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Introduction to dynamical systems in biology

Dynamical systems are mathematical models that describe how a system changes over time. In
biology, they are crucial for understanding complex processes like gene regulation, population
dynamics, and cellular metabolism. A key example of a dynamical system is pure exponential
growth. Stated in “discrete” time steps, where time t transitions to time t + ϵ, a population size x
will grow exponentially if

x(t + ϵ) = x(t) + rϵx(t)

which is to say that the new population x(t + ϵ) is the old population x(t), some fraction rϵ of
which gave birth progeny during the intervening time. In continuous time (where ϵ goes to 0) this
can be written

dx
dt

= rx

which from calculus we know gives x(t) = x(t = 0)ert.

This a simple relationship, although the x still depends on two parameters — the initial condition
x(t = 0) and the rate parameter r. It’s easy to make things more complicated, but our goal is to
see how to keep things tractable even when this happens. How can we accomplish this?

A key concept in dynamical systems is the steady state, where the system’s variables remain con-
stant over time. Mathematically, we can express this as the derivative

dx
dt

= 0

where x represents the system’s variables and t is time. d/dt is simply the time-derivative of x,
meaning the rate at which x, whatever it is, changes over time.

Broadly, although steady-state itself is not a particularly interesting area of study in biological dy-
namics, it is useful to analyze a biological system “in the neighborhood of” steady-states. Take the
slightly more complicated dynamical system in which dx/dt, ie the time-derivative of x, describes
logistic growth of a bacterial culture:

dx
dt

= rx
(

1 − x
K

)
Rather than describing uncontrolled growth, this model describes the growth of some species
at rate r in a system in an environment that has finite carrying capacity K. By just looking at
this equation, we can see that there are two values of x for which dx/dt = 0. Without knowing
anything else, we can already start to speak meaningfully about this dynamical system’s behavior.

First, is when x = 0, such that there is no member of the species to replicate/grow at all. The
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second is where x = K, at which point the carrying capacity has been reached exactly. Neither of
these describes quantitative dynamics. However when x approaches 0

dx
dt

≈ rx

and when x approaches K
dx
dt

≈ rK(1 − x/K)

meaning that the time derivative of x appears to have a linear relationship to x, meaning that
we can approximate its behavior by exponential growth/decay. Because of this, linearity — and
linear algebra — plays a crucial role in analyzing these systems. We will see this concretely in the
next section.

The Lotka-Volterra model

So far, we’ve been looking dynamical systems in a single variable, a population size x(t). In
general in biology, we will want to be paying attention to multiple observables simultaneously,
for example the regulation of genes or — in ecology — the interactions between predator and
prey species.

The Lotka-Volterra model, also known as the predator-prey equations, is a pair of first-order non-
linear differential equations frequently used to describe the dynamics of biological systems in
which two species interact, one as a predator and the other as prey. While the model is simple,
assuming constant rates of predation and reproduction, it allows us to understand how species
interact, and how these interactions can lead to complex dynamics. These dynamics have impli-
cations well beyond ecology.

In its simplest form, the Lotka-Volterra model is described by the following system of equations:

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

Here, x(t) represents the prey population and y(t) represents the predator population at time t.
The parameters a, b, c, and d are positive real numbers that describe the interaction of the two
species:

• a: the growth rate of the prey in the absence of predators
• b: the rate at which predators eat prey
• c: the death rate of predators in the absence of prey
• d: the rate at which predators increase by consuming prey

Note that some of the terms in the equations are “first-order”, meaning that they contribute a lin-
ear term to the time-derivative of the predator or prey, whereas some are “second-order”, meaning
that the contribution of one population explicitly depends on the population of the other popula-
tion.
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The two first-order terms, ax and −cy, represent the natural growth of the prey population in the
absence of predators and the natural death rate of predators in the absence of prey, respectively.
For the two second-order terms, −bxy and dxy, represent the rate at which prey are eaten by
predators and the growth of the predator population due to consuming prey, respectively.

The behavior of this system can vary dramatically depending on the values of the parameters and
initial conditions. One of the most interesting features of the Lotka-Volterra model is its ability
to produce oscillatory behavior under certain conditions: meaning that looking at any given ob-
servable all the time, we will see waves. It turns out that all parameters above are positive and
non-zero, the system will do precisely this. These solutions trace closed orbits in the phase plane,
representing cyclical fluctuations in both predator and prey populations.

