
Advanced Computing — Data wrangling and plotting*

Stefano Allesina (original author) University of Chicago
John Novembre University of Chicago

Data wrangling

As biologists living in the XXI century, we are often faced with tons of data, possibly replicated
over several organisms, treatments, or locations. We would like to streamline and automate our
analysis as much as possible, writing scripts that are easy to read, fast to run, and easy to debug.
Base R can get the job done, but often the code contains complicated operations (think of the cases
in which you used lapply only because of its speed), and a lot of $ signs and brackets.

To start, we need to import tidyverse:

library(tidyverse)

tidyverse is a fantastic bundle of packages: a collection of R packages designed to manipulate
large data frames in a simple and straightforward way. These tools are also much faster than the
corresponding base R commands, and allow you to write compact code by concatenating com-
mands to build “pipelines”. Moreover, all of the packages in the bundle share the same phi-
losophy, and are seamlessly integrated. By default, calling library(tidyverse) loads the pack-
ages readr, tidyr and dplyr (to read, organize and manipulate data), ggplot2 (data plotting),
stringr (string manipulation) and a few others; many others ancillary packages that are part of
the tidyverse can be loaded if needed.

Then, we need a dataset to play with. We take a dataset containing all the papers published by
UofC researchers in Nature or Science between 1999 and July 2019:

pubs <- read.csv("../data/UC Nat Sci 1999-2019.csv")

A new data type, tibble

The data are stored in a data.frame:

is.data.frame(pubs)

tidyverse ships with a new data type, called a tibble. It also comes with its improved function
to read data:

pubs <- read csv("../data/UC Nat Sci 1999-2019.csv")

pubs

*This document is included as part of the workshop packet for the BSD qBio Bootcamp, University of Chicago, 2022.
Current version: August 16, 2024.

2–1

which automatically reads the data as a tibble. The nice feature of tibble objects is that they will
print only what fits on the screen, and also give you useful information on the size of the data,
as well as the type of data in each column. Other than that, a tibble object behaves very much
like a data.frame. If you want to transform the tibble back into a data.frame, use the function
as.data.frame(my tibble); the function as tibble(my data frame) transforms a data.frame

into a tibble.

We can take a look at the data using one of several functions:

• head(pubs) shows the first few rows
• tail(pubs) shows the last few rows
• glimpse(pubs) a summary of the data (similar to str in base R)
• View(pubs) open data in spreadsheet-like window

Selecting rows and columns

There are many ways to subset the data, either by row (subsetting the observations), or by column
(subsetting the variables). For example, let’s select only articles published after 2009:

filter(pubs, Year > 2009)

You can see that 515 of the 953 documents were published in the last 10 years. We have used
the command filter(tbl, conditions) to select certain observations. We can combine several
conditions, by listing them side by side, possibly using logical operators.

Exercise: what does this do?

filter(pubs, Year == 2008, `Source title` == "Nature", `Cited by` > 100)

Note that the “back ticks” can be used to type column names that contain spaces and non-standard
characters. This is nice, because otherwise the name of the column would need to be altered (as
done automatically by read.csv, sometimes creating column names that are difficult to interpret
or type).

We can also select particular variables using the function select(tbl, cols to select). For
example, select only Authors and Title:

select(pubs, Authors, Title)

How many years are represented in the data set? We can use the function distinct(tbl) to retain
only the rows that differ from each other:

distinct(select(pubs, Year))

Where we first extracted only the column Year, and then retained only distinct values.

Other ways to subset observations:

• sample n(tbl, howmany, replace = TRUE) sample howmany rows at random with replace-
ment

2–2

• sample frac(tbl, proportion, replace = FALSE) sample a certain proportion (e.g. 0.2
for 20%) of rows at random without replacement

• slice(tbl, 50:100) extract the rows between 50 and 100

• top n(tbl, 10, Year) extract the first 10 rows, once ordered by Year

More ways to select columns:

• select(pubs, contains("Cited")) select all columns containing the word Cited

• select(pubs, -Authors, -Year) exclude the columns Authors and Year

• select(pubs, matches("astring|anotherstring")) select all columns whose names
match a regular expression.

