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ABSTRACT

4 A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic
code is described, The information generated is thermodynamically complete and self-consistent,
The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all
types of phase mixtures are treated. Energy transport properties are calculated.

The set of subroutines form a package which can easily be included in other hydro-
dyhamic codes. .
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IMPROVEMENTS IN THE CHART D
RADIATION-HYDRODYNAMIC CODE IIl: REVISED ANALYTIC
EQUATIONS OF STATE

I. INTRODUCTION

Through 1870, three reports were issued concerning the CHART D radiation diffusion-
hydrodynamic code. 1-3 This report is the second of three currently being published to update
the program. The main body of CﬁART D is described in the first report. 4 The third report
details several user aid programs. 5 In the following these reporis will be referred to as R1, RZ2,

R3, R4, and Rb.

The present subject is the analytic or in-line equatio‘n-of-state (EOS) subroutines
originally considered in R2. Some of the calculations in the current version are identical to
those in the earlier work. In others, the physical models are the same, but modifications have
been made to the numerical methods to improve accuracy and speed. Finally, several new
features have been added. Among others, these include a melt transition, hot electiron conduction
properties, and a system of changing interatomic potentials te match gas phase aqd critical point

data,

As detailed in R4, CHART D has two types of EOS, Either or both can be emploved in a
given problem. The tabular form is capable of handling nearly any data but requires extensive
data processing and tape and machine storage, In general, this form is quite inflexible in that
the user has no com.:rol over the thermodynamic properties in the table and normally must rely

cn someone.else to generate the data.

The analytic forms, on the other hand, are quite flexible and easy to use, Programs are
described in R3 with which the input parameters can be adjusted to yield an EOS of nearly any-
thing, However, this form is slower in code operation than the tabular data and sometimes yields

results of less accuracy. For example, the radiation opacities are normally better in the tables,

As with the calculation in R2, several ground rules were established:

1. The input parameters are to be kept at a minimum and as simple as possible.

2. The package of subroutines, when called with temperature and density defined, should
unfalteringly return complete and self-consistent thermodynamic data and an effective Rosseland

opacity, including conduction effects.




3. The speed of evaluation and storage requirements should be compatible with hydro-

dynamic code conditions.
4, The range of validity should cover all possible equilibrium conditions,

5, Moadels should he as physically realistic as possible, considering the other

conditions,

6. Linkage to the rest of the hydrodynamic code should be minimized to allow easy

inclusion of the entire package into other codes with no modifications.
It is felt that the current computation satisfies the requirements as well as is possible.

One major limitation is that no provisions are included to treat molecules. An accurate
method of handling molecw.;les was ruled out by the third of the above conditions, If they are
necessary in the problem at hand, a tabular EOS must be used. 6 The magnitude of this problem
becomes more apparent by observing that, for many-element materials, the number of molecular
combinations becomes extremely large. The storage and time required for such & calculation
would be out of range of that pcssible.

As before, only equilibrium properties are treated, No effort has been made to describe
de/\{iatory, rate-dependent, or nonequilibriﬁm effects. These computations can be handled as
perturbations to the equilibrium conditions as, for example, is the elastic-plastic calculation

given in R4,
The notation and units employed are as follows:

p = density (gm/cc)

T = temperature {eV =~ 11605°K)

F = Helmholtz free energy {ergs/gm)
P = pressure (dynes/cmz)
E = specific energy {crgs/gm)
S = specific entropy (ergs/gm eV)
CV = heat capacity (ergs/gm eV)
C.= sound speed {cm/sec)
K= Rosseland opacity (cmzfgm)



In the description of a material, a set of constants (Cj, j = 1, 54) will be generated, The

elements of this array are defined throughout the report, A summary is given in Appendix B,

1I. GENERAL FORMULATION

The generation of thermodynamically complete and consistent equation-of-state (EOS})
information is most easily accomplished by formulation in terms of one of the thermodynamic
potentials in its natural variables. For the present work, the logical choice is the Helmholtz
free energy F, with density p and temperature T as the independent variables, All other thermo-
dynamic functions may bhe computed from varjous derivatives of the free energy., The required

relations are

2 aF

P=P $ N (2.1)
_ ?F }
§=-3F » 2.2)
2 3 F
= + = m- —_— )
E=F+ TS T 5T (T). (2. 3)
2
¢, L. .7k (2. 4)
aT
2
3P _ 2 ¢F
a_"'p apaTJ (2.5)
and
3B, 2F 2 2%F . 6)
% P TP e .

The procedure for treating these variables in hydrodynamic calculations has been discussed in

R4,

For stability of the numerical integration of the hydrodynamic equations, the time step is

limited by a function containing the sound speed Cs' From the definition

c, - J(%f) 2.7)

g



and various thermodynamic relations, it can be shown that

- J{2F o
Cg= (ap)T+ B . 2.8)

Other interesting relations are the expressions for the constant pressure heat capacity CP ,

2
T(B_P)

S = +
CP CV pza_P , {2, 9)

g

the linear expansion coefficient & ,

R

1l

1
wl,_.
5
—_—
o]
] L%
———

1l
98]
o

o
a_—_r ; (2. 10)
3p

and the isothermal bulk modulus B,

B=p 35) . @.11)

A fundamental assumpticn in the formulation presented here is that the EOS may be
-written as a superposition of terms appropriate to various physical phenomena, Three major
divisions are made for atomic and electronic interactions at absoluie zero temperature, thermal
mation of atoms and ions, and thermal motion, excitation, and ionization of electrons. The free

energy expressing this division is written as
N Fp,T) = EC(P)+ Fn(p,T)+ Fe(p, T) , (2.12)

where the subscript ¢ refers to the zero-temperature isotherm or cold component, n refers to the
nuclear or atomic component, and e refers to the electronic component. This does not imply that
the effects are independent; the opposite is true. However, in the models, the coupling will be

minimized.

According to the third law of thermodynamics, the eniropy must vanish at zero temper-
ature so that the energy and free energy are identical. This result is built intc the notation of

Eg. (2.12). Both Fn and Fe are defined to vanish at zero temperature, FEach of the thermo-



dynamic functions may be written in a form similar to (2.12). For example, it follows from

{2. 1) that the pressure is given by

3
P:pzf}.&+2ﬂ+pzig (2 13)
ae P 3p .

=P )+ Pn(p, )+ Pe(p, T .

In the following sections, models are constructed for the various terms. Using the above

method insures thermodynamic consistency,

III. ZERO-TEMPERATURE ISOTHERM

First consider the equation of state at zero absolute temperature. The energy and pres-

sure are related by the expression

2 c:lEC
P = . .
TP (3. 1)
Define poo as the density of the solid at zero pressure and temperature and
n= P!POO (3. 2)

as the compression, It should be noted that poo is slightly greater than the normal room temper-
ature density PO because of thermal expansion, The relation of P, and poo is considered in

Section I1I-3. Eguation (3. 1) can be written as
n
1 -2
B -5— [ P tan, (3.3)
00 7

where the zero point of energy has been defined to be at Poot

Expressions for these terms are developed in the following sections., Different forms of
description will be used for different compression regions, The relations are special cases of

those employed with the tabular EOS as related in Section VI-2 in R4,



II1-1, Compressed States

For compressed states () > 1), there are only two regions where the equation of state is
well known. For sufficiently large compressibns (nz 20), it is generally assﬁmed that zero-
temperature Thomas-Fermi statistical calculations are realistic, The pressures at these )
densities are sufficient to crumple any electronic energy levels or bands near the edge of the
atom into a continuum. Possibly the most realistic of these types of calculations are those of
I«’.irshni’cs7 and Kalit}«;in8 {TFC), since both guantum and exchange corrections are applied.
Theoretically, the region near n=1 is not well understood. Very large aitractive and repulsive
forces tend to cancel, and the accuracy required in the computation of each would be out of the
question, Normal methods cannot consistently predict the density P oo to better than about 10
percent, Progress is being made in the area but the cancellation problem is so severe that it is

unlikely that sufficient imprevement will be available in the near future.

Fortunately, experimental data are available near n = 1. This information {s, however,
limited to pressures far below the high compression region. There is a wide range of campres-

sions of interest where there are no experimental or theoretical data.

To the upper reaches of experimental data, many substances show phase transitions
which result in a more closely.packed structure and decreased compressibility. This, of course,
leads to kinks, or discontinuities, in the slope of Pc' In simple materials, most of the phase
changes observed in Hugo'niot data appear to be of the second order, although a few first-order
changes are clearly seen, A summary by Al'tshuler and Bakanova«9 illustrates much of the
available data. For composite materials, it should be expected that much more complex struciure
should be found. Such transitions generally occur at pressures of less than a megabar. At
higher pressures, transitions accompanied by changes in band populations are possible. However,
these should not affect the compressibility to any great extent, since the crystal symmetry is
unchanged. Hence, it is expected that PC should be a smooth function at sufficiently large com-
pressions. Insofar as Hugoniot states are concerned, the last transition encountered is the

melting transition, In aluminum this occurs at about 2 megabars.,

A discussion of phase changes is given in Section V. TFor the present, only materials
where Pc is a smooth function of 77 are considered. A simple interpolation from the experimgntal
data at 7 = 1 to the high-density limits is employed. For simple materials, this procedure has
been Studiele and is probably as accurate as any available method, since extrapolations of low-
and high-density data tend to merge, For more complex materials, little else can be done

because of the almost total lack of data.

An interpolation function for the pressure which is both convenient and well-behaved is

1/3 1/3 2/3
)= (Cy tCom T C, M ) > 1, (3. 4)

34

C 5/3 -
Pc = C32T) exp( CBBT}

10



where the subscripts are identical to those used in the computer coding. For large compressions,
Eg. (3.4) is identical to the TFC result, pravided the first two coefficients are given by

5/3

Coy = e (E)”B}POOZ{ (3. 5)
22~ 30w {3 EN :
e a
and
2 1/3
JlomMee g qs 0 1 (M,
Ca3 2 R W Vi E . (3.6
gh {127 2) 00

where Z is the atomic number, Ma is atormnic mass, h is Planck's constant, Me is electronic

masgs, and e is the electronic charge.

In the limiting form for large compressions, CSZ and C33 yield the coefficients of the

two leading powers, 775/3 and 774/3

. The first term is that of a free glectiron gas. The advantages
of writing the two leading powers of 1 is the form given by the first term in (3, 4} was pointed out
by Barnes, 1 However, the exponential coefficient is determined by a slightly different rule in
the present calculation, This term accurately describes the entire Thomas-Fermi calculation

for compressions down to about 5 or 10. For smaller values of 7 it gives a smaller and more

realistic pressure than the exact Thomas-Fermi result.

The three remaining coeifficients in (3. 4) are determined by experimental data at i = 1.
By definition, the pressure is required to vanish, and the bulk modulus and Griineisen coefficient

are related to its {irst and second derivatives. The bulk modulus at 1 = 1 is given by

dp

_ C
Boo ™ T ine1 (3.7)

The Griineisen coefficient

r-i (g—g)p | (3. 8)

can be related to the cold compression curve by use of any of several theoretical models, The
. 12 1
three most widely accepted models are of Slater, Dugdale and MacDonald, 3 and free~volume

1
theory. & It has been shown that the results of all three calculations can be written in the single

expression
2
d'p dP
2 2
Pl a3 e 2 2y
__1( )+_1_ dn "
T=-3@t+; = , (3.9)
-
ndn 3¢

11



where t = 0, 1, or 2 for Slater, Dugdale and MacDonald, and free-volume relations, respectively.

If we define

Tr=t-1, (3. 10)
the expression of current interest is
1 dch 1
I1oo=§B——_2 n=1_§TP' (3,11
oo dn

It is often observed that the Dugdale and MacDonald form (Tl" = 0) is superior for metals,

and ionic crystals are best described by the free-volume relations (T = 1). However, there are

r
exceptions to both rules; for example, aluminum seems to require the Slater relations (TI.,.= -1n
In Section VIII-1 a method of determining a proper value of TI" from Hugoniot and zero pressure
isobar data is given. Here it is assumed that TI" is known. All constants in (3. 4) are now

determined, The results are

2 “Ca3 -
c34={6+3c33+ 1/2C33}C32e -9m T, (3.12)
2 “Ca3 -
= - + . ) + +
Cyq {15 TCuyt Cugf Cyy ® 31300{61‘ 1} . (3.13)
2 “Ca3 -
C36={10+4C33+ 1/2 Caa}caze - 3}300{3r+ 1} , (3. 14)
where |
r-r +Lir (3.15)
oo 3 T°

Rather wide ranges of the input guantities Bon' TOO, and TI" are acceptable; however,
there are some physical limitations to be considered, It is not difficult to show that the second
derivative in (3. 11) must be positive if shock waves are to propagate as shocks and not dispersing
pressure pulses. This means that the stiffness must increase with compression. Otherwise,

compressive shock waves cannot exist., It then follows that
1
r - T >0. (3. 16)

+
co 3 °T

In most situations this causes no problem.

12



The internal energy is determined by substitution of (3. 4) into (3.3), The resulting

expression can be integrated with the result that

C 3C 3C
1| 2/3 -1/3, . ~34 35 36
o= —13..7 £(C..m Y+ — + f——==-C ,m>1, (3.17)
c T T 37733 7 2T’2/‘3 nlla 37
where
3C,45
Cap = 3Cp85(Cag) = Cgy - —5— - 3Cy s (3.18)
and
~ - -
EXI P 3 X g (3. 19)

is the third exponential integral,

I11-2, Expanded States

There are several features to be considered in relation to the form for expanded states
n = 1, For slightly expanded states, 0,8 5$n £1, and tempefatures below melt, a tension region
will he built into the state surface. At low densities the material should be gas-like, In the
intermediate region, the mixed-phase properties are very much dependent on Pc and Ec which, in
effect, determine the form of the interatomic potential, The full extent of these functions is

given later,

Two forms for Pc are available when 7 = 1. Except for slight modifications, the first
form is identical to that given in R2, The second treatment is a system whereby corrections to

the first method can be inserted by hindsight if the results seem unsatisfactory,
A modified form of the Morse interatomic potential yields a pressure of the form

C.v C‘v)
PC=C4n2/3e5-e6"T’SI’ (3.20)

- n'”3. {3.21)

This form was selected over other theoretically justifiable expressions, for example, a

Lennard-Jones (6-12), 6-92, or Morse-Coulomb potential, since Eq. 3.20 seems to yield the

most reasonable results under the widest circumstances,

13




The corresponding energy is easily shown to be

3C C.y C. v
1, %5 1, e !
Ec=p—i{6-(e - 1) -=— (e -1 ,nsl. (3.22)
00 5 6
The lattice separation or Zero-temperatilre sublimation energy is then
3C
4 1 1 }
o= =, (3. 23}

S Poo ch’ C.

