Movement analysis workshop

Jasmine Nirody and Gia Jadick  University of Chicago

In this workshop, we’ll work with movement trajectories in the form of a time course of (x,y)
coordinates. We’ll provide an overview of some basic image analysis and concepts in biophysics
and will get some experience working in Image]J, R, and Python.

Introduction

Trajectory data is ubiquitous across biology: living systems are dynamic and we can learn a lot
from understaning their movement! If you're working with trajectories, you usually start with a
video taken via a microscope or lab camera or drone, depending on your system of interest.

We'll spend a little time before we get to analyzing some trajectory data in R figuring out how we
get from a video of cells moving around (in not-always-great contrast images!). ..

[If you look carefully at this freeze frame image from the microscope you'll see several flagellated
cells scattered around the field of view.]

... to trajectories that provide us with (x,y) positions for our objects of interest over a particular
time course.



We'll go through this process together using the TrackMate plugin in ImageJ. You should have
already installed FIJI, which includes all the functionality needed for this workshop. If you have
any issues, let us know before we start!

Visualizing and analyzing trajectories in R

Trajectories are simplifications of a real path traveled by an object (animal, cell, molecule). Usually
(and also for the purposes of this workshop!) this comes in the form of 2-dimensional spatial
coordinates (x,y) with a third temporal dimension (t).

Loading and plotting trajectory data

We'll first load an example trajectory, taken from one of the cells in the video we analyzed at the
start of this workshop.

[All the data files we’ll work with are in the data folder, so we will set our working directory
accordingly.]

coords <- read.csv("data/speciesl_track.csv",header=TRUE)

Before we do anything else, let’s quickly visualize this trajectory for a sanity check and to see what
we're working with.

plot (coords$POSITION_X,coords$POSITION_Y, type='1l', ylab='y', xlab='x')

Basic trajectory features — step lengths, turn angles, speeds

A trajectory can also be thought of as a series of steps, each comprised of a length (L;), a turning
angle (A;), and a time. Between two points (x;, y;) and (x;;1, yi+1), we can calculate the step length
L; from the distance formula L; = /(x;41 — ;)% + (yir1 — vi)%

Exercise: Using the (x, y,t) data stored in the coords variable, calculate out a vector of step lengths
for each timestep in the trajectory. Store the outputted list as step_lengths. What length should
this vector be?
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Exercise: Using the (x,y,t) data stored in the coords variable, calculate out a vector of step lengths
for each timestep in the trajectory. How would you calculate this value from this positional data?
Store the outputted vector as angles.

We can also do some slightly more complex computations to understand a bit more about the
underlying dynamics. First, let’s look at how the object’s speed varies over the trajectory. We can
calculate the ‘instantaneous’ speed at a time t; by speed; = ](tfﬁ| Note: if our trajectory is

measured at constant time intervals, then {; — t;_; is the same for all i.

Exercise: Using the (x,y,t) data stored in the coords variable, calculate out a list of speeds for
each timestep in the trajectory. Store the outputted list as a variable speeds.

Exercise: Using the information in speeds, calculate out various metrics that might give you some
information about the overall trajectory like the mean speed, max speed, standard deviation in
speed, etc.

Working with the tragjr package

It’s incredibly useful to know how to do some basic analysis like we went through, but one nice
thing about languages like R is having a lot of packages that have a lot of built-in functions that
can do some of these computations for us! Here we’ll work with the trajr package so let’s load
this before we begin.

library(trajr)

If you get an error message, you might need to install the packages. You can do so using the
command install.packages(‘‘trajr’’).

The file QBio_NirodyWorkshop.Rmd has R code that you can run, but we’ll go through most of the
steps here as well.

The trajr package represents trajectories as R objects in the class Trajectory. To create a
Trajectory object, we use the TrajFromCoords function from a set of x-y coordinates and times.
For our purposes, we can load these trajectories into R from .csv files, where the first column is
the x-coordinates, the second column is the y-coordinates, and the third column is times. [Note
that times are an optional input for trajr Trajectories.]