The oscillatory nature of the system can be understood intuitively: as the prey population in-
creases, it provides more food for predators, leading to an increase in the predator population.
The increased predator population then consumes more prey, causing the prey population to de-
crease. With less prey available, the predator population begins to decline, which then allows the
prey population to recover, and the cycle continues.

However, not all parameterizations lead to oscillatory behavior. If we set a = 0 and c = 0, for
instance, we get a system where both populations will exponentially decay to zero, regardless of
the initial conditions. This represents a scenario where prey have no natural growth and predators
have no natural death rate, leading to mutual extinction.

On the other hand, if we set b = 0 and d = 0, we decouple the equations, resulting in exponential
growth for the prey population and exponential decay for the predator population. This could
represent a situation where predators are unable to catch prey, leading to unchecked prey growth
and predator extinction.

In the following we’ll walk through a simulated example of how these dynamics can work.

D. pealeii

Some setup

If you have not already done so, install these packages:

install.packages("deSolve")
install.packages("ggplot2")
install.packages("cowplot")
install.packages("plotly")

Let’s now load the R packages we will need for this analysis:

library(deSolve)
library(ggplot2)
library(cowplot)
library(plotly)
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Note if you are running this in a Jupyter notebook or in Google Colab, I recommend setting this
option using the “repr” R package:

install.packages("repr")
library(repr)
options(jupyter.rich_display = FALSE)

Also for Jupyter notebook or Google Colab, you will need pandoc for the 3-d plot:

install.packages("pandoc")
library(pandoc)
pandoc_install()
pandoc_activate()

A first simulation in R

Let’s start by plotting the logistical growth equation from earlier. First, let’s set our function with
initial conditions and the growth parameter, r, and the carrying capacity K.

# Define the logistic growth function
logistic_growth <- function(t, state, parameters) {

with(as.list(c(state, parameters)), {
dxdt <- r * x * (1 - x/K)
return(list(c(dxdt)))

})
}

# Set parameters
r <- 0.5 # intrinsic growth rate
K <- 100 # carrying capacity
parameters <- c(r = r, K = K)

# Set initial state and time vector
state <- c(x = 10) # initial population
t <- seq(0, 50, length.out = 500)

Now, let’s solve the logistic growth curve as an ordinary differential equation, or ODE, using
deSolve’s ode() function:

solution <- ode(y = state, times = t, func = logistic_growth,
parms = parameters)

solution <- as.data.frame(solution)

The ODE calculation integrates the time-derivative of x(t) starting from the initial condition using
a time course from 0 to 50 across 500 time-steps (parameterized above).
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p_time <- ggplot(solution) +
geom_line(aes(x = time, y = x), color = "blue", linewidth = 1) +
geom_hline(yintercept = K, linetype = "dashed", color = "red") +
labs(x = "Time", y = "Population",

title = "Logistic Growth: Population vs Time") +
theme_cowplot() +
theme(panel.grid = element_line(linetype = "dashed", color = "gray70"))

# Display plots
print(p_time)

Note how the parameters impact the plot. The carrying capacity of K = 100 manifests as an
asymptote as t goes to infinity. As t goes to 0, meanwhile, we see the exponential behavior pre-
dicted by our earlier examination of the behavior of logistic growth before the impact of K becomes
apparent.

A second simulation in R

We can now define a function that will return the time-derivatives of the predator. This function
defines the Lotka-Volterra equations. It takes the current state (prey and predator populations)
and parameters as inputs, and returns the rate of change for both populations.

lotka_volterra <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {

dxdt <- a*x - b*x*y
dydt <- -c*y + d*x*y
return(list(c(dxdt, dydt)))

})
}

Here we set the model parameters a, b, c, d, create a time array from 0 to 100 with 1,000 points, and
set the maximum values for plotting. We also set the initial populations for prey and predator,
combine them into an initial state vector, and define a small “epsilon” value to avoid division by
zero later.

a <- 1; b <- 0.5; c <- 0.75; d <- 0.25
parameters <- c(a = a, b = b, c = c, d = d)
t <- seq(0, 100, length.out = 1000)
max_x <- 8; max_y <- 6
state <- c(x = 3, y = 4)
epsilon <- 1e-10

