group as part of a two-week long bio-
informatics course. The R examples demonstrate how to use
several bioinformatics packages such as Seurat and msigdbr
to prepare and analyze single-cell RNA-seq data sets.

Introduction to GIS in R
https://github.com/annakrystalli/intro-r-gis

A workflowr website for a workshop given at the 2018
Evolutionary Biology Conference. The website includes
working R demonstrations, setup instructions, and exercises.

Summary

Our main aim in developing workflowr is to lower barriers to
open and reproducible code. Workflowr provides a core set
of commands that can be easily integrated into research prac-
tice, and combined with other tools, to make projects more
accessible and reproducible. The R package is straightforward
to install, easy to learn, and highly customizable.

Since the first official release of workflowr (version 1.0.1,
released in April 2018), the core functionality has remained
intact, and we expect it to remain that way. The core fea-
tures of workflowr have been carefully tested and revised, in
large part thanks to feedback and issue reports from the user
community. Our next aim is to implement several enhancements,
including:

e Create a centralized workflowr project website to
make it easier for researchers to share and discover
workflowr projects.

e Provide additional functions to simplify website hosting
on other popular platforms such as Netlity and Heroku.

e As workflowr projects grow, it becomes increas-
ingly important to document not only the evolution of
the code and results over time, but also how the results
interrelate with one another. Therefore, we aim to
implement syntax that allows file dependencies to be
recorded in the Rmd files, and incorporate checking of
dependencies as part of the workflowr reproducibility

safeguards.

As workflowr has been used in a variety of settings, we have
also uncovered some limitations. Here we report on some
of the more common issues that have arisen.

One limitation is that Git — hence workflowr — is not well
suited to tracking very large files. Therefore, large data files must
be left out of the project development history, which reduces
reproducibility. One possible workaround is to use Git LFS
(Large File Storage) or related tools that allow large data files
to be tracked and stored remotely inside a Git repository. This,

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

however, requires considerable expertise to install and configure
Git LFS, so it is not a satisfactory solution for some work-
flowr users. Also note that sensitive or secure data can be
added to a workflowr project so long as the storage and access
practices meet the data security requirements (workflowr has
options to simplify creation and management of projects with
security requirements).

Since workflowr builds on Git, users who already have expe-
rience with Git can use Git directly to manage their workflowr
projects. This provides additional flexibility, but is not without
risk; for example, Git commands such as git reset can be used
to alter the project development history, and has the potential to
break workflowr.

Finally, workflowr records information about the computing
environment used to generate the results, but it does not pro-
vide any facilities for replicating the environment. This is an
area with many recent software advances — there are many
widely used tools for managing and deploying computational
environments, from container technologies such as Docker to
package managers such as Anaconda and packrat. We view
these tools as being complementary to workflowr, and one
future direction would be to develop easy-to-use functions that
configure such tools for use in a workflowr project.

Data availability
All data underlying the results are available as part of the article
and no additional source data are required.

Software availability
e Software available from: https://cran.r-project.

org/package=workflowr

e Source code available from: https://github.com/
jdblischak/workflowr

e Archived source code at time of publication: https://
doi.org/10.5281/zenodo.3241801%

e License: MIT

Acknowledgments

We thank the workflowr contributors for helping improve
the package. We are also grateful for the many workflowr
users for testing the package and providing feedback—thanks
especially to Lei Sun, Xiang Zhu, Wei Wang, and many
other members of the Stephens lab, past and present. We also
acknowledge the authors and contributors of the many great
open source packages that the workflowr package builds on. R
packages particularly critical to workflowr’s implementation
are git2r, knitr, and rmarkdown.

Page 11 0f 18

https://github.com/annakrystalli/intro-r-gis
https://cran.r-project.org/package=workflowr
https://cran.r-project.org/package=workflowr
https://github.com/jdblischak/workflowr
https://github.com/jdblischak/workflowr
https://doi.org/10.5281/zenodo.3241801
https://doi.org/10.5281/zenodo.3241801
https://github.com/jdblischak/workflowr/graphs/contributors
https://github.com/LSun
https://github.com/xiangzhu
https://github.com/NKweiwang
https://github.com/ropensci/git2r
https://github.com/yihui/knitr
https://rmarkdown.rstudio.com/

References

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

20.

