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There’s a joke about immunology, which Jessica Metcalf of Princeton recently told me. An immunologist
and a cardiologist are kidnapped. The kidnappers threaten to shoot one of them, but promise to spare whoever has
made the greater contribution to humanity. The cardiologist says, “Well, I’ve identified drugs that have saved the lives
of millions of people.” Impressed, the kidnappers turn to the immunologist. “What have you done?” they ask. The
immunologist says, “The thing is, the immune system is very complicated ... ” And the cardiologist says, “Just shoot
me now.” — Yong, Ed. “Immunology Is Where Intuition Goes to Die", The Atlantic, Aug. 2020.

Welcome. This workshop will introduce a few useful
concepts for thinking about the immune system compu-
tationally. Immunology is currently undergoing a data-
driven revolution, with advances in computer science
and high-throughput technologies allowing us to address
questions that could not previously be answered using
purely experimental approaches or standard reductionist
techniques. In this workshop, we will look at two ideas: BSD courses: Other courses that may

broaden your experience in quantitative
and computational immunology in-
clude: Immunogenomics (IMMU 48000)
and Quantitative Immunobiology
(MENG 23300).

1. What are some methods for characterizing the phe-
notypic diversity and population structure of immune
cells?

2. How can statistical modeling be used to make useful
predictions about the immune system?

What is the immune system? The immune system
can be viewed as a loosely connected network of cells that
interact to solve problems that are beyond the individual
capabilities of each cell. At the same time, the immune
system has the ability to communicate between cells,
coordinate collective action, and remember past events.



Immunology has amassed a vast and specialized body
of knowledge describing the common biological mecha-
nisms underlying host defense, transplantation, autoim-
munity, tumor immunology, allergy, and other clinical
challenges.

The immune system’s role in host defense is frequently
framed in terms of an attacked host (i.e., self) defending
itself against alien invaders (i.e. non-self; viruses, bacte-
ria, cancer cells, etc). This conflict has far-reaching con-
sequences. Because collateral damage and misfiring can
cause significant harm, the immune system must be able
to distinguish between self and non-self with pinpoint ac-
curacy or risk harm to its self (e.g. autoimmunity, allergy,
etc). It may come as a surprise to you, but we still don’t
fully understand how the immune system performs this
exquisite role or why some people develop autoimmunity.

As you continue your graduate studies, we hope you’ll
notice the myriad exciting opportunities available to sci-
entists willing to cross and explore the traditional bound-
aries between immunology and computer science.

1. Visualizing the population structure of immune cells

This section is adapted from Neu et al.,
Trends in Immunology, 2017.

In the past decade advances in computing and next-
generation sequencing technologies have ushered in a
new era of discovery in immunology. In particular, single
cell RNA-seq (scRNA-seq) has enabled an unprecedented scRNA-seq is RNA-seq performed on

an individual cell. The cellular mRNA
is amplified through oligos specific for
the 5’ or 3’ tail of mRNA molecules or
random hexamers.

view of gene expression in single cells. A key challenge
lies in visualizing single cell gene expression data in a
biologically meaningful way while remaining robust to
the high levels of noise that is present in single cell data.

One of the most compelling applications of single-
cell genomics to immunology resides in characterizing
the population structure of single cells. Visualization of
scRNA-seq data can help to identify rare and intermedi-
ate subpopulations that are often overlooked with bulk
RNA-seq data. The goal of visualization algorithms is Dimensionality reduction is a process

to reduce the number of variables to a
compressed set of principal variables.
More specifically, dimensionality reduc-
tion can be understood as projecting the
data from the original high-dimensional
space into much lower-dimensional
space, while (roughly) capturing
the concerned statistical properties
(e.g., variation, distribution) and/or
structure property (e.g., clusters). High-
dimensional data after dimensionality
reduction are easier to store and faster
for downstream computation. Moreover,
when projecting the data to two- or
three-dimensional space, it is also easier
for visualization.
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to project high-dimensional data into a low-dimensional
space, resolving cellular groups based on transcriptional
similarity without the use of predetermined markers to
determine their identity. In this section, we will look at
two common dimensionality reduction algorithms that
are used to visualize scRNA-seq data.

Exercise 1.1

Exercise 1.1 — Overview discussion

Our goal for this exercise is to load and examine some
real world scRNA-seq data. If you are new to scRNA-
seq, let’s take a moment to consider how and what for-
mat such data could be stored in. Let’s also discuss what
might be some prerequisite steps for analyzing it, such as
quality control. We can also review concepts such as data
sparsity, dimensionality reduction, and batch correction.