Creating pipelines using %>%

We’ve been calling nested functions, such as distinct(select(pubs, ...)). If you have to add
another layer or two, the code would become unreadable. dplyr allows you to “un-nest” these
functions and create a “pipeline”, in which you concatenate commands separated by the special
operator %>%. For example:

pubs %>% # take a data table

select(Year) %>% # select a columns

distinct() # remove duplicates

does exactly the same as the command we’ve run above, but is much more readable. By concate-
nating many commands, you can create incredibly complex pipelines while retaining readability.

Producing summaries

Sometimes we need to calculate statistics on certain columns. For example, calculate the average
number of citations. We can do this using summarise:

pubs %>% summarise(avg = mean(`Cited by`))

which returns a tibble object with just the average number of citations. You can combine multiple
statistics (use first, last, min, max, n [count the number of rows], n distinct [count the number
of distinct rows], mean, median, var, sd, etc.):

pubs %>% summarise(avg = mean(`Cited by`),
sd = sd(`Cited by`),
median = median(`Cited by`))

Summaries by group

One of the most useful features of dplyr is the ability to produce statistics for the data once subset-
ted by groups. For example, we would like to compute the average number of citations by journal
and year:

2–3

pubs %>%
group by(`Source title`, Year) %>%
summarise(avg = mean(`Cited by`))

Exercise: count the number of articles by UofC researchers in Nature and Science by
Source title and Year.

Ordering the data

To order the data according to one or more variables, use arrange():

pubs %>% select(Title, `Cited by`) %>% arrange(`Cited by`)
pubs %>% select(Title, `Cited by`) %>% arrange(desc(`Cited by`))

Renaming columns

To rename one or more columns, use rename():

pubs %>% rename(Cites = `Cited by`)

If you want to retain the new name(s), simply overwrite the object:

pubs <- pubs %>% rename(Cites = `Cited by`, Journal = `Source title`)

Adding new variables using mutate

If you want to add one or more new columns, use the function mutate. For example, suppose we
want to count the number of authors for each document. Authors are separated by commas (with
small errors, but let’s disregard that), and therefore a strategy would be to first count the number
of commas, and then add 1:

pubs <- pubs %>% mutate(Num authors = str count(Authors, ",") + 1)

use the function transmute() to create a new column and drop the original columns. You can also
use mutate and transmute on grouped data.

When writing code, it is good practice to separate the operations by line:

A more complex example: for each paper,

compute the percentile rank of citations

compared to other papers of the same year

pubs %>%
group by(Year) %>% # group papers according to year

mutate(pr = percent rank(Cites)) %>% # compute % rank by Citations

ungroup() %>% # remove group information

arrange(Year, desc(pr), Authors) %>% # order by Year then % rank (decreasing)

head(20) # display first 20 rows

2–4

in this way, you can easily comment out a part of the pipeline (or add another piece in the middle).

Data plotting

The most salient feature of scientific graphs should be clarity. Each figure should make crystal-
clear a) what is being plotted; b) what are the axes; c) what do colors, shapes, and sizes represent;
d) the message the figure wants to convey. Each figure is accompanied by a (sometimes long)
caption, where the details can be explained further, but the main message should be clear from
glancing at the figure (often, figures are the first thing editors and referees look at).

Many scientific publications contain very poor graphics: labels are missing, scales are unintelligi-
ble, there is no explanation of some graphical elements. Moreover, some color graphs are impos-
sible to understand if printed in black and white, or difficult to discern for color-blind people (8%
of men, 0.5% of women).

Given the effort that you put in your science, you want to ensure that it is well presented and ac-
cessible. The investment to master some plotting software will be rewarded by pleasing graphics
that convey a clear message.