We'll use the data we loaded into coords and convert that into a trajr Trajectory.

trj <- TrajFromCoords(coords, spatialUnits='pixels', timeUnits = 'frames')
plot(trj)

Using some built-in functions, we can also get out information on the timecourse of the trajectory,
including the distribution of turning angles and step lengths like we did earlier

trajr_angles <- TrajAngles(trj)
trajr_steplengths <- TrajStepLengths(trj)

Exercise: How do these values compare to the ones we calculated by hand earlier? If you find they
don’t match, what went wrong?

Let’s visualize the distribution of step lengths and angles.
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Exercise: What might be the best and most informative kind of plot for these data? Why? Use
different kinds of plots and see what you get out of them.

Within the trajr package, we can also use TrajVelocity and TrajAcceleration to estimate these
metrics at each point along a trajectory. The TrajDerivatives function calculates speed and
change in speed along a trajectory. [If we find that the trajectory is very noisy, we can smooth
it using the TrajSmooth function before calculating these derivatives.]

# Calculate speed and acceleration
derivs <- TrajDerivatives(trj)

Let’s compare the speeds calculated by the TrajDerivatives function to the speeds we cal-
culated from scratch above. Use the commands mean(derivs$speed), max(derivs$speed),
min(derivs$speed), sd(derivs$speed) to compare the values to those computed before.

Let’s also plot the two speed calculations side by side.

Question: What information might a full timecourse of speeds provide us that the overall descrip-
tive metrics might not?

Working with and manipulating R objects

Note that when we loaded our data into coords and eventually into a trajr Trajectory, we
were working with spatial coordinates in pixels and time measured in frames. Before we do
any meaningful analysis, it’s useful to convert these into more physically meaningful units (espe-
cially when comparing different datasets, which may be obtained using different cameras!). The
TrajScale function allows us to implement these meaningful scaling parameters to transform our
trajectory object before analysis. When a trajectory is digitized from a video (like the one in our
example!), we can calculate the appropriate spatial scaling factor as width,, /width,, where width,,
is the width of an object in your chosen unit of length (e.g., meter, micron) and width, is the width
of the same object in pixels, as measured from the video. Similarly, time in these trajectories can
be appropriately scaled by knowing how many frames per second (fps) are in our recording.

Let’s re-upload our example trajectory into TrajFromCoords.

trj <- TrajFromCoords(coords, fps= 50, spatialUnits='pixels', timeUnits = 's')
plot(trj)

Now, using the TrajScale function, we can scale the spatial units to our chosen ones (here, we are
using ym):

trj <- TrajScale(trj, .45 / 1, "um")
plot(trj)

There are also many functions included in the trajr package that provide us with some relevant
information about our trajectory objects, including some of the important scaling parameters we
just learned to input.

TrajGetFPS(trj)
TrajGetTimeUnits(trj)
TrajGetUnits(trj)
TrajGetNCoords (trj)



We can also learn some basic information about our trajectory, including the total duration, total
length, and total distance from start to end of the trajectory. [These would be pretty straightfor-
ward to compute even without the trajr package — try it! We’ll come upon some more complex
metrics later included within the package later.]

TrajDuration(trj)
TrajLength(trj)
TrajDistance(trj)

Question: Why would you expect the values outputted from TrajLength to be different from
those outputted from TrajDistance?

Question: Would you expect the sum of all the step lengths to equal the TrajLength to be or
TrajDistance value? Check using the sum() function!

Some more analysis metrics

The trajr package contains several methods to characterize the straightness of trajectories. The
simplest one is D/ L, where D is the distance between the starting and ending points of the trajec-
tory and L is the length of the trajectory [Note: We’ve talked about this before!] This is calculated
by TrajStraightness, and the value outputted ranges from 0 to 1, where 1 means the trajectory
is a straight line.

TrajStraightness(trj)

Another metric of straightness can be used by looking at the distribution of turning angles, as
we calculated before. As noted in Batschelet (1981), this metric can be calculated by calling
Mod (TrajMeanVectorOfTurningAngles()), assuming we are working with a Trajectory with con-
stant step length.

Exercise: Compare these metrics and discuss the pros and cons of each for different types of tra-
jectories.

Ef.x is a dimensionless estimate of the maximum expected displacement of a trajectory. Larger
values of this parameter represent straighter paths (Cheung et al., 2007). E.,,. is Ef,,, multiplied
by the mean step length.

Question: What does E!,,, tell us?

We use the function TrajEmax.

