Basic Computing — Introduction to R*

Peter Carbonetto University of Chicago

The aim of this tutorial is to introduce R, and to use R to analyze data interactively. We will focus
on one important data structure, the data frame. We will learn how to import tabular data into a
data frame, and we will learn how to inspect, manipulate and analyze the data frame. In addition
to learning how to program in R, we will also discuss what are the key aspects of a good data
analysis, and how to analyze data in the world. This workshop is intended for biologists with
little to no background in programming. This tutorial is also a Google doc.

How this tutorial is organized

This tutorial is divided into two parts:

1. First, we will analyze a small data set in R. Our focus will be learning about data frames:
what they are, how to use them, and why they are important.

2. Second, we will apply the skills we developed in the first part to a much larger data set.
You will (hopefully) find that analyzing a very large data set in R is not much different than
analyzing a small data set (and, indeed, both are data frames, just one data frame is much
larger than the other).

What is this document, and how should | use it?

This is a text document (a “Google Doc”) containing text and R code. The R code is inside the gray
boxes.

You can run the code by copying & pasting it into your favorite R IDE (“integrated development
environment”); e.g., R, RStudio, Posit Cloud, Google Colab. For some practice, try running these
two lines of code:

x <- rnorm(200)
hist(x,n = 32)

You may notice that your histogram is not the same as mine. Why is that?

Make this document your own by making a copy of it in your Google Drive, then add your own notes
and code. I've also given you all permission to add comments to this Google doc. Feel free to use
comments to post questions or suggest improvements. I'll periodically look for your comments.

Note: If you are running your code in a Jupyter notebook or in Google Colab, I recommend run-
ning this line of code so that the outputs look the same as they do in RStudio:

*This document is included as part of the Basic Computing—Introduction to R tutorial packet for the BSD gBio
Bootcamp, University of Chicago, 2024. Current version: August 16, 2024; Corresponding author: pcarbo@uchicago.
edu. Thanks to Stefano Allesina, John Novembre, Stephanie Palmer and Matthew Stephens for their guidance.

1-1

https://tinyurl.com/4mh7c9rv
mailto:pcarbo@uchicago.edu
mailto:pcarbo@uchicago.edu

options(jupyter.rich_display = FALSE)

My data analysis

Here is my data analysis. It is an analysis of data from a 2008 Genetics article on the genetics of
dog breeds:

dogs <- read.csv("dogs.csv",stringsAsFactors = FALSE)
fit <- 1lm(aod ~ weight,dogs)
print(fit)

You will notice that the code is very short! There’s nothing wrong with that—successful analyses
in R do not need to be long or complicated! Still, we will spend quite some time understanding this
code and what it does, and in the process we will learn about R. But before we try to understand
what the code is doing, let’s start by trying to run the code in RStudio to reproduce the result.

& Use this space to add your own notes and code.

A mini-course on data frames

A data frame is R’s main data structure for storing tabular data. The data frame is one of the most
important data structures in R, and is important enough that we will spend much of this tutorial
seeking to understand how to work with and analyze data in data frames. (Not all data of course
is tabular data, but because so many things in R work well with data frames, it can be helpful to find
ways to rework your data so that it fits into a data frame.)

Before we get to more interesting things, we need to first get comfortable with some basic syntax
for data frames. Let’s run these lines of code and add a comment to the right of each line describing
what this code did. To start you off, I've added comments next to the first three lines of code.

print(dogs) # Print the contents of the entire data frame.
head(dogs) # Print the first few rows of the data frame.
tail(dogs) # Print the last few rows of the data frame.

1-2

https://doi.org/10.1534/genetics.108.087866

summary (dogs)
class(dogs)
nrow(dogs)

ncol (dogs)

names (dogs)
dogs$breed

dogs$aod
dogs$height
dogs$weight
dogs[,"aod"]
dogs[1,]
dogs[,"weight"]
dogs[1,"weight"]

x <- dogs[1,"weight"]
X <- dogsl[,"weight"]
x <- dogs[1,]

You may have noticed that many of these lines of code do the exact same thing. This is a common
theme in R (and in programming more generally): there are often many different ways of accomplishing
the same thing, and there is rarely one way that is “best” (although sometimes R programmers get into
passionate debates about this).

