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Sarah Cobey (adapted by Kyle Hernandez and John Novembre)) University of Chicago

Goal: Convince new and existing programmers of the importance of defensive programming
practices, introduce general programming principles, and provide specific tips for programming
and debugging in R. Audience: Scientific researchers who use R and believe the accuracy of their
code and/or efficiency of their programming could be improved.

Installation

For people who have completed the other tutorials, there is nothing new to install. For others start-
ing fresh, install R and RStudio. To install R, follow instructions at cran.rstudio.com. Then install
Rstudio following the instructions at https://www.rstudio.com/products/rstudio/download/.

Motivation

Defensive programming is the practice of anticipating errors in your code and handling them
efficiently.

If you’re new to programming, defensive programming might seem tedious at first. But if you’ve
been programming long, you’ve probably experienced firsthand the stress from

• inexplicable, strange behavior by the code
• code that seems to work under some conditions but not others
• incorrect results or bugs that take days or weeks to fix
• a program that seems to produce the correct results but then, months or years later, gives you

an answer that you know must be wrong. . . thereby putting all previous results in doubt
• the nagging feeling that maybe there’s still a bug somewhere
• not getting others’ code to run or run correctly, even though you’re following their instruc-

tions

Defensive programming is thus also a set of practices for preserving sanity and conducting re-
search efficiently. It is an art, in that the best methods vary from person to person and from project
to project. As you will see, which techniques you use depend on the kind of mistakes you make,
who else will use your code, and the project’s requirements for accuracy and robustness. But
that flexibility does not imply defensive programming is “optional”: steady scientific progress
depends on it. In general, we need scientific code to be perfectly accurate (or at least have well
understood inaccuracies), but compared to other programmers, we are less concerned with secu-
rity and ensuring that completely naive users can run our programs under diverse circumstances
(although standards here are changing).

*This document is included as part of the ‘Defensive Programming in R’ tutorial packet for the BSD qBio Bootcamp,
University of Chicago, 2024. Current version: August 19, 2024.
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In the first part of this tutorial, we will review key principles of defensive programming for sci-
entific researchers. These principles hold for all languages, not just R. In the second part, we will
consider R-specific debugging practices in more depth.

Part 1: Principles

Part 1 focuses on defense. You saw a few of these principles in Basic Computing 2, but they are
important enough to be repeated here.

1. Before writing code, draft your program as a series of modular functions with high-level
documentation, and develop tests for it.

2. Write clearly and cautiously.
3. Develop one function at a time, and test it before writing another.
4. Document often.
5. Refactor often.
6. When you run your code, save each “experiment” in a separate directory with a complete

copy of the code repository and all parameters.
7. Don’t be too defensive.

In part 2, we will focus on what to do when tests (from Principle 3) indicate something is wrong.

Principle 1. Before writing code, draft your program as a series of modular functions with high-level docu-
mentation, and develop tests for it.

Many of us have had the experience of writing a long paper only to realize, several pages in, that
we in fact need to say something slightly different. Restructuring a paper at this stage can be a real
chore. Outlining your code as you would outline a paper avoids this problem. In fact, outlining
your code can be even more helpful because it helps you think not just generally about how your
algorithm will flow and where you want to end up, but also about what building blocks (functions
and containers) you’ll use to get there. Thinking about the “big picture” design will prevent you
from coding yourself into a tight spot—when you realize hundreds of lines in that you should’ve
been tracking past states of a variable, for instance, but your current containers are only storing
the current state. Drafting also makes the actual writing much more easy and fun.

For complex programs, your draft may start as a diagram or flowchart showing how major func-
tions and variables relate to one another or brief notes about each of step of the algorithm. These
outlines are known as pseudocode, and there are myriad customs for pseudocode and program-
mers loyal to particular styles. For simple scripts, it is often sufficient to write pseudocode as
placeholder comments. For instance, if we are simulating a population in which individuals can
be born or die (and nothing else happens), we could write:

# initialize population size (N), birth rate (b), death rate (d),
# total simulation time (t_max), and start time (t=0)
# while N > 0 and t < t_max
# ... generate random numbers to determine whether next event is birth or death
# and time to event (dt)
# ... update N (increment if birth, decrement if death)
# ... update time t to t+dt
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Here, b and d are per capita rates. This is an example of the Gillespie algorithm. It was initially de-
veloped as an exact stochastic approach for simulating chemical reaction kinetics, and it is widely
used in biology, chemistry, and physics.