Now we use deSolve’s ode interface to solve the Lotka-Volterra equations over the specified time
range, starting from the initial conditions. The solution is then unpacked into separate arrays for
prey (x) and predator (y) populations.
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solution <- ode(y = state, times = t, func = lotka_volterra,
parms = parameters)

solution <- as.data.frame(solution)
x <- solution[, "x"]
y <- solution[, "y"]
head(solution)
tail(solution)

These next lines of code create a grid for the vector field, calculate the direction of change at each
point and normalize the vectors.

create_vector_field <- function(X, Y) {
dxdt <- a*X - b*X*Y
dydt <- -c*Y + d*X*Y
list(dxdt = dxdt, dydt = dydt)

}
X <- seq(0, max_x, length.out = 20)
Y <- seq(0, max_y, length.out = 20)
grid <- expand.grid(X = X, Y = Y)
vector_field <- create_vector_field(grid$X, grid$Y)
arrow_scale <- 0.2 # Adjust this value to change arrow length
norm <- sqrt(vector_field$dxdtˆ2 + vector_field$dydtˆ2) + epsilon
vector_field$u <- arrow_scale * vector_field$dxdt / norm
vector_field$v <- arrow_scale * vector_field$dydt / norm

The vector field will define the magnitude of the derivative at different points in the predator-prey
“phase space”. This gives us an idea of how the system would evolve from any given state.

Finally, we create the plot, showing both the vector field and the solution trajectory.

p <- ggplot() +
geom_segment(data = grid, aes(x = X, y = Y,

xend = X + vector_field$u,
yend = Y + vector_field$v),

arrow = arrow(length = unit(0.2, "cm")),
color = "gray", alpha = 0.3) +

geom_path(data = solution, aes(x = x, y = y), color = "blue") +
labs(x = "Prey", y = "Predator", title = "Lotka-Volterra Dynamics") +
coord_cartesian(xlim = c(0, max_x),

ylim = c(0, max_y)) +
theme_cowplot() +
theme(panel.grid.major = element_line(color = "gray80", linetype = "dashed"),

panel.grid.minor = element_line(color = "gray90", linetype = "dotted"))
p

The actual trajectory of the system is overlaid on this vector field, allowing us to see how the
system evolves as a result of the time-derivatives.
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What happens when we visualize this in a more “routine” time-course? We can check with the
script:

p_time <- ggplot(solution) +
geom_line(aes(x = time, y = x, color = "Prey"), linewidth = 1) +
geom_line(aes(x = time, y = y, color = "Predator"), linewidth = 1) +
scale_color_manual(values = c("Prey" = "blue", "Predator" = "red")) +
labs(x = "Time", y = "Population",

title = "Lotka-Volterra Dynamics: Population vs Time",
color = "Species") +

theme_cowplot() +
theme(legend.position = "right",

panel.grid = element_line(linetype = "dashed", color = "gray70"))
p_time

This gives us the oscillatory dynamics.

Now what happens we change the parameters? Let’s say, for example that we increase the preda-
tor appetite, so that we simply re-set a = 0.1. Then, let’s see what we get in the new plot.

Exercise: Plot the time-course for the new parameterization. Describe in detail how and why the
shape of the orbit changes due to this specific parameter change.

Exercise: The new orbit is still an orbit. Would this be true in a real population of predator/prey?
Why?

D. melanogaster

Simplified repressilator model

The repressilator is an early example of a synthetic genetic regulatory network that exhibits oscil-
latory behavior, first described by Elowitz and Leibler in 2000. It consists of three genes arranged
in a cycle, where each gene’s protein product represses the expression of the next gene in the loop.
In the original implementation in E. coli, the system was composed of the lacI gene (from the lac
operon), encoding the Lac repressor protein, the tetR gene (from the Tn10 transposon), encod-
ing the Tet repressor protein, and the cI gene (from bacteriophage λ), encoding the λ repressor
protein. Each gene was placed under the control of a promoter that could be repressed by the
previous gene’s protein product. This could be visualized as follows (from Elowitz and Leibler,
2000):
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The simplified repressilator model focuses on the dynamics of three proteins in a cyclic repression
network. Each protein represses the production of the next protein in the cycle.

The model assumes that mRNA dynamics are fast compared to protein dynamics, allowing us to
describe the system using only protein concentrations. The deterministic version of this model
can be described by the following system of time-derivatives like the systems we looked at earlier:

dx1

dt
=

α

1 + xn
3
+ α0 − βx1

dx2

dt
=

α

1 + xn
1
+ α0 − βx2

dx3

dt
=

α

1 + xn
2
+ α0 − βx3,

where

• xi is the concentration of protein i
• α is the maximum production rate
• α0 is the basal production rate
• n is the Hill coefficient, describing the cooperativity of repression
• β is the degradation rate.