As Pc given by (3.20) clearly vanishes at =1, the two additional conditions required to determine

the coefficients in (3. 20) are taken from (3.7) and (3, 11). The procedure insures that Ec' P

and %EQ are continuous at 71, Eq. (3.11) is rewritten as

| _._l_ﬁ| - +L17_oF (3. 24)
2BOO dnz 1Fl co 3T ' *
It is normally assumed that
Tp= Tp (3.25)
and 7
F-r, (3.26)

a°p .
is also continuous et n=1, If difficulty is encountered, these relations are modified.

so that 2c
dn
The discontinuity in the seccond derivative creates no major problems in such cases.

From these relations it follows that

L BO‘O |
C_=3T .1+ 1- L (3.27)
° : F T2
L poo ‘s
= ‘ / Boo I
C6:3T}l- 1-p Ef2)‘ (3.28)
- 00 &
and '
C4 = 3}300/((:5 - CB) (3.29)

14



While, on theoretical grounds, imaginary coefficients might be justifiable, it is clear from {3.27)

and (3. 29) that we must require

— 00 & (3. 30)

for numerical reasons. If condition {3, 30) is not satisfied by the given values, T is increased until

it is.

Problems can also be encountered with (3, 20) at low densities. As n=0, PC also
vanishes, The guestion is, however, whether it vanishes with sufficient rapidity to be physically
realistic. Since CS >C6 follows from (3, 27) and (3, 28), the dominant term in {3, 20) at low

densities is

P = C4 n e . {3, 31)
Quite arbitrarily, we impese the condition that Pa should not exceed a value Pmax atmn = 10-3.
Pmax is taken currently as 1 atm, This insures that regions of large tensions will not exist in

the vapor phase. Substitution of expressions for C4 and C6 into {3.31) yield the result that

B ,
—2  exp {2’7 Tfa-s )} SP (3. 32)
200 I‘Sq a’

where Sq is the square root term in (3,27} and (3.28). If (3.32) is not satisfied by the given
values, I is decreased until it is, if possible. The exact form of (3.32) is not critically

important. The main purpose is to insure that C_ i{s sufficiently large so that the gas phase acts

B
as a gas.

o

Note that, of the two reasons for not using (3, 25), the first yields TI‘ > TI” while the
second results in /fl" < TI'" In either case a message will be generated by the code, explaining
that the change has been made. It is unlikely that any other observable effects will be found.

In some situations it has been found that the above expression for Pc, when coupled to
the thermal components discussed in Section IV, can produce some features objectionable to the
problem at hand. For example, the critical point could cccur at too high a temperature and
pressure, or the sound velecity in the liquid state could be in error, Provisions have been made
to permit corrections to be made by hindsight to obtain the desired property. For compressions

less than C < 0, 85, the function

54

3
p=c53n2‘1--’1—1 —ﬂ—-o.zi,nsc (3, 33)
54

C C 54
( { {Csa

15



can be added to the right-hand side of (3, 20). The values of C5 and C_, are input parameters,

3 54
The corresponding energy term is

C..n ‘ 4
= -—53—- R _—TL'
& 5,000 ll C54s , M 5C54 . (3. 34)

which is added to the right-hand side of (3.22), These forms join smoothly and do not alter the
separation energy, so that (3,23) is still valid, The computed constants in (3, 20) are unchanged.
In effect, the addition of (3. 33) changes the shape of the interatomic.potential while‘not modifying
its basic properties. At lower densities, (3, 33) has the form of a Van der Waal's interaction.

Thoughts on the selection of C53 and C54 are given in Appendix E.

JIII-3, Relzation tc Reference Point Conditions

The three parameters poo, Boo" and roo are required as inputs for the following calcu-
lation, Unfortunately, exact values are not normally known for materials of interest. The more
usual situation is that the propertfies of a material are known at some reference point p‘o, TO

(usually room temperature), and it is important that the EOS correctly predict these properties,

It should be noted that poo and Boo are the most critical insofar as the solid material is

concerned. Because of the way I"OO and T_ enter the relations, they are of lesser importance.

r
Hence only slight error results from the approximation

r,=T, (3. 35)
in the present calculation, With the s6lid thermal components given in the next section and a
power series expansion of PC about Poo approximate values are obtained for oo and BOO. In the
calculation given in R2 these values were considered as final and most of the time they were suf-
ficient. However, for ’mavterials with a relatively small bulk modulus, the trunceated power series
is in error. A final iteration has been added to complete the calculation. It is a two-variable
Newton iteration for the values of Boo and Poo to yield the correct values of the reference point

pressure PO (usually zero or one atmosphere) and the bulk modulus BO. The reguired expressions

are
BBO 3B
[s)
= + — T ‘ 3. 36
B =B +35— AB__ o ap_ ‘ . ({ )
fo]s] 00
and
BPO BPO
= +
Po Po * 3B ABoo 3p Apoo‘ ’ (3. 37}
00 00

16



where the quantities on the right-hand side are evaluated from the current values and those on the

left are the desired results, The procedure is repeated until ABOO and ﬂpoo vanish,

The input parameters for this computation are po, To’ Po’ Es' BO, and Tl'" In
Section VIII-1 an input option is discussed in which Hugoniot data can be substituted for the latter
two of these, A simple calculation is provided to relate the Hugoniot parameters to Bo and Tl'"
Details are given later; however, it should be remembered that the above calculation is always

employed, regardless of the input option, -

IV. NUCLEAR CONTRIBUTION TO THE EQUATION OF STATE

In this section the nuclear contribution is considered. Thege terms are intended to

describe the kinetic motion of atoms and ions in both solid and gaseous states.

V-1, Debye=Griineisen Solid

The thermodynamics of simple solids are usually well described by the Debye~Griineisen
equation of state, with appropriate density variations of the Debye temperature and Gruneisen

coefficient, The thermal contribution te the free energy is

Fr = N kT {3 2n(1 - e 8T

o )- DB/ 4. 1)

where 8 is the density-dependent Debye temperature, No is the number of atoms per unit mass,

and

. X 3 )
b - & [ XAr (4.2)
X o e -1

The corresponding expressions for pressure, energy, and entropy are

Py = 3rpNOkTD(e/T) , {4. 3)
EL = 3NO}~:TD(6/’I‘) . (4. 4)

and
Sh = - Nk {3 4nf1 - e's/T) - 4D{e/TY], (4. 5)

17




where T is the Griineisen coefficient and related to 8 by

-pd8

r g dp (4. 6)

In the case where T >> 8, the above expressions may be written
F_=NkT {34n6/T) -1}, 4.7)

D o}
Py = SToN kT , : (4. 8)
ED = SNDkT N (4. 9}
and

Sp= - N k13 In(8/T) - 4t . {4.10)

The density variation of I"and 6 could be calculated from either the Slater, Dugdale and
MacDonald, or frge-volume relations, Eq. (3.9), with the cold compression curve discussed (n the
last section, Howcever, it is often observed experimentally that, for small compressions, T is
nearly inversely proportional to the density. This also seems to be a fair approximation to the
results of the theoretical models over small ranges. For large compressicns the limiting value
of I'for all materials is that of a {ree electron gas of 2/3. A relation that approaches both limits,
is properly behaved in the intermediate region, and lcads to much faster evaluation than the above

theoretical models is

- o ‘
T= +Cz4(1 p) SR> (4. 11}

The coefficient C24 should be 2/3 to reach the correct limit as p =, However, in problems

where only slight compressions are encountered {(n < 1. 3), C_ may be set to zero to improve

24
speed. The Debye temperature is found from integration of (4.6). If 80 is the reference Debye

temperature, then it is- easily shown that

' . 2
c PP
o (2% ) - 1 RPR-IRAY
8= 6, 5 exp fofl ,pO/‘P) 5 Coy (3 4 5 5 ) . {¢. 12}
o] t ‘ P ‘
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V-2, Ideal Gas

At sufficiently high temperatures or low densities, the nuclear term should describe an
ideal gas, Let us define N‘Q as the number of atoms per unit mass with atomic number ZJﬂ and my

as its atomic mass. Clearly, the relation
No :E Nﬂ ' (4.13)
£

follows from the definitions. The thermodynamic expressions appropriate to this situation are

‘ { Uﬂ(ZﬂmﬂkT)S/z )
E ——— s +
F kTZNﬂ,,Qn — 15, (4. 14)
) 2P
P = N kT | (4, 15)
_3 '
Eq =5 N KT , ‘ (4. 16)
and
3/2
U, @mm kT)
SG=kE N, %ﬂn% +5/2§, {2, 17)
I NAph

where U, are the internal partition functions, In the present calculation all U_ are taken as unity.

£ £
For ionized gases, the above expressions should be modified so that the sums include all states of
ionization. However, since the treatment of ionization discussed in the later gections is of the
average atom type, only one term is required for each atomic number. Note that these relations

assume a monatomic gas phase. No provisions are made for molecules.

IV-3. Interpolation Method

The principal difficulty in joining these two limiting theories together is the region of
melting. This transition is considered in Section V-1, Here an interpolation method suggested
: 16 X . .
by the Russians, =~ but in & somewhat different form, is developed. The nuclear free energy is

boldly written as

F_ = N kT |3 4n (B/T)-1+%fan L+, (4. 18)
where
C13p2/3 T
w = ———.2 (4:- 19)
8
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and

/3P (2., N,
c,..= exp (=2 — #n . {4.20)
13 27k l3 P NO Ni/z Mj/2 )

At low temperatures (¢ << 1), Eq. (4. 18) reduces to {4. 7) and the thermodynamics to that
of a solid, For sufficiently high temperatures {¢ >> 1), gaseous thermodynamics are the result as
the limiting form of {4, 14} is obtained, Communal {ree energy and entropy terms are properly

included. The corresponding interpolation equations for pressure, energy, and entropy are

-n (8]

vy, (4.21)
=3n 2y
En-zNokT{l_{_w} , (4.22)
and
s, - - N x{sm@/m -4+ 2ama e 3 ) (4.23)
n o 2 2 1+gl” :

Clearly, these expressions do not vield a true melting transition, but in many cases they are

acceptable for hydrodynamic code use in this form,

There is still one major problem in the development of these relations, Both (4.11) and
(3, 9) are unacceptable for I' at low densities. It has been found that a simple extrapolation of the

form‘
T'=C 92+c p+l,p<p | {4.24)
17 ’ o ) '

is sufficient, where C16 and C17 are determined so that I and % are continuous at p = QO. This

form has no physical basis and is used only because it works well, To illustrate fully the nature

of this expression, further relations are required. When Eq. (4,6} is integrated, the result is

- 1 2 }
8—C14-pexp{2C16p +C170f ) (4, 25)
where
6o
Ciy= a exp‘ (-ZFO +3/2) . (4. 26}
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The Debye temperature given by (4. 25) clearly has no relation to Debye theory and is purely an
extrapolation, However, the value of § given by (4. 25) decreases rapidly as the density decreases
from po. Hence ), given by (4, 19), increases rapidly with decreasing density, thereby yielding
gaseous thermodynamic relations in which I' is not used. An important point is that the rapid
change from solid to vapor equation-of-state relations occurs in a region where the one-phase
calculation ig not used, It will be eliminated from the final thermodynamic functions by a
Maxwellian construction between the solid or liguid and vapor phases as discussed in Section V,
The overall effect of (4. 24) is to provide a reasonable extrapolation of the high-density properties
to the mixed-phase boundary, a gas at low densities, and a single form convenient for numerical

computation,

With increasing temperature the interpolation problem diminishes, Near the critical
poiﬁt, ¢ is generally in the range of 10 to 100, The exact critical point parameters depend only
slightly on the form given by (4. 24), Because of the relation given by (4.6), a change inT is
reflected by a change in 8 and § which have opposite effects on the equation of state and tend to
cancel. Under the present formulation, the critical parameters are principally determined by

the expressions used for the zero-temperature isotherm and melt transition.

The approximation leading from (4, 1) to (4, 7) has some undesirable eifects on the
equation of state, The entropy calculated from {4, 23} does not vanish at zero temperature, It
would be a simple matter to correct this by including the proper terms in (4, 18) énd its deriva-
tives. However, this would require the evaluation of the Debye function in the hydrodynamic code,
While this pz;esents no difficulty, it is not believed that the accuracy gained is worth the increased
comptutational time required, The only noticeable effect in a hydrodynamic calculation is seen in
materials with unusually high Debye temperatures, The calculated entropy at low temperatures

can be negative, This has no real effect on the hydrodynamic talculation,

The derivatives of the thermodynamic functions which are required can be shown to be

aEn En -VEI
= = — -
Con™ 3T T {1 T+3) @2+ ) } s (4.27)
\
¥ P
_n__n Y {3 - 1)
e (- MRGEIIE (4. 28)

and

o
!
o

; 2
n_ ' n P j2{3r=1)
e N~ %“(1 ) I (4. 29)

3PN kT
+y/3@T + ¢) }

dl’
1+y dp

21



where

P .
dr_ __O _ _ }
- z (T -~2¢c, (t-p /p).pP2p_, (4. 30)
and
dar .
?}3-2('169+C17' P<PO. (4, 31)

V-4, Relation of the Gruneisen Ceefficient and
Other Material Properties -

Extensive tables of reference for Gruneisen coefficients (To) are available. Unfortunately,
many of these have been adjusted for special purposes or do not represent what they are supposed
to represent. A sericus error is made by using an "effective" Griineisen coefficient determined

from a porous material by the relation

Loee ™

=

g ' (4. 32)

k=Y I
=

where the pressures are in excess of the yield point. I"O in this paper applies only to the full
density material. An effective value for a porous state calculated by (4. 32) can be, and normally

is, considerably different.