21.

22.

28.

24.

25.

26.

27.

Buckheit JB, Donoho DL: WaveLab and reproducible research. Wavelets and
Statistics. 1995; 103: 55-81.

Publisher Full Text

Easterbrook SM: Open code for open science? Nat Geosci. 2014; 7(11): 779-781.
Publisher Full Text

Gentleman R, Lang TD: Statistical analyses and reproducible research.
J Comput Graph Stat. 2007; 16(1): 1-23.
Publisher Full Text

Ince CD, Hatton L, Graham-Cumming J: The case for open computer programs.
Nature. 2012; 482(7386): 485—-488.
PubMed Abstract | Publisher Full Text

Lowndes JSS, Best BD, Scarborough C, et al.: Our path to better science in less
time using open data science tools. Nat Ecol Evol. 2017; 1(6): 160.
PubMed Abstract | Publisher Full Text

Morin A, Urban J, Adams PD, et al.: Research priorities. Shining light into black
boxes. Science. 2012; 336(6078): 159—160.

PubMed Abstract | Publisher Full Text | Free Full Text

Peng RD: Reproducible research in computational science. Science. 2011;
334(6060): 1226-1227.

PubMed Abstract | Publisher Full Text | Free Full Text

Sandve GK, Nekrutenko A, Taylor J, et al.: Ten simple rules for reproducible
computational research. PLoS Comput Biol. 2013; 9(10): e1003285.
PubMed Abstract | Publisher Full Text | Free Full Text

Stodden V, McNutt M, Bailey DH, et al.: Enhancing reproducibility for
computational methods. Science. 2016; 354(6317): 1240-1241.
PubMed Abstract | Publisher Full Text

loannidis JP, Allison DB, Ball CA, et al.: Repeatability of published microarray
gene expression analyses. Nat Genet. 2009; 41(2): 149-155.
PubMed Abstract | Publisher Full Text

loannidis JP, Greenland S, Hlatky MA, et al.: Increasing value and reducing
waste in research design, conduct, and analysis. Lancet. 2015; 383(9912):
166-175.

PubMed Abstract | Publisher Full Text | Free Full Text

Merali Z: Computational science: ...error. Nature. 2010; 467(7317): 775-777.
PubMed Abstract | Publisher Full Text

Stodden V, Seiler J, Ma Z: An empirical analysis of journal policy effectiveness for
computational reproducibility. Proc Natl Acad Sci U S A. 2018; 115(11): 2584-2589.
PubMed Abstract | Publisher Full Text | Free Full Text

Kitzes J, Turek D, Deniz F: The practice of reproducible research: case studies
and lessons from the data-intensive sciences. Univ of California Press, 2017.
Reference Source

Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.

PubMed Abstract | Publisher Full Text | Free Full Text

Findler RB, Clements J, Flanagan C, et al.: DrScheme: a programming
environment for Scheme. J Funct Program. 2002; 12(2): 159-182.

Publisher Full Text

Marwick B: Computational reproducibility in archaeological research: basic
principles and a case study of their implementation. J Archaeol Method Theory.
2017; 24(2): 424-450.

Publisher Full Text

R Core Team: R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2019.
Reference Source

Chacon S, Straub B: Pro Git. Springer, New York, NY, 2nd edition, 2014.
Publisher Full Text

Loeliger J, McCullough M: Version control with Git. O'Reilly Media, Sebastopol,
CA. 2nd edition, 2012.
Reference Source

Xie Y, Allaire J, Grolemund G: R Markdown: the definitive guide. Chapman and
Hall/CRC, New York, NY. 2018.
Reference Source

Xie Y: knitr: a comprehensive tool for reproducible research in R. In V. Stodden,
F. Leisch, and R. D. Peng, editors, Implementing Reproducible Computational
Research. Chapman and Hall/CRC, 2014.

Publisher Full Text

Xie Y: knitr: a general-purpose package for dynamic report generation in R.

R package version 1.23. 2019.

Reference Source

Allaire J, Xie Y, McPherson J, et al.: rmarkdown: dynamic documents for R.

R package version 1.13. 2019.

Reference Source

Spurlock J: Bootstrap. O'Reilly Media, Sebastopol, CA, 2013.

