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ABSTRACT 

,/·A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic 
code is described. The information generated is thermodynamically complete and self-consistent. 
The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all 
types of phase mixtures are treated. Energy transport properties ·are calculated. 

Th·e set of subroutines form a package which can easily be included in other hydro­
dynamic codes. 
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IMPROVEMENTS IN THE CHART D 
RADIATION-HYDRODYNAMIC CODE III: REVISED ANALYTIC 

EQUATIONS OF STATE 

I. INTRODUCTION 

Through 1970, three reports were issued concerning the CHART D radiation diffusion­

hydrodynamic code. l-
3 

This report is the second of three currently being published to update 

the program. The main body of CHART D is described in the first report. 
4 

The third report 

details several user aid programs, 5 In the following these reports will be referred to as Rl, R2, 

R3, R4, and R5. 

The present subject is the analytic or in-line equation-of-state (EOS) subroutines 

originally considered in R2, Some of the calculations in the current version are identical to 

those in the earlier work. In others, the physical models are the same, but modifications have 

been made to the numerical methods to improve accuracy and speed, Finally, several new 

features have been added. Among others, these include a melt transition, hot electron conduction 

properties, and a system of changing interatomic potentials to match gas phase and critical point 

data. 

As detailed in R4, CHA;RT D has two types of EOS, Either or both can be employed in a 

given problem. The tabular form is capable of handling nearly any data but requires ext~nsive 

data processing and tape and machine storage. In general, this form is quite inflexible in that 

the user has no control over the thermodynamic properties in the table and normally must rely 

on someon~ .. else to generate the data. 

The analytic forms, on the other hand, are quite flexible and easy to use. Programs are 

described in R5 with which the input parameters can be adjusted to yield an EOS of nearly any­

thing. However, this form is slower in code operation than the tabular data and sometimes yields 

results of less accuracy. For example, the radiation opacities are normally better in the tables, 

As with the calculation in R2, several ground rules were established: 

1. The input parameters are to be kept at a minimum and as simple as possible. 

2. The package of subroutines, when called with temperature and density defined, should 

unfalteringly return complete and self-consistent thermodynamic data and an effective Rosseland 

opacity, including conduction effects. 

5 



3. The speed of evaluation and storage requirements should be compatible with hydro­

dynamic code conditions~ 

4. The range of validity should cover all possible equilibrium conditions. 

5. Models should be as physically realistic as possible, considering the other 

conditions, 

6. Linkage to the rest of the hydrodynamic code should be minimized to allow easy 

inclusion of the entire package into other codes with no modifications. 

It is felt that the current computation satisfies the requirements as well as is possible. 

One major limitation is that no provisions are included to treat molecules. An accurate 

method of handling molecules was ruled out by the third of the above conditions. If they are 

necessary in the problem at hand, a tabular EOS must be used. 
6 

The magnitude of this problem 

becomes more apparent by observing that, for many-element materials, the number of molecular 

combinations becomes extremely large, The storage and time required for such a calculation 

would be out of range of that possible, 

As before, only equilibrium properties are treated. No effort has been made to describe 

de\fiatory, rate-dependent, or nonequilibrium effects. These computations can be handled as 

perturbations to the equilibrium conditions as, for example, is the elastic-plastic calculation 

given in R4. 

6 

The notation and units employed are as follows: 

p = density (gm I cc) 

T =temperature (eV "'=' 11605°~) 

F = Helmholtz free energy (ergs/ gm) 

2 
P = pressure (dynes I cm ) 

E = specific energy (ergs/ gm) 

S = specific entropy (ergs/gm eV) 

C heat capacity (ergs I gm e V) 
v 

C sound speed (cm/ sec) 
s 

. 2 
I;< = Rosseland opacity (cm I gm) 



In the description of a material, a set of coni;itants (Cj' j = 1, 54) will be generated, The 

elements of this array are defined throughout the report. A summary is given in Appendix B. 

II. GENERAL FORMULATION 

The generation of thermodynamically complete and .consistent equation-.of-state (EOS) . 

information is most easily accomplished by formulation in terms of one of the thermodynamic 

potentials in its natural variables. For the present work, the logical choice is the Helmholtz 

free energy F, with density p and temperature T as the independent variables. All other thermo­

dynamic functions may be computed from various derivatives of the free energy.· The required 

relations are 

2 aF 
P = P op ' (2, 1) 

oF 
S = - oT ' (2. 2) 

2 o F . 
E = F + TS = - T oT (T) , (2, 3) 

C = aE = a
2

F 
v . "'T - T --2 I 

0 
oT 

(2. 4} 

(2. 5) 

and 

2 aF + 2 a
2

F 
p~ p -2 

ap 
(2. 6) 

The procedure for treating these variables in hydrodynamic calculations has been discussed in 

R4. 

For stability of the numerical integration of the hydrodynamic equat ions, the time step is 

limited by a function containing the sound speed C • From the definition 
s 

(2. 7} 
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and various thermodynamic relations, it can be shown that 

c s 

other interesting relations are the expressions for the constant pressure heat capacity CP, 

the linear expansion coefficient °' , 

and the isothermal bulk modulus B, 

{~P) 
\oT p 

(
ap\ , 

ap/T 

A fundamental assumption in the formulation presented here is that the EOS may be 

(2. 8) 

(2. 9) 

(2. 10) 

(2. 11) 

· written as a superposition of terms appropriate to various physical phenomena, Three major 

divisions are made for atomic and electronic interactions at absolui.e zero temperature, thermal 

motion of atoms and ions, and thermal motion, ·excitation, and ionization of electrons. The free 

energy expressing this division is written as 

F(p, T) = E (p) + F (p, T) + F (p. T) , 
c n e 

(2. 12) 

where the subscript c refers to the zero-temperature isotherm or cold component, n refers to the 

nuclear or atomic component, and e refers to the electronic component. This does not imply that 

the effects are independent; the opposite is true. However, in the models, the coupling will be 

minimized. 

According to the third law of thermodynamics, the entropy must vanish at zero temper­

ature so that the energy and free energy are identical. This result is built into the notation of 

Eq. (2. 12). Both F and F are defined to vanish at zero temperature. Each of the thermo-n e 

8 
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dynamic functions may be written in a form similar to (2. 12 ). For example, it follows from 

(2. 1) that the pressure is given by 

2 dEC 2 oF oF 
P = p -- + n n + p2 __ e 

dP "' -:a() op 
(2. 13) 

Pc(p) + P (p,T) + P (p,T). 
n e 

In the following sections, models are constructed for the various terms. Using the above 

method insures thermodynamic consistency. 