Can you see some limitations of the pseudocode so far? First, it lacks obvious modularity, though
this is partly due to its vagueness. The first step under the while loop could become its own func-
tion that is defined separately. Second, it is missing a critical feature, in that it’s not obvious what
is being output: do we want the population size at the end of the simulation, or the population size
at each event? If the latter, we may need to initialize a container, such as a dataframe, in which we
store the value of N and t at every event. After further thought, we might decide such a container
would be too big—perhaps we only need to know the value of N at 1/1000th the typical rate of
births, and so we might introduce an additional loop to store N only when the new time (t+dt)
exceeds the most recent prescribed observation/sampling time. This sampling time would need
to be stored in an extra variable, and we could also make the sampling procedure into its own
function. And maybe we want a function to plot N over time at the end.

The next stage of drafting is to consider how the code might go wrong, and what it would take
to convince ourselves that it is accurate. We’ll spend more time on this later, but now is the time
to think of every possible sanity check for the code. Sometimes this can lead to changes in code
design.

Exercise

What sanity checks and tests would you include for the code above?

Some examples:

• Initial values of b, d, and t_max should be non-negative and not change
• The population size N should probably start as a positive whole number and never fall below

zero
• If the birth and death rates are zero, N should not change
• If the birth rate equals the death rate, on average, N should not change when it is large
• The ratio of births to deaths should equal the ratio of the birth rate to the death rate, on

average
• The population should, on average, increase exponentially at rate b-d (or decrease exponen-

tially if d>b)

Some of these criteria arise from common sense or assumptions we want to build into the model
(for instance, that the birth and death rates aren’t negative), and others we know from the mathe-
matics of the system. For instance, the population cannot change if there are no births and deaths,
and it must increase on average if the birth rate exceeds the death rate. It helps that the Gille-
spie algorithm represents kinetics that can be written as simple differential equations. However,
because the simulations are stochastic, we need to look at many realizations (randomizations, tra-
jectories) to ensure there aren’t consistent biases. Just as with “real” data, we must use statistics
to confirm that the distribution of N in 10,000 simulations after 100 time units is not significantly
different from what we would predict mathematically.

The bottom line is that we have identified some tests for the (1) inputs, (2) intermediate variable
states (such as N), (3) final outputs to test that the program is running correctly. Note that one of
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our tests, the fraction of birth to death events, is not something we were originally tracking, and
thus we might decide now to create a separate function and variables to handle these quantities.
We will talk in more detail about how to implement these tests in Principle 3. Generally, tests of
specific functions are known as unit tests, and tests of aggregate behavior (like the trajectories
of 10,000 simulations) are known as system tests. As a general principle, we need to have both,
and we need as much as possible to compare their outputs to analytic expectations. It is also
very useful to identify what you want to see right away. For instance, you may want to write
a function to plot the population size over time before you code anything else because having
immediate visual feedback can be extremely helpful (and inspiring!).

“Let us change our traditional attitude to the construction of programs: Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to human beings what we want a computer to do.” -Donald Knuth

This is also a good time to draft very high-level documentation for your code, for instance in a
readme.MD file. What are the inputs, what does the code do, and what does it return?

Exercise

Assume there are two discrete populations. Each has nonoverlapping generations and
the same generation time. Their per capita birth rates are b1 and b2. Some of the
newborns migrate between populations.

• Write pseudocode to calculate the distribution of population frequencies after
100 generations.

• Is your code optimally modular?
• What are the inputs and outputs of the program? Of each function?
• How could you test the inputs, functions, and overall program?
• Discuss your approach with your neighbor.

Principle 2. Write clearly and cautiously.

You’re already on your way to writing clearly and cautiously if you outline your program before
you start writing it. Here we’ll discuss some practices to follow as you write.

A general rule is that it is more important for scientific code to be readable and correct than it is
for it to be fast. Do not obsess too much about the efficiency of the code when writing.

“Premature optimization is the root of all evil.” -Donald Knuth

Develop useful conventions for your variable and function names. There are many conventions,
some followed more religiously than others. It’s most important to be consistent within your own
code.

• Don’t make yourself and others guess at meaning by making names too short. It’s generally
better to write out maxSubstitutionRatePerSitePerYear or max.sub.rate.per.site.yr
than maxSR.