1“(3 may be expressed in terms of guantities éasily measured at low tempei"atures. When

the relation

('i‘?) (cpT) (B—pli) ' (4.33-)

r- % (i—P)P (;—“’;)T . (4, 34)

The difference in the heat capacity at constant volume Cv and that at constant pressure Cp is given

by

¢ =T aﬁ) (EP)
CP (.V =3 (3T . {4. 35)
P P T
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At the point of reference the above quantities are

B
(?ﬁ) _ o, (4. 36)
p T po
and
ap) o
fud 2 = - 4. 37
(aT P 3&090 ' ¢ )

where o, is the coefficient of linear expansion. The reference value of the Griineisen coefficient

is then

rozpC

= . (4, 38)
o v pOCP-QmT B

In the present situation,

C =3Nk . {4. 39

It is clear from (4. 38) that a small value of ]."0 will yield é small expansion cecefficient.
This can sometimes cause unrealistic behavior when the porous material computation of R4 is
used, Using a small effective value of ' determined by (4, 32) and experimental data, as 1"0, in

effect includes the distention properties twice,

V. PHASE TRANSITIONS AND RELATED PROPERTIES

There exist certain areas on the thermodynamic surface where several phases of the
material are simultanecusly present. An example of such a coexistence region is the melt
transition, where both the liquid and solid states are found, It is generally not possible to
describe material in such a condition by a single function such as given by (2.12). Each phase
must be considered separately and mixture rules applied to find the effective properties. Consider
a mixture of Phase 1 and Phase 2. One expression of the Gibbs phase rule says that in equilibrium

the temperatures, pressures, and chemical or Gibbs potentials of the phases must be the same:

(5. 1)

Pl(pl,T) = Pz(pz* T) (5.2)
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and

G]_(pl‘T) = Gz(p2,T) s (5, 3)
where pl and ,o2 are the respective phase densities and
G=E-TS+P/p=F+ P/p (5, 4)

is the Gibbs potential. Assume that

(5.5)

One of the main problems in employing this type of formulation is determination of these phase
densities. The numerical difficulties involved are covered below. For the present it is assumed

that p, and p

1

g are known as functions of temperature,

To evaluate the thermodynamic properties of a state

Py <P <P, (5. 6)

and of the proper temperature, the fcllowing relations apply. The mass fractions of 1 and 2 are

My - f,ol '}52 .-—: } (5.7
2 1
and

M2=1-M1=Z—2l{;; -:11; | (5:8)

The thermodynamic functions are then
E = MlEl + M2E2 s {(5.9)
5 - M S, +M,S, (5. 10}
P-P =P, , | ' (5. 11)
i %p‘;lf)il} ERREN (5. 12)
-0, (5.13)
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and

dm,, dE, dE, .
Co= By~ B+ My 35 * My, 77 . ' (5.14)

where {5, 12) is the Clapeyron-Clausius relation and the total derivatives in (5. 14) must be

determined from the component phase data. With some effort it can be shown that

My . pz‘p“ﬂ” P p e (5. 15)
dT p(pl-Pz) 2PZ-PIJdT PZ‘P T] '
and for each phase,
dE, .} de,
i_ 1 i i
— =C__+ ;Pl TBT}—-—dT . (5. 16}

The phase density derivatives are determined aleng the boundaries of the mixed;phase region,
When the chain rule
d 5} B

Pi Pi o,

3P i
_ et e X
3T 3T 3p, o7 6.17)

and (5.12) are employed, it follows that

3p. o P 3P, 3P,
i e P2 | - Lt !
T Upz =F, | fsi- 8- ]/api ' . 18)

Mixed-phase states possess several interesting properties. Note from (2, 9) and (2, 10)
that both the constant pressure heat capacity Cp and the linear expanéion coefficient w are
undefined. This result reflects the fact'that, at constant pressure, the temperature of a phase
mixture cannot be increased, Also note that the isothermal bulk modulus vanishes, The
adiabatic bulk modulus and the sound speed do not vanish but can become very small in some

regions. This causes some strange and interesting effects in hydrodynamic calculations,

Methods have been included to treat four types of phase transitions. Liquid-solid
(melting), liguid-vapor (boiling}, solid-vapor (sublimation), and some simple solid-solid
transitions which are optional, The first of these was not available in the computation in R2,
Since all these phase changes occur at relatively low temperatures, the thermal electronic terms
are not included in the mixture relations, since they would have little effect other than to slow the

computation,
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V-1, Melt Transition and the Liguid Fquation of State

The methad of treating the melt transition in the current version is a recent addition,
An earlier unreported method was found to be inadequate in several cases. Some calculations in
. . . 17 - .
which the previous form is used have been reported, The changes in the present form will not

modify the results and conclusions of these calculations to any great extent.

The present calculation is still experimental and might be modified, The physical
relations employed seemn to be realistic and reliable, However, the numerical procedure can be
quite slow in relation to other thermodynamic regions, Work is under way to try to improve the

situation,

The nermal approach to this problem would be to generate independent state surfaces
for the liquid and solid with the methods used in Sections III and IV or an equivalent, Denote

the liquid functions by £ and the solid by s. The difference is
F @ T)=F, (T -F @T, (5.19)
where m denotes the "melt contribution, "™ In terms of the notation of (2, 12),

Fs(p,T) = Ec(p) + Fn(P, T) . (5. 20)

The approach employed here is to rewrite (5.189) as
F,.e,TV=F (0T)+ F_(p, T) (5.21)
£ 5 m

and try to generate expressions for the melt contribution. "The liquid functions are then computed
by adding these terms to the solid expressions, This procedure has several advantages, the
principal one being that there is a‘ much greater chance of produging usable relations., On the
other hand, it is suggested that the results be checked by one of the test programs in R5 before

a hydrodynamic code run is attempted,

Clearly, the main problem is to fiﬁd the proper function for Fm(P, T). It is not hard to
find a form that gives proper behavicr in the region of zeroc pressure melt, The difficulty is to
determine functions which fit this requirement and which do not destroy the description in other
regions. This is more severe than it might seem, since Fm(p, T) and all of its derivatives must
asymptotically become negligible with respect to the corresponding term in Fs(p, T) at high
temperatures and both high and low densities. If it fits these requirements, the exact form does
not seem to be of great importance. Such a function is
Prc, o?, (5.22)

-~ o
F_(0, T} C 43 JT p +C,, P 25
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where
y>B - ‘ o - (5.23)

and @, B, v, C43, C and C‘15 are constants. It is not difficult to show from the expressions for

44"
PS that &, B, and % must 21l lie between 0 and 1/2, The values in current use are

a=0.3,
g=0.1, ' {5, 24)
y=0.2,

but they can easily be changed if the need arises. The C parameters are treated as material con-
stants determined by input parameters and properties of Fs' "The temperature dependence of

(5. 22) is constrained by the corresponding terms in FS. The required thermodynamic functions

are:;
_ atl Br1 ¥t+1
P =aC,q VT p +ﬁc44p tyCy P . (5. 25)
_ o B ¥ -
Em-llzc43 \J:I‘,O+C44p +C459 , (5.286)
c,. ¥
s =--45__ (5. 27)
m 2 VT
c43pa _
Com =" (5.28)
4 T
3P aC pa+1 - ‘ - ‘
m _ 43
S - s {(5.29)
2 JT
and
P - o p y
% =oz(or+l)C4.3 ST p +{3(ﬁ+l)C44p +'y('y+l)C45P . (5. 30)

It can be shown that each term becomes small compared to the corresponding solid expression at
extremes of temperature and density.

Two input material quantities must be given: the heat of fusion H_ and a parameter which

f
defines the density of the liquid at the triple temperature pﬂm' The C constants are determined

as follows: From the solid and vapor EOS, the end points of the triple line are calculated.‘ Define
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'psm as the solid density and Tm as the triple line or reference melt temperature. This compu-

tation is part of the procedure detailed in Section V-2,

It is assumed that

>
psm pﬂ.m . (5. 31)
The three relations required to compute the C values are:
P = = + .
i(pim’ Tm) Ps(psm’ Tm) Ps(pﬂm' Tm) Pm(PJlm' Tm) ! (5. 32)
Eﬂ (pﬂm' Tm) - Es(psrﬁ' Tm) * Hf - Es(pﬂfn’ Trﬁ) * Em(pfm' Tm) ’ 5.33)
and
Gﬂ ('Oﬂrn" Tm) - Gs (psm’ Tm) ' (5. 34)
where G is the Gibbs potential, A more useful form of (5, 34) is
H. P ,T ) (Pern™Pim]
{ g sm’ m sm fm
= =+
5 (pﬂm’ Tm) S (‘Dsm' T T T I o P 1
. m m sm £m
(5. 35)
= +
SS(PJZm' Tm) Sm (pﬂ m’ Tm)'

The liguid state surface is now completely defined.
The entire extent of the equilibrium phase boundaries can now be calculated as a function
of temperature. As an example, the results for aluminum are shown in Fig, 1. In this case,
_ 9
H, = 3. 98 x 10" ergs/gm and P
the melt curve extends into regions of tensions (P < 0) for T < T

/psm = 0,924, More details are given in Appendix D, Note that

The phase densities may be computed by a two-variable Newton's iteration. The

quantities

A PS - P, {5. 36)

and
% =G -G {5.37)

are defined., Given the proper densities, both # and ¥ vanish. After noting the relation

s
0

s (5. 38)

.'.

)
©

BV~
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it is easily shown that the corrections are

P {,'?-pﬂfg}
Ap = (5,38)
8 aPs‘ pﬂ ps
ap
and
p ‘g’-ﬁ '.WI
i s
Ap, ==~ " - (5, 40)
CE AP
ap

The problem of how to employ this in the code must now be resolved, One approach
would be to compute the phase densities at a mesh of temperatures during the initialization calcu-
lation and interpolate for intermediate values during the running mode. This type of procedure
is used for those transitions involving the vapor as related in Section V-2, However, in the
present situation, a rather large number of pointslwould be required for accuracy because of the,
steepness of the surfaces and the nearness of the two densities, As a result, in the current
version the Newtion iteration is used in the running modc of operation., A number of checks have
been included to make this computation as fast as possible, but future modifications are probably

required in this area if all else proves sétisfactory.

When the EOS package is called, with temperaturc and density defined, a set of tests is
applied to determine whether the point in question clearly lies in either the one-phase liquid or
solid regions: This is the condition if the point does not lie in the shaded area in Fig. 2.

48 C4é, and C52 are determined to help bound the melt region. Lines A and B
serve the same purpose and, respectively, have the forms

Temperatures C

= + -
T . CSO('O p ) (5.41)
and

T=T +C__{p-0) . (5.42)
m 51 o

For a point in the shaded area the iteraticn is started to determine Ry and Py This computation is

performed in the subroutine ANLS,

Under certain conditions this iteration may be terminated before final convergence. The

exact values of ,0£ and ps are important only if

<p< :
P, <P <P (5. ¢3)
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Fig. 2a Iteration regions in the melt transition computation.
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Fig. 2b Iteration regions in the melt transition computation,
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If, during the iteration, it becomes clear that (5. 43) is not satisfied, no more computations are

performed. In the case where a step in the iteration yields
<
1,04 p pJZ s

Ap£ >0 , (5. 44)
and

>
Ap_>0,
it is assumed that p, T represents a liquid state. On the other extreme,

p>1.04p .

AR < g (5. 45)

»

and
<90
Aps

indicate a solid state., Both conditions state that the iteration is moving away from the given
density. There is no assurance that this procedure (called the fast iteration) will always give the
correct answer, Hence, during the initialization, an extensive series of test calculations is made
to test the method, If the computation at any point fails, the slower method of forcing complete

convergence is imposed,

When the iteration is completed, it should be clear which phase or phases and thermo-
dynamic relations are appropriate, If (5, 43) is satisfied, Eqgs. (5. 7) through (5. 18) are used
with 1 = liquid and 2 = solid,

As stated before, a study is under way to try to improve the numerical methods employed
in this computation. Clearly, storage limitations and reliability requirements pese some major

problems.

V-2, -Liquid-Vaper and Solid-Vapor Transitions

In nearly all problems involving materials which are heated above melt,  mixed-phase
regions involving the vapor are encountered in the relief process, This area is also of great
importance in the rapid heating of porous materials. 4 The treatment given here is much like
that detailed in R2, Little trouble has been found with the previous method, One addition is a
backup computation in the determination of the critical point, The temperature mesh was also
maoadified slightly for equations of state with a melt transition as defined in the last section.

However, mu_ch of the coding had to be redone because of the order in which information was

required.
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Generally, the method isas follows. First, for those materials where the melt tran-
sition is to be included, the triple line properties are determined, This must be done so that the
liquid ECS or, more correctly, the melt contribution can be defined. Then, with use of the liquid
EQOS, the critical point is located, At a set of temperatures determined by the critical and melting
temperatures, the phase densities are located. On the high-density side, either the liquid or
solid EOS is used, depending on the relation to the melting point. In the running mode, the proper-

ties of mixed-phase states are determined by interpclation in this stored mesh.

The critical point is located by determining the density, ,DC, and temperature, Tc’ where

2
B_P=B_.§:0_ (5_45)
[ 3p .

As in R2, a two-variable Newton's method is employed, Temperature and density corrections are

computed by

3p 3P 3°p 3°P
3p aTsz apz opoT
Ap = 3 3 ) 3 (5.47)
2°P 3P _ P 3P '
0T 3% 3p% aTap
and
2
225\ s PP
5 > 3
AT = 2 £ : (5. 48)
p 3P P B
o 2
aTop 3p3 ap2 3Tap
. - . . oP 3P .
until the corrections are negligible. Only the guantities ) and ST are calculated frem analytic
expressions., The higher order derivatives reguired in (5, 47) and (5, 48) are computed numerically

by using a grid of nine points.