Ill. ZERO-TEMPERATURE ISOTHERM 

First consider the equation of state at zero absolute temperature. The energy and pres­

sure are related by the expression 

2 dE 
p =p __ c, 

c dP 

Define p as the density of the solid at zero pressure and temperature and 
00 

(3. 1) 

(3. 2) 

as the compression, It should be noted that P 
00 

is slightly greater than the normal room temper­

ature density P because of thermal expansion, The relation of p and p is considered in 
0 0 00 

Section lll-3. Equation (3. 1) can be written as 

E 
c 

1 =-- J 
1 

7J 
-2 

p 7J d77 
c 

where the zero point of energy has been defined to be at P 
00

• 

(3. 3) 

Expressions for these terms are developed in the following sections. Different forms of 

description will be used for different compression regions. The relations are special cases of 

those employed with the tabular EOS as related in Section VI-2 in R4. 
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lll-1. Compressed States 

For compressed states (T) > 1), there are only two regions where the equation of state is 

well known. For sufficiently large compressions (T) 2. 20), it is generally assumed that zero­

temperature Thomas-Fermi statistical calculations are realistic. The pressures at these 

densities are sufficient to crumple any electronic energy levels or bands near the edge of the 

atom into a continuum. Possibly the most realistic of these types of calculations are those of 

Kirshnits 
7 

and Kalitkin 
8 

(TFC ), since both quantum and exchange corrections are applied, 

Theoretically, the region near 77=1 is not well understood. Very large attractive and repulsive 

forces tend to cancel, and the accuracy required in the computation of each would be out of the 

question. 

percent. 

Normal methods cannot consistently predict the density p to better than about 10 
00 

Progress is being made in the area but the cancellation problem is so severe that it is 

unlikely that sufficient improvement will be available in the near future. 

Fortunately, experimental data are available near 7J = 1. This information is, however, 

limited to pressures far below the high compression region. There is a wide range of compres­

sions of interest where there are no experimental or theoretical data. 

To the upper reaches of experimental data, many substances show phase transitions 

which result in a more closely .packed structure and decreased compressibility, This, of course, 

leads to kinks, or discontinuities, in the slope of P . 
c 

In simple materials, most of the phase 

changes observed in Hugoniot data appear to be of the second order, although a few first-order 

changes are clearly seen, A summary by Al'tshuler and Bakanova
9 

illustrates much of the 

available data. For composite materials, it should be expected that much more complex structure 

should be found. Such transitions generally occur at pressures of less than a megabar. At 

higher pressures, transitions accompanied by changes in band populations are possible. However, 

these should not affect the compressibility to any great extent, since the crystal symmetry is 

unchanged. 

pressions. 

Hence, it is expected that P should be a smooth function at sufficiently large com-
. . c 

Insofar as Hugoniot states are concerned, the last transition encountered is the 

melting transition. In aluminum this occurs at about 2 megabars. 

A discussion of phase changes is given in Section V. For the present, only materials 

where P is a smooth function of 7J are considered. A simple interpolation from the experimental 
c 

data at 7J = 1 to the high-density limits is employed, For simple materials, this procedure has 

been studied
10 

and is probably as accurate as any available method, since extrapolations of low­

and high-density data tend to merge. For more complex materials, little else can be done 

because of the almost total lack of data. 

10 

An interpolation function for the pressure which is both convenient and well-behaved is 

p 
c 

(3. 4) 

.•, 
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where the subscripts are identical to those used in the computer coding. For large comfiressions, 

Eq. (3. 4) is identical to the TFC result, provided the first two coefficients are given by O 

(3. 5) 

and 

lo M 2 M 1/3 
_

17
_e_e_ { 18 2 1/3 + 11 } ! a 1 

c33 = 9h2 5 (l2n2Z)l/3 l2Poo j (3. 6) 

where Z is the atomic number, M is atomic mass, his Planck's constant, M is electronic 
. a e 

mass, and e is the elecfronic charge. 

In the limiting form for large compressions, C 
32 

and C 
33 

yield the coefficients of the 
. 5/3 4/3 

two leadmg powers, T/ and T/ • The first term is that of a free electron gas. The advantages 

of writing the two leading powers of T) is the form given by the first term in (3, 4) was pointed out 
11 

by Barnes, However, the exponential coefficient is determined by a slightly different rule in 

the present calculation. This term accurately describes the entire Thomas-Fermi calculation 

for compressions down to about 5 or 10. For smaller values of T) it gives a smaller and more 

realistic pressure than the exact Thomas-Fermi result, 

The three remaining coefficients in (3. 4) are determined by experimental data at T) = 1. 

By definition, the pressure is required to vanish, and the bulk modulus and Griineisen coefficient 

are related to its first and second derivatives. The bulk modulus at T) = 1 is given by 

(3. 7) 

The Gri.ineisen coefficient 

r = .!. (oP) 
p oE 

p 
(3. 8) 

can be related to the cold compression curve by use of any of several theoretical models. The 
. 12 13 

three most widely accepted models are of Slater, Dugdale and MacDonald, and free-volume 

theory. 
14 

It has been shown that the results of all three calculations can be written in the single 
. 15 

expression 

d
2

P dP 
2 2t c 2t 2 TJ __ c + 21)(1 - -) - - - (1 - _!)p 

1 l d 2 3 dT) 3 3 c 
r = - 3 (2-t) + 2--~-------------dP c 2t 

T/ dT) - 3pc 

(3, 9) 

11 



where t = 0, 1, or 2 for Slater, Dugdale and MacDonald, and free-volume relations. respectively. 

If we define 

the expression of current interest is 

T = t - 1 r , (3. 10) 

(3, 11) 

It is often observed that the Dugdale and MacDonald form (Tr= 0) is superior for metals, 

and ionic crystals are best described by the free-volume relations (Tr= 1), However, there are 

exceptions to both rules; for example, aluminum seems to require the Slater relations (Tr= -1 ). 