• However, very common variables should have short names.
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• When helpful, incorporate identifiers like df (data frame), ctr (counter), or idx (index) into
variable names to remind you of their purpose or structure.

• Customarily, variables that start with capital letters indicate global scope in R, and function
names also start with capital letters. People argue about conventions, and they vary from
language to language. Here’s Google’s style guide.

Do not use magic numbers. “Magic numbers” refer to numbers hard-coded in your functions
and main program. Any number that could possibly vary should be in a separate section for
parameters. The following code is not robust:

while ((age >= 5) && (inSchool == TRUE)) {
yearsInSchool = yearsInSchool + 1

}

We may decide the age cutoff of 5 is inappropriate, but even if we never do, being unable to change
the cutoff limits our ability to test the code. Better:

while ((age >= AgeStartSchool) && (inSchool == TRUE)) {
yearsInSchool = yearsInSchool + 1

}

Most of the time, the only numbers that should be hard-coded are 0, 1, and pi.

Use labels for column and row names, and load functions by argument.

Don’t force (or trust) yourself to remember that the first column of your data frame contains the
time, the second column contains the counts, and so on. When reviewing code later, it’s harder to
interpret cellCounts[,1] than cellCounts$time.

In the same vein, if you have a function taking multiple inputs, it is safest to pass them in with
named arguments. For instance, the function

BirthdayGiftSuggestion <- function(age, budget) {
# ...

}

could be called with

BirthdayGiftSuggestion(age = 30, budget = 20)
# or
BirthdayGiftSuggestion(30, 20)

but the former is obviously safer.

Avoid repetitive code. If you ever find yourself copying and pasting a section of code, perhaps
modifying it slightly each time, stop. It’s almost certainly worth writing a function instead. The
code will be easier to read, and if you find an error, it will be easier to debug.
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Principle 3. Develop one function at a time, and test it before writing another.

The first part of this principle is easy for scientists to understand. When building code, we want
to change one thing at a time. Controlled experiments are a great way to understand what’s going
on. Thus, we start by writing just a single function. It might not do exactly what we want it to
do in the final program (e.g., it might contain mostly placeholders for functions it calls that we
haven’t written yet), but we want to be intimately familiar with how our code works in every
stage of development.

The second part of this principle underscores one of the most important rules in defensive pro-
gramming: do not believe anything works until you have tested it thoroughly, and then keep
your guard up. Expect your code to contain bugs, and leave yourself time to play with the code
(e.g., by trying to “break” it) until you can convince yourself they are gone. This involves an extra
layer of defensive programming beyond the straightforward good practices discussed in Principle
2. Testing the code as you build it makes it much faster to find problems.

Unit tests. Unit tests are tests on small pieces of code, often functions. An intuitive and informal
method of unit testing is to include print() statements in your code.

Here’s a function to calculate the Simpson Index, a useful diversity index. It gives the probability
that two randomly drawn individuals belong to the same species or type:

SimpsonIndex <- function(C) {
print(paste(c("Passed species counts:", C), collapse=" "))
fractions <- C / sum(C)
print(paste(c("Fractions:", round(fractions, 3)), collapse=" "))
S <- sum(fractions ˆ 2)
print(paste("About to return S =",S))
return(S)

}

# Simulate some data
numSpecies <- 10
maxCount <- 10 ˆ 3
fakeCounts <- floor(runif(numSpecies, min = 1, max = maxCount))

# Call function with simulated data
S <- SimpsonIndex(fakeCounts)

## [1] "Passed species counts: 416 113 553 206 720 111 141 120 640 850"
## [1] "Fractions: 0.107 0.029 0.143 0.053 0.186 0.029 0.036 0.031 0.165 0.22"
## [1] "About to return S = 0.148974220299261"

It’s very useful to print values to screen when you are writing a function for the first time and
testing that one function. When you’ve drafted your function, I recommend walking through the
function with print() and comparing the computed values to calculations you perform by hand
or some other way. It can also be useful to do this at a very high level (more on that later).

The problem with relying on print() is that it rapidly provides too much information for you to
process, and hence errors can slip through.
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E. coli

Assertions

A more reliable way to catch errors is to use assertions. As someone from the internet once said:
if you catch yourself thinking “this should and will always be true”, use assertions to check for
specific conditions in that case. Assertions are automated tests embedded in the code. The built-in
function for assertions in R is stopifnot(). It’s very simple to use.