In some cases, problems can arise when the third derivatives in the above expressions

happen to be near zero. A backup calculation is provided if this procedurc fails, The code

attempts to follow the curve defined by

g g. : (5. 49)

The critical point is taken to be the first maximum temperature computed on this curve.
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Below the critical peint, the phase densitiés are computed in a method similar to that in

Section V-1, The relations are

Pep -p ‘ (5.50)
X v

and

=G -G , (3,51}
X v

where the subscript v represents vapor and x either liquid or solid, depending on whether the

temperature is above or below melt. The corrections to the phase densities are

P P~P G
X v .
Ap = { - l (5.52)
x 9 Px pv px
op
and
e PP E
v X
ap = } - ; . (5.53)
v 5P\r pv p:-:
op

Special care must be taken to treat very small vapor-phase densities which may occcur at low

temperatures.

The results for aluminum are typical and are shown in Fig, 3. The section of the melt
curve is the same as that in Fig. 1. The position of the critical peint has been adjusted by using
the function given by (3. 33). Details are given in Appendix E. This is not yet the final form of
the EOS to be used in the hydrodynamic code. Below the triple line, a modification is made to

treat tensions in solid materials. This feature is detailed in the next section.

The two curves resulting from (5. 46) on the single-phase surface for a nermal EOS are
shown in Fig. 4. Thié surface must be used in all the mixed-phase construction. The critical
point is at the intersection. Under some cenditions these curves may not have the proper form.
A clearly unacceptable result is shown in Fig. 5, Three points satisfy the mathematical con-
diticns defining the critical point, The difficulty is reflected in the code output as a lack of
convergence in the mixed-phase calculation. Because of a rather complex interaction of the input
parameters, no single input can be blamed for this problem, Generally, some unrealistic input
number is the cause, In any case, something must be changed slightly to produce a usable form,

The test programs in R5 can be used to study and correct the problem,
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In the running mode, the EOS package must be called, with temperature and density
defined., The routines first check to determine whether the point in question lies in a region
where a liquid-vapor or solid-vapor state might exist, When the results of this test are positive,
phase densities are interpolated from the stored arrays. The check given by (5. 6) is then
applied. In the current situation, 1 = vaper and 2 = x, as defined above, Tor a mixed-phase
state the thermodynamic functions are determined by using Egs. (5.7} through (5. 16), except that
{5, 11) is modified slightly in some cases when MX ~ 1 to insure continuity., The phase density

derivatives are determined directly from the interpolation expressions so that (5. 18) is not used.

V-3,  Tensions in Sclid Materials

To properly treat the response of solid materials, allowance must be made for regions
of tensions (P < 0) in the state functions, In CHART D this is accomplished by using a part of
‘the one-phase surface in a region that, by equilibrium thermodymamie logic, should be a mixed-
phase solid-vapor state. Figure 6-4 in R4 illustrates the procedure used for both the tabular and

analytic EOS forms. For any state where

pzp ., T=T . , (5. 54)
min min
the one-phase result is used. The term ’Omin is an input parameter with a default value of 0.8 PO.
The abeve condition includes solid, solid-liquid, and a small pure liquid region on the one-phase

state surface,

There are two checks which should be applied to pmin' First of all, the tensions allowed

should be more than sufficient to satisfy the fracture models; i.e., P(p T), T= Tm must be

min’
larger in magnitude than any stress caleulated in the code before fracture. Clearly, this means
that at least

e_. < (5. 55)

min pﬂm ’
where pﬂm is the density of the liquid at the triple line as discussed in Section V-1. A nonfatal

message will be generated if (5. 55) is not satisfied.

The other condition is numerical and related to the melt transition., The resulis for
aluminum are shown in Fig. 6. Note that the melt transition extends intc the tension region and
intersects the line at Poin (= 2,305 gm/cc). For numerical reascns it is required that the solid-
phase line and pmin intersect. In some cases the code will increase the value of pmin to satisfy
this reguirement. However nc automatic adjustment in conflict with (5, 55} is allowed, In this
case the code will generate a message concerning a low-temperature melt error, and an alternate

treatiment of the melt transition described in the next section will be used.
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V-4, Alternate Treatment of Melting

In many preblems the full treatment of the melt transition given in Section V-1 is not
required, Some of the more obvious are calculations where the material is either well above or

below melt, For these cases an alternate method is provided.

This calculation was the only option provided in R2 and is, in reality, no special'calcu—
lation at all, The melt corrections are not included and the liquid and selid equations of state are

identical. In this case

=p {5.58)

and

H,=0 , . {5.57)
as related fo Section V-1. On the other hand, the tension region of Section V-3 is retained,

It is suggested that this option be used whenever possible after the relation of the melt

temperature and energy below are studied.

V-5, Relation of Melt Temperature and Energy

Input options are provided so that either the melt temperature Tm or the melt point
energy Em may be defined. These quantities are related so that only one can be specified. In
either case Tm is the variable stored. When Em is given, the code follows the zero pressure

isobar to find a temperature corresponding to Em.

The variable Em can represent two different quantities, depending on which treatment of
the melt transition is employed, For the full calculation of Section V-1, Em is the energy of .

incipient melt with respect to the reference point. This is expressed as

E_=E
™m s(psm’

T )-E(,T) ' (5. 58)
m s 0 "o
in the notation of (5. 33).
For the simplified treatment of melting in Section V-4, Fm should be the energy of com-

pleted melt. The two values differ by the heat of fusion Hf. Obvicusly, the latter method will

vield a higher melting temperature than the former.
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The heats of fusion for most simple materials are all well known. For those substances
: 18
where Hf is not available, a simple scaling relation has been developed by Grover, Expressed

in the units of current interest, the result is

(5.59)

12 T s
H =1,117 x 10°° 22 ELES
f A gm

where A is the atomic weight,

V-6. Alternate Treatment of Liquid-Vapor and Selid~Vapor
Transitions

The detailed computation explained in Section V-2 is not required for some problems,
One of the more obvious cases is where the temperatures remain below melt and the mixed-phase
regions are never entered, An alternate method of treatment, similar in concept to that in

Section V-4 is provided.

This calculation simply ignores the existence of phase mixtures and evaluates from the
single-phase surface, except that tensions are suppressed above the melt temperature. This
viclates a multitude of thermodynamic inequalities and destroys the carefully constructed self-
consistence of the EOS information. For this reason it is suggested that this option only be used
for materials that remain in the solid state. Under this condition, the results of the present
calculation are identical to those of the more complex form and there is a saving of computer’

time.

This computation is employed as a backup to the more detailed method., In-case of a
catastrophic failure of the iterations in Section V-2 during the generate mode, this form is tried
in order to save the calculation. Error messages are generated when this occcurs, The test
programs in R5 shculd be used to locate and correct the difficulty.

S

V-1. Simple Solid-Solid Transitions "

As discussed in Section III, many substances undergo phase transitions upon compressidn
which result in & more closely packed structure and decreased compressibility, In this section, a
method is given whereby some such transitions may be treated in an approximate manner. Both
first- and second-order transitions are considered, However, the discussion is restricted to cases
that do not depend on the temperature, In many instances, especially those that occur at high
pressures, this seems sufficient. This restriction allows all changes to be made in the cold
components. The thermal components will not be altered, While this procedure is surely not

completely correct, it does allow at least a partial treatment.

)"This section is identical to Section IX in Ra.
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In Fig., 7, three types of cold compression curves and the associated Hugoniots are
shown, Curve (a) is for a simple material showing no apparent phase changes. This type of
data is treated by the method given in Section III. Curves (b) and (¢) represent second- and first-
order changes, respectively., The second-order transition is clearly a special case of the first-

order transition. Thus all relations developed below will be for the more complex case.

The netation is as shown in Fig, 7. The term Ptr is the pressure at which the first odd

behavior is noted in the Hugoniot. The term Pctr is the cold pressure and pl is the density at
this point. The lower density Phase 1 exists at this density and below. The higher density

Phase 2 exists for p 2 p2 , wherep_zp,, If ,02 = p., the transition is of the second order; if

2 1 1’
,02 > pl, ‘it is of_the first.
Denote
my = PP (5.60)
and
Ny = 92/1000 . (5.61)

A three-part description of PC is required. Inthe regionn=<n,, Eq. (3. 4) is employed with a

slight modification. Atn = Ty, We require that PC = PC . As (3.4) has no free paré&meters,

tr
this is accomplished by ignoring condition (3.11). An effective value of TI' is calculated so that
the above requirement is satisfied, New values of C34, C35, CBS‘ and C37 are computed,

In the region 'r;l <n s Tigs the value of Pc = Pctr is constant. The energy is given by

P

F_tn) = F_(n)) +

wl8

C
e "

n
trfdl
el

™

{5.62)

n

Fc(ﬂl) + o

o0

where Ec(nl) is computed by (3.17). In this region a unique Hugoniot curve may not be defined.
If the thermal components of pressure do not increase with sufficient rapidity, a two-wave shock

. 15
. structure will result. Discussions of this phenomenon are found in Al'tshuler's work,
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For nn> Tgs the form given by (3. 4) is again employed but with new coefficients in the

interpclation terms,

5/ -1/ 1/3

3 3
= - - + +
Pc(n) CaoM exp( C33n ) [C38 ngn C
77>772 3 (5.63)

where C32 and CZ33 are as previously defined, The remaining coefficients are determined by the

value of Pc and-its first two derivatives at Nyt The energy is given by

: 1 2/3 L =1/3 38 . 3 739 40 )
= C +—— + +2 2 Y
E Mm=Cy 5 13C,m" "€, (Caam ) el A 3t 173 [ {5, 64)
: 00 n n
where
‘ C C 3C
1 2/3 -1/3 38, 3 39 40 |
= - £ 4= 4 —_—
Co=E M) =5 [3C,,m " &(Cyqny "}t =45 —73 73 e (5. 65)
oo 2 7
2 2
6’3 is given by (3.19), and Ec(nz) is computed from (5. 62). For pressures sufficiently high, a

well-defined Hugoniot is again formed in this region for compressions somewhat greater than nz'.

Some approximate relations can be given for the form of the Hugoniot for the above
relations. However, this calculation has not as yet been fully tested in hydrodynamic code use,
The interaction with nonthermodynamic quantities, e.g., artificial viscosity, is not completely

known. For this reason only the input quantities will be given here, and it is suggested that this

calculation be used only with the greatest care.

‘Five input quantities.are required. Let these be denoted by Dl’ Dz, DB' D4, and D5.
D1 is the density ,01. If D1 < poo, this calculation is not used, D2 is the density P2. If D2 Dl'

the value of D2 is set equal to Dl' This defines a second-order transition. D3 is the pressure

Pctr' If D3 <0, the value of Tl" used in Section Il is employed to calculate DB' D4 is related to
dP
—£|
dn Ty
If
dP
D,>0 <] =D
4 * dpy ’nz 4’
dp ni dpP
D4:0 J‘ _d c :(—2) —-—dc, K (5.66)
LD U nom :
ch ch
< —_— = - —_
D4' 0. dn [nz D4 dn il *
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d2PC
D_ is related to .
5 dnz Mg

If
clzPCi
D_>0 > =D )
5 ol My
a’p_ n,\2 @°P_ |
D5 =0, — | :(—) — ’ ; (5.67})
an® M2 \"1) an® ™ :
d2PC‘ dch| L
D_<0 , =-D, —<| .
5 dnz g 5 an U

Note that if D1 is properly defined but D2 =D_=D, = D, = 0, no transition occurs, since all

functions are continuous,

%
V. ELECTRONIC CONTRIBUTION TO THE EQUATION OF STATEe

In nearly all calculations of the equation of state, the electronic contribution is the most
complex and costly. There are two methods of determining these terms in common use. At low
densities, ionization equilibrium calculations are appropriate and, with valid expressions for
electrostatic interactions, can be used at relatively high densities. For high compressions,

temperature-dependent Thomas-Fermi calculations are available.

One of the fundamental differences in these twe calculations is that, in the former, the
average thermodynamics is computed with regard for all possible systems, whereas in the latier
the thermodynamics of a single average system is calculated. In spite of this and numerous
other differences, it has been found that the two methods, properly employed, are not in serious
disagreement, It should be remembered that the electronic term is defined to vanish at zero
temperature, Hence the zero-temperature Thomas-Fermi values must be subtracted from the
normal calculation of the same density. This eliminates many of the effects of degeneracy.
Surprisingly, the largest differences in the two calculations, in regions where electronic terms
are important; occur at relatively high temperatures where the ionization calculation yields an

atomic shell structure effect that the Thomas-Fermi calculation does not.

“This section is identical to Section V in R2,
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The method used here is the simplest available, The average atom ionization model
developed by thg Russians, with modifications for low and high degrees of ionization, is of both
sufficient accuracy and speed to be used in a calcﬁlation of this type. Any number of elements
can be treated with a very dependable method, The reader is referred to the excellent text of
Zel'dovich and Rai.zerl9 for a con"lplete discussion, Here, only the information required for

numerical evaluation is given.