In Section VIII-1 a method of determining a proper value of Tr from Hugoniot and zero pressure 

isobar data is given. Here it is assumed that Tr is known, All constants in (3. 4) are now 

determined, The results are 

(3, 12) 

(3. 13) 

(3. 14) 

where 

1 
r = roo + 3 Tr (3, 15) 

Rather wide ranges of the input quantities B . , r , and Tr are acceptable; however, 
00 00 

there are some physical limitations to be considered, It is not difficult to show that the second 

derivative in (3. 11) must be positive if shock waves are to propaga.te as shocks and not dispersing 

pressure pulses, This means that the stiffness must increase with compression. Otherwise, 

compressive shock waves cannot exist. It then follows that 

r + .!. T 0 
oo 3 r > • 

(3. 16) 

In most situations this causes no problem. 

12 
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The internal energy is determined by substitution of (3, 4) into (3, 3), The resulting . 

expression can be integrated with the result that 

8 c 
_1_ I 3c 11 2 I 3 
Pao/ 32 

(3. 17) 

where 

and 

is the third exponential integral, 

III - 2. E xpanded St ates 

<8'
3

(x) ~ t • 3 e -xt dt 

1 

(3, 18) 

(3, 19) 

There are several features to be considered in relation to the form for expanded states 

Tl s 1. For slightly expanded states, 0, 8 :S 11 ~ 1, and temperatures below melt, a tension region 

will be built into the state surface, At low densities the material should be gas-like, In the 

intermediate region, the mixed-phase properties are very much dependent on P and E which, in 
c c 

effect, determine the form of the interatomic potential, The full extent of these functions is 

given later, 

Two forms for P are available when Tl s 1. Except for slight modifications, the first 
c 

form is identical to that given in R2, The second treatment is a system whereby corrections to 

the first method can be inserted by hindsight if the results seem unsatisfactory. 

A modified form of the Morse interatomic potential yields a pressure of the form 

(3, 20) 

-1/ 3 
11=l-T1 • (3, 21) 

This form was selected over other theoretically justifiable expressions, for example, a 

Lennard-Jones (6-12), 6-9, or Morse-Coulomb potential, since Eq. 3, 20 seems to yield the 

most reasonable results under the widest circumstances, 

13 



The corresponding energy is easily shown to be 

l)~,T/Sl. (3. 22) 

The lattice separation or zero-temperature sublimation energy is then 

(3. 23) 

As P given by (3. 20) clearly vanishes at TJ = 1, the two additional conditions required to determine 
c 

the coefficients in (3. 20) are taken from (3. '.7J and (3, 11). The procedure insures that E , P 
c c 

and =~care continuous at 71'1. Eq. (3. 11) is r·ewritten as 

It is normally assumed that 

and 

d
2

P 

1 
TI3 

00 

r=r 

(3. 24) 

(3. 25) 

(3. 26) 

so that -t- is also continuous at TJ= 1. If difficulty is encountered, these relations are modified. 
d'TI 

The discontinuity in the second derivative creates no major problems in such cases, 

From these relations it follows that 

and 

14 

B ' 
00 

p F. !" 
00 s 

2 I ' 

Boo ) 

P E r 2 I' 
00 s 

(3. 2 7) 

(3. 28) 

(3. 29) 

.• 

,. 
i: 
f 

I-
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While, on theoretical grounds, imaginary coefficients might be justifiable, it is clear from (3. 27) 

and (3. 29) that we must require 

B 
___ o'"-'-o- <:: 

1 
p E r 2 

(3. 30) 

00 s 

for numerical reasons. If condition (3. 30) is not satisfied by the given values, r is increased until 

it is. 

Problems can also be encountered with (3, 20) at low densities. As TJ-0, P also 
c 

vanishes, The question is, however, whether it vanishes with sufficient rapidity to be physically 

realistic. Since c
5 

> c
6 

follows from (3. 27) and (3, 28), the dominant term in (3, 20) at low 

densities is 

(3. 31) 

Quite arbitrarily, we impose the condition that P should not exceed a value P at T) = 10- 3, 
a m~ 

P is taken currently as 1 atm, This insures that regions of large tensions will not exist in 
max 

the vapor phase. Substitution of expressions for c
4 

and c
6 

into (3. 31) yield the result that 

B 
_,..;O;.,;O;...__ exp {27 r (1 - s >} $ p I (3. 32) 
200 rs q max 

q 

where S is the square root term in (3. 27) and (3. 28). If (3. 32) is not satisfied by the given 
q~ 

values, r is decreased until it is, if possible. The exact form of (3, 32) is not critically 

important. The main purpose is to insure that c
6 

is sufficiently large so that the gas phase acts 

as a gas. 

Note that, of the two reasons for not using (3. 25), the first yields Tr> Tr, while the 

second results in Tr< Tr· In either case a message will be generated by the code, explaining 

that the change has been made. It is unlikely that any other observable effects will be found. 

In some situations it has been found that the above expression for P , when coupled to 
c 

the thermal components discussed in Section IV, can produce some features objectionable to the 

problem at hand, For example, the critical point could occur at too high a temperature and 

pressure, or the sound velocity in the liquid state could be in error. Provisions have been made 

to permit corrections to be made by hindsight to obtain the desired property, For compressions 

less than c54 ,,; o. 95, the function 

P = c 5 3 1)2 .I 1 - _21...l 3 ! _!L - 0 2 I TJ s c 
J c 1 c 54 • l · 54 I 54 J 

(3. 33) 
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can be added to the right-hand s .ide of (3. 20). The values of c
53 

and c
54 

are input parameters. 

The corresponding energy term is 

~= (3. 34) 

which is added to the right-hand side of (3. 22). These forms join smoothly and do not alter the 

separation energy, so that (3. 23) is still valid. The computed constants in (3, 20) are unchanged. 

In effect, the additibn of (3. 33) changes the shape of the interatomic .potential while not modifying 

its basic properties. At ' lower densities, (3. 33) has the form of a Van der Waal 1s interaction. 

Thoughts on the selection of C 53 and C 
54 

are given in Appendix E. 

III-3. Relation to Reference Point Conditions 

The three parameters p , B , and r are required as inputs for the following calcu-
oo 00 00 

lation, Unfortunately, exact values are not normally known for materials of interest. The more 

usual situation is that the properties of a material are known at some reference point p , T 
0 0 

(usually room temperature), and it is important that the .EOS correctly predict these properties. 