In this section, we introduce ggplot2, a plotting package for R This package was developed by
Hadley Wickham who contributed many important packages to R (including dplyr), and who is
the force behing tidyverse. Unlike many other plotting systems, ggplot2 is deeply rooted in a
“philosophical” vision. The goal is to conceive a grammar for all graphical representation of data.
Leland Wilkinson and collaborators proposed The Grammar of Graphics. It follows the idea of
a well-formed sentence that is composed of a subject, a predicate, and an object. The Grammar
of Graphics likewise aims at describing a well-formed graph by a grammar that captures a very
wide range of statistical and scientific graphics. This might be more clear with an example – Take
a simple two-dimensional scatterplot. How can we describe it? We have:

• Data The data we want to plot.
• Mapping What part of the data is associated with a particular visual feature? For example:

Which column is associated with the x-axis? Which with the y-axis? Which column corre-
sponds to the shape or the color of the points? In ggplot2 lingo, these are called aesthetic
mappings (aes).

• Geometry Do we want to draw points? Lines? In ggplot2 we speak of geometries (geom).
• Scale Do we want the sizes and shapes of the points to scale according to some value? Lin-

early? Logarithmically? Which palette of colors do we want to use?
• Coordinate We need to choose a coordinate system (e.g., Cartesian, polar).
• Faceting Do we want to produce different panels, partitioning the data according to one (or

more) of the variables?

This basic grammar can be extended by adding statistical transformations of the data (e.g., regres-
sion, smoothing), multiple layers, adjustment of position (e.g., stack bars instead of plotting them
side-by-side), annotations, and so on.

Exactly like in the grammar of a natural language, we can easily change the meaning of a “sen-
tence” by adding or removing parts. Also, it is very easy to completely change the type of geome-
try if we are moving from say a histogram to a boxplot or a violin plot, as these types of plots are
meant to describe one-dimensional distributions. Similarly, we can go from points to lines, chang-

2–5

ing one “word” in our code. Finally, the look and feel of the graphs is controlled by a theming
system, separating the content from the presentation.

Basic ggplot2

ggplot2 ships with a simplified graphing function, called qplot. In this introduction we are not
going to use it, and we concentrate instead on the function ggplot, which gives you complete
control over your plotting. First, we need to load the package (note that ggplot2 is automatically
loaded by tidyverse). While we are at it, let’s also load a package extending its theming system:

library(ggplot2)

library(ggthemes)

A particularity of ggplot2 is that it accepts exclusively data organized in tables (a data.frame or
a tibble object). Thus, all of your data needs to be converted into a table format for plotting.

For our first plot, we’re going to produce a barplot showing the number of papers in Science and
Nature by UofC researcher for each Year. To start:

ggplot(data = pubs)

As you can see, nothing is drawn: we need to specify what we would like to associate to the x axis
(i.e., we want to set the aesthetic mappings):

ggplot(data = pubs) + aes(x = Year)

Note that we concatenate pieces of our “sentence” using the + sign! We’ve got the axes, but still
no graph. . . we need to specify a geometry. Let’s use barplot:

ggplot(data = pubs) + aes(x = Year) + geom bar()

As you can see, we wrote a well-formed sentence, composed of data + mapping + geometry, and
this has produced a well-formed plot. We can add other mappings, for example, showing the
journal in which the paper was published:

ggplot(data = pubs) + aes(x = Year, fill = Journal) + geom bar()

Scatterplots

Using ggplot2, one can produce very many types of graphs. The package works very well for 2D
graphs (or 3D rendered in two dimensions), while it lack capabilities to draw proper 3D graphs,
or networks.

The main feature of ggplot2 is that you can tinker with your graph fairly easily, and with a com-
mon grammar. You don’t have to settle on a certain presentation of the data until you’re ready,
and it is very easy to switch from one type of graph to another.

For example, let’s plot the number of citations in the y axis, the year in the x axis. We want a
scatterplot, which is produced by the geometry geom point:

2–6

pl <- ggplot(data = pubs) + # data

aes(x = Year, y = Cites) + # aesthetic mappings

geom point() # geometry

pl # or show(pl)

This does not look very good, because some papers have a much larger number of citations than
other. We can attempt plotting the log(Cites + 1) instead (the +1 is added because some papers
might have 0 citations):

pl <- ggplot(data = pubs) + # data

aes(x = Year, y = log(Cites + 1)) + # aesthetic mappings

geom point() # geometry

pl # or show(pl)

Much nicer! Now we can add a smoother by typing:

pl + geom smooth() # spline by default

pl + geom smooth(method = "lm", se = FALSE) # linear model, no standard errors

Exercise: repeat the plot of the citations, but showing a different colour for each jour-
nal; add a smoother for each journal separately. Do papers receive more citations when
they’re published in Nature or Science?