A reminder at this point that the advantages of analyzing data in R may be less obvious when
working with a small a data set. Later when we work with a large data set the benefits of R will
become more clear.

Checking for mistakes

All researchers, no matter how much experience they have, make mistakes. And most mistakes
are stupid mistakes! (I have made my fair share of embarrassing mistakes.) Occasionally, very
good researchers make mistakes in their papers. (See also here for a discussion of this mistake
years later.) Therefore, try to catch your mistakes early.

So how can you find your mistakes? The good news is that R catches many of your mistakes: most
methods in R have their own internal error-checking. Discussing your results with your labmates
and advisors is also another way to catch mistakes. But ultimately you will need to develop some
skills and strategies for performing your own checks.

A relatively simple but nonetheless helpful check is a “sanity check”: it doesn’t tell you the result
is right, but at least it reassures you that the result is not horribly wrong. A good sanity check is
simple—one that you can do on “the back of an envelope”. Here we will perform a simple sanity
check for our analysis of the dogs data (and in the process we will learn more about R).

Here our “sanity check” will be to hand-check that our model, y = ax + b, where x = weight and
y = aod, is making sensible predictions of y given x. This will involve some basic arithmetic so in
the process we will learn about how to do arithmetic in R. Also, plots are another powerful way
to perform checks, and we will write some simple code to visualize our results.

https://freakonomics.com/2005/11/everything-in-freakonomics-is-wrong/
https://freakonomics.com/2005/11/everything-in-freakonomics-is-wrong/
https://freakonomics.com/podcast/abortion-and-crime-revisited/

& Your code for checking your results.

Activity: Re-run this analysis on a different data set

Let’s now try something a bit audacious. Let’s try to re-run the same analysis as before, but on a
different data set from the American Kennel Club. Will this new analysis produce a similar result,
or not?

Using the skills you have developed so far—and a bit of creativity—I believe you can adapt the
code you ran on the “dogs” CSV file to analyze the AKC data (the file is akc_data.csv). This
exercise will involve making some judgments about how to analyze the data and therefore I do
not expect everyone to get the same result. It will also involve some initial explorations of the data
to understand what this data set contains, and how it differs from the first data set. Do not be afraid
to make mistakes!

Note that you may encounter a challenge that you have not yet dealt with. When you encounter
this challenge, try to figure out what is the issue, and we will discuss as a group how to overcome
it.

& Your code for analyzing the AKC data.

Tending to your gaRden

(Almost) every line of code in R acts on your R environment: it takes objects that exist in your environment,
then generate new objects or overwrites existing objects. Therefore, to understand any line of code, you
need to understand not only the code itself, but also what is the state of your environment (your
“garden”) the moment before you run your code; that is, the objects that are in your environment
and what they represent. However, this is easier said than done when your environment (garden)
is messy (not tended to). Therefore an important skill as a coder is to tend to your gaRden.

& Your code for tending to your gaRden.

https://github.com/tmfilho/akcdata/
https://github.com/tmfilho/akcdata/

What are all these objects? Do we need to keep all of these objects? Could we have named some of these
objects better to remind us what they are?

% % S. cerevisiae

Programming Challenge: Facts about dog breeds

The data frame is R’s way of storing tabular data. It is one of the most important and more pow-
erful data structures in R. In this Programming Challenge, we will take some time to understand
data frames and how to work with them. Although our focus here is on data frames, many of the
ideas you will pick up in this Programming Challenge are quite general.

Let’s start this part of the tutorial with a clean environment. Then go ahead and import the dogs
data set and print out the first few rows of the table:

rm(list = 1s())

dogs <- read.csv("dogs.csv",stringsAsFactors = FALSE)
head (dogs)

The data frame is a data structure for storing tabular data. The data are actually stored in a very
specific way: the data frame is a set of columns, and each column is a vector of the same length.
Let’s run some code to convince ourselves of this fact.

First, for convenience, make a copy of the first column, and call it “x”:

x <- dogs$breed

Important note: This makes a copy of the original data, so if you were to modify or delete x, this
leaves “dogs” unchanged.

This is a “character” data type. It is R’s way of storing text data:
class(x)

length(x)
X

Note we could have also copied the first column this way:

x <- dogsl[,"breed"]

And here’s another way!

x <- dogsl[,1]

Which way do you prefer?