It should be noted that p and B are the most critical insofar as the solid material is 
00 00 

concerned. Because of the way r and Tr enter the relations, they are of lesser importance. 
00 

Hence only slight error results from the approximation 

r = r 
00 0 

(3, 35) 

in the present calculation, With the solid thermal components given in the next section and a 

power series expansion of P about p , approximate values are obtained for p and B • In the 
. . c 00 00 00 

calculation given in R2 these values were considered as final and most of the time they were suf-

ficient. However, for materials with a relatively small bulk modulus, the truncated power series 

is in error. A final iteration has been added to complete the· calculation. It is a two-variable 

Newton iteration for the values of B and p to yield the correct values of the reference point 
00 oo 

pressure P (usually zero or one atmosphere) and the bulk modi.1lus B • The required expressions 
0 0 

are 

oB oB 
B -=B +--0-AB +--0 -Ap 

o n oB on op no 
00 00 

(3. 36) 

and 

aP aP 
P P + ~ AB + - -0 - AP o . o oB oo cp oo 

00 oo 
(3. 37) 
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where the quantities on the right-hand side are evaluated from the current values and those on the 

left are the desired results. The procedure is repeated until t::.B and t::.p vanish. 
00 . 00 

The input parameters for this computation are p , T , P , E , B , and Tr. In 
0 0 0 s 0 

Section VIII-1 an input option is discussed in which Hugoniot data can be substituted for the latter 

two of these. A simple calculation is provided to relate the Hugoniot parameters to B 
0 

and Tr. 

Details are given later; however, it should be remembered that the above calculation is always 

employed, regardless of the input option. 

IV. NUCLEAR CONTRIBUTION TO THE EQUATION OF STATE 

In this section the nuclear contribution is considered, These terms are intended to 

describe the kinetic motion of atoms and ions in both solid and gaseous states. 

IV-1, Debye-Gr iineisen Solid 

The thermodynamics of simple solids are usually well described by the Debye•Griineisen 

equation of state, with appropriate density variations of the Debye temperature and Griineisen 

coefficient. The thermal contribution to the free energy is 

(4. 1) 

where 9 is the density-dependent Debye temperature, N is the number of atoms per unit mass, 
0 

and 

3 
D(X) "- -

x3 

x 

f Y
3

dY 
y . 

o e -1 

The corresponding expressions for pressure, energy, and entropy are 

and 

-9/T 
SD= - N

0
k \ 3 .l!n(l - e ) - 4D(9/T)], 

(4. 2) 

(4. 3) 

(4. 4) 

(4. 5) 
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where r is the Griineisen coefficient and related to 0 by 

(4. 6) 

In the case where T >> e. the above expressions may be written 

(4. 7) 

(4. 8) 

(4. 9) 

and 

(4. 10) 

The density variation of rand B could be calculated from either the Slater, Dugdale and 

MacDonald, or free-volume relations. Eq, (3. 9), with the cold compression curve discus_sed in the 

last section. However, it is often observed experimentally that, for small compressions, r is 

nearly inversely proportional to the density. This also seems to be a fair approximation to the 

results of the theoretical mod~ls over small ranges. For large compressions the limiting value 

of ffor all materials is that of a free electron gas of 2 I 3. A relation that approaches both limits, 

is properly behaved in the intermediate region, and l_eads to much faster evaluation than the above 

theoretical models is 

r P 2 

r = ~ o + c24 (1 - :o) . P > Po . (4. 11) 

The coefficient c24 should be 2/3 to reach the correct limit as P .. "" However, in problems 

where only slight compressions are encountered (77 ~I. 3), c 24 may be set to zero to improv.e 

speed. The Debye temperature is found from integration of (4. 6), If 0
0 

is the reference Debye 

temperature, then. it is· easily shown that 

2 

(
P)c24 1 

1 ( Po Po)/ e = e - exp J r Cl - p Ip l - - c 3 - 4 - + - • 
op

0 
lo o· _2 24 p P2 .J 

(4. 12) 
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IV-2. Ideal Gas 

At sufficiently high temperatures or low densities, the nuclear term should describe an 

ideal gas. Let us define N.e as the number of atoms per unit mass with atomic number Z£ and m..e 
as its atomic mass. Clearly, the relation 

(4. 13) 

follows from the definitions, The thermodynamic expressions appropriate to this situation are 

F = 
G 

and 

PG= N
0
pkT , 

3 
E = - N kT 

G 2 o 

(4. 14) 

(4, 15) 

(4. 16) 

(4. 17) 

where u1 are the internal partition functions. In the present calculation all U.e are taken as unity. 

For ionized gases, the above expressions should be modified so that the sums include all states of 

ionization. However, since the treatment of ionization discussed in the later sections is of the 

average atom type, only one term is required for each atomic number. Note that these relations 

assume a monatomic gas phase. No provisions are made for molecules. 

IV- 3. Inte r polation Metnod 

The principal difficulty in joining these two limiting theories together is the region of 

melting. This transition is considered in Section V-1. Here an interpolation method suggested 

by the Russians, 
16 

but in a somewhat different form, is developed. The nuclear free energy is 

boldly written as 

F =NkT j 31n(9/T)-1+-
2
3

1n(l+ itJ ) l, 
n o (4. 18) 

where 
C p2/3 T 

13 ljJ=----
62 

(4. 19) 
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and 

(4, 20) 

At low temperatures (l/J « 1), Eq, (4, 18) reduces to (4. 7) and the thermodynamics to that 

of a solid, For sufficiently high temperatures (l/J >> 1 ), gaseous thermodynamics are the result as 

the limiting form of (4, 14) is obtained, Communal free energy and entropy terms are properly 

included, The corresponding interpolation equations for pressure, energy, and entropy are 

P = pN kT J~~ 
n o '11+1/>, (4. 21) 

E =-N kT ~ 3 {2+'} 
n 2 o l+l/J 

(4. 22) 

and 

S = - N k { 3 .£n(9/T) - 4 + -
2
3 .£n(l +I;\)+ -

2
3 -

1 
l!J } • 

n o + w (4. 2 3) 

Clearly, these expressions do not yield a true melting transition, but in many cases they are 

acceptable for hydroc;iynamic code use in this form. 

There is still one major problem in the development of these relations. Both (4, 11) and 

(~. 9) are unacceptable for rat low densities. It has been found that a simple extrapolation of the 

form 

(4. 24) 

is sufficient, where c
16 

and c
17 

are det_ermined so that rand~ are continuous at p = p
0

• This 

form has no physical· basis and is used only because it works well. To illustrate fully the nature 

of this expression, further relations are required. When Eq. (4, 6) is integrated, the result is 

where 

20 

e 
0 

C 
14 

= P exp (-2r
0 

+ 3/2) • 
0 . 