In the original development of the routines given here, it was plaﬂned that the ionization
calculation should be used only at low densities and high temperatures. An exact and consistent
tabie of scaled temperature-deperide’nt Thomés-Fermi values was available. 20 However, once it
was discovered that the two calculations were quite similar, the method was changed to the
present form, There is a considerable saving in st'orage requirements, and the problem of

switching calculations in a consistent manner is eliminated.
The following notations are used:

Z, = atomic number of element £

£
AJZ = atomic weight of element £
m, = atomic mass of element £
C£ = number fraction of element £
No = totél number of atoms per unit mass

N, = nuﬁber of £ atoms per unit mass

N. = number of free electrons per unit mass

N.!Z = number of £ atoms per unit mass of net ionic charge 1
I = :‘Lm ionization potential of elemeﬁt £

m = average atomic ma‘ss

Z_ = average ionization number of element £

=

'Z = average ionization mimber
A = average atomic weight
Zm = average atomic number
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Self~obvious relations involving these quantities that will later be required are:

and

where Nav is the Avogadro number,

-1
=4

6.1)

{6.2)

{6.3)

(6. 4) |

6.9)

(6, 6)

(6.7

(6.8)

(6, 9)

(6.10)

The principle problem in this ¢alculation is determination of the average degree of

ionization of the various atoms.

No pressure ionization or related effects are considered. The electronic free energy is

F
€

- ZN kT {En(
Q

AT3/2

pNOZ

) + 1; +§ NJZQ(ZE) .

Ideal gas relations are used in computing the thermodynamics,

(6.11)

47



where

3/2
A- 2(mM k) <6 x 1021 (ay)3/2 om ’, (6. 12)
3
b
K
RUAZ)= 21+ (Z, - %) Iif” , (6.13)
i=1 :

and k = k{£) is the next integer smaller than Eﬂ. The relations of interest are

P_-ZN pkT , ‘ ’ . (6.14)
E -2 ZN KT+ N QF.) (6. 15)
e 7 NI TR .
_ 3/2
S =ZN Kk ﬂn(AT )+5/z? , , (6. 18)
e Q =g
pN Z S
O
Y w1 2%y
B} 374 5 2
C,. 3/2Nk{Z+TaT}+?NEI£ = (6. 17)
3p -
e _ - aZ
aT—Nopk{Z+Ta } (6. 18)
and
op_ .
e =NOkT{Z.+p—p{ . (6. 19)

In an ionization equilibrium caleulation, the ionic populations are determined by a set of

equations of the form

N,
TT: K, T) , (6.20)

Ny
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subject to the constraints on the total number of particles given by (6.9). The function K{p, T) can

be extremely complex in detailed calculations, In the simplest case, the normal Saha equations,

it can be shown that21

i i
K(p, T) = e % ;_ ﬁ
P -1 P TkT
U
2
vt 2(eom k)32 ¢
? e P
= =7 3 exp \~ = (6.21)
U, PN h
e

by matching chemical potentials through appropriate relations, ‘where U; is the internal partition '

functien, Heo is the electronic chemical potential, and nondegenerate statistics are assumed, All
Uz are assumed to be equal, By combining (6,12), (6,20), and (56,21), it is easily shown that

i1 = N-/ exp T ’ (6- 22)
I]l P

where both the temperature and ionization potential are in units of electron wvolts.

The above sct of equations may be solved by iteration, However, the Russian method is
considerably faster, requires less storage, and usually yields nearly the same result, For
reasons that will become clear shortly, there are separate calculations for single- and multi-

element materials.

Vi-1. Single-Element Ionization

First consider low and high degrees of ionization, These two cases will be solved
exactly, with the assumption that only two ionic species are present. The subscript £, denoting

the element number, will be retained for continuity,

For Z < 1/2, it is assumed that only neutral and singly ionized atoms are present. It

then follows that

B
N =N =ZN_, (6.23)
N =N (1-72) (6.24)
1_ 0 I .
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and

1
N = K
2.2 .1, (6. 25)
Nﬂ 1-2z Z
where
3/2
_ AT 1 :
and T and IIE are both assumed to be in units of electron volts. Clearly, the desired gquantities
are ‘
7.1 fErom - x
2-2[ K + 4K, hI} , (6.27)
1
iz 5 1-7 s, Ll
5T T =T (€. 28)
e, 2zl 27T
and
3Z Ky $ 1-Z |
=--— — . (6.29)
P P i}il + 27|
When Z > Zﬂ - 1/2, only the ions of net charge Zﬂ and ZJ2 - 1 are present, In this case
_ . Zﬂ Zﬂ-l
Ne:ZNo:Z,Q N,G + (Zﬂ-l) N‘ﬂ {6.30)
and
Z Z =
N:N=N£+N'ql (6.31)
e} £ £ £ * "
With the definition
3/2 Z
AT £
= - .32
K, PN, exp (- 1,7/T) , (6.32)
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the result is easily shown to be

=_1 _ ‘7 ‘[ _ 2
z-zizJZ 1-K, + (z, 1-K2)‘+4K2212 , {6.33)

= /A
2z _ K 2y -2 3. L I
TS 3T (6. 34)
2Z-K,+Z, -1
and
E:-E‘ Z'Q-Z \{- (6 35)
Y% p}—_ _ '
2Z-K,+2Z) -1

If neither of the above calculations apply, the Ruseisn method is used in the range

1/2<Z< ZJ2 - 1/2, Equation (6.22) is replaced by an expression of the form

Z =

SN &FP (- IJZ/T) . (6. 36)

where _I'.-E is an interpolated ionization potential function, If n is an integer and

n-1/2<Z<n+1/2 , (6.37)

then

TE = IE(n +1/2-Z2)+ 1;‘+1(E+ 1/2 - n) . (6.38)

The value of Z is adjusted by a Newton's iteration until E¢s, (6.36) and (8, 38) are satisfied. The
derivatives are obtained from

- I
%:Z{%+%}/{T+EAI}} (6.39)
and
%:_ —Z_'T_ , | (6. 40)
p{‘T+ZAI£}

where‘
- +1 '
A.Q:'IE -Ii. (6.41)

This is the complete single-element calculation.
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VI-2.  Multiple-Element lonization:

The multielement calculation is similar to the single-element version. Here a value of
Z'is guessed and the valués of Eﬁ calculated 'as described below,  .In general, . this set of ZE will
not yield a value of Z by (6. 7) consistent with the assumed value. Again we use a Newton's cor-

rection, where

Z-2C, 2

Za—L 2 2 | (6. 42)
e, =1
¢ *3Z

is the change in Z for the next iteration.

For each element the calculation is similar to the previous one, except that both 7 and

Z.Q are included in each relation. The results are, for -Zf_’(Z =1/2:

Z,= K, /K, +D), , (6. 43)
—_— —_— 2 ,
> y (ZJZ) I\M
L. - — . (6.44)
3 +
3Z 21 (K,, *+ 2
- == 2 1 -
i T LIS F ) BT W 6. 45)
T K, T |2 Tj - 7,2 5T
21
and
- — 2 2
GZE ) Z(Zﬁ) (Zg) 3z ‘ . (6. 46)
op KpiP By 0P
with
1
3/2 I
) AT )
h'“ = pNO exp (-?) . (6.47)
ForzﬂéZﬁ - 1]2: .
Z, -7, - —=— , a : (6. 48)
Z+ K,
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M

°Ly 22
37 (Z + K )2'
22
Z_Z Tela ) fu g
3T 2 T J2 T (" 2 aT *
(Z + KJZ2) (Z + Km)
and
o S SR SV
0 - 2 = 2 op !
p(Z + Kzz) (Z + KM)
with
3/2 z
kAT

2 PN exp (- IﬂﬂfT) .
. o .

<Z « - .
For 1/2<Z, < Z, - 1/2:

3/2
12” (n-1/2)-~ 12 (n+ 1/2)+ T &n iAT

ZPNO
2 o )
81,
=
Py T
— — n ?
3Z Za1,
B2 -
__.Zﬂ =j_gn AT3/2)+§-IB_Z)1AIH
3 2 = °T 2’
l Zp N Z i
3
and
e U v e
% )P g L

(6. 49)

(6. 50)

(6.51)

{6.52)

(6.53)

{6.54)

{6.55)

(6. 56)
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where n is an integer,

n-1/257, <n+ 172, . '. (6. 57)
and
n_ n+l n |
A '|."2 = IJZ - IJZ . (6. 58)

The derivatives of Z required in (6, 17), (6.18), and (6. 19) are calculated by noting in each of the

ahove cases that

5T % 3 T .
~and
37 37 =
. a
_a£ - 8, + L2z ' {6.60)
e sz P ‘ :

where o, and ﬁ,e are known, With the application of (6. 7), the result is

LC a

3Z _ 21
37 ° = (6.61)
1-Zc, _ﬂ
37
and
= zc, B
EF S s S (. 62)
P 3Z,
I-ZCR——_
2z

which completes the multielement calculation,
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VII. RADIATION FIELD AND ENERGY TRANSPCRT PROPERTIES

The thermodynamic properties of the radiation field are not included as part of the
analytic equation-of-state package in the current ceding. In CHART D the radiation terms are
added in a separate computation as detailed in R4. At sufficiently elevated temperatures, these
terms are dominant, If it is desirable to include these terms in the package, the best position
would be just before the computation of the sound speed in the subroutine ANEOS {see card 4082
in Appendix G of R4). I

Since this EOS package is to operate in a radiation diffusion-hydrodynamic code, a
value must alsc be supplied for the Rosseland mean opacity. Define A as the Rosseland mean
{ree path and Kr as the Rosseland mean absorptién coefficient. These two qﬁantities are related
by

A= R (7. 1)

where p is the density.

It is possible to include the effects of other transport phenomena in the radiation diffusion
relations. Complete details are given in R4, Two processes treated in this manner in the current
coding are normal thermal conduction (phonon) and hot electron transport. The term Kr in (7.1}

is replaced by Ke 5 where

f!

1L, L
I{'eff Kr

+ +

1 1
- T e (7, 2)
KH K,

Expressions for the three terms on the right hand side of (7,2} are developed below,
However, it should be remembered that these are approximate relations and the results are not

of the same caliber as the information in the tabular EQS,

VII-1, Rosseland Mean Opacity

An analytic formulation of the Rosseland mean which has the wide range of validity
required for the present calculation was developed by the Russians in conjunction with the ionization

. 18
calculation given earlier. The end result of their elegant calculation is

C10llpFg? 042y
Rp="% 772 "—— - (7.3)
A°T
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where

2 Y '
Zf%% Zy . - (7.4)

At high temperatures, Eq. (7.3) gives answers close to the most detailed calculations
available. In general, it tends to slightly overpredict Kr' At low temperatures, Fg, (7.3) is,
of course, not valid; however, in this case, radiation diffusion is usually not important. The

following material becomes deminant in (7, 2),

VII-2., Thermal Conduction

At sufficiently low temperatures the most important term in (7, 2) is the thermal or
phonon conduction term., As with most properties of solids, it is hard to predict from theoretical
models. A simple representation of experimental data is employed. Two input parameters are

required,
The heat flux is
F.=-HV T, (7.5)

H

where H is the conductivity and a characteristic function of the material, Generally, the de-
pendence of H on density is slight, and it is possible to represent approximately the experimental

data for many materials over limited ranges of temperature by the expression

H=H T o (7.6)
8] * .

where HO and C41 are material constants and input parameters, The conduction term in (7,2) is

" then*
3-C
K - 160 T ) Chp T 74l ‘ (7. 7)
H ~  dpH 3 ! .
where
_ 1o ;
Cyy ® ey {7.8)

and g is the Stefan-Boltzmann constant. Note that the units required of H are ergs/{cm sec eV)

which should be reflected in HO and C41.
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Obviously, it is not possible to describe abrupt changes in conductivity by (7.6}, Such
changes sometimes occur with phase transitions but data are limited, If these effects are

important, esither the coding must be modified or a tabular EOS should be employed.

VII-3, Hot Electron Conduction

At intermediate temperatures and high densities, the dominant energy transport
mechanism is the diffusion of hot electrons. The relations to describe this phenomenon have

been developed by Mes’cel22 and put in good numerical form by Cox,

Unfortunately, accurate evaluation requires good values of the electironic chemical
potential, The calculation in Section VI assumed nondegenerate statistics, which affects the
computed chemical potential, As a result, only the nondegenerate limit of the conductivity
expressions can be used, However, a low-temperature modification is made to ensure a proper

joining to the phonon conduction term.
The energy flux resulting from electron diffusion is written as4

FL=-LVT', : : (7.9)

where L is the conductivity. In the nondegenerate limi'}:23

712 5/2
L=~—3—2—k———_— ) {7.10)

®=%£n{2—} .. | A (7. 11) .

and

—_— s%‘n’ s {7.12)
v 3mkT

where k is Boltzmann's constant, m the electronic mass, e the electronic charge, h Planck's
constant, Z is given by {6, 7) and No by {6,10). The term ® varies greatly only for small 8. In

light of the other approximations, it seems reasonable to use

/3

1
2
®~£n%}=ﬁn 2 V3mk (31 )3 YT 40

1
h (pNO)

ki
Ses.lsxllos‘/F zljnz, ‘ (7.13)
K

2
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This approximation eliminates the necessity of computing the cosine function, The expression

‘ required for (7.2) is

160 TO
L~ 3L

mo /27 e4 VT Z ®

6k /2 p

(7.14)

316 VT Z @/p.

There is a problem with this expression at low temperatures, since z approaches zero,
so rapidly that (7.14) tends to overshadow the phonen conduction term. This unreasonable
behavior is a result of the approximations and can be fixed by requiring

Z2C,y=Chy/l44 , _ : | {(7.15).

where sz is piven by (7.8). This strange relation results from forcing the electronic and phonon
conduction terms to join smoothly together at a temperature of 1 eV, In the case that phonon

conduction is not included,

c42 = 0.1 {7.186)

is assumed,

It must be admitted that the above relations are very crude representations of Mestel's
expressions, However, unless the computation in Section VI is completely reworked, little
improvement is possible, For the present purpose, it was felt that a crude approximation was

- better than completely ignoring the ﬁro::ess. Much better values are available with the tabular’
EOS data.