By storing tabular data in this way, we can divide and conquer: since each column is also an object
in its own right, if the data are too complicated to understand all at once, we can make a copy of
the columns we want to look at more closely, and run code on the copy. This is a useful strategy for
dealing with complex data sets.

To drive home this idea of a data frame as a collection of vectors, the way to create a data frame is
in fact to join together a bunch of vectors of the same length. For example:

mydogs <- data.frame(
breed = dogs$breed,
1lbs = dogs$weight,
years = dogs$aod)
head (mydogs)

Each data structure in R has its own features and its own techniques for working with them. In
time, you will learn to work with other types of data structures: some are used widely (e.g., an
“Im” object), and some are very specialized (e.g., a GRanges object).

Now that we have some basic understanding of what is a data frame, let’s jump into the Program-
ming Challenge: the goal is to write code to answer some basic questions about dog breeds from
the data. The challenges will get progressively more difficult, and will build on each other, so try
not to rush through them. Sometimes the code will be given to you, other times you will be given
hints for writing the code to answer the questions. Now, this data set is small enough that you
can answer many of these questions by eye, but please don’t do that. (That being said, you are
welcome to look at the data to verify your answers.)

Before diving deeply into the Programming Challenge questions, first discuss a collaboration strat-
egy with your teammates. How will you work on the problems together? How will you share and
discuss solutions? (Maybe do this in a shared Google doc?) How will you make sure that every-
one is included in the problem solving? How will you address conflicts, e.g., when your team
comes up with more than one solution?

Warmup: Smallest and largest dog breeds
This should find the average height (in inches) of the largest dog breed:

x <- dogs$height
max (x)

Now write code to find the (average) height of the smallest dog breed:

& Add your code here.

This didn’t tell us which breeds were the smallest and largest. For example, to find the largest
breed, we can do this:

1-6

https://www.bioconductor.org/packages/release/bioc/vignettes/GenomicRanges/inst/doc/GenomicRangesIntroduction.html

y <- dogs$breed
i <- which.max(x)
y[i]

The output of which.max() was stored in object “i”. How kind of object is “i”?

What is the smallest breed?

& Add your code here.

What objects did you create to answer this question?

Another warmup: inspecting data about specific dog breeds

Suppose you wanted to look more closely at the height, weight and other statistics of the Alaskan
Malamute, which is stored in the fifth row of the data frame. This is easily done by selecting the
fifth row with the square brackets:

dogs[5,]

You can also select several rows at once, e.g.,

dogs[c(43,46),]

Practice a few times selecting different combinations of rows. What happens if you select a row
number that is larger than the height of the table?

Facts about dogs’ BMI

The body-mass index (BMI) is a standard quantity—and sometimes misused quantity!—in science
and medicine. In R, the BMI is easily calculated:

w <- dogs$weight
h <- dogs$height
bmi <- 703*w/h"2

Based on this code, what is the mathematical formula for BMI?

Next, write some code to find the largest, smallest, mean and median BMI. What are the dog
breeds with the largest and smallest BMI?

& Add your code here.

1-7

If you would like to use the BMI data later on, you can insert these data in the data frame:

dogs$bmi <- bmi

(What is the benefit of adding these data to the data frame as opposed to storing the BMI data in a separate
object?)

The longest-living dog breeds

In the dogs data frame we encountered two types of data: numeric data and text data. Another
type of data that is very important is logical data. Although the data frame does not contain logical
data, we can easily create logical data using logical operators.

You might create logical data in the process of answering questions about the data. For exam-
ple, suppose you would like to know how many dogs have an expected longevity of 16 years or
greater. Here is some code to answer this question:

x <- dogs$aod >= 16
summary (x)

What is “x” here?

class(x)
X

To get the indices that are “TRUE”, use which():

i <- which(x)
length(i)

i

dogs[i,]

What does “i” contain?

Other logical operators include equals (==), and (&), or (1) and not (!). Running help(Logic) will
give you a longer list.

Now write similar code to find the breeds with the following characteristics:

1. Expected age of death (AOD) at least 15 and average weight greater than 20 lbs.

2. AOD greater than 15 and “shortcoat” value of 1. (Later we will learn what the “shortcoat”
column represents.)

& Add your code here.