Reference Source

Xie Y, Hill AP, Thomas A: blogdown: creating websites with R Markdown.
Chapman and Hall/CRC, Boca Raton, Florida, 2017.

Reference Source

Xie Y: bookdown: authoring books and technical documents with R Markdown.
Chapman and Hall/CRC, Boca Raton, Florida, 2016.

Reference Source

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Wickham H, Hesselberth J: pkgdown: make static HTML documentation for a
package. R package version 1.4.1. 2019.
Reference Source

Widgren S, et al.: git2r: provides access to Git repositories. R package version
0.26.1. 2019.
Reference Source

R Studio Team: RStudio: integrated development environment for R. RStudio,
Inc., Boston, MA. 2018.
Reference Source

Ushey K, McPherson J, Cheng J, et al.: packrat: a dependency management system
for projects and their R package dependencies. R package version 0.5.0. 2018.
Reference Source

Ooi H: checkpoint: install packages from snapshots on the checkpoint server
for reproducibility. R package version 0.4.7. 2019.
Reference Source

Becker G, Barr C, Gentleman R, et al.: Enhancing reproducibility and collaboration
via of R pack cohorts. J Stat Softw. 2017; 82(1): 1-17.
Publisher Full Text

Sokolowski W, Jakuczun W, Yakimechko Y, et al.: RSuite: supports developing,

building and deploying R solution. R package version 0.37-253. 2019.
Reference Source

Koster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine.
Bioinformatics. 2012; 28(19): 2520-2522.
PubMed Abstract | Publisher Full Text

Landau WM: The drake R package: a pipeline toolkit for reproducibility and
high-performance computing. J Open Source Softw. 2018; 3(21): 550.
Publisher Full Text

Biecek P, Kosinski M: archivist: an R package for managing, recording and
restoring data analysis results. J Stat Softw. 2017; 82(11): 1-28.
Publisher Full Text

Vision T: The dryad digital repository: published evolutionary data as part of
the greater data ecosystem. 2010.
Reference Source

Gentleman CR, Carey VJ, Bates DM, et al.: Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol. 2004;
5(10): R80.

PubMed Abstract | Publisher Full Text | Free Full Text

Grining B, Dale R, Sjodin A, et al.: Bioconda: sustainable and comprehensive
software distribution for the life sciences. Nat Methods. 2018; 15(7): 475-476.
PubMed Abstract | Publisher Full Text

White JM: ProjectTemplate: automates the creation of new statistical analysis
projects. R package version 0.9.0. 2019.
Reference Source

Marwick B: rrtools: creates a reproducible research compendium. R package
version 0.1.0. 2019.
Reference Source

Wickham H, Bryan J: usethis: automate package and project setup. R package
version 1.5.1. 2019.
Reference Source

Gelfond J, Goros M, Hernandez B, et al.: A system for an accountable data
analysis process in R. R J. 2018; 10(1): 6-21.
PubMed Abstract | Publisher Full Text | Free Full Text

Davidson AP, Mattioni M, Samarkanov D, et al.: Sumatra: a toolkit for
reproducible resesearch. In V. Stodden, F. Leisch, and R. D. Peng, editors,
Implementing Reproducible Computational Research. Chapman and Hall/CRC.
2014.

Publisher Full Text

Mdller K: rprojroot: finding files in project subdirectories. R package version 1.2.
2017.
Reference Source

Hester J: glue: interpreted string literals. R package version 1.3.1. 2019.
Reference Source

Wickham H, Hester J, Chang W: devtools: tools to make developing R packages
easier. R package version 2.1.0. 2019.
Reference Source

Csardi G, Chang W: callr: call R from R. R package version 3.3.2. 2019.
Reference Source

McCarthy DJ, Rostom R, Huang Y, et al.: Cardelino: integrating whole exomes
and single-cell transcriptomes to reveal phenotypic impact of somatic
variants. bioRxiv. 2018.

Publisher Full Text

Hsiao CJ, Tung P, Blischak JD, et al.: Characterizing and inferring quantitative
cell cycle phase in single-cell RNA-seq data analysis. bioRxiv. 2019.

Publisher Full Text

Urbut SM, Wang G, Carbonetto P, et al.: Flexible statistical methods for
estimating and testing effects in genomic studies with multiple conditions. Nat
Genet. 2019; 51(1): 187-195.