Let’s remove the print statements and add a check to our input data:

SimpsonIndex <- function(C) {
stopifnot(C > 0)
fractions <- C / sum(C)
S <- sum(fractions ˆ 2)
return(S)

}

If each element of our abundances vector C is positive, stopifnot() will be TRUE, and the program
will continue. If any element does not satisfy the criterion, then FALSE will be returned, and
execution will terminate. Explore for yourself:

# Simulate two sets of data
numSpecies <- 10
maxCount <- 10 ˆ 3
goodCounts <- floor(runif(numSpecies, min = 1, max = maxCount))
badCounts <- floor(runif(numSpecies, min = -maxCount, max = maxCount))

# Call function with each data set
S <- SimpsonIndex(goodCounts)
S <- SimpsonIndex(badCounts)

This gives a very literal error message, which is often enough when we are still developing the
code. But what if the error might arise in the future, e.g., with future inputs? We can use the
built-in function stop() to include a more informative message:

SimpsonIndex <- function(C) {
if(any(C < 0)) stop("Species counts should be positive.")
fractions <- C / sum(C)
S <- sum(fractions ˆ 2)
return(S)

}

Now try it with badCounts again.
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What about warnings? For instance, our calculation of the Simpson Index is an approximation:
the index formally assumes we draw without replacement, but we have been computing S = ∑ p2,
where p is the fraction of each species. It should be S = ∑ n(n−1)

N(N−1) , where n is the abundance of
each species n and N the total abundance. This simplification becomes important at small sample
sizes. We could add a warning to alert users to this issue:

SimpsonIndex <- function(C) {
if(any(C < 0)) stop("Species counts should be positive.")
if((mean(C) < 20) || (min(C) < 5)) {

warning("Small sample size. Result will be biased. Consider corrected index.")
}
fractions <- C / sum(C)
S <- sum(fractions ˆ 2)
return(S)

}

smallCounts <- runif(10)
S <- SimpsonIndex(smallCounts)

## Warning in SimpsonIndex(smallCounts): Small sample size. Result will be biased.
## Consider corrected index.

The main advantage of warning() over print() is that the message is red and will not be confused
with expected results, and warnings can be controlled (see ?warning).

You could make a case that warning() should be stop(). In general, with defensive programming,
you want to halt execution quickly to identify bugs and to limit misuse of the code.

Exercise

• What other input checks would make sense with SimpsonIndex()?
• You can see how the code would be more readable and organized if most of

that function were dedicated to actually calculating the Simpson Index. Draft a
separate function, CheckInputs(), and include all tests you think are reasonable.

• When you and a neighbor are done, propose a bad or dubious input for their
function and see if it’s caught.

There are many packages that produce more useful assertions and error messages than what is
built into R. See, e.g., assertthat and testit.

Exception handling

Warnings and errors are considered “exceptions.” Sometimes it is useful to have an automated
method to handle them. R has two main functions for this: try() allows you to continue executing
a function after an error, and tryCatch() allows you to decide how to handle the exception.

Here’s an example:
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UsefulFunction <- function(x) {
value <- exp(x)
otherStuff <- rnorm(1)
return(list(value, otherStuff))

}

data <- "2"
results <- UsefulFunction(data)
print(results)

Now results is quite a disappointment: it could’ve at least returned a random number for you,
right? You could instead try

UsefulFunction <- function(x){
value <- NA
try(value <- exp(x))
otherStuff <- rnorm(1)
return(list(value, otherStuff))

}
results <- UsefulFunction(data)

## Error in exp(x) : non-numeric argument to mathematical function

print(results)

## [[1]]
## [1] NA
##
## [[2]]
## [1] 1.0298

Even though the function still can’t exponentiate a string (exp("2") still fails), execution doesn’t
terminate. If we want to suppress the error message, we can use try(..., silent=TRUE). This
obviously carries some risk!

We could make this function even more useful by handling the error responsibly with tryCatch():

UsefulFunction <- function(x){
value <- NA
tryCatch ({

message("First attempt at exp()...")
value <- exp(x)},

error = function(err){
message(paste("Darn:", err, " Will convert to numeric."))
value <<- exp(as.numeric(x))
}
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)
otherStuff <- rnorm(1)
return(list(value, otherStuff))

}
results <- UsefulFunction(data)
print(results)

It is also possible to assign additional blocks for warnings (not just errors). The <<- is a way to
assign to the value in the environment one level up (outside the error= block).