1-8

A QTL for weight (also, dealing with missing data)

In the Genetics paper, the strongest QTL (“quantitative trait locus”) for weight was a QTL on
chromosome 7. The “cfa7_46696633bp” column stores the breeds’ allele frequencies for these
QTL. What happens when you try to calculate the correlation between the allele frequencies and
weights?

X <- dogs$cfa7_46696633bp
y <- dogs$weight
cor(x,y)

In turns out that the allele frequencies were not available for some of the breeds, so a special value
“NA” was entered for those breeds. Why “NA”?

Use the is.na() function, and other functions you have used before, to find the missing entries, and
determine:

1. How many allele frequencies are missing?
2. Which breeds are missing allele frequencies?

& Add your code here.

The designers of R, appreciating that missing data is widespread in statistics, made sure that
missing values were an integral part of the R programming language. Most statistical functions
in R can deal with missing data. Read the documentation for “mean” and “cor”, then use the
guidance provided in the documentation to compute the average allele frequency at the QTL (that
is, averaged across all dog breeds), and the correlation between body weight and allele frequency.

& Add your code here.

What is a “factor”?

So far, we have seen three basic data types: character, numeric and logical. There is a fourth
important atomic data type in R: factor. What is unusual about factors is that—last I checked—
there is no equivalent in other popular programming languages, at least not as a primitive data
type. And yet you will find that they are extremely useful.

None of the columns in the dogs data frame are a factor. But, like logical data, we can create a factor
from other data.

The “shortcoat” column contains numeric data. As it turns out, it may be more useful to analyze the
data as a factor.

In this part of the Programming Challenge, you will be given the code, and your task will be to
run the code and interpret the outputs, with the aim of gaining some intuition for factors, how to
use them, and when they may be useful.

Let’s first run a few lines of code to inspect the shortcoat data:

x <- dogs$shortcoat
class(x)

X

summary (x)

unique (x)

Now run the following lines of code to create a factor:

x <- factor(x)
class(x)

X

summary (x)

Notice that although the data have stayed the same, the two summaries are different. This is
because although the data haven’t changed, the data representation or encoding has: R treats the
numeric encoding differently from the factor encoding.

What does the second summary tell us? Judging by these outputs, what do you think a factor is?

These observations suggest that we can improve the data representation further; the data should
be as easy to interpret as possible (“human readable”). Representing the data as zeros and ones
may be convenient for the computer, but it is confusing when representing the data as a factor
because it “looks” like numeric data, when in fact it is not.

Fortunately, now that the data are stored as a factor, this is easily fixed. To fix this, we modify a
property (“attribute”) of the object. Since this is the first time we are using an object’s attributes,
let’s first take stock of the object’s attributes:

attributes(x)

What does the “levels” attribute keep track of?

We can modify the levels attribute. For example, this replaces the zeros with “no” and ones with

“” V4

yes”:

levels(x) <- c("no","yes")
summary (x)

Having made these improvements to the shortcoat data, let’s store the improved data in the data
frame:

dogs$shortcoat <- x
summary (dogs)

1-10

To illustrate the power of factors, let’s see how easily it can be incorporated into a linear regression
analysis.

In one of my analyses, I found that dogs with short coats tended not to live quite as long as dogs
with longer coats:

sx <- dogs$shortcoat
y <- dogs$aod

i <- which(x == "no"

j <- which(x == "yes")
mean(y[i])

mean(y[j])

Is this difference significant? We can check this with Im():

fit <- 1m(aod ~ shortcoat,dogs)
coef (fit)
summary (fit)

What does the “shortcoatyes” output from coef(fit) represent? Is the difference significant?

The difference in expected lifespan might be explained better by differences in the body weights
between dogs with short and long coats. Is the AOD difference explained by “shortcoat” still
significant when weight is included as an explanatory variable for AOD?

fit <- Im(aod ~ weight + shortcoat,dogs)
summary (fit)

An index of dog breeds

There are many situations in biology research in which your data are text data (consider that
DNA sequences are a type of text data). The stringi and stringr packages are popular packages for
performing more complex analyses of text data. (In computer science, a “string” means a sequence
of characters, so one can think of text data as a collection of strings.) In this last question, we will
practice some simple manipulation of text data (“strings”) to organize the dog breeds by the first
letter of the breed name.