(4. 25) 

(4. 26) 



The Debye temperature given by (4. 25) clearly has no relation to Debye theory and is purely an 

extrapolation, However, the value of 9 given by (4. 25) decreases rapidly as the density decreases 

from p , Hence ljJ, given by (4, 19), increases rapidly with decreasing density, thereby yielding 
0 

gaseous thermodynamic relations in which r is not used. An important point is that the rapid 

change from solid to vapor equation-of-state relations occurs in a region where the one-phase 

calculation is not used, It will be eliminated from the final thermodynamic functions by a 

Maxwellian construction between the solid or liquid and vapor phases as discussed in Section V, 

The overall effect of (4, 24) is to provide a reasonable extrapolation of the high-density properties 

to the mixed-phase boundary, a gas at low densities, and a single form convenient for numerical 

computation, 

With increasing temperature the interpolation problem diminishes. Near the critical 

point, ljJ is generally in the range of 10 to 100, The exact critical point parameters depend only 

slightly on the form given by (4, 24), Because of the relation given by (4, 6), a change in I' is 

reflected by a change in 9 and ljJ which have opposite effects on the equation of. state and tend to 

cancel. Under the present formulation, the critical parameters are principally determined by 

the expressions used for the zero-temperature isotherm and melt transition, 

The approximation leading from (4. 1) to (4, 7) has some undesirable effects on the 

equation of state. The entropy calculated from (4. 23) does not vanish at zero temperature. It 

would be a simple matter to correct this by including the proper terms in (4, 18) and its deriva­

tives. However, this would require the evaluation of the Debye function in the hydrodynamic code, 

While this presents no difficulty, it is not believed that the accuracy gained is worth the increased 

computational time required. The only noticeable effect in a hydrodynamic calculation is seen in 

materials with unusually high Debye temperatures, The calculated entropy at low temperatures 

can be negative. This has no real effect on the hydrodynamic calculation. 

The derivatives of the thermodynamic functions which are required can be shown to be 

oE 
C n 
vn "' ~ 

I 

( 1 + iJJ ) (2 + 1/.1) ; 
(4. 27) 

{ ( ___.!!!_) < 3 r - o 1 - 1 + 11> (3r + ip) f (4. 28) 

and 

ap n P n { (._L) 2(3r - 1)2} 3P ~ okT dI' 
~ = -p 1 + 1 + l/J 3 <ar + Iii l + 1 + iP dp • 

(4, 29) 
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where 

and 

IV-4. 

dI' 
dp = 2C 16p + C 1 7 ' p < po ' 

Relation of the Griineisen Coefficient and 
Other Material Properties 

(4. 30) 

(4. 31) 

Extensive tables of reference for Griineisen coefficients (!' ) are available. Unfortunately, 
0 

many of these have been adjusted for special purposes or do not represent what they are supposed 

to represent. A serious error is made by using an 11 effective 11 Gri.ineisen coefficient determined 

from a porous material by the relation 

(4. 32) 

where the pressures are in excess of the yield point. r in this paper applies only to the full 
0 

density material. An effective value for a porous state calculated by (4. 32) can be, and normally 

is, considerably different. 

r may be expressed in terms of quantities easily measured at low tempe:ratures, \'iihen 
0 

the relation 

( '?Jp) (~p) . 
- cT p ~ T 

(4. 33) 

is examined, it is clear that (3. 8) may be written as 

The difference in the heat capacity at constant volume C and that at constant pressure C is given . . v p 

by 

(4. 35) 
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At the point of reference the above quantities are 

(4. 36) 

and 

(4. 37) 

where oc is the coefficient of linear expansion. The reference value of the Grilneisen coefficient 
0 

is then 

In the present situation, 

3et B 3Ct B r = ~ = _ ___ o_ o __ _ 
0 pocv pc -9oc2TB 

0 p 0 0 0 

C 3N k 
v 0 

(4. 38) 

(4. 39) 

It is clear from (4. 38) that a small value of I" will yield a small expansfon coefficient. 
0 . 

This can sometimes cause unrealistic behavior when the porous material computation of R4 is 

used. Using a small effective value of r determined by (4. 32) and experimental data; as r , in 
0 

effect includes the distention properties twice, 

V. PHAS~ TRANSITIONS AND RELATED PROPERTIES 

There exist certain areas on the thermodynamic surface where several phases of the 

material are simultaneously present. An example of such a coexistence region is the melt 

transition, where both the liquid and solid states are found. It is generally not possible to 

describe material in such a condition by a single function such as given by (2. 12). Each phase 

must be considered separately and mixture rules applied to find the effective properties. Consider 

a mixture of Phase 1 and Phase 2, One expression of the Gibbs phase rule says that in equilibrium 

the temperatures, pressures, and chemical or Gibbs potentials of the phases must be the same: 

(5. I) 

(5. 2) 
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and 

(5. 3) 

where P1 and p
2 

are the respective phase densities and 

G = E - TS+ P/p = F + P/p (5, 4) 

is the Gibbs potential. Assume that 

(5. 5) 

One of the main problems in employing this type of formulation is determination of these phase 

densities. The numerical difficulties involved are covered below, For the present it. is assumed 

that p
1 

and P
2 

are known as functions of temperature, 

To evaluate the thermodynamic properties of a state 

P
1

<p<p
2 

(5,6) 

and of the proper temperature, the following relations apply. The mass fractions of 1 and 2 are 

and 

(5; 8) 

The thermodynamic functions are then 

(5. 9) 

(5. 10) 

(5, 11) 

(5. 12) 

oP = O 
op ' 

(5. 13) 

24 



and 

(5. 14) 

where (5. 12) is the Clapeyron-Clausius relation and the total derivatives in (5. 14) must be 

determined from the component phase data. With some effort it can be shown that 

(5, 15) 

and for each phase, 

dE. 
l 

dT (5. 16) 

The phase density. derivatives are determined along the boundaries of the mixed-phase region. 