VIII. HUGONIOT RELATIONS

An equation of state can be completely defined without any reference to experimental
' Hugoniot data. As a result, a routine is included to calculate the Hugoniot, In Section VIII-1,

an input option is discussed which allows approximate inclusion of experimental data.
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The Rankine-Hugoniot relations which describe the behavior at a shock front are well
known. If Pi’ Ti' Pi’ and Ei are the initial conditions and ,Os, Ts' Ps' and Es are those of the

shocked material, the conservation relations yield

fal
-1 s i
ES-Ei—z(PS+Pi){pipS { (8.1)

At a fixed get of temperatures, the values of .Os which solve this expression are computed

by an iterative procedure, The shock and material velocities are computed from the relations

i P_- Pi 1/2
oo o
and

Um =_ Us(l - pi/ps) . {8.3)

The inputs required for this computation are Py and Ti‘ As related in Appendix A, these
variables are named RHUG and THUG, Any initial state can be defined, although the most

interesting case is from the reference points Po and ’I‘o.

In some cases, approximate Hugoniots for distended materials may be determined with
this computation. If the initial density is sufficiently small that it lies to the left of the shaded
area in Fig. 6, the ceode will treat the material as a solid-vapor mixture. The initial pressure
is the vapor pressure which is zero insofar as this calculation is céncerned. This state is much.
like a porous material of zero crush streng‘tﬁ. More exact calculations are available with the

test programs in R5.

VIII-1, Relation of Experimental Hugoniot Data and Input Parameters

An option is available which permits experimental data to be defined in place of the
parameters BO and TP defined in Section III. As is shown below, this computation is approximate,

and results should be checked carefully.
It is often observed that experimental Hugoniot data may be expressed in the form

U =5 +5 U
s o 51 m , (8. 4)

within experimental error, where So and S1 are constants. It can easily be shown that (8. 4) can-
not describe any material to very high pressures, Neither is it possible to generate an EOS with

the current package which will exactly satisfy (8,4), On the other hand, (8.4) is a good
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approximation at low pressure for a large number of substances. Here, this is employed by using

expansions of the thermodynamic functions aboui the points Po and To and relating these to So and Sl°

If the initial state i is taken to be the reference point, (8. 2) and (8. 3) may be written as

P=P +p U U ‘ {8, 3)
o 0 s m
and
u .
N .
T (8. 6)
o s m

BP) 2 ‘
(BP s{ -So ) (6.7}
poTo' v
and
52p ‘ 252 - S
( 2) =— (25, - 1}, (8. 8)
o 1
ap o
Sl T
L 0

where the well known property of second-order tangency between the Hugoniot and reference
L 1 ) .
isentrope has been employed. 9 If it is assumed that the thermal component of pressure is

independent of the density near p =P the relation

3 3P . , '
B et
" 8 T p C ‘
: v
may be used to show that
3
(B—P) (—E) + 3TN kT, (8.10)
op s o0 T oo o
poTo poTo
and hence
- 2 2 ‘
B, =P, {8 < TN KT } . (6, 11)
o} ol o oo o
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In the same manner the second derivative yields an expression for Tl"' The relation iz some-=

what more complex than that in R2. The current form is

3% poso2 | (1‘0-2) B ; , :
Tl..=——B—-— 281-1~ 5 1-— -31“O , (8.12)
0 g s
. ) ele}
where
2
p .
® =—§0'9——0 . (8,13)
po BOO

Unfortunately, neither Poo or Boo are known at this point in the caleculation. The value

¢ is near unity, but better values can be obtained by using the expressions

A [ ea
A - + -
Boo 2 Cl(1+2C2) Bo L+ 1 C,(1+2C,)+ B } . (8. 14)
1 2 o
/7
and
c, ¥'1
poogpo l-B , {8, 15)
00
where
C1 =3 1"O .00 N0 k To {8.186)
and
2
. @p, 8 (ro—z B, .
Co=m 125~ t-\m7— 71 —=3) - (8.17)
0 p S
oo

In {8.17), & = 1 is used to allow solution without iteration, .
Thus approximate values of the input parameters Bo and Tr may be determined from the

experimental constants in (8. 4). However, again it should be stressed that the results should be

checked to determine their acceptability.
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IX. PROPERTIES OF THE ANEOS PACKAGE

A corﬁpléte--listing of the ANEOS package is given in R4. 1In that vérsion the dimensions
are set for 20 different equations of state, The storage required on the CDC 6600 with the FUN
compiler is about 37200 octal locations, The speed of evaluation varies considerably with the
various options. An average is app'roximat'ely 1073 second per point (3.6 x 10° points/hr), but it
can eésily vary by a factor of two either way. By far the slowest computation in the present
package is for mixed liquid-solid states, as discussed in Section V-1. These will be improved ‘

in thé future.

IX-1, Coding Structure

The entire ANEOS package is made up of 14 subroutines. The following list gives the
name and purpose of each. Only those subroutines which may be called externally include the

argument list,

(1) _ANEOS (T, RHO, P, E, S, CV, Running entry point controls all calculations
DPDT, DPDR, FKROS, C8, KPA, after initialization. :
MAT}

2) ANEOS1 , Nuclear and cold components.,

{3) ANEOS'ZI‘ {IGK, NUM, ITAPE, IZETL) Main setup routine,

(4) ANION1 o ' Single-element ionization calculation,

(3) ANION2Z ) - Multielement icnization calculation,

(6) ANION3 ' A part of the multielement ionization

: L - calculation, - '
(7} EPINT3 ' Evaluates the third exponential intégral.
(8) - . ANTWOPH ‘ f?valuates thermodynamic functions for liquid-

vapor and solid-vapof states,

(8) ANPHASE . Setup for liquid-vapor and solid-vapor

calculations,
{10) ANMAXW A part of the setup for liquid-vapor aﬁd solid-
vapor calculations,
(11) ©  ANLS ' Treats the liquid-solid {melt) transition,
(12) ANHUG . . Calculates Hugoniots,
(13) ANPHTR Setup for solid-solid transitions., )
(14) . ANDATA . o ‘ Contains all constants, such as ionization

potentials, required by the other routines,
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There are only three external links, detailed below (a, b, c), which couple the ANEOS
package to the rest of the hydrodynamic code,

(a) Subroutine ANEOS is the running mode entry point. Three of‘the arguments must be
defined ﬁs inzﬁuts to the computation, They are tlhe temperature T, the density RBEQ, and MAT,
The latter is the absolute value of the EOS number assiglned'to the material in question in the
computation under item (b), below. All other arguments are computed by the various routines
and returned as answers, P is pr"essure, E is the energy, S is the entropy, CV is the constant
volume heat capacity, DPDT is the pressure derivative with respect to temperature, DPDR is the
pressure derivative with respect to density, FKROS is the effective Rosseland mean absorpticn
coefficient, and CS ig the sound séeed. The variable KPA indicates what type of phase structure

is present, The code is

1 = A cne-phase state for an EOS without the melt transition.
2 = A liquid-vapor or solid-vapor state,
3 = Indicates that a negative pressure has been set to zero as discussed in Section V-8.

Code should not be run in this condition.
4 = A solid state for an EOS with the melt transition.
5 = A .liquid-solicl state for an EQOS with the melt transition.

6 = A liquid state for an EOS with the melt transition, This also includes pure vapor
states,

(b) Subroutine ANEOS2 is the initialization mode entry point. This computation must be
completed before any calls to ANEOS are made, In CHART D this subroutine is called anly once
to generate all required equations of state., However, the coding is such that separate calls can
be made for each materizl under consideration. Results can be réquested from ANEOS for each

material after that material has been initialized,

The argument 1IGK may be 1, 2, or 3. The initialization cccurs for IGK = 1, NUM is the
number of equations of state o be generated and [ZETL is an array containing the EOS numbers.
All data cards discussed in Appendix A are read during this call, When IGK = 2, a complete dump
of the calculated constants sufficient to restart the comptitation is produced on tape unit ITAPE,
For IGK = 3, this dump is read from ITAPE. The latter two calls are designed to operate in

conjunction with hydrodynamic code restart options. No input cards are necessary for a restart.

{c) COMMON/BIG/ is used in subroutines ANHUG and ANDATA for initial data storage.
The size of this bleck depends on the number of EOS stored in the library. After initialization is
complete, the common block is not reguired and can be used elsewhere. In CHART D this space

is used to store tabular EOS data read from tape following the ANEQOS package initialization.
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I1X-2, Library Features

Library facilities have been provided as a convenience to the users so that frequently
employed EOS information need not be punched for each problem. The required input data is
listed in Appendix A, Basically, the information put on cards 2, 3, 4, and 5 is stored in data
statements, Fach user can modify the library to meet his requirements, For illustrative purposes,
an example is shown at the end of subroutine ANDATA in the listing in R4, The information neces-
sary to modify the library is obvious. The variable NUMTAB is the total number of library
equations of state in the list and should be adjusted with each addition or deletion. The contents

of the example library are given in Appendix C.
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Appendix A

INPUT CARDS

The input cards described here are the same as those in Appendix I of R4, The infor-
mation in brackets refers to sections or equations in this report. The equation-of-state number

must be from -1 to -20. All temperatures are in units of electron volts, Other units are cgs.

Card 1, Format (I3, I5, I2, 5A10, 2E10,3)

Variable 1. Equation-of-state number {negative number).
{1-3) ‘ '
Variable 2, Library eguation-of-state number if desired; otherwise
{4-8)
zero, 1
Variable 3, Used only with a library eguation of state,
(8-10)

This variable determines the type of analytic calculation
(see variable 2, card 2 below).
If out of range 0 to 4, or library information is only for

a gas, this input is ignored.

Variables 4-8, Fifty-colurhn identification label: any BCD information,
(11-50) : :

Variable 9. RHUG = The initial density for the Hugoniot calculation.
(61-70) If zero, the calculation is skipped. If negative, the

initial density is taken to be the reference density

(varizble 3, card 2 below) [ VIII],

Variable 10, THUG = The initial temperature for the Hugoniot calcu-
(71-80) lation, If zero, the calculation is skipped.
If negative, the initial temperature is taken to be the

reference temperature (variable 4, card 2 below)} [VIII].

TSee Appendix C for contents,

 Preceding pagedblank (768




The Hugoniot calculation should nermally be used only to test new equation of state

information,
st okt Rt R e GG ER
{4
x If a library equation of state is requested, ¥
x %
i no further data cards are required. *
% % .
adedespofe s st sl skt stesiesie st s el esfestefetesfedeale et eslefesloalleeiotiollol
Cards 2, 3, and 4, Format (8E10,3) -

In the listing, the following variables are called ZB(), 1=1, 24,

Variable 1, ' The number of elements in this material.
(1-10) ' - :

Variable 2, Switch for type of equation of state.
(11-20)

0, - Solid-gas without electronic terms. and without

detailed treatment of the liquid-vapor region,

1. ..; Solid-gas with electronic terms but without

detailed treatment of the liquid-vapor region,
2. - Gas only with electronic terms.

3. - Same as 0, , but with a detailed treatment of the

liquid-vapor region.

4, - Same as 1., but with a detailed treatment of the

i quid-vapdr region,

.

'Variable 3. : pb - Referencle density (u1-3] ..
(21-30) o
Viriable 4. T - Reference temperature _11I-31,
(31-40) ; T <0, code sets T, = 0.02567785ev (238°K).
Variable 5, PD - Reference pressure (normally 0) CIII-3] .
(41-50)
Variable 6, Bo - Reference bulk modulus (positive number) [IH-B] ,
(51-80) : or ‘
(-SO) - Constant in linear Hugoniot shock-particle velocity .

relation (negative number) [ VIII-11,

Variable 7. 1"0 - Reference Griineisen coefficient [4.11]. -
(61-70) '
Variable 8. 90 - Reference Debye temperature, If 80 < 0, code

(71-80) sets 8= 0,025 [4, 12].
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Variable
{1-10)

Variable
(11-20}

Variable
(21-30)

Variable
(31-40)

Variable
(41-50)

Variable

(51-60)

Variable
(61-70)

Variable
(71-80)

Variable
{1-10)

9,

10..

11,

12,

13.

14,

15,

17,

Tr

51

3C24

(-E_)
m
53

54

- Parameter [3.10].
Tr = = 1, Slater theory,

= 0, Dugdale and MacDonald theory,

T
: Tr = 1, free-volume theory,
or

- Constant in linear Hugoniot shock-particle velocity
relation [VIII-I] .

Input variable is defined in relation tc variable 6. .

- Three times the limiting value of the Grineisen
coefficient for large compressions, usually either
2 or 0, When a value of 2 is used, C,, = 2/3

RESAH

Zero temperature separation energy [3. 23} .

Melting temperature [ V-5] ,

or

- Energy to the melting point at zero pressure from
the reference point [V-S] .

- Parameter for low density Pc modification to move

critical peint (normally zero) [3.33].

- Parameter for low density Pc modification to move
critical point (normally zero) [3.33).

It C54 = 0 and C53 # 0, codes sets C54 = 0,95,

Thermal conductivity coefficient, If zero, thermal

conduction is not included. Note that the units of

H-= HOTC‘LI ‘are ergs/{cm sec eV) [7.61.

- Temperature dependence of thermal conduction

coefficient (see variable 15) [7.6].

- Lowest allowed solid density, usually about 0.8 P

If zero or negative, code sets Pm1

31=o.apo[v>3l
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Card 5,

" Variable 18, Parameter D

(11-20) 1
Variable 19, S Parameter Dzr
(21-30)
Variable 20, Parameter D:3 \ Solid - solid phase transition
{31-40) ' : parameters (normally 0) [V-7],
Variable 21, _ - Parameter D4
(41-50)
Variable 22, _ Parameter D5
(51-860}
Variable 23, . Hf - Heat of fusion to determine melt transition parameters [v-1].
(61‘_70) If H, = 0, no transition is included, ‘
If H, <0, code sets He = 1.117 x 1012 T_/A (ergs/gm),
where A is the average atomic Iweight.
NOTE: Code will run slowef if the melt transition is
included, Use only \when necessary and after testing,
Variable 24, pﬂ/p - Ratio of liquid to solid density at melt point.
(11-80) ° ' '

‘ or .
(-pﬂ) - Density of liquid at melt point.
_ = v
It I__If# 0 af]d pﬂj.ps 0, code sets £,/P_ .0. 95 [v-1].