Exercise 1.1 — Data wrangling

Let’s begin by downloading some scRNA-seq data. For
this exercise we will be using data published as part of a
study examining certain B cells in humans after influenza
vaccination (Neu et al., JCI, 2019). We will download pre- GEO is a database managed by the NIH

and functions as a public repository
of high throughput sequencing and
microarray data.

processed supplementary data from the GEO database:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE116500. Scroll to the bottom of the page to locate
the supplementary data.

Figure 1: The supplementary data can
be found at the bottom of the page, and
has has already been pre-processed.

The resulting csv.gz file contains single cell gene expres-
sion data for nearly 300 B cells. Let’s load the data in R:

# load data

geo <- read.csv('./data/GSE116500_Limma_adj_4.csv.gz',

row.names = 1, header = TRUE)
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How many genes and cells are in the data? Let’s try look-
ing at the dimensions of the data:

# number of rows (Genes) and columns (cells)

dim(geo)

num_genes <- dim(geo)[1]

num_cells <- dim(geo)[2]

To made things easier for subsequent steps, let’s take the
transpose of the data so that each row denotes a cell and
each column denotes a gene. The transpose of a matrix
is an operation which flips a matrix over its diagonal;
that is, it switches the row and column indices. This can
facilitate certain types of linear algebraic operations and
calculations which operate on columns by default.

# current data with genes by cells

dim(geo)

# transpose data to cells by genes

geo <- t(geo)

dim(geo)

Our assumption is that most gene expression in scRNA-
seq data contains random noise due to technical variation.
We would like to focus our analyses on genes with high
variability, which may have a biological basis. For the
purposes of this exercise we simply calculate variance of
gene expression as a way to rank genes, but we note other
methods (e.g. coefficient of variation) can be used as well.

Figure 2: Histogram of gene expression
variances.

# Let's identify highly variable genes based on

# variance.

VARs <- apply(geo, 2, var)

# What is the distribution of variances?

hist(VARs)
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Exercise 1.1 — Results discussion

What does our analysis of gene expression variance sug-
gest to us about what is changing inside these cells? How
should this observation inform our downstream tasks,
such as data visualization?

Exercise 1.2

Exercise 1.2 — Overview discussion

Our goal for this exercise is to visualize our scRNA-seq
data. Taking into account our observations about gene
expression variances, how might we want to filter or pre-
process our data? What is our intuition about good low-
dimensional projections? Also, how can we evaluate the
quality of our visualization?

Exercise 1.2 — Data Visualization

As we discussed earlier, we would like to focus our analy-
ses on genes with high variability, which may have a bio-
logical basis. Let’s select some top highly variable genes.

# we usually pick the top 1000 - 2000 highly

# variable genes (HVGs)

hvgs <- names(sort(VARs, decreasing = TRUE))[1:2000]

geo.hvg <- as.data.frame(geo[,hvgs])

dim(geo.hvg)

We should now have a matrix of 295 cells with the top
2000 most highly variable genes. One fact that we did
not reveal earlier is that these cells are plasmablasts,
which are B cells that secrete antibodies. We will now Immunoglobulin isotype can be

thought of as a molecular classification
for antibodies.classify the type (or isotype) of antibodies these B cells

are secreting by comparing the expression of IgA and
IgG genes. In order to help qualitatively examine vari-
ous types of dimensionality reduction techniques, we
will classify and label each cell with their most highly
expressed isotype:
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# There are multiple genes that encode subclasses

# of the two isotypes in this data: IgA and IgG

# Grab max IgA values across all genes

IgA <- cbind(geo.hvg$IGHA1,geo.hvg$IGHA2)

IgA_max <- as.matrix(apply( IgA, 1, max))

#Set column name to 'IgA'

colnames(IgA_max) <- 'IgA'

# Grab max IgG values across all genes

IgG <- cbind(geo.hvg$IGHG1,geo.hvg$IGHG2,

geo.hvg$IGHG3,geo.hvg$IGHG4)

IgG_max <- as.matrix(apply( IgG, 1, max))

#Set column name to 'IgG'

colnames(IgG_max) <- 'IgG'

#Determine if IgA is higher or IgG is higher

Ig <- cbind(IgA_max,IgG_max)

Ig_max <- colnames(Ig)[(apply( Ig, 1, which.max))]

We have now classified cells as IgA or IgG expressing
plasmablasts.