When the chain rule 

ap ap . oP . ap. - = __ 1 + __ 1 __ 1 

oT oT ap . oT 
l 

(5. 17) 

and (5, 12) are employed, it follows that 

ap. 
l 

oT 
(5, 18) 

Mixed-phase states possess several interesting properties, Note from (2, 9) and (2, 10) 

that bcith the constant pressure heat capacity C and the linear expansion coefficient O! are 
' p 

undefined, This result reflects the fact that, at constant pressure, the temperature of a phase 

mixture cannot be increased. Also note that the isothermal bulk modulus vanishes, The 

adiabatic bulk modulus and the sound speed do not vanish but can become very small in some 

regions. This causes some strange and interesting effects in hydrodynamic calculations, 

Methods have been included to treat four types of phase transitions. Liquid-solid 

(melting), liquid-vapor (boiling), solid-vapor (sublimation), and some simple solid-solid 

transitions which are optional, The first of these was not available in the computation in R2. 

Since all these phase changes occur at relatively low temperatures, the thermal electronic terms 

are not included in the mixture relations, since they would have little effect other than to slow the 

computation, 
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V-1. Melt Transition and the Liquid Eguation of State 

The method of treating the melt transition in the current version is a rec:ent addition. 

An earlier unreported method was found to be inadequate in several cases. Some calculations in 

which the previous form is used have been reported. 
17 

The changes in the present form will not 

modify the results and conclusions of these calculations to any great extent. 

The present calculation is still experimental and might be modified. The physical 

relations employed seem to be realistic and reliable. However, the numerical procedure can be 

quite slow in relation to other thermodynamic regions. Work is under way to try to improve the 

situation, 

The normal approach to this problem would be to generate independent state surfaces 

for the liquid and solid with the methods used in Sections Ill and IV or an equivalent, Denote 

the liquid functions by J.. and the solid by s. The difference is 

F (p, T) = F n (p, T) - F (p, T) , 
m x s 

(5. 19) 

where m denotes the "melt contribution. 11 In terms of the notation of (2, 12), 

F (p, T) = E (p) + F (p, T) , 
s c n 

(5, 20) 

The approach employed here is to rewrite (5, 19) as 

Fn(p• T) = F (p, T) + F (p, T) 
x s m 

(5. 21) 

and try to generate expressions for the melt contribution, The liquid functions are then computed 

by adding these terms to the solid expressions, This procedure has several advantages, the 

principal one being that there is a much greater chance of producing usable relations. On the 

other hand, it is suggested that the results be checked by one of the test programs in R5 before 

a hydrodynamic code run is attempted. 

Clearly, the main problem is to find the proper function for F (p, T). It is not hard to 
m 

find a form that gives proper behavior in the region of zero pressure melt, The difficulty is to 

determine functions which fit this requirement and which do not destroy the description in other 

regions. This is more severe than it might seem, since F (p, T) and all of its derivatives must 
m 

asymptotically become negligible with respect to the corresponding term in F (p, T) at high s 
temperatures and both high and low densities. If it fits these requirements, the exact form does 

not seem to be of great importance. Such a function is 

Fm(p,T)=C
43 

.JTpa.+C p 13 +c Py 44 45 • (5. 22) 
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where 

'Y > {J (5. 23) 

and Ci, {J, y, C 
43

, C 
44

• and C 
45 

are constants. It is not difficult to show from . the expressions for 

P that o:, {J, and y must all lie between 0 and 1/2, The values in current use are 
s 

Ci = o. 3 

{J = o. 1 • (5. 24) 

'Y = o. 2 

but they can easily be changed if the need arises, The C parame~ers are treated as material con­

stants determined by input parameters and properties of F , The temperatu·re dependence of B . 
(5. 22) is constrained by the corresponding terms in F , The required thermodynamic functions s 
are: 

and 

Em= 1/2 c43 ff l
1·+ c /+ c p'>' . 44 45 ' 

s 
m 

c vm 

2 fi 

(5. 25) 

(5, 26) 

(5. 27) 

(5, 28) 

(5. 29) 

(5. 30) 

It can be shown that each term becomes small compared to the corresponding i;olid expression at 

extremes of temperature and density. 

Two input material quantities must be given: the heat of fusion Hf and a parameter which 

defines the density of the liquid .at the triple temperature pi.m' The C constants are deter~ined 

as follows: From the solid and vapor EOS, the end points of the triple line ar~ calculated. Define 
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.p sm as the solid density and Tm as the triple line or reference melt temperature. This compu­

tation is part of the procedure detailed in Section V-2, 

It is assumed that 

(5. 31) 

The three relations required to compute ttie C values are: 

P.(Pn ,T )=P (p ,T_)=P <Pn ,T )+P (pn ,T), 
.c. .c.m m s sm m s ... m m m .<ID ID 

(5. 32) 

En <P. ' T ) = E (p ' T ) + Hf = E (p n • T ) + E (p n ' T ) • 
"' "ID m s sm m s ... m m m i;m m 

(5. 33) 

and 

G 0 (p" , T ) = G (p , T ) , 
... i;ID m s sm m (5. 34) 

where G is the Gibbs potential. A more useful form of (5, 34) is 

H p (p ' T ) Ip -p I 
s (p T ) ;: s (p T )+-f- + s sm m sm .l!m 
i. lm' m s sm' m T T IP Pn l 

m m l sm .c:m I 

(5. 35) 
S (p

0 
,T )+S (p

0 
,T ), 

s .a:.m m m .c.m m 

The liquid state surface is now completely defined, 

The entire extent of the equilibrium phase boundaries can now be calculated as a function 

of temperature, As an example, the results for aluminum are shown in Fig, 1. In this case, 

Hf= 3, 98 x 10
9 

ergs/gm and Pn /p = 0, 924, More details are given in Appendix D, Note that 
i;m sm 

the melt curve extends into regions of tensions (P < 0) for T < T , 
111 

The phase densities may be computed by a two-variable Newton's iteration, 

quantities 

.1' = p s - pl 

and 

The 

are defined, Given the proper densities, both .1' and •,r, vanish. After noting the relation 
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(5, 37) 

(5, 38) 

·4 



0,2 

o. 15 

o. 1 

0,05 

.. . ' 

Liquid-vapor 

T (triple liqe) 
m 

2,0 

Liquid 

2. 5 

p(gm/cc) 

Fig. 1 Phase diagram for aluminum, 

Solid 

Reference point 
p T 

0 0 

3.0 

29 



it is easily shown that the corrections are 

(5, 39) 

and 

(5, 40) 

The problem of how to employ this in the code must now be resolved, One approach 

would be to compute the phase densities at a mesh of temperatures during the initialization calcu­

lation and interpolate for intermediate values during the running mode, This type of procedure 

is used for those transitions involving the vapor as related in Section V-2. However, in the 

present situation, a rather large number of points would be required for accuracy because of the 

steepness of the surfaces and the nearness of the two densities, As a result, in the current 

version the Newton iteration is used in the running mode of operation. A number of checks have 

been included to make this computation as fast as possible, but future modifications are probably 

required in this area if all else proves satisfactory, 

When the EOS package is ca:l.led, with temperature and density defined, a set of tests is 

applied to determine whether the point in question clearly lies in either the one-phase liquid or 

solid regions. This is the condition if the point do~s not lie in the shaded area in Fig. 2. 