Exercise

The package ggridges works with package ggplot2 to show multiple distributions in
a superimposed but interpretable way. Let’s say we want to run the following code:

library(ggplot2)
library(ggridges)
ggplot(diamonds, aes(x = price, y = cut, fill = cut, height = ..density..)) +

geom_density_ridges(scale = 4, stat = "density") +
scale_y_discrete(expand = c(0.01, 0)) +
scale_x_continuous(expand = c(0.01, 0)) +
scale_fill_brewer(palette = 4) +
theme_ridges() + theme(legend.position = "none")

You probably don’t have ggridges installed yet, so you’ll get an error. Use tryCatch()
so that the package is installed if you do not have it and then loaded.

Test all the scales!

It’s important to consider multiple scales on which to test as you develop. We’ve focused on unit
tests (testing small functions and steps) and testing inputs, but it is easy to have correct subroutines
and incorrect results. For instance, we can be excellent at the distinct skills of toasting bread,
buttering bread, and eating bread, but we will fail to enjoy buttered toast for breakfast if we don’t
pay attention to the order.

With scientific programming, it is critical to simplify code to the point where results can be com-
pared to analytic expectations. You saw this in Principle 1. It is important to add functions to
check not only inputs and intermediate results but also larger results. For instance, when we set
the birth rate equal to the death rate, does the code reliably produce a stable population? We
can write functions to test for precisely such requirements. These are system tests. When you
change something in your code, always rerun your system tests to make sure you’ve not messed
something up. Often it’s helpful to save multiple parameter sets or data files precisely for these
tests.

It’s hard to overstate the importance of taking a step back from the nitty-gritty of programming
and asking, Are these results reasonable? Does the output make sense with different sets of ex-
treme values? Schedule time to do this, and update your system tests when necessary. Please
don’t expect your collaborators to do this work for you (unless you’ve arranged to trade this kind
of help).
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Principle 4. Document often.

It is helpful to keep a running list of known “issues” with your code, which would include the
functions left to implement, the tests left to run, any strange bugs/behavior, and features that
might be nice to add later. Sites like GitHub and Bitbucket allow you to associate issues with your
repositories and are thus very helpful for collaborative projects, but use whatever works for you.
Having a formal to-do list, however, is much safer than sprinkling to-do comments in your code
(e.g., # CHECK THIS!!!). It’s easy to miss comments.

Research code will always need a readme describing the software’s purpose and implementation.
It’s easiest to develop it early and update as you go.

In R, the standard for documenting the code is called roxygen2. Upon pressing Ctrl+Shift+option+R,
RStudio automatically generate a little roxygen2 skeleton for a local piece of function. We can fill
in different fields with basic information about our function.

Principle 5. Refactor often.

To refactor code is to revise it to make it clearer, safer, or more efficient. Because it involves no
changes in the scientific outputs (results) of the program, it might feel pointless, but it’s usually
not. Refactor when you realize that your variable and function names no longer reflect their true
content or purpose (rename things quickly with Ctrl + Alt + Shift + M), when certain func-
tions are obsolete or should be split into two, when another data structure would work dramati-
cally better, etc. Any code that you’ll be working with for more than a week, or that others might
ever use, should probably be refactored a few times. Debugging will be easier, and the code will
smell better.

Important tip, repeated: Run unit and system tests after refactoring to make sure you haven’t
messed anything up. This happens more than you might think. You can even automate/enforce
tests to run in GitHub!

Principle 6. When you run your code, save each “experiment” in a separate directory with a complete copy
of the code repository and all parameters.

When you’re done developing the code and are using it for research, keep results organized by
creating a separate directory for each execution of the code that includes not only the results but
also the precise code used to generate the results. This way, you won’t accidentally associate one
set of parameters with results that were in fact generated by another set of parameters. Here’s a
sample workflow, assuming your repository is located remotely on GitHub, and you’re in a UNIX
terminal:

$ mkdir 2021-09-13_rho=0.5
$ cd 2021-09-13_rho=0.5
$ git clone git@github.com:MyName/my-repo

If we want, we can edit and execute our code from within R or RStudio, but we can also keep
going with the command line. Here we are using a built-in UNIX text editor known as emacs. If
you are a glutton for punishment, you could instead use vi(m). (Current Mac OS users will need
to use vim or nano unless they install emacs separately.)
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$ cd my-repo
$ emacs parameters.json // (edit parameters, with rho=0.5)
$ Rscript mycode.R

Keeping your experiments separate is going to save your sanity for larger projects when you
repeatedly revise your analyses. It also makes isolating bugs easier.