The first step is to extract the data we want. This can be done using substr():
x <- dogs$breed

d <- substr(x,start = 1,stop = 1)
d

Which is the most common first letter for a dog breed? And how many breeds start with this
letter? To answer these questions, try creating a factor.

& Add your code here.

1-11

The factor() function automatically determined which letters appeared in the data. But it could be
useful to include all the letters in the alphabet, not just the ones that appear in the data. Modify
your factor call above to include the unused letters as well. See help(factor) and help(LETTERS)
for guidance.

& Add your code here.

Once you have the new factor using all the letters, write code to determine which letters are not
used for the first letter of any dog breed:

& Add your code here.

O. bimaculoides

A “random” exercise

Here is a short piece of code that demonstrates the use of (1) a “for loop”, and (b) if-else statements.
This code simulates a simple “random walk” in which you decide to go up and down at the flip
of a coin. The plot at the end shows the random walk over time.

n <- 100
sim <- data.frame(t = seq(1l,n), x = rep(0,n))
x <- 0

for (i in 1:n) {
coin <- sample(2,1)
if (coin == 2) {
x <-x +1

} else {
x <-x -1
}
sim[i,"x"] <- x
}

plot(simt,simx,type = "1")

Now I want you to adapt this code to simulate a 2-d random walk: instead of a coin, roll a 4-sided
die, and the outcome determines the four moves (up, down, left or right). Then try simulating
random walks of different lengths.

1-12

& Add your code here.

C. jacchus

Final Programming Challenge: The Tornado Super Outbreak of 1974

Now we will practice our R skills on a much larger data set.

From the University of Chicago Magazine, Fall, 2020:

Fujita published his proposed tornado scale in 1971, but it needed a high-profile event
to take root. On April 3, 1974, a tornado touched down in Morris, Illinois, around noon.
Over the next 17 hours, 148 confirmed tornadoes tore through 13 states and Ontario,
Canada. Following the 1974 Super Outbreak—one of the worst tornado outbreaks on
record—Fujita and his team took a whirlwind airplane tour of more than 10,000 miles,
surveying the ruins.

Fujita’s scale is now known the “F-scale”, and it scores tornadoes from FO to F5 based on wind
speeds and ensuing damage.

Analysis aims
Our main analysis aim is to uncover evidence for the 1974 Tornado Super Outbreak in data from

NOAA’s Severe Weather Data Inventory (SWDI). In this programming challenge, you will be
given some suggestions for how to proceed, but you will (mostly) not be given the code.

1-13

Import the data

The SWDI data are stored in a file “StormEvents_details-ftp_v1.0_d1974_c20220425.csv.gz” which
is included in the GitHub repository.

Since the SWDI data are stored as a CSV file, you should now know what to do to import the data
into R.

& Add your code here.

Examine the data

Now that we have the data in a data frame, write some code to get an overview of the data frame:
e.g., number of rows and columns, the names of the columns, and what types of data are contained
in the columns.

& Add your code here.

You will find that these seven data columns are most useful: EVENT TYPE, BEGIN_DAY,
MONTH_NAME, STATE, BEGIN_LON, BEGIN_LAT and TOR_F_SCALE. Write some code to
examine these columns. Hint: You might find that the table() function is useful for this.

& Add your code here.

Prepare the data

Your initial examinations should suggest a few improvements to the seven columns of the data
frame we are interested in. Write code to make those improvements.

“” 7

Hints: “month.name” is a built-in constant than may be useful. Also,
value (a “string” of length zero).

produces the empty text

& Add your code here.

Since the focus is a particular type of storm event—tornadoes—extract the rows of the table about
tornadoes.

1-14

& Add your code here.

When and where did the tornadoes occur?

What calendar date (month + day) saw the most tornadoes? Let’s call this date “the day of the
Super Outbreak.” Hint: Since there is no data column for “day of year”, to answer this question
you could create a new column (say, “dayofyear”) from other columns using the paste() function.

& Add your code here.

Which two states had the most tornadoes in 1974? Hint: The sort() function might be useful here.

& Add your code here.

To understand the geography of the tornadoes in more detail, use the lat-long coordinates to plot
the tornadoes on a map. First, this can be done very simply using the plot() function. (What
geographical structures emerge from this plot?)

& Add your code here.

For a better map, I have written a custom function that takes a data frame “latlongs” as input and
outputs a map of the US with the geographic locations projected onto it.