PubMed Abstract | Publisher Full Text | Free Full Text

Blischak J, Carbonetto P, Li J, et al.: jdblischak/workflowr: workflowr 1.4.0. 2019.
http://www.doi.org/10.5281/zenodo.3241801

Page 12 of 18

http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1038/ngeo2283
http://dx.doi.org/10.1198/106186007X178663
http://www.ncbi.nlm.nih.gov/pubmed/22358837
http://dx.doi.org/10.1038/nature10836
http://www.ncbi.nlm.nih.gov/pubmed/28812630
http://dx.doi.org/10.1038/s41559-017-0160
http://www.ncbi.nlm.nih.gov/pubmed/22499926
http://dx.doi.org/10.1126/science.1218263
http://www.ncbi.nlm.nih.gov/pmc/articles/4203337
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://dx.doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pmc/articles/3383002
http://www.ncbi.nlm.nih.gov/pubmed/24204232
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pmc/articles/3812051
http://www.ncbi.nlm.nih.gov/pubmed/27940837
http://dx.doi.org/10.1126/science.aah6168
http://www.ncbi.nlm.nih.gov/pubmed/19174838
http://dx.doi.org/10.1038/ng.295
http://www.ncbi.nlm.nih.gov/pubmed/24411645
http://dx.doi.org/10.1016/S0140-6736(13)62227-8
http://www.ncbi.nlm.nih.gov/pmc/articles/4697939
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/29531050
http://dx.doi.org/10.1073/pnas.1708290115
http://www.ncbi.nlm.nih.gov/pmc/articles/5856507
https://www.jstor.org/stable/10.1525/j.ctv1wxsc7
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://dx.doi.org/10.1017/S0956796801004208
http://dx.doi.org/10.1007/s10816-015-9272-9
https://www.R-project.org/
http://dx.doi.org/10.1007/978-1-4842-0076-6
https://books.google.co.in/books/about/Version_Control_with_Git.html?id=qIucp61eqAwC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books/about/R_Markdown.html?id=octmDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
http://dx.doi.org/10.1201/9781315373461-1
https://yihui.name/knitr/
https://rmarkdown.rstudio.com
https://pepa.holla.cz/wp-content/uploads/2015/10/Bootstrap.pdf
https://github.com/rstudio/blogdown
https://books.google.co.in/books/about/Bookdown.html?id=8nm0DQAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q=978-1138700109&f=false
https://CRAN.R-project.org/package=pkgdown
https://cran.r-project.org/package=git2r
http://www.rstudio.com/
https://CRAN.R-project.org/package=packrat
https://cran.r-project.org/package=checkpoint
http://dx.doi.org/10.18637/jss.v082.i01
https://CRAN.R-project.org/package=RSuite
http://www.ncbi.nlm.nih.gov/pubmed/22908215
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.21105/joss.00550
http://dx.doi.org/10.18637/jss.v082.i11
http://precedings.nature.com/documents/4595/version/1/files/npre20104595-1.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pmc/articles/545600
http://www.ncbi.nlm.nih.gov/pubmed/29967506
http://dx.doi.org/10.1038/s41592-018-0046-7
https://CRAN.R-project.org/package=ProjectTemplate
https://github.com/benmarwick/rrtools
https://CRAN.R-project.org/package=usethis
http://www.ncbi.nlm.nih.gov/pubmed/30505573
http://dx.doi.org/10.32614/RJ-2018-001
http://dx.doi.org/10.1201/9781315373461-3
https://cran.r-project.org/package=rprojroot
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=devtools
https://cran.r-project.org/package=callr
http://dx.doi.org/10.1101/413047
http://dx.doi.org/10.1101/526848
http://www.ncbi.nlm.nih.gov/pubmed/30478440
http://dx.doi.org/10.1038/s41588-018-0268-8
http://www.ncbi.nlm.nih.gov/pmc/articles/6309609
http://www.doi.org/10.5281/zenodo.3241801
http://www.ncbi.nlm.nih.gov/pmc/articles/6261481

F1IOOOResearch F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Open Peer Review

Current Peer Review Status: v ¢

Reviewer Report 08 November 2019

https://doi.org/10.5256/f1000research.22923.r55117

© 2019 Baker P. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Peter Baker
School of Public Health, University of Queensland, Herston, Qld, Australia

The authors introduce an R package that provides an easy way to set up a workflow for data analysis
using R and publish results to a web page.