At this point, we can attempt to argue that when different versions or experiments of your code
won themselves a separate directory (this will be the case all the time as you constantly modify
your analysis throughout your projects), save those different versions in a package-style. Pick the
best documented R package you know and go to its source code package, and you will find that
it typically contains the followings:

1. A DESCRIPTION and NAMESPACE file, both have equivalent role as the above-mentioned
readme file.

2. Of course, the source code, including comments and documentation in roxygen2 style.
3. Manage dependencies, preferably in a “packrat” repo. A packrat project has its own private

package library. Any packages you install from inside a packrat project are only available to
that project; and packages you install outside of the project are not available to the project.
Note: renv is a stable replacement for packrat.

4. The documentation, helping users to understand the code and in particular, if the code is
to be part of a pipeline, explaining how to interact with the API it exposes. Where the
work product is an analysis rather than a bit of code intended to carry out a task, writing a
vignettes.

For more details, see this article by Chris.

Principle 7. Don’t be too defensive.

This is not necessary:

myNumbers <- seq(from = 1, to = 500, length.out = 20)
stopifnot(length(myNumbers) == 20)

It’s fine to check stuff like this when you’re getting the hang of a function, but it doesn’t need to
be in the code. Code with too many defensive checks becomes a pain to read (and thus debug).
Try to find a balance between excess caution and naive optimism. Good luck!

Part 2: Debugging in R

Part 1 introduced principles that should minimize the need for aggressive debugging. You’re in
fact already debugging if you’re regularly using input, unit, and system tests to make sure things
are running properly. But what happens when despite your best efforts, you’re not getting the
right result?

We’ll focus on more advanced debugging tools in this part. First, some general guidelines for
fixing a bug:
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• Isolate the error and make it reproducible. Try to strip the error down to its essential parts so
you can reliably reproduce the bug. If a function doesn’t work, copy the code, and keep
removing pieces that are non-essential for reproducing the error. When you post for help
on the website stackoverflow, for instance, people will ask for a MRE or MWE—a minimum
reproducible (working) example. You need to have not only the pared code but also the
inputs (parameter values and the seeds of any random number generators) that cause the
problem.

• Use assertions and debugging tools to hone in on the problem. We’ve already seen how to use
stop() and stopifnot() to identify logic errors in unit tests. We’ll cover more advanced
debugging here.

• Change/Test one thing at a time. This is why we develop only one function at a time.

Note: Learning how to make MREs and how to find the relevant parts of code is especially applicable when
finding bugs/issues in other people’s code (even if it isn’t R). The better your issue description is, the more
likely the author’s will be willing to help fix it! You can see an example of a bug I found in the Python
package pysam and the issue I posted on GitHub here.

Tracing calls

If an error appears, a useful technique is to see the call stack, the sequence of functions immedi-
ately preceding the error. We can do this in R using trackback() or in RStudio.

The following example comes from a nice tutorial by Hadley Wickham:

f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) "a" + d
f(10)

You can see right away that running this code will create an error. Try it anyway in RStudio. Click
on the “Show Traceback” to the right of the error message. What you’re seeing is the stack, and
it’s helpfully numbered. At the bottom we have the most recent (proximate) call that produced
the error, the preceding call above it, and so on. (If you’re working from a separate R file that you
sourced for this project, you’ll also see the corresponding line numbers next to each item in the
stack.) If you’re in R, you can run traceback() immediately after the error.

Seeing the stack is useful for checking that the correct functions were indeed called, but it can
suggest how to trace the error back in a logical sequence. But we can often debug faster with more
information from RStudio’s debugger.

Examining the environment

Let’s pretend we have a group of people who need to be assigned random partners. These part-
nerships are directed (so person A may consider his partner person B, but B’s partner is person F),
and we’ll allow the possibility of people partnering with themselves. Some code for this is in the
file BugFun.R. (It’s not terribly efficient code, but it is useful for this exercise.)
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source("BugFun.R")
peopleIDs <- seq(1:10)
pairings <- AssignRandomPartners(peopleIDs)

Try running this a few times. We have an inconsistent bug.