For a gaseous equation of state, variables 5 to 14 and 17 to 24 are readl but not used.

Format (5(F5,0, E£10, 3))

There is one set of the following variables for each element in variable 1, card 2. =1,

number of elements [ VI],
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- Variable Qdd Z(1) - Atomic number of element.
Variable Even. Unnorralized atomic number fraction of element [CcoT)],
' or

-Unnormalized atomic weight fraction of element, All elements

should be defined in the same way.
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Appendix B

SUMMARY OF CONTENTS OF THE C ARRAY

Throughout this report a set of constants (Cj, j =1, 54) has been defined to aescribe a

material, Here a summary is given with references to the point of definition in the text,

C. Storage for:

1. . nl of Eq, (5.60} if defined for a solid-solid phase transition; otherwise, large
number. - |

2. nz of Eq, {5.61).

3. B, [Bq. 3.D].

4, Constant in Eq. (3.20).

5. Constant in Eq, (3. 20),

5. Constant in Eq, (3, 20).

7. Pctr (Section V-7) if defined for a phase transition.

8. Ec(nl) in Eq, (5.62) if defined for a phase transition,
8. Constent in Eq. (5. 65) if defined for a phase trensition.
10, Eg [(BEq. (3.23)]. |

S 11, e referénce density [ Section III-3].
12, TD r‘eference temperature [Section III-B]

13, Constant in Eq. (4, 20),
14, Constant in Eq, (4.286),

15. T, [Section IV-11

16. Constant in Eg. (4.24).
117, Constant in Eq, (4, 24).
18, T [Section V-5].

m

19, 2.q [Se’ction uIj.

20. Po [Section III-S:J .
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21,

22,

23.

24,

25,

26,

27.

28.

28.

30.

31,

32,

- 33.

34,
39.
36,
3-7.
38.
39.
40,

41,

42,

43.

44,

48.

47.

48,

48,

BO [ section I1I-3].

Constant in Eqg,

(7. 8),

P min [Section V-S]. :

Constant in Eq,

(4,11},

8, [Eq. {4.12)].

zm [Eq. (6.5)].

N, [ Eq. (6. 19)].

Number of elements in material.

A [Eq. 6. ).

EOS iype switch, 1nput variable 2.

Internal storage location,

Constant in Eq.

Constant in Eq.

Constant in Eq,

'. Constant in Eq.

Constant in Eq.

Constant’in Eg.

Constant in Eq.

" Constant in Eq.

Constant in Eq.
Coﬁstant in Eq.
Constant in Eq
Constant in Eq.
Constant in Eq.
Constant in Eq.

o}

fy

m

" [Section V-11.

[ Section V-1],

[Section V-

(_‘3.'_4).
(3, 4)".
(3. 4).

(3. 4).

(3.4

(3. 18),
(5..53).
(5.63).
(5.63).
7. o).

(7.I15). :
{5.22),
(5.22),

{5.22).

sm [Section V-1],

1].




50.

51.

52,

53.

54,

Constant in Eq. (5. 41).
Constant in Eq. (5.42).
[Section V-1],

Constant in Eq. (3. 33).

Constant in Eq. {3.33).
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Appendix C

-SAMPLE LIBRARY
The following tables list the centents of the sample library given in R4 at the end of
subroutine ANDATA, These are for illustrative purposes and might not represent the best

avéilable data. Tables 1 through 5 are as given in R2. Tables § through 9 include both a melt

transition and thermal conduction,
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ANFOS
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7R

7R

7R

7R{

7R

7R

7R{

LTRRANY MUMBEEER

3,0000008+00
ZJUONNGGE 00

0.

7 cat( =
a 00T 2=

1R cOovTe 3=

ANFOS [ TRRARY ALIMRFEFR

/R

7R

ZR(

7R(

7R (

ZR{

7RI

7R {

1)=

Y]
1

]
"

1.000000F+00
4, 00N000F 00
1.930000F +01
0.

0.

1,750000F+12
3.054000F+00

I.551000F=07

79 coOTC 1=

2.1075F-n)

4, 7000F=-03

AT (oY)
JRU Y= 0,
JHI0)E 0,
7R(11)= 0,
7R{12)= 0,
7RI = 0.
7u(l4ay= 0.
7e(ls)=  D.
7R(1A)= 0.
7 RG55F -0}

GOLD
78( 9)= 0.
FROI0)=  2.00N000F +00
78(11)=  1.4S0000F 10
FRO12)=  1.151000F=01
7E(13)= 0.
ZH{14)= 0.
7R(1S)= 0.
7a(16y= 0,

}NON0OF +0N

ZHI1T)=
7F4(]H):

JR10) =

ZR{Z2H)

ZR(Z1)=

R =

FRI23)

ZR(P4) =

ZHE17) =
[RE1R) =
ZR(]1G)=
7200 =
JR(21) =
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ZR(24)=

e

0.

81



82

ARE DS [ THREARY sl IMEfw 4 AL
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ZR{ 7)= 1.170000F+00N 7H()Sy= N0,
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ANFOS | TRRARY NUMRFP

70 1y=  1.000000F+00
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7RO 1= 0.
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R AY=  1,930N00F+) 2

ZRE TY= 1,750000F+00
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23

[

TROKN 130PT
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ALUMINUMZM

ZR({ S)= =1 ,N00ND0OF +00

2.0N0000F+00

ZR(1N) =

ZR{11)=  1.20N000F+11
ZR(12)= -6.639000F +09
79(13)=  3.500000F+1?
7R(}a)= A,000N00F =01
ZR(18)=  2.700000F+11)

7R(1F)= D,

1.0000F+00

7R(17)=
ZRP(1H) =
ZR{}9)=
ZH{A0Y =

/R(2]1)=

IRz =

ZR(P3) =

ZR(2u)=

ZR(17)=

ZR(1%)=

ZR(19)=

ZR(201=

ZR(21)=
78122)=
ZR(?3)=

/R(26)=

("a

RednNONOE 40N
Ha75000N0F «0D
la12000D0F +11]
2.3000065+]7
LoON0nnoF+1?
0.

() o

2.,3050N0E+00

3.980000F+09

G.240NN0E=-01
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AMFOS U TRRARY NUMBFR 7

ZRC 1)= 1.000000F+00

781

780

7R ¢

ZR(

78

ZRC Ty =

ZR( R)= 7.600000€-03

"ANFOS LTBRARY NUMBER

0=

LEAD/M

ZR( 9)= 1.4A0000F+00

2Y=  4.,000000E+00  ZR(10)= 2,000000F+00

A=

1.135000F+01

__ZRaly=

ZR13)= 2.000000E+12

2,051000E+05  ZR(14)=" 0. ,

2.770000€+00 . - -

za(i6l= 0.

B2 TTCOTUIYE 1.00G0ES00

-8

TTREAN T

ZRC Y= 1.000000E+00

ZB(

7R

7B 9) = 1.174000E+00

21 4. 000000E+00 T ZR(1n)= 2.0000060E+00

3y= 1.851000E+00  ZR(11)=  3.690000E+1]

S.500000€+09

ZR(12)= -4.080000F+08

JZR(15Y=  4.0000008+10

ZR(17)=  9,940000E+00
ZB(18) =
280191+
2R (200 =
ZR(21)=
ZR(22)=
ZR(23)=  2.300000F +04

ZR(24)=  9.670000E-01

ZB{17)=
TZR(1IRY=

TZR19)=

ZR ¢

)= =T7.998000E+0S

ZB(12)= =3.6R0000FE+10

7811320,

S ZRU16Y= 0.

ZB(20)=
ZB(21)=

ZR(22)=

A2

1.160000F+00 - ZR(151= 2.900000E+10

'"él9ﬁédbﬁé:§§fﬂ"_
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ANFAS L TRPARY KUMRFD 9 COPPFD /M

R0 1= 1.000000F+00 /R{ Q)= 1oA4RSO00DF +00 7Rr(17})= 0.

TR 2= 4,000000F+00 7R(1N)I= 2.000000F+00 7R(1R)Y= 0,

R 3= &,940000F+00 Zr{1)1)= &S.26G00N0F+10 FR{1G)= 0

JR{ 4)= 0. ZRU1Z2)= =4 .637000F+0Q /B{Z20)= (s

7RI B)= 0. ZRE13)=  AL0NDOODF+12 IR(21)= 0.

29( Az =3,94000N0F+NG8 7R()4)= 'T.Ot’mﬂnﬂF—Ol IR(Z27)= 0,

7RO 7y=  1,990000F+n0 7R1S)=  4,600000F+11 ZR(23)=  2.055000F +09
/Rt RAy= 2.71NN0O0OF=-NP? ZR(1F) = 0. ZR(74)= =H.,Z217000F «ND
7€ 1)y=s 29 COTC 1)= 1.0000F+00
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Appendix D

SAMPLE CALCULATIONS FOR ALUMINUM

The normal printed output produced during the generate mode for a material is shown on
the following pages. The data are for library number 6 in Appendix C. In this listing, COT() = Ci
of Eg. (6.1) and FNI(I) = Ni of Eq. (6.9). Plots of computed results are shown in Figs, D-1
through D-12, Figures D-8 through D-12 employ & grid equally spaced on log (@) and log (T), All
plots were produced by the program CKEOS described in R5,

This equation of state was used for the example in Section V-6 of R4,
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4)

FOS NATA SCR AMALYTI™ E
ALUMTNUM

RHUR= =1,.47088+a"

LIRRAPY ENS K1M3ITO

ZRC 13= 1.0300097 508+
ZP( 2)= 4. (0{0uNINGIE+ED
ZR{ 3= 2,7Jd00LIRO0E+CE
Z28¢ 4)¥= 2,5R?778501)E=02
ZP{ 5Y= .

ZRL A)= 7L.RIANCGQT00NF+44
200 7)= 2, L60N000LAF+GL
20 Y= T.420003000F-C2

Cl 13= 1.400060530+100
ct 2)= 0.
Cl 3)= RB.31620/79AZ+11
C{ 41= 6s1137762u0E+11
Cl =)= 7.,220951530E+}0
Cl 8= 3.123314B4L73E+00
ce 71= N,
c{ 8Yy= 1,
ct 9)= 1.

C1d¥= 1.,200000N0C%k1
Cti1)= 2.70CGICTI0Cz+2C0
F{12)= 2.56778E37:F=-12
C(13)= 7.7171722167=-05
Cl{ibt)= 9.,248655981F~04
COI5Y=s 2.08070° 02005+
Cllh) ==4.279835734{C-1
Cli7)= 1,548148 LR+
C{18Y= 8,7398TRP83E~,72

e 1= 13 core 1y= 1

REFERENCE FCINT ~ONAOTTI
T=  2.68R7TPERE-2

P= 9,0094278E-y3

S= 1.1173G68F+11

OPDT=:  5,37485574+11

A= 7.633(10E+11

1S NUMREP -5

THUAE =1.0000F00

LTRRARY NUMPRER B TYPE

A [ ALUMTNUYsH ) IS REQUESTEN

230 8)==1.,30(003C00E+CO
73(10)= 2. )Q0000000E+C0
7a(11)= 1.,2000Q3C00E+11
78{121==-5.A393000CUE+(I
TA(LIY = 3,500000000F+12
TA(i&)= A.00C000000F-C1L
7A(1%)= 2.700000C00FE+11

7301612 0,

C(19)s 2,7522R77R4E+DD
(201 Q. .
C(21)= 7.A3100000CF+1L
f(22)= 2,029620R3(E+01
€123)= 2,335000000E+0C

Cl24)= h,ERARGRARARTE-DL
~e2%1=s 2,433400000F=02
£(28)1= 1,307300000E+01
CE27)= 2.,7327285598E+22
f(23¥= 1.37)7L0000F+00
CtZ23r= 2,59320000UCE+NL
f{%1)y= L,N)0C0000F+00
CA31)= 1.05790C00CF+00
C(22Y= 1.71RLOENAB2F+1T
CE{33r= 2,1551RB108E+00
Tl24)= S,7R7ALA23CE+LY
C(35)==-7,639L422255F+12
R{35Y= T,.339RGH{7RE+L2

79(17)= 2.305600000E+07

Z3¢18)= 0.
73019 = D,
71(2C1= 0.
?m(21)= 0.
78022)= 0.

78(23)= 3.980G000000E+08
72(24)= 9,240006000FE-01

C(27)= 5,58919L43u37E£+12
£(23y= g,
CeI3)= 0.
C{utdr= B
C(ugr= 0,

C{42)= 1.000000000E-04
Clu3)==-1.328989616F%10
Clay)==1.632u13953F+11
C(LS)= 1.,532727736E+¢11
CluaY= 2.572087979E4+00
C(L7y= 2.376609293E+0C
ClLB)= 6.6858%2934E+0¢C
CtL9r= 1.824726914E-02
C{c3¥= 3.066420076E-01
C(e11= 3.25BLBGLZ1E-01
C{s21= 7.876590532E-01
C(%3)= 3,500000000E+12
C{S%¥= R, OU0N00000E-N1

»J020C0E+TD ENIC 1)= 2,23223€+22

oM S

RHO=  2.70CJJ0E+00
Fz  Z2+805127%+0Q
CV=s 1.363737C+144
neI=sz 2,825926E+11
£S=  F.42395KE+05

hReproduced from ‘
best available copy. Y |
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g0

THO=PHAST CALCULATYON FAOR

CRITITAL PCINT
RHO= 4 .77¢3t217 =01
E= 1.11503P3F 411

T

8435875%~-)1
1ic

T B73I77E=-21
a

£.93879F~)1
3

6.30291E~01

?