Principal component analysis (PCA) is a linear PCA is a linear dimensionality reduc-
tion algorithm, used to project high
dimension data into a few ‘components’
that capture most of the variability in
the data. It is a popular visualization
technique that can help identify pat-
terns or connections between samples.

dimensionality reduction algorithm that is often the first-
step in visualizing high-dimensional data. We will need
to use some functions from ggplot2 in order to visualize
our scRNA-seq data using PCA. Let’s load the R package:

library("ggplot2")

As a general rule of thumb, if you get an error message
saying there is no package titled ggplot2 you may need
to first install the appropriate package:

install.packages("ggplot2")

PCA takes an input of correlations between cells based on
gene expression data, and identifies principal components
corresponding to linear combinations of genes, which
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cumulatively capture the variability of the total dataset.
When the data is projected against the first few compo-
nents, which account for the largest amount of variation,
distinct populations can be visually and biologically inter-
preted. Let’s perform PCA:

# Let's perform PCA

geo.pca <- prcomp(geo.hvg, center = TRUE,

scale = TRUE)

plot_pc_data <- data.frame(

PC1=geo.pca[["x"]][,'PC1'],

PC2=geo.pca[["x"]][,'PC2'])

Let’s use the top two principal components to visualize
our data:
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Figure 3: Visualizing our scRNA-seq
data with PCA.

#plot PCA results with Ig status

ggplot(plot_pc_data, aes(x=geo.pca[["x"]][,'PC1'],

y=geo.pca[["x"]][,'PC2'], color=Ig_max)) +

geom_point(shape=1) + theme_minimal() +

geom_point(aes(color = Ig_max)) +

theme(legend.position = "top")

Do IgA cells and IgG cells separate well using PCA?
Could we use other principal components?

t-distributed stochastic neighbor embedding

(t-SNE) is a widely used nonlinear dimensionality re-
duction algorithm. Unlike PCA, which seeks to capture t-SNE is a nonlinear dimensionality

reduction method, which seeks to
preserve the local structure of data in
high-dimensional space when projected
into low-dimensional space.

variance in data, t-SNE seeks to explicitly preserve the
local structure of the original data. t-SNE constructs a
probability distribution to describe the data set such that
pairs of similar cells are assigned a high probability, while
dissimilar pairs are assigned a much smaller probabil-
ity. Thus, cells that are similar in the high-dimensional
space will cluster together (due to high probability) in
low-dimensional space. This ability to explicitly maintain
clustering of similar cells is an advantage of t-SNE over
direct linear transformation such as PCA. This approach
is very effective with scRNA-seq data, and has been used
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to resolve transcriptionally distinct populations that are
indistinguishable with PCA. We will need to use some
functions from Rtsne, so let’s load the R package:

library("Rtsne")

If you get an error message saying there is no package
titled Rtsne you may need to first install the package.

# Let's use the top 10 PC for t-SNE

geo.tsne <- Rtsne(geo.hvg, theta = .001,

perplexity = 30, initial_dims = 10)

plot_tsne_data <- data.frame(

tsne1=geo.tsne$Y[,1],

tsne2=geo.tsne$Y[,2])

Let’s visualize our data:
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Figure 4: Visualizing our scRNA-seq
data with t-SNE.

#plot tsne results with Ig status

ggplot(plot_tsne_data, aes(x=geo.tsne$Y[,1],

y=geo.tsne$Y[,2], color=Ig_max)) +

geom_point(shape=1) + theme_minimal() +

geom_point(aes(color = Ig_max)) +

theme(legend.position = "top")

Do IgA cells and IgG cells separate well using t-SNE?

Exercise 1.2 — Results discussion

What does separability mean? What is "good" separabil-
ity? Does it matter? How could we perform clustering
on our visualizations? What would that tell us about the
population structure of cells in the data? What might
happen if we keep IgA and IgG as our cell labels but we
remove expression information for all the underlying Ig
genes and then visualize the data?

Conclusion

While single cell transcriptional profiles have high dimen-
sionality due to the thousands of genes profiled, their in-
trinsic dimensionalities are typically much lower. Thus,
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unsupervised low dimensional projections can reveal
salient structure in scRNA-seq datasets. However, the
choice of dimensionality reduction algorithms used for
visualization needs careful thought in immunology.

2. Peptide-MHC interactions

Just about every cell in our body is decorated with a class
of molecules known as major histocompatibility com-
plexes (MHC). The MHC binds pathogen-derived pep-
tide fragments (antigens) and displays them on the cell
surface for recognition by immune system components.
Alien peptides, in particular, may be recognized by cyto-
toxic T cells, which can kill infected cells. Understanding
the binding affinity of MHC proteins and the repertoire
of cognate peptide ligands is critical for improving our
understanding of the antigenic landscape in infectious
diseases, autoimmunity, vaccine design, and cancer im-
munotherapy.