Histograms, density and boxplots

What is the distribution of citations?

ggplot(data = pubs) + aes(x = Cites) + geom histogram()

You can see that there are some papers with many more citations than others. Try log-transforming
the data:

ggplot(data = pubs) + aes(x = log(Cites + 1)) + geom histogram()

Now we observe an histogram much closer to a Normal distribution, meaning that the number of
citations is approximately log-normally distributed. You can switch to a density plot quite easily
(just change the geometry!):

ggplot(data = pubs) + aes(x = log(Cites + 1)) + geom density()

Similarly, we can produce boxplots, for example showing the number of citations for papers in
Nature and Science (log transformed):

2–7

ggplot(data = pubs) + aes(x = Journal, y = log(Cites + 1)) + geom boxplot()

It is very easy to change geometry, for example switching to a violin plot:

ggplot(data = pubs) + aes(x = Journal, y = log(Cites + 1)) + geom violin()

Exercise:

• Produce a boxplot showing the number of authors (in log) per year (use
factor(Year) for the x axis). Is science becoming more collaborative?

• Now produce a scatterplot showing the same trend, and add a smoothing func-
tion.

Scales

We can use scales to determine how the aesthetic mappings are displayed. For example, we could
set the x axis to be in logarithmic scale, or we can choose how the colors, shapes and sizes are
used. ggplot2 uses two types of scales: continuous scales are used for continuos variables (e.g.,
real numbers); discrete scales for variables that can only take a certain number of values (e.g.,
treatments, labels, factors, etc.).

For example, let’s plot a histogram showing the number of authors per paper:

ggplot(pubs, aes(x = Num authors)) + geom histogram() # no transformation

ggplot(pubs, aes(x = Num authors)) + geom histogram() +

scale x continuous(trans = "log") # natural log

ggplot(pubs, aes(x = Num authors)) + geom histogram() +

scale x continuous(trans = "log10") # base 10 log

ggplot(pubs, aes(x = Num authors)) + geom histogram() +

scale x continuous(trans = "sqrt", name = "Number of authors")

ggplot(pubs, aes(x = Num authors)) + geom histogram() + scale x log10() # shorthand

We can use different color scales. For example:

pl <- ggplot(data = pubs %>% filter(Year %in% c(2000, 2005, 2010, 2015))) +

aes(x = Num authors, y = Cites, colour = factor(Year)) +

geom point() +

scale x log10() +

scale y log10()

pl + scale colour brewer()

pl + scale colour brewer(palette = "Spectral")

pl + scale colour brewer(palette = "Set1")

pl + scale colour brewer("year of publication", palette = "Paired")

Or use the number of authors a continuous variable:

2–8

pl <- ggplot(data = pubs) +

aes(x = Year, y = log(Cites + 1), colour = log(Num authors)) +

geom point()

pl + scale colour gradient()

pl + scale colour gradient(low = "red", high = "green")

pl + scale colour gradientn(colours = c("blue", "white", "red"))

Similarly, you can use scales to modify the display of the shapes of the points (scale shape contintuous,
scale shape discrete), their size (scale size continuous, scale size discrete), etc. To set
values manually (useful typically for discrete scales of colors or shapes), use scale colour manual,
scale shape manual etc.

Themes

Themes allow you to manipulate the look and feel of a graph with just one command. The package
ggthemes extends the themes collection of ggplot2 considerably. For example:

library(ggthemes)

pl + theme bw() # white background

pl + theme economist() # like in the magazine "The Economist"

pl + theme wsj() # like "The Wall Street Journal"

Faceting

In many cases, we would like to produce a multi-panel graph, in which each panel shows the data
for a certain combination of parameters. In ggplot this is called faceting: the command facet grid

is used when you want to produce a grid of panels, in which all the panels in the same row
(column) have axis-ranges in common; facet wrap is used when the different panels do not have
axis-ranges in common.