5.A188I7-11
7

Le9T3IBEE-T1
3

Le26388F-u1
&

3.55390F~-01
&

2.87392E-01
' 6

2413%QLF=-21
[

1.851455=-"1
t

1.50898F=31
&4

1.16667€=-71
4

8.233R4F-"2
6

BelBTLuE~2
3]

Be5)347E-)C
kd

bauan1E=72
I

24309858 =117
' g

LOC¥B( RY=

"THO=PHASEZ BOUNDARIES

RHOLT"?
HDVAP

6430R365-01
?.327723=01

TJRTRZLT-L
2.267735-01

3.76813C~01

1.782326-01

9.30447F-1
1.377015=-01

0,611547-01
1.)55682-11

14723415400
7739702402

1.110915+00

SetlL227-02

1.737ALE 40
T IROEITA02

1.52328E+0)
1.642(0%-02

14317802431
bel1nR02~-(3

2 ARRZREH T
1, 167962 =03

2el7I74L3 40y
F.9L3627 =36

243756174+
?.189°%87Z =14

2,57L)EC4C]
1.I6R2IF-14

2,612,4T409
1e2R202=19

2.50IB8T+0(
4.3%723=-30

77T0I7IZHT])
Fa53LiLT~51

1 LASKPL{

MATEDT AL

T A,0437242F-(1
S=  he2LJ12RSE+1]

2LTa
pyaP

5,092%°0F¢13
5,032%(0E+23

Le123497 419

44129497 +39

T.26508Q3E419

J.27588F429

2.50073F+33
2:50073F+19

1.82L14E 4739
1:674145473

1.26719F 13
1.25719F+39

B, 015765 +)13
A, 045767 +13

L ZRILGF )3
Ly TEALBE+T3

1.7800474+)3
1.73961F+13

J.2606LBT+Y7
3,280 77437

7.75971F )5

5,75058F + 16,

2.R27.0E+35
T HZ770T 6

2.003747¢)2
2.[03778 492

3.6%211F-13
5.(58365a)5

by BIBRTE-)R

.143015-5

1.957137=12
2.027%007=-17

1e135287-]2
T.ANG1IRF=21

22 H2LRLE~]T
Seh26LAT-47

hi=  RA

ELIN
EVAP

1.00510F+11

1+164R6754+11

9. 44LTROE+10
1.136876+11

R.82103¢8+140
1.11796F¢11

Be4235(0E+10
1.09281F+11

7.83A0CF+10
1.06578F+11

To4I?PTEE+1D
1.0765264+11

B EQLILESLD
1.00019F+11

Re2lb51E+19
9. F2542F+11

SelUQfEF+1]
F.2UR12F+10

3,35205F 410
3. 76370 +10

2.735885+10
8,60737E+10

2.21157F 410

3.723R9F+1(

1.7499L0E+10
9,994 3F 41

1.24213F+10
14178726411

F.27963E+09
1.1793LF+11

T.2L1975+09
1.21389F+11

4.532220F+09
1.2219RE+11

2e60RIGE+QQ
1421232E+11

P=  5,1571289fF+09

NTY= 9

SLIR
svap

FeT7333E+11
Fe?6H723F 4114

B.G3477E+411
G LILIBE+L]

S.Q1721F+114
FalA?765F411

S.EI3TIELLL
F.LUB1B0E+1]

Fa7hu2hE+11
FeaE1Q7E+1{]

CJESTRAE+11
F.FG127F+11

C.537L2E+LL
F.FDD13E+11

S, IR052E+11
F,R701F4+11

L.875HAE+LY
fef1158F411

L,22569E+11
7+15192E¢11

L,r21C09E+11
7.51168E+11

T.70840E+11
B.?RA07E+11

1, IR26RE41]
1.0ANARBE+L2

2.9593GE+11
1.58816E¢12

2o L54LB8E+11
1.50400E+12

2¢18169E+11
?.00273E+12

1.7IR3SE+11
2o BULLAE+L?

1.,0350L2E+11
f.10580F+12

LLI0
GVAP

=4,00164E+11
=4,001645+11

-1.60148F411
-3.60148E411

-3.20429E+11
-3.20429F+11

~2.81T46E+11
-2.31046F+114

~2.42L58E+11
~2.420545+11

-2.03531€+11
=2.03531€+11

-1.65607E+11
~1.65R07F+11

“1.28543E+12
=1.28R43E+11

~3.31191%+140
-9.31191€+11

=h.1365724+10
-5.13657E+10

=4, 7T0B8RLE+10
~L,7086LE+1C0

-3.38474E+10
-3, 3I8LTLE+10

=2+172557+190

-2.17255E+;U

-1.08837£+10
~1.08887E+10

-1.068509F+1Q0
=1.0h8595+10

~5.86873E+09
-£. 858395409

=2.79633E+0N9
-2. 78 I8C¢(Q

1.304L00E+08
1.30400E+08

)

"



4

MELT CURVE

T
1.8247E=-02
14

3.95831F-12
: A

C6s1J15E-02

g

8.2398E-02

Pl

1.0727E-71
3

1,3966E=]1
3

1.8179E-01
4

2436R7E =01
4

3.0810E-714
[N

4,0109F=11L

IR

5,22156-01

A

Be?7978E=i1
4

8.8483F=-01
[

1.152LE+30
L

1.:4997F 4+,

3

1.9526E+30
e}

2.5417E+410
15

3.30RGE+ )}
26

L.3G7RE+DC
b

5.h077E+31
79

a5 -
2L

2. ILAT+T D
1. BLB508 00

2, 3171C+])C
Z.12%395 4

2.L877E+00
2.2A54LF5+0C

2.57215+00
2. 37THATHID

22 RARYTHTE
2o LANSTHSE

2,79205+00
2.h2L4E+;0

2.92581%+040
2+ 73505 +0C

SPERIALLE
2.83255% 0

3, 331%E+0¢
22247400

3.,62245 40
T 52825477

Ly PITRTHOL
7, 9199640

4,51FRTEJY
b b3iznsen

£.1891F+ 70
S.12RZEHD

€4a15R284C
£,1110C470

7.531RZ¢1(0
7.9320Z+04L

Ce8)OLF+0 L
3.76612+5C

1,72583E4731%
1435457401

Z40777%401
Z.074TH]1

1.73RAF4N]
3776540

3423915+312
§.28ATC+01

P3
PL

-3, 34897 +141
=8 . ALRAT +10.

-6, 13R1E+LE
“A,1TR1C+1D

=3 1524E+10
=3+1524F+10

=2.,63557=-013
=1,R/215=-02

3,8539E+17
3.85%8E+10

9,1612E410

3,1412€410.

1.R510E+41
1,55106+11

2.7540E+11
2.7060T%11

Le2430E+11-

4, 2430F4+11

Be55u07 +11
6,554 +11

1,416dF+12
laol426412

1. 59uLE+12
1459L454+12

2.58128+12
2.53127+12

4.3H807+17
Lo TREYF4L2

7.3698C442
7.36956412

1, 547164147
1.54717+172

 3.44155+17

I.b615E4+17

9.1919F+13
F.1313F+47

3e30LLE+LL
LIRS h

2.14075¢15
2.1407F+15

ES
Tl

6.15H43F+D G
1.77J4E+LC

AeBD92E+(D
1.2824F+10

TeQAI7LEHDS

1.2A3LE+LC

A, LL1TEHDT

1430216410

1.1577E+1¢€
1,5057E+1¢C

1 hBRZESLD

L1.7971E+10

1,992 XF+1 0
2.27SLE+LE

2+T5hRE+LL
3.0299F+1 0

3.0146F 1
4.195LE+10

5.h756F+10
S.983TEHLC

3.,3772E+1L0
Be7TSBEHLL

1.2582E411
1.3018E411

1.926EE+11
1.9815F+11

3.02128+11
3, 1918F+11

be BAZTES+L4
t.9801F+11

9.2515E+11
1.374L2F+11

1.4798E412
1. 4OARE+L?

2.90LLE+L?
2,927¢F+12

5. R0L0F+12
h.HIBTF+12

2.0073E+43
2.9086F+12

S
<L

1.17212F+41
2.?h90F+11

1.F575FE+11
2,567 2F+11

2,72725LF+11
2.7312F+11

2, LATIE+LY
2,0503F+11

2.hRESFHLL
3.09R2E+11

2.0856L6F+1]
3 2172E+14

3.0308E411 -

3,2015F+11

3.4928F+114
I.L508F+11

T 3LT2F 411

S3.5714E41 -

T LTALESL]
T ATLBEHLY

7,5908F4+11
3.7590E4+11

3.7129F+11
3.RRZIF+11

3.7922E+11
1,9271F+11

3.8617E+11
1.0786F+11

3.9088F¢14
L.01%1F+11

3.0275F +11
4.l 2A0F+11

3,9069F+11
LeCINSF+LL

Y.P2€CSF+11
J.91REF+1]

3.6L26E+1E
2.7393F+11

32447411
3.3562F+11

S
GL

=3.0L278E+1C
~3.437RE+4C

-2.,6135F¢1p
=2.641355410

“1,8315E+10
-1,8316C+10

-1.,0689E+10
“1.08%95+10

-245740uF+ 09
-2+57LLE+0S

7o 76LES]S
T.876LE+NQ

2:1267E+10
2.1267E+10

3.9078F+14C
1.9078E+1¢

hs3500E+10
6.3G00F+1¢C

T 9.R1T2E+1D

9.81728+1¢

1,49735F+11
1, L3356+

2.2808E%11
2.2808E+11

T.5451E%11

3,5451E6+11

BLE6TTEH1Y

S.6R77E+11

9.4052E+11

9.4052E+11

1.635RE442
1.6356E+12

3.0205E+12
3.0205E+42

F.0623E+12
F.0623€4+12

1,3875E+42
1.3876F 4132

" Le1259E413

4,1279E+12

o1



(44

HUGNNIOT

PHN
2«T0U0E+)])
2.71H65E+"
24TL1RE+ ]
Z2aTAUTF ¢ .
2e875RE+ )
2.8955F 0,
303956 +99
3.13R1F+ 01
X.2690E+ )N
3,353854+1710
Xe5319F ¢,
3.604AF+(G
3.6385F+7)
3.7596E+1)
J,A215F+)])
3.8770% 420
3.8272E+y .
4.0361E+02
4L,1279F+ 1)
4,2078E+,0
4.2790F %10
o ILISE %y,
G.4029E+12
L,4580L+7)
4L,5098F+ 1"
4,5588E+M
b,hNGAF+ )
G.RAQTEL ]
4,7282E+7)
LsTHEQE 411
L.BNZ2TE+D,
L.8327F+7)
L,B739E+1y
LeOLZEF +37
5.007%E+3
S.Uu7117 32
S41321F+15
5.1911E¢7"7
5,33371F+}y
SWLBT7E#D
S hAGTE+AN
S.8%02E+07
6s2)14F&])
B.u555E4)5
h,6RADE+NY
B BUZ2LUE+
6.9979E 4117
7a132LE+ )0
7.2374E+)y

T
2.55787=-37
2.61437%=12
2.h5710T-22
2 780N Z= ;72
2.96,05-12
,030°C-92
T.H)LLE=-LZ
4of JAPT=12

5.02C7="2
€,70G27=52
feuldn==22

1,070 F-11
1.27377~-31
1.60%0E=318

Cl.RICIC-T1

1./330=-"1

Ze 03 }rE=01 0

2.5200e-71
I ETF-01
T, 8)0LT-01
GepM0r==11
4eHJTLE=-]1
Se9ClE=171
SeBQMLT~01

EaR0TLE-D1L -

f.5.0.7=11
7.ud0Lc-31
7.5300E-J1
9. 5020501
.60 ==-31

B.0Junc-31

9.,653005-01
1aululEs T
110055+
1.2707+2§
1.21,0840,
1.L35.9%3¢
1e5JulF+,; 0
1.70ar7+5
el ONDT41C
2.5007T#kN"
L0000 Tey
Lefinasen
GadIN LT D0
SRR RN T VR
Te LTI+ L
RN Y
E PR IR
1.0)J17°7+51

[=]

34627 -03
4eBIJLLE+N9
1.230F 410
2.,83251F+1)
Le?5652+10
A.S10CF+1D
1.23RAF+11
1.785°22411

2.79415441

ZoOLLTE+11
I,3R27+1 1
4.H3095+11
5eT11RF+11
S.932804+11
5. 5105E+11
7,096 40 +11
7.RTI2E41]
8.77235+41
8.3791F+1
1..91hE+17
1.19215+12
1.728L5r+12
1.3757E+17?2
1ebBL4LT+12
1.55115+12
1.53R25412
1.7201F4+12
t.90PRE+12

2.0969%+12 -

2e78L3E+12

2elhteze12:

2.23047 412
?2.%1522412

2.4RE3F+12.

2.A211F 412
2.773I5E4+12
2.92557+172
I,07735412

3.37957+12 .
"3.3292F412

LeBRELF 4172
5.2973%+172
ha?7)74+12
377904412
Qob18754+12
le27717 447
1.2122E+13
1.2127F+12

Leb777E+1L T

pC
=1.5?81F+10
-1.0578E+10
~T,14195409
1.1888E+10
2.6508F+1(
G.7215E410
1.0273E+11

- 1,464596411

2.003CC+1 ¢
2,5822F+11
3.27h2F¢11

4.0Z0NSE#1T

LyS57TRIE+1L]
5.G721E+11
5.523PF¢11
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Appendix E

PROCEDURE OF ADJUSTMENT OF CRITICAL POINT

The equation of state for aluminum presented in Appendix D has had the critical point
parameters adjusted by use of Eq, (3.33), The results of part of a parameter study are shown
in Fig. E-1, TFor these curves, C54 = 0,8, Other values were tried with similar results.

On the basis of these curves, the values C53 =3.5x 1012 dynes/cm2 and C54 = 0.8 were
selected, While the critical point parameters of aluminum are not well known, the computed
results with C53 = { seem tc have too high a temperature and pressure to be in line with extrapo-

lated experimental data. The values on the right-hand side of the curves are in agreement with

some recent estimates.
With this equation of state it is not possible to further decrease the critical pressure by

increasing C53 io an appreciable extent, The difficulty discussed in reference to Fig. 5 is

encountered, This problem will normally control the adjustment possikle by (3. 33).
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