A

C

B

D

Figure 5: Structure of a peptide-MHC
complex. (A) Front view of the crystal
structure 1I4F depicting a space-filled
molecular surface representation of the
MHC (HLA-A*02:01) protein bound
with a peptide (derived from MAGEA4,
in purple), and (B) a backbone ribbon
representation of the MHC. The heavy
chain of MHC (alpha), which contains
the binding cleft, is depicted in green.
The supporting light chain (Beta-2
Microglobulin) is depicted in brown.
(C,D) Top view of the complex showing
the surface of the MHC (green) and
the exposed surface of the bound
peptide (purple). The exposed part of
the peptide is referred to as the “TCR-
interacting surface” of the peptide-
MHC complex.
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Because of the importance of this process, peptide-
MHC binding has been studied experimentally in a va-
riety of ways. Competition experiments, for example, can
directly assess the relative binding ability of different
peptides to a specific MHC molecule. Such experiments
yield a set of relative binding energies for various MHC-
peptide combinations. In this section, we will create a
model of the peptide ligand repertoire associated with a
particular MHC molecule.

Exercise 2.1

Exercise 2.1 — Overview discussion

Our goal for this exercise is to load and analyze some
HLA-peptide sequence and binding affinity data. If you’re
new to analyzing sequence data (or string data struc-
tures), consider how this data structure differs from nu-
merical data structures and what operations, such as se-
quence alignment, we might want to perform on biologi-
cal strings. We can also go over concepts like edit distance
and k-mers.

Exercise 2.1 — Data wrangling
IEDB is a public database of immune
epitope information. The database
contains data related to antibody
and T cell epitopes for humans, non-
human primates, rodents, and other
animal species. In particular, the
database contains extensive MHC
class I binding data from a variety of
different antigenic sources.

High-throughout screening through competition exper-
iments have resulted in large datasets cataloging bind-
ing affinities between various MHC molecules and pep-
tides. Let’s begin by downloading some peptide-MHC
binding data. For this exercise we will be using data
from the The Immune Epitope Database (IEDB) http:
//tools.iedb.org/mhci/download/

Figure 6: The binding data is available
in the MHC class I section at the top
(binding_data_2013.zip).

Let’s download: binding_data_2013.zip
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Once the peptide-MHC binding data is downloaded, you
can uncompress the file. The resulting tab-delimited file
contains nearly 200,000 peptide-MHC combinations. Let’s
load the data using R:

# load data

iedb <- read.csv('./bdata.20130222.mhci.txt',

header = TRUE, sep = "\t", as.is =TRUE)

# let's use head to view a snippet of the data

head(iedb)

You should see the first few lines of the file, including the
header for the columns. Let’s take a moment to interpret
what the values mean for each of the columns:

species This is the species from which a specific MHC
allele was evaluated for peptide binding.

mhc This is the specific MHC allele.

peptide_length MHC class I molecules bind peptides
that are predominantly 8-10 amino acid in length. Tra-
ditionally, there has been a focus on 9mer peptides
when mapping HLA-I restricted T cell epitopes.

sequence This is the sequence of the peptide.

inequality This reflects the uncertainty for some of the
peptide MHC binding data, where there some reported
affinities are either an upper-bound or lower-bound to
the true binding affinity.

meas The predicted output is given in units of IC50 nM.
Therefore a lower number indicates higher affinity. As a
rough guideline, peptides with IC50 values <50 nM are
considered high affinity.

Exercise 2.1 — Results discussion

Why is this interesting? Several T-cell-based can-
cer immunotherapies are being developed to stimulate
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anti-tumor immune responses to antigens presented by
the human MHC allele HLA-A*02:01. Somatic muta-
tions in endogenous protein coding genes that change
the amino acid sequence can result in the generation of
tumor-specific HLA-presented antigenic peptide epitopes
(or neo-antigens). These neo-antigens have the potential
to activate cytotoxic T lymphocytes (e.g. CD8+ T cells)
of the host immune system through MHC molecules,
thereby provoking an anti-tumor immune response.

Let us take a step back and consider how we might be
able to create personalized cancer therapies. It stands to
reason that if we knew the binding specificity of a given
MHC, we could assess different somatic mutations in a
cancer sample and determine if the cancer could present
it. So given the data available, can we model the reper-
toire of high affinity peptides that are presented by the
human HLA-A*02:01 allele?