The workflowr package seems to work well and appears to be widely used.

What is relatively novel about this package is that while most workflow tools | have seen in R concentrate
on setting up a directory structure, syntax files and producing output and reports from analyses, this
package adds both the ability to publish the results to web pages and also to set up a Github or Gitlab
project repositories with minimal effort.

The article is clear and well written as are the associated vignettes. The underlying functions in the R are
also well written but perhaps could employ more error checking and reporting (see below).

While | am unlikely to use this approach myself | think it is an excellent approach for new users since it
1. sets up a project skeleton with instructions,

2. encourages users to document their project and workflow right from the start, and

3. also the package provides quite a few helpful vignettes and guides for various scenarios that
should be useful for those starting in the area.

However, | do have minor reservations with the approach outlined, including
® for new users, they must not only learn R but also R Markdown which adds an extra level of
complexity;

® while it seems necessary in workflowr, users do not really need to use R Markdown files to produce
well documented code (see https://rmarkdown.rstudio.com/articles_report_from_r_script.html) but
R Markdown seems better suited to reports and articles;

Page 13 of 18

https://doi.org/10.5256/f1000research.22923.r55117
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1241-7263
https://rmarkdown.rstudio.com/articles_report_from_r_script.html

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

® the workflow is very R Markdown-centric: experienced users may wish to employ R or other
software directly or a build system like Make or drake. While this is relatively straight forward
outside of the package, e.g. by adding these to the git repository outside of the package and using
employing R directly to update intermediate results the article or documentation do not give any
details;

® some functions do not appear to be particularly error-proof for new users, e.g. wflow_git_config will
overwrite existing settings without checking or even providing a warning although this may
conceivably change in future; and

® new users will undoubtedly run into git merge issues and the version | reviewed (1.4.0) did not
seem to cater for such eventualities although this appears to have been addressed according to
the change log in the latest version (1.5.0).

Minor comments are:
® | am not sure why only some of the software on page 3 is cited when presumably a reader may
benefit from the author's recommendations appropriate to the data analysis workflow area rather
than tracking down a general reference for themselves;

® while it is good that the potential pitfalls of using git directly or using git reset are addressed on
page 11, it may also prove useful for readers to address limitations and potential pitfalls in more
depth, perhaps not in the article but with reference to other material or vignettes. For example,
users at all levels might benefit from knowing where to get help on merge conflicts, whether users
with large data sets should consider databases rather than git or whether typical git workflows like
branching would work with this package,

® it would be nice to see how this package compares to other alternatives like drake but admittedly
the scope this article is more an introduction to the workflowr package.

In summary, this article is clear and well written. The package is an original contribution to the range of
software addressing reproducibility and workflow in data analysis projects.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?

Page 14 of 18

F1IOOOResearch F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Yes
Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Biostatistics, R, workflow of data analysis

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 04 November 2019

https://doi.org/10.5256/f1000research.22923.r55119

© 2019 Biecek P. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Przemystaw Biecek
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

| like the workflowr package and | like the paper. Nicely written.

Reproducibility is a big thing and workflowr lowers the entrance barrier for non technical users. This is a
huge benefit.

The package has has already some visibility (judging based on GitHub stars) and is being adopted to
various applications (based on examples presented in the paper).

| recommend to accept the paper.

Here are some comments that authors may consider:
® A. The point that | am missing the most is the comparison against the drake package. These two
packages seems to be similar, maybe complementary. Can they be used together? It would be
good to show pros and cons/similarities and differences.

® B. | like the workflowr package it is a useful tool. What | am missing is the methodology /
description of a process / good practices of how the reproducible analysis should look like. This
would be very useful for people that look for precise guidelines on how to integrate the workflowr
with every day practice. Wet labs researchers are used to "protocols" that directly guide step by
step what to do during the analysis. Maybe it would be possible to give such protocols for
reproducible research with the workflowr package.

® Justto give an example, in the Model Development Process (https:/arxiv.org/abs/1907.04461)
article there is an overview of phases and tasks shared across model development. In which
phases the workflowr or similar tools shall be used?