We can use breakpoints to quickly examine what’s happening at different points in the function.
With breakpoints, execution stops on that line, and environmental states can be inspected. In
RStudio, you can create breakpoints by clicking to the left of the line number in the .R file. A red
dot appears. You can then examine the contents of different variables in debug mode. To do this,
you have to make sure you have the right setting defined: Debug > On Error > Break in Code.

Exercise

Use breakpoints to identify the error(s) in the AssignRandomPartners() function. Go
to BugFun.R and attempt to run the last line. Decide on a place to start examining the
code. If you have adjusted your settings, the debug mode should start automatically
once you define a breakpoint and try to run the code again. (If a message to source the
file appears, follow it.) Your console should now have Browse[1]> where it previously
had only >.

The IDE is now giving you lots of information. The green arrow shows you where you
are in the code. The line that is about to be executed is in yellow. Anything you execute
in the console shows states from your current environment. Test this for yourself by
typing a few variables in the console. You can see these values in the Environment
pane in the upper right, and you can also see the stack in the middle right.

If you hit enter at the console, it will advance you to the next step of the code. But it is
good to explore the Console buttons (especially ‘Next’) to work through the code and
watch the Environment (data and values) and Traceback as they change. By calling
the function several times, you should be able to convince yourself of the cause of the
error.

Much more detail about browsing in debugging mode is available here.

When you are done, exit the debug mode by hitting the Stop button in the Console.

In R, you can insert the function browser() on some line of the code to enter debugging mode.
This is also what you have to use if you want to debug directly in R Markdown.

Examining the source code

The most effective way to debug when using functions from R package is to download their source
code, and check the code directly to see for yourself if there is anything that goes wrong.

My 2 cents of advice from my self-taught programming experience: don’t reinvent the wheel
when your primary goal is to do good research, simply borrow the wheel from experts who focus
on pure software development. I learned programming in different languages by reading the
source code. Reading source code allows me to assimilate others’ good style of writing their code,
and allows me to build a very clear connection between errors that I encounter with the parts in
code responsible for those errors. Throughout the process, I also get a sense of how my system
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and a specific programming language works, as much as I could. I am also able to learn the failure
modes of the language when I break its certain component, for example, the association between
what I have just changed recently, and what the downstream impact of my change in the cascade
of my entire code network could be. Eventually I am able to narrow down the chance of producing
any error in my code as I improve my programming skill, and even when an error happens, I will
have a good hunch about what could go wrong immediately.

Programming Challenge

Avian influenza cases in humans usually arise from two viral subtypes, H5N1 and H7N9. An
interesting observation is that the age distributions for H5N1 and H7N9 cases differ: older people
are more likely to get very sick and die from H7N9, and younger people from H5N1. There’s no
evidence for age-related differences in exposure. A recent paper showed that the risk of severe
infection or death with avian influenza from 1997-2015 could be well explained by a simple model
that correlated infection risk with the subtype of seasonal (non-avian) influenza a person was first
exposed to in childhood. Different subtypes (H1N1, H2N2, and H3N2) have circulated in different
years. Perhaps because H3N2 is more closely related to H7N9 than to H5N1, people with primary
H3N2 infections seem protected from severe infections with H7N9. The complement is true for
people first infected with H1N1 or H2N2 and later exposed to H5N1.

Figure 1: Endemic influenza subtypes since 1918 (Gostic et al. 2016).

Of course, we do not know the full infection history of any person who was hospitalized with
avian influenza. We only know the person’s age and the year of hospitalization or death. To
perform their analysis, the authors needed to calculate the probability that each case had a pri-
mary infection with each subtype, i.e., the probability that a person born in a given year was first
infected with each subtype. Your challenge is to calculate these probabilities.

The authors had to make some assumptions. First, they assumed that the risk of influenza in-
fection is 28% in each year of life. Second, they assumed that the frequency of each circulating
subtype could be inferred from the numbers of isolates sampled (primarily in hospitals) each
year. These counts are given in subtype_counts.csv. [1]

The challenge: For every year between 1960 and 1996, calculate the probability that a person
born in that year had primary influenza infection with H1N1, H2N2, and H3N2. You must
program defensively to pull this off.

[1] The counts are actually given for each influenza season in the U.S., which is slightly different
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from a calendar year, but you can ignore this. You’ll notice that “1” and “0” are used where
we know (or assume) that only one subtype was circulating. The authors made several other
assumptions, but this is good enough for now.
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