Temperatures c
48

, c
49

, and c
52 

are determined to help bound tne melt region. Lines A and B 

serve the same purpose and, respectively, have the forms 

T = T + c_
0

(P-P
0 

) 
ffi ::l Lffi 

(5. 41) 

and 

For a point in the shaded area the iteration is started to determine P.R. and Ps· This computation is 

performed in the subroutine ANLS. 

Under certain conditions this iteration may be terminated before final convergence. The 

exact values of p .R. and p s are important only if 

(5. 43) 
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If, during the iteration, it becomes clear that (5. 43) is not satisfied, no more computations are 

performed, In the case where a step in the iteration y~elds 

1. 04 P <P.R. , 

(5, 44) 

and 

t:.p > 0 ' a 

it is assumed that p, T represents a liquid state. On the other extreme, 

p > 1. 04 Ps ' 

(5. 45) 

and 

t::.p < 0 
s 

indicate a solid state. Both conditions state that the iteration is moving away from the given 

density. There is no assurance that this procedure (called the fast iteration) will always give the 

correct answer. Hence, during the initialization, an extensive series of test calculations is made 

to test the method, If the computation at any point fails, the slower method of forcing complete 

convergence is imposed, 

When the iteration is completed, it should be clear which phase or phases and thermo­

dynamic relations are appropriate, If .(5, 43) is satisfied, Eqs, (5. 7) through (5. 18) are used 

with 1 = liquid and 2 = solid. 

As stated before, a study is under way to try to improve the numerical methods employed 

in this computation • . . Clearly, storage limitations and reliability requirements pose some major 

problems. 

V-2. .Liquid-Vapor and Solid-Vapor Transitions 

In nearly all problems involving materials which are heated above melt, mixed-phase 

regions involving the vapor are encountered in the relief process. This area is also of great 

importance in the rapid heating of porous materials. 
4 

The treatment given here is much like 

that detailed in R2. Little trouble has been found with the previous method. One addition is a 

backup computation in the determination of the critical point, The temperature mesh was also 

modified slightly for equations of state with a melt transition as defined in the last section. 

However, much of the coding had to be redone because of the order in which information was 

required. 
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Generally, the method is as follows. First, for those materials where the melt tran­

sition is to be included, the triple line properties are determined. This must be done so that the 

liquid EOS or, more correctly, the melt contribution can be defined. Then, with use of the liquid 

EOS, the critical point is located, At a set of temperatures determined by the critical and melting 

temperatures, the phase densities are located. On the high-density side, either the liquid or 

solid EOS is used, depending on the relation to the melting point. In the rtUming mode, the proper­

ties of mixed-phase states are determined by interpolation in this stored mesh. 

The critical point is located by determining the density, p , and temperature, T , where 
c c 

0 . (5. 46) 

As in R2, a two-variable Newton 1s method is employed. Temperature and density corrections are 

computed by 

(5. 47) 
' 

and 

(5. 48) 

ap ::,p 
until the corrections are negligible. Only the quantities ap and :iT are calculated from analytic 

expressions. The higher order derivatives required in (5, 47) and (5. 48) are computed numerically 

by using a grid of nine points. 

In some cases, pr.oblems can arise when the ·third derivatives in the above expressions 

happen to be near zero. A backup calculation is provided if this procedure fails. The code 

attempts to follow the curve defined by 

oP 
op 

0. 

The critical point is taken to be the first maximum temperature computed on this curve. 
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Below the critical point, the phase densiti~s are computed in a method similar to that in 

Section V-1. The relations are 

and 

.'?!' = p - p 
x v 

'&=G -G 
x v 

(5, 50) 

(5, 51) 

where the subscript v represents vapor and x either liquid or solid, depending on whether the 

temperature is above or below melt. The corrections to the phase densities are 

(5. 52) 

and 

(5, 53) 

Special care must be taken to treat very small vapor-phase densities which may occur at low 

temperatures. 

The results for aluminum are typical and are shown in Fig, 3, The section of the melt 

curve is the same as that in Fig, 1. The position of the critical point has been adjusted by using 

the function given by (3, 33), Details are given in Appendix E. This is not yet the final form of 

the EOS to be used in the hydrodynamic code. Below the triple line, a modification is made to 

treat tensions in solid materials. This feature is detailed in the next section, 

The two curves resulting from (5, 46) on the single-phase surface for a normal EOS are 

shown in Fig, 4. This surface must be used in all the mixed-phase construction. The critical 

point is at . the intersection. Under some conditions these curves may not have the proper form. 

A clearly unacceptable result is shown in Fig. 5, Three points satisfy the mathematical co.n~ 

ditions defining the critical point, The difficulty is reflected in the code output as a lack of 

convergence in the mixed-phase calculation. Because of a rather complex interaction of the input 

parameters, no single input can be blamed for this problem, Generally, some unrealistic input 

number is the cause, In any case, something must be changed slightly to produce a usable form. 

The test programs in R5 can be used to study and correct the problem. 
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In the running mode, the EOS package must be called, with temperature and density 

defined. The routines first check to determine whether the point in question lies in a region 

where a liquid-vapor or solid-vapor state might exist, When the results of this test are positive, 

phase densities are interpolated from the stored arrays. The check given by (5, 6) is then 

applied, In the current situation, 1 = vapor and 2 = x, as defined above, For a mixed-phase 

state the thermodynamic functions are determined by using Eqs. (5, 7) through (5, 16), except that 

(5, 11) is modified slightly in some cases when M "" 1 to insure continuity, The phase density 
x 

derivatives are determined directly from the interpolation expressions. so that (5, 18) is not used. 