TrajEmax (trj)
TrajEmax(trj, eMaxB = TRUE)

Exercise: Using the ?TrajEmax function, think about how TrajEmax differentiates between random
and directed walks. Why might this be important?

The direction autocorrelation function quantifies regularities within trajectories, for instance
wave-like periodicities. From this function, we can get an idea of their wavelength and ampli-
tude. This has, in previous studies been used to detect, for example, the winding movements of
trail-following ants (Shamble et al., 2017).



The function TrajDirectionAutocorrelations calculates the differences in step angles at all steps
separated by A, for a range of values of A.The position of the first local minimum of this function
may be used to characterise the periodicity within a trajectory. This position is calculated by
TrajDAFindFirstMinimum (or TrajDAFindFirstMaximum).

Question: : Some trajectories will not have a first local minimum (or maximum). What does this
indicate?

corr <- TrajDirectionAutocorrelations(trj)
plot(corr)

Working with multiple trajectories

Loading multiple trajectories into trajr

Most studies you’ll work with will involve multiple trajectories (per individual, per species, or
from multiple species!). Accordingly, the trajr package provides some functions to load and
work with multiple trajectories. We’ll work with some of these now, and then (as time permits)
switch to play around with some exploratory analyses with various types of data.

tracks <- as.data.frame(rbind(
c("data/speciesl_track.csv", "Allomyces macrogynus"),
c("data/species2_track.csv", "Chytriomyces confervae"),
c("data/species3_track.csv", "Allomyces_reticulatus"),
c("data/species4_track.csv", "Rhizoclosmatium globosum"),
c("data/speciesb_track.csv", "Synchyrtium microbalum"),
c("data/species6_track.csv", "Blastocladiella emersonii")

), stringsAsFactors = FALSE)

colnames (tracks) <- c("filename", "species")

We can then use the function TrajsBuild to load these into trajr. TrajsBuild assumes that you
have a set of trajectory files, each of which may have a scale and a frames-per-second value. The
function reads each of the files specified in a list of file names, optionally using a custom function,
then passes the result to TrajFromCoords. Remember that, with no input given, this function
assumes that the first column is x, the second is y, and there is no time column. We can use the
csvStruct argument identify the x, y and time columns if needed.

csvStruct <- list(x = 1, y = 2, time = 3)

trjs <- TrajsBuild(tracks$filename, scale = .45 / 1,
spatialUnits = "um", timeUnits = "s",
csvStruct = csvStruct)

Getting stats out from multiple trajectories

The function TrajsMergeStats simplifies the construction of a data frame of values, with one row
per trajectory. To use it, you need a list of trajectories (which you can get from calling TrajsBuild),
and a function which calculates the statistics of interest for a single trajectory.
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# Define a function which calculates some statistics
# of interest for a single trajectory

characterizeTrajectory <- function(trj) {
# Measures of speed
derivs <- TrajDerivatives(trj)
mean_speed <- mean(derivs$speed)
sd_speed <- sd(derivs$speed)

# Measures of straightness
straightness<- TrajStraightness(trj)
Emax <- TrajEmax(trj)

# Periodicity
corr <- TrajDirectionAutocorrelations(trj)
first_min <- TrajDAFindFirstMinimum(corr)

# Return a list with all of the statistics for this trajectory
list (mean_speed = mean_speed,

sd_speed = sd_speed,

Emax = Emax,

min_deltaS = first_min[1],

min_C = first_min[2]

Now that you've defined this function with the statistics of interest, you can pass it onto
TrajMergeStats to cycle through all the trajectories stored in trjs.

# Calculate all stats for trajectories im the list

# which was built in the previous example

stats <- TrajsMergeStats(trjs, characterizeTrajectory)
print(stats)

Exercise: Play around with some variants on the characterizeTrajectory function!

Follow-up activities

We’ve loaded a set of trajectory data into the data subfolder; these correspond to 6 trajectories
from 6 different species of single-celled fungal zoospores.

Using both visualization and some of the quantitative metrics we discussed today, what can be
said about the movement of these species? Are there some patterns that arise? What similarities
or differences between the movement patterns do you observe? How might you quantify these —
what metrics are informative and which ones are not in this particular example?

We encourage you to do this exploration in R, Python, or another programming language you feel
comfortable in! Use a combination of your own analyses and built-in functions to explore.
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