Exercise 2.2 — Overview discussion

Our goal for this exercise is to infer the pattern of amino
acid specificity in high affinity peptides for a specific
HLA. In other words, what positions and letters show
a bias or preference for binding HLA-A*02:01? Assuming
that each position of a peptide binds independently to
the HLA molecule, how can we approach this question
using statistical intuition? What are the possible letters or
alphabets used in peptides? How can we determine the
observed frequencies for a given position?

Exercise 2.2 — Data Visualization

One way to visualize the repertoire of high affinity pep-
tides that can bind to HLA-A*02:01 is to use a sequence
logo plot. First, the relative frequency of each amino acid
at each position is calculated. This can be referred to as
a positional weight matrix (PWM). Second, the logo plot A PWM is a type of scoring matrix in

which amino acid substitution scores
are inferred separately for each position
from a collection of aligned protein
sequences.

depicts the relative frequency of each character by stack-
ing characters on top of each other, with the height of
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each character proportional to its relative frequency. The
total height of the letters depicts the information content
of the position, in bits. Here, we will use an R package
called ggseqlogo to calculate the position specific frequen-
cies for all high affinity 9mer peptides and visualize the
sequence logo. Notably, the Matthew Stephens Lab

at UChicago has also developed a
sequence logo tool called Logolas.

# First let's install a seqlogo tool

install.packages("ggseqlogo")

library(ggseqlogo)

# You can also install Logolas

# BiocManager::install("Logolas")

# library(Logolas)

Let’s select peptides from our HLA of interest:

# let's select human, 'HLA-A*02:01',

# peptides of length 9

# and binding affinity < 50

filtered_iedb = subset(iedb, species=='human'

& mhc=='HLA-A*02:01'

& meas < 50

& peptide_length == 9)

What is the most frequent amino acid in these peptides?
What is the second most frequent amino acid in these
peptides? Let’s now try to model the distribution in a
position specific manner:

# let's grab the peptide sequences

listOfSequences = filtered_iedb[,4]

# number and length of sequences

numSequences = length(listOfSequences)

lengthOfSequence = nchar(listOfSequences[1])

# find unique characters in list of sequences

aminoAcidsVocab = unique(strsplit(

paste(listOfSequences, collapse = ''),
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"")[[1]])

# create empty PFM matrix of zeros with dimensions

# of 20 x length of each sequence

PFM = matrix(0L, length(aminoAcidsVocab),

lengthOfSequence)

# for loop through each sequence

for (sequence in listOfSequences) {

# transform character vector to vector of

# single characters # for looping

sequenceString = strsplit(sequence, "")[[1]]

# for loop through each amino acid in sequence

for (index in seq_along(sequenceString)) {

# increment value at PFM[amino acid

# at position, positon]

PFM[match(sequenceString[index],

aminoAcidsVocab), index] =

PFM[match(sequenceString[index],

aminoAcidsVocab), index] + 1

}

}

# give rownames with amino acid letter

rownames(PFM) = aminoAcidsVocab
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Figure 7: Sequence logo of high affinity
peptides for HLA-A*02:01.

Let’s pass the list of 9mers to ggseqlogo to visualize se-
quence logo:

ggseqlogo(peptide_sequences, seq_type='aa',

as.is =TRUE)

Exercise 2.2 — Results discussion

What positions of the high affinity peptides to seem to
be highly specific for binding HLA-A*02:01? Let’s use
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http://www.allelefrequencies.net to identify other
HLA types. How does this compare with high affinity
binding specificities of other HLA, such as HLA-C*06:02.
What are the implications for minority populations?

Conclusion

Despite significant advances in modeling peptide-MHC
interactions over the last several decades, determining
which T cells interact with which MHC-bound antigens
remains a challenge. A successful solution to this problem
would have far-reaching implications for our understand-
ing of T cells in health, autoimmunity, and cancer (and
potentially a free trip to Sweden). This is a difficult task,
in part because of the large number of potential T cell
receptors, the diversity of the MHC, and the bound anti-
gen peptides. New computational methods, on the other
hand, may aid in the resolution of TCR-pMHC interac-
tions by integrating and learning complex patterns from
diverse high-throughput experimental approaches.

Figure 8: MHC class I overview (Rock,
Kenneth L., Eric Reits, and Jacques
Neefjes. "Present yourself! By MHC
class I and MHC class II molecules."
Trends in Immunology 37.11 (2016): 724-
737.) https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5159193/figure/F1/
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