For example:

pl <- ggplot(data = pubs %>% filter(Year %in% c(2000, 2005, 2010, 2015))) +

aes(x = log10(Cites + 1)) +

geom histogram()

show(pl)

pl + facet grid(~Year) # in the same row

pl + facet grid(Year~.) # col

pl + facet grid(Journal ~ Year) # two facet variables

pl + facet wrap(Journal ~ Year, scales = "free") # just wrap around

Setting features

Often, you want to simply set a feature (e.g., the color of the points, or their shape), rather than
using it to display information (i.e., mapping some aestethic). In such cases, simply declare the
feature outside the aes:

2–9

pl <- ggplot(data = pubs %>% filter(Year %in% c(2000, 2005, 2010, 2015))) +

aes(x = log10(Num authors))

pl + geom histogram()

pl + geom histogram(colour = "red", fill = "lightblue")

Saving graphs

You can either save graphs as done normally in R:

save to pdf format

pdf("my output.pdf", width = 6, height = 4)

print(my plot)

dev.off()

save to svg format

svg("my output.svg", width = 6, height = 4)

print(my plot)

dev.off()

or use the function ggsave

save current graph

ggsave("my output.pdf")

save a graph stored in ggplot object

ggsave(plot = my plot, filename = "my output.svg")

Multiple layers

Finally, you can overlay different data sets, using different geometries. For example, suppose that
we have two data sets: one for papers with few authors (say <10) and one for large collaborations:

small collab <- pubs %>% filter(Num authors < 10)

large collab <- pubs %>% filter(Num authors >= 10)

We can overlay different geometries for the same data set:

ggplot(data = small collab) +

aes(x = factor(Num authors), y = log(Cites + 1)) +

geom boxplot(fill = "lightblue") +

geom violin(fill = "NA") +

geom point(alpha = 0.25) # alpha stands for transparency

Or combine different data sets (with the same aes!):

2–10

ggplot(data = small collab) +

aes(x = Year) +

geom bar(fill = "red", alpha = 0.5) +

geom bar(data = large collab, fill = "blue", alpha = 0.5)

Tidying up data

The best way to organize data for plotting and computing is the tidy form, meaning that a) each
variable has its own column, and b) each observation has its own row. When data are not in tidy
form, you can use the package tidyr to reshape them.

For example, suppose we want to produce a table in which for each journal and year, we report
the average number of authors. First, we need to compute the values:

avg authors <- pubs %>%
group by(Journal, Year) %>%
summarise(avg au = mean(Num authors))

This table is in tidy format (also called “narrow” format); we want to create columns for each
journal, and report the average in the corresponding cell. To do so, we “spread” the journals into
columns:

avg authors <- avg authors %>% spread(Journal, avg au)

Note that this is not in tidy form, as two observations are in the same row (also called “messy” or
“wide” format). While this is not ideal for computing, it is great for human consumption, as we
can easily compare the two numbers in the same row.

If we want to go back to tidy form, we can “gather” the column names, and return to tidy:

gather(where to store col names,

where to store values,

which columns to gather)

avg authors %>% gather(Journal, Average num authors, 2:3)

alternatively, if it's cleaner

avg authors %>% gather(Journal, Average num authors, -Year)

Joining tables

If you have multiple data frames or tibble objects with shared columns, it is easy to join them (as
in a database). To showcase this, we are going to extract papers by very prolific authors. First, we
want to compute how many papers are in the data for each “author” (actually, last-name initial
combinations, which might represent different authors with common names. . .). First, we need a
data set in which the authors have been separated:

2–11

by author <- pubs %>%
select(Authors, Title) %>%
separate rows(sep = ", ", Authors) %>%
rename(Focal author = Authors)

Now we can count the number of appearances of each name:

by author <- by author %>%
group by(Focal author) %>%
mutate(Tot = n())

Where we have created a new column (Tot) by calling mutate on grouped data. Who are the
authors most represented in the data?

tot author <- by author %>%
select(Focal author, Tot) %>%
distinct() %>%
arrange(desc(Tot))

You can see that common Chinese name combinations are in the top few rows (meaning that
probably we conflated several authors. . .). Let’s plot an histogram:

tot author %>% ggplot() + aes(x = Tot) + geom histogram() + scale y log10()