Stochastic simulation

To capture the fact the stochastic counting-error in gene expression, we will use a simplified form
of something called the Gillespie algorithm. This algorithm treats each reaction as a discrete event
that occurs with a certain probability in a simulated form of continuous time.

simplified_stochastic_repressilator <- function(initial_state, params, tmax) {
alpha <- params[1]
alpha0 <- params[2]
n <- params[3]
beta <- params[4]

t <- 0
state <- as.numeric(initial_state)
times <- t
states <- matrix(state, nrow = 1)

while (t < tmax) {
x1 <- state[1]
x2 <- state[2]
x3 <- state[3]

# Calculate propensities.
production <- alpha / (1 + c(x3, x1, x2)ˆn) + alpha0
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degradation <- beta * state
propensities <- c(production, degradation)

a0 <- sum(propensities)

# Time to next reaction.
tau <- rexp(1, a0)

# Choose next reaction.
reaction <- sample(1:6, 1, prob = propensities/a0)

# Update state.
state_change <- rep(0,3)
if (reaction <= 3) {

state_change[reaction] <- 1 # protein production
} else {

state_change[reaction - 3] <- -1 # protein degradation
}

state <- state + state_change
t <- t + tau
times <- c(times, t)
states <- rbind(states, state)

}

return(list(times = times, states = states))
}

This function implements a simplified version of the Gillespie algorithm, which is a key method
in stochastic simulation of chemical or biochemical systems. Gene expression is inherently noisy
due to the small numbers of molecules involved and the random nature of molecular interactions.
This stochasticity can lead to significant variations in protein levels between individual cells.

The Gillespie algorithm treats each reaction (protein production or degradation) as a discrete
event, which better represents the reality of molecular interactions compared to continuous, deter-
ministic models. Continuous time simulation: Despite dealing with discrete events, the algorithm
simulates continuous time by calculating the time to the next reaction based on the current state
of the system.

The function calculates propensities for each possible reaction (production or degradation of each
protein), chooses the next reaction probabilistically, updates the system state, and advances the
simulation time.

Simulation and visualization

We’ll set parameters as follows:
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alpha <- 100 # Maximum production rate
alpha0 <- 0.01 # Basal production rate
n <- 4 # Hill coefficient
beta <- 1 # Degradation rate
params <- c(alpha, alpha0, n, beta)

These parameters are crucial in determining the behavior of the system:

The high maximum production rate (α) compared to the low basal rate (α0) ensures that the re-
pression has a significant effect. The Hill coefficient (n) of 4 indicates strong cooperativity in the
repression, which is often necessary for robust oscillations. The degradation rate (β) affects how
quickly the proteins are removed from the system, influencing the frequency of oscillations.

Now let’s perform a simulation:

initial_state <- c(50, 50, 50)
tmax <- 100
result <- simplified_stochastic_repressilator(initial_state, params, tmax)
times <- result$times
states <- result$states

Now, let’s make an interactive 3D trajectory plot, much like we were making 2D phase portraits
earlier:

# Create the 3D plot
plot_3d <- plot_ly(x = states[,1], y = states[,2], z = states[,3],

type = "scatter3d", mode = "lines", height = 400,
width = 400,
line = list(width = 6, color = ~states[,1],

colorscale = "Viridis"))

# Apply layout
plot_3d <- plotly::layout(plot_3d,

scene = list(xaxis = list(title = "Protein 1"),
yaxis = list(title = "Protein 2"),
zaxis = list(title = "Protein 3")),

title = "3D Trajectory")

# To display the plot
plot_3d

Or if you are running this in a Jupyter notebook or in a Google Colab environment, run this:

embed_notebook(plot_3d)

This 3D plot shows how the concentrations of all three proteins change over time relative to each
other. The trajectory forms a closed loop, indicating oscillatory behavior.
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The phase portraits (quiver plots) provide additional insights, because they’ll provide us the op-
portunity to visualize the vectors fields — as earlier — that illustrate the time-derivatives of the
dynamical system in tandem with how each instance of the dynamical system evolves. Here’s a
function to calculate the derivative for the quiver plots:

repressilator_derivative <- function(X, Y, protein_idx) {
Z <- mean(states[, (protein_idx %% 3) + 1]) # Use mean of the third protein.
dX <- alpha / (1 + (Zˆn)) + alpha0 - beta * X
dY <- alpha / (1 + (Xˆn)) + alpha0 - beta * Y
return(list(dX = dX, dY = dY))