The inputs are two numeric vectors of the same length. The output is a ggplot object.

map_usa_latlongs <- function (lats, longs) {
dat <- data.frame(lat = lats,long = longs)
return(ggplot(dat,aes(x = long,y = lat)) +
geom_path(data = map_data("state"),
aes(x = long,y = lat,group = group),
color = "gray") +
geom_point(shape = 20,size = 1) +
theme_classic())

1-15

library(ggplot2)
Add the rest of your code here.

Remove the outliers
Plotting the tornadoes by geographic location revealed some strange “outliers”. Write some code

to understand what these “outliers” are, remove them from the data frame, then create a new map
of the tornadoes without these strange outliers (reusing map_usa_latlongs).

& Add your code here.

Map the Super Outbreak

Now use map_usa_latlong() again to create a map of the tornadoes that occurred on the single
day of the tornado Super Outbreak. Compare your map to https://en.wikipedia.org/wiki/1974_
Super_Outbreak.

& Add your code here.

E. coli

Additional R resources

There is of course much more to learn about R. If R ends up being important to your work, then
you will need to do more to improve your R programming skills. Fortunately, there are many
good resources out there. Here are a few that I've discovered over the years (including many that
have been recommended to me by others).

Paul Torf’s and Claudia Brauer’s (very) short introduction to R. This is a great place to go next
after this tutorial.

Software Carpentry provides introductory lessons on R.

Data Carpentry provides additional introductory lessons on R. Although these lessons overlap
quite a bit with the Software Carpentry lessons, they are tailored to specific research disciplines
and therefore may be more interesting.

1-16

https://en.wikipedia.org/wiki/1974_Super_Outbreak
https://en.wikipedia.org/wiki/1974_Super_Outbreak
https://github.com/ClaudiaBrauer/A-very-short-introduction-to-R
https://software-carpentry.org/
https://datacarpentry.org/lessons/

R in a Nutshell is currently available through the U of C library and I think can be downloaded
as a PDF. It probably isn’t great for learning about R, but it can be helpful if you want to look up
a specific topic. For example, I often use it to check what are the (many) different options for the
“plot” function.

R for Data Science is a book available for free online that focusses on some of the more popu-
lar R packages developed by Hadley Wickham that provide additional tools for analyzing data.
We used one of these packages—ggplot2—but widely used packages include tibble, dplyr and
magrittr. Also, the book covers R Markdown in detail. There is also the ggplot2 book that covers
ggplot2 in much more detail.

Introductory Statistics with R by Peter Dalgaard is another book available for free from the U of
C library. I found it particularly helpful for learning how to use the various basic functions for
statistical analysis such as Im(), glm() and anova().

workflowr is an R package that we—that is, a bunch of us at U of C—developed specifically for
researchers to help them organize their data analyses and make it easier to share with others.
workflowr = organized + reproducible + shareable data science in R.

The R packages book is another book that is freely available online. It is for people interested in
developing their own R package. It is quite advanced, but I mention it because a few of you may
end up creating an R package as part of your research project. Also, for more advanced usage—
say, if you are analyzing very large or very complex data sets—I recommend the Advanced R
book.

1-17

http://pi.lib.uchicago.edu/1001/cat/bib/11609748
https://r4ds.had.co.nz/
https://ggplot2-book.org/
http://pi.lib.uchicago.edu/1001/cat/bib/11957555
https://workflowr.github.io/workflowr/
https://r-pkgs.org/
https://adv-r.hadley.nz/

	How this tutorial is organized
	What is this document, and how should I use it?
	My data analysis
	A mini-course on data frames
	Checking for mistakes
	Activity: Re-run this analysis on a different data set
	Tending to your gaRden
	Programming Challenge: Facts about dog breeds
	Warmup: Smallest and largest dog breeds
	Another warmup: inspecting data about specific dog breeds
	Facts about dogs' BMI
	The longest-living dog breeds
	A QTL for weight (also, dealing with missing data)
	What is a ``factor''?
	An index of dog breeds

	A ``random'' exercise
	Final Programming Challenge: The Tornado Super Outbreak of 1974
	Analysis aims
	Import the data
	Examine the data
	Prepare the data
	When and where did the tornadoes occur?
	Remove the outliers
	Map the Super Outbreak

	Additional R resources