As you can see, the vast majority of authors appears only once, and very few, appear 15 or more
times. We want to extract the papers of the most prolific authors from the data that we have stored
in pubs. For example, we want to consider authors that are represented 10 or more times in these
papers. To do so, we first extract the prolific authors:

prolific <- by author %>% filter(Tot >= 10)

and now we can join pubs and prolific. By calling inner join, only rows that are present in
both tables will be retained; because the two tables share a column (Title), dplyr can proceed
automatically:

pubs %>% inner join(prolific)

We can use this table to compute the number of citations received by each prolific author:

pubs %>% inner join(prolific) %>% ggplot() +

aes(x = Focal author, y = Cites) +

geom col() + # similar to bar plot

theme(axis.text.x = element text(angle = 90, hjust = 1)) # rotate labels

Besides inner join(x, y), you can use:

2–12

• left join(x, y): return all rows from x, and all columns from x and y (those with no match
will show NA);

• right join(x. y): return all rows from y, and all columns from x and y;
• full join(x, y): return all rows and all columns from both x and y. Where there are not

matching values, returns NA for the one missing;
• anti join(x, y): return all rows from x where there are not matching values in y.

Exercise in groups

Chicago’s Divvy bike-share system (the light blue bikes you will see around town) col-
lects data on all its rides and shares them publically, after anonymizing the rider info
(https://www.divvybikes.com/system-data). The file data/202207-divvy-tripdata.csv

contains a list of all the Divvy bike rides taken in Chicago in July 2022. Form small groups and
work on the following exercises. Hint: use the package lubridate to work with days, dates, time:

• Ride map write a function that takes as input a calendar date (YYYY-MM-DD), and draws
a map of all the starting points of rides. Mark a point for each occurrence using the starting
latitude and longitude start lat and start lng. Set the alpha to something like 0.1 to show
brighter colors in areas with many occurrences. Use color to indicate member type or ride
type (Optional: Add a feature that draws a line from the starting location to end location)

• Daily usage profile for the month: Make a bar plot of the number of rides per day across
the 31 days of the month. Produce a facet graph that stratifies the results by member type
(the member casual field). Also use the fill to denote the rideable type.

• Busiest hour and day of the week on which day of the week do most rides to start? On
which hour of the day do most rides start? (Extract day of the week from started at using
the wday function of lubridate) Make a plot of the number of rides per hour of the day,
faceted on the day of the week.

• Ride length classes add a new column to the dataset specifying whether the ride is con-
sidered short (<5 minutes), medium (5-30 minutes), or long (>30 minutes) (Hint: again
use the package lubridate to work with days, dates, time and extract duration from in the
started at and ended at fields)

• Number of rides of different lengths by day of the week plot the number of rides against
the day of the week, faceting by ride length class.

• Rides by neighborhood write a function that takes as input a given day, and produces a
histogram of the number of rides per neighborhood on that day (i.e. x-axis is number of
rides, y-axis is number of neighborhoods). A table relating starting station id to neigh-
borhood (where neighborhood is assigned using the Google Maps API) is found in the file
data/202207-divvy-station id neighborhoods.csv. You will need to join the tables be-
fore plotting. What is the mean number of rides per neighborhood? What is the max num-
ber? What are the top 5 “neighborhoods” for Divvy rides.

• Interactions: Create a table with the starting station, ending station, and the number of rides
between each station. What is a feature of the most frequent trips that you observe? (Ad-
vanced: Create a graph showing edges connecting stations where the edge color represents
the number of trips taken)

• Miscellaneous: if you’d like to play more, the spDistsN1 function of the sp library returns
distances as a function of latitude/longitude pairs.

2–13

https://www.divvybikes.com/system-data

	Data wrangling
	A new data type, tibble
	Selecting rows and columns
	Creating pipelines using %>%
	Producing summaries
	Summaries by group
	Ordering the data
	Renaming columns
	Adding new variables using mutate

	Data plotting
	Basic ggplot2
	Scatterplots
	Histograms, density and boxplots
	Scales
	Themes
	Faceting
	Setting features
	Saving graphs
	Multiple layers

	Tidying up data
	Joining tables
	Exercise in groups