}

2D quiver plot of Protein 1 vs. Protein 2:

X <- seq(0, max(states[,1]), length.out = 20)
Y <- seq(0, max(states[,2]), length.out = 20)
grid <- expand.grid(X = X, Y = Y)

# Changed protein_idx to 1
derivatives <- repressilator_derivative(grid$X, grid$Y, 1)

# Reduce arrow length.
arrow_scale <- 0.05 # Adjust this value to change arrow length

# Create the quiver plot.
plot1 <- ggplot() +

geom_segment(data = grid, aes(x = X, y = Y,
xend = X + arrow_scale * derivatives$dX,
yend = Y + arrow_scale * derivatives$dY),

arrow = arrow(length = unit(0.1, "cm")),
color = "gray", alpha = 0.5) +

geom_path(data = as.data.frame(states), aes(x = V1, y = V2)) +
labs(title = "Phase Portrait: Protein 1 vs 2",

x = "Protein 1", y = "Protein 2") +
theme_cowplot()

# Display the plot
print(plot1)

2D quiver plot of Protein 2 vs. Protein 3:

X <- seq(0, max(states[,2]), length.out = 20)
Y <- seq(0, max(states[,3]), length.out = 20)
grid <- expand.grid(X = X, Y = Y)
derivatives <- repressilator_derivative(grid$X, grid$Y, 1)
plot2 <- ggplot() +

geom_segment(data = grid, aes(x = X, y = Y,
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xend = X + arrow_scale * derivatives$dX,
yend = Y + arrow_scale * derivatives$dY),

arrow = arrow(length = unit(0.1, "cm")),
color = "gray", alpha = 0.5) +

geom_path(data = as.data.frame(states), aes(x = V2, y = V3)) +
labs(title = "Phase Portrait: Protein 2 vs 3",

x = "Protein 2", y = "Protein 3") +
theme_cowplot()

plot2

Exercise: Try running the simulation with n = 1, such that there is no cooperativity. Is there still
oscillatory behavior? Why is cooperativity necessary/unnecessary?

Let’s return to n = 4 and re-initialize the simulation. Assuming that the trajectories in the plot
show the distribution of cells in gene expression space, we might want to use a simple dimensi-
nality technique, like PCA to highlight the dimensions in gene expression space that preserve the
greatest total variance. Here we’ll do this with 1,000 samplings from the trajectories from earlier
and plot the first 2 PCs.

n_samples <- 1000
sampled_indices <- sample(nrow(states), n_samples, replace = FALSE)
sampled_states <- states[sampled_indices, ]

# Perform PCA.
pca_result <- prcomp(sampled_states, center = TRUE, scale. = TRUE)

# Extract the first two principal components.
pc_data <- as.data.frame(pca_result$x[, 1:2])

# Create a plot of the first two principal components.
pca_plot <- ggplot(pc_data, aes(x = PC1, y = PC2)) +

geom_point(alpha = 0.5) +
labs(title = "PCA of Repressilator Trajectories",

x = "First Principal Component",
y = "Second Principal Component") +

theme_cowplot(font_size = 10)

# Create a plot of the original trajectories for comparison.
sampled_states <- as.data.frame(sampled_states)
names(sampled_states) <- c("P1", "P2", "P3")
original_plot <-

ggplot(sampled_states, aes(x = P1, y = P2, color = P3)) +
geom_point(alpha = 0.5) +
scale_color_viridis_c() +
labs(title = "Original Repressilator Trajectories",

x = "Protein 1", y = "Protein 2", color = "Protein 3") +
theme_cowplot(font_size = 10)
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# Display the plots side-by-side.
plot_grid(original_plot, pca_plot, nrow = 1, ncol = 2)

# Print the proportion of variance explained by each PC.
summary(pca_result)

Exercise: How might one expect for PCA to fail in this case? What types of data-weightings could
help minimize such failures?

8–13


	Introduction to dynamical systems in biology
	The Lotka-Volterra model
	Some setup
	A first simulation in R
	A second simulation in R

	Simplified repressilator model
	Stochastic simulation
	Simulation and visualization