® C. Authors have mentioned blogdown and bookdown packages. | think that even a closer match to
the reproducibility problem is the package modelDown (see
https://joss.theoj.org/papers/10.21105/joss.01444 or GitHub
http://github.com/ModelOriented/modelDown).
The modelDown package takes predictive models and creates a HTML website with information

Page 15 of 18

https://doi.org/10.5256/f1000research.22923.r55119
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8423-1823
https://arxiv.org/abs/1907.04461
https://joss.theoj.org/papers/10.21105/joss.01444
http://github.com/ModelOriented/modelDown

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

about session info, binary models, training/test data and model explanations. The website is
created without any additional effort. ModelDown automates the most boring part of the modeling
i.e. model documentation.

® D. When mentioning tools for archivisation of binary objects, it may be also useful to add the pins
package recently developed by RStudio (https://cran.r-project.org/web/packages/pins/index.html).
It is more limited than other mentioned packages (do not keep information about meta data) but
quickly gains popularity.

® E. After the "Unfortunately, this ideal is not usually achieved in practice; most scientific articles do
not come with code that can reproduce their results" maybe authors could share their thoughts why
it is the case. It will be useful to list specific reasons why reproducibility fails. Is it primarily because
we do not have proper software, or they software is too complex, or one needs to pay for the
proper software, or researchers are not aware of the problem?

References

1. Romaszko K, Tatarynowicz M, Urbanski M, Biecek P: modelDown: automated website generator with
interpretable documentation for predictive machine learning models. Journal of Open Source Software.
2019; 4 (38). Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Human-Oriented machine learning, Human-Centered Atrtificial Intelligence,
Software engineering

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 31 October 2019

Page 16 of 18

https://doi.org/10.21105/joss.01444
https://doi.org/10.5256/f1000research.22923.r55176

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

https://doi.org/10.5256/f1000research.22923.r55176

© 2019 Hickey P. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

4

Peter F. Hickey
Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic,
Australia

The workflowr package, available from CRAN for 1.5 years, has already demonstrated itself to be a
valuable contribution to improving the reproducibility of scientific analyses. This paper does a thorough
job setting out the rationale, design, and implementation of the workflowr package. It is clear that the
authors have spent considerable time thinking about some of the key challenges of this endeavour,
learning about best practises, getting feedback from users, and implementing these using 4 key
technologies/features:

1. Version control.

2. Literate programming.

3. Automatic checks and safeguards to improve code reproducibility.

4. Sharing code and results via a website.

The paper is clearly written and | am happy to approve the article in its current form.

Some minor comments, queries, and corrections are given below:

Figure caption 1: "analyses" folder' is "analysis" folder' in the figure.

p5: Re workflowr executing code in a clean session. My impression was that rendering
Rmarkdown documents, at least when done by clicking the 'knit' button in RStudio, was already run
in a separate process. But | may be mistaken and perhaps this is different from running
‘rmarkdown::render_site() ?

Regarding published sites. Not all scientific analyses can be made public, particularly in the early
stages. Some discussion of options available for private/protected hosting would be valuable.

I'm a little wary of relying on raw.githack.com for hosting past versions of the webpages. For
example, what if the service becomes unavailable? Does or could workflowr support other hosting
services?

p11:Is the idea of a 'centralized workflowr project website' like that of the homepage
https://bookdown.org/ or for an organisation/user to share their personal workflowr projects?

Is the rationale for developing the new software tool clearly explained?

Yes

Is the description of the software tool technically sound?

Page 17 of 18

https://doi.org/10.5256/f1000research.22923.r55176
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8153-6258

F1000Research 2019, 8:1749 Last updated: 24 JUL 2020

Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: Matthew Stephens and | are both members of the Genotype-Tissue Expression
(GTEX) consortium. The consortiumcontains hundreds of scientists. As members of the consortium, we
are co-authors on papers where the 'GTEx Consortium' has been listed as an author. That is, the GTEx
consortium is listed as a co-author on papers | have authored and, separately, papers that Matthew has
authored. We have not directly worked together via the consortium and, to the best of my knowledge, we
are not both listed individually as authors on the same paper.

Reviewer Expertise: Statistics, bioinformatics, R programming

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

For pre-submission enquiries, contact research@f1000.com

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more
The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

Page 18 of 18