V-3, Tensions in Solid Materials 

To properly treat the response of solid materials, allowance must be made for regions 

of tensions (P < 0) in the state functions, In CHART D this is accomplished by using a part of 

the one-phase surface in a region that, by equilibrium thermodynamic logic, should be a mixed­

phase solid-vapor state. Figure 6-4 in R4 illustrates the procedure used for both the tabular and 

analytic EOS forms. For any state where 

T :s; T . 
min 

(5. 54) 

the one-phase result is .used_. The term p . is an input parameter with a default value of O. 8 P • 
min o 

The above condition includes solid, solid-liquid, and a small pure liquid region on the one-phase 

state surface. 

There are two checks which should be applied to p . • First of all, the tensions allowed 
mm 

should be more than sufficient to satisfy the fracture models; i, e,, P( p . , T), T s T must be 
nun m 

larger in magnitude than any stress calculated in the code before fracture. Clearly, this means 

that at least 

pmin < Pim ' (5. 55) 

where p lm is the density of the liquid at the triple line as diSC\ISSed in Section V-1. A nonfatal 

message will be generated if (5, 55) is not satisfied, 

The other condition is numerical and related to the melt transition. The results for 

aluminum are shown in Fig. 6. Note that the melt transition extends into the tension region and 

intersects the line at p . (= 2, 305 gm/cc). For numerical reasons it is required that the solid­
mm 

phase line and p . intersect. In some cases the code will increase the value of P . to satisfy 
mm mm 

this requirement. However no automatic adjustment in conflict with (5, 55·) is allowed, In this 

case the code will generate a message concerning a low-temperature melt error, and an alternate 

treatment of the melt transition described in the next section will be used. 
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V-4 . Alternate Treatment of Melting 

In many problems the full treatment of the melt transition given in Section V-1 is not 

required. Some of the more obvious are calculations where the material is either well above or 

below melt. For these cases an alternate method is provided. 

This calculation was the only option provided in R2 and is, in reality, no special calcu­

lation at all, The melt corrections are not included and the liquid and solid equations of state are 

identical. In this case 

(5. 56) 

and 

(5. 57) 

as related to Section V-1. On the other hand, the tension region of Section V-3 is retained. 

It is suggested that this option be used whenever possible after the relation of the melt 

temperature and energy below are studied , 

V-5. Relation of Melt Temperature and Energy 

Input options are provided so that either the melt temperature Tm or the melt point 

energy E may be defined. These quantities are related so that only one can be specified. In 
m 

either case T is the variable stored. When E is given, the code follows the zero pressure 
m m 

isobar to find a temperature corresponding to Em. 

The variable Em can represent two different quantities, depending on which treatment of 

the melt transition is employed. For the full .calculation of Section V-1, Em is the energy of 

incipient melt with respect to the reference point. This is expressed as 

(5. 58) 

in the notation of (5, 33), 

For the simplified treatment of melting in Section V-4, E should be the energy of com­m 
pleted melt, The two values differ by the heat of fusion Hf' Obviously, the latter method will 

yield a higher melting temperature than th'e former. 
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The heats of fusion for most simple materials are all well known. For those substances 

where Hf is not available, a simple scaling relation has been developed by Grover. 
18 

Expressed 

in the units of current interest, the result is 

where A is the atomic weight, 

V-6, Alternate Treatment of Liquid-Vapor and Solid-Vapor 
Transitions 

(5. 59) 

The detailed computation explained in Section V-2 is not required for some problems, 

One of the more obvious cases is where the temperatures remain below melt and the mixed-phase 

regions are never entered. An alternate method of treatment, similar in concept to that in 

Section V-4 is provided. 

This calculation simply ignores the existence of phase mixtures and evaluates from the 

single-phase surface, except that tensions are suppressed above the melt temperature. This 

violates a multitude of thermodynamic inequalities and destroys the carefully constructed self­

consistence of the EOS information, For this reason it is S\lggested that this option only be used 

for ·materials that remain in the solid state. Under this condition, the results of the present 

calculation are identical to those of the more complex form and there is a saving of computer 

time. 

This computation is employed as a backup to the more detailed method. In· case of a 

catastrophic failure of the iterations in Section V-2 during the generate mode, this form is tried 

in order to save the calculation. Error· messages are generated when this occurs, The test 

programs in R5 should be used to locate and correct the difficulty, 

* V-7. Simple Solid-Solid Transitions 

As discussed in Section III, many substances undergo phase transitions upon compression 

which z:esult in a more closely packed structure and decreased compressibility, In this section, a 

method is given whereby some such transitions may be treated in an approximate manner. Both 

first- and second-order transitions are considered. However, the discussion is restricted to cases 

that do not depend on the temperature, In many instances, especially those that occur at high 

pressures, this seems sufficient. This restriction allows all changes to be made in the cold 

components. The thermal components will not be altered, While this procedure is surely not 

completely correct, it does allow at least a partial treatment. 

* This section is identical to Section IX in R2, 
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In Fig. 7, three types of cold compression curves and the associated H ugoniots are 

shown. Curve (a) is for a simple material showing no apparent phase changes. This type of 

data is treated by the method given in Section III. Curves (b) and (c) represent second- and first­

order changes, respectively. The second-order transition is clearly a special case of the first­

order transition, Thus all relations developed below will be for the more complex case. 

The notation is as shown in Fig. 7, The term Ptr is the pressure at which the first odd 

behavior is nqted in the Hugoniot. The term P is the cold pressure and P
1 

is the density at 
ctr 

this point, The lower density Phase 1 exists at this density and below. The higher density 

Phase 2 exists for p 2: p
2 

, where p
2 

2: P 
1

• If p
2 

= p 
1

, the transition is of the second order; if 

p
2 

> p 
1

, it is of. the first. 

Denote 

(5. 60) 

and 

(5. 61) 

A three-part description of Pc is required, In the region T) :> 11 1, Eq. (3. 4) is emplo!ed with a 

slight modification. At T) = '1')
1

, we require that P = P t • As (3. 4) has no free parameters, 
c c r 

this is accomplished by ignoring condition (3. 11). An effective value of Tr is calculated so that 

the above requirement is satisfied. New values of c 34, c
35

, c 36, and c 37 are computed. 

In the region 71
1 

< 7J :> 712, the value of Pc = P ctr is constant. The energy is given by 

(5. 62) 

where Ec (1)
1

) is computed by (3.17), In this region a unique Hugoniot curve may not be defined. 

If the thermal components of pressure do not increase with sufficient rapidity, a two-wave shock 
15 

structure will result. Discussions of this phenomenon are found in Al 1tshuler 1s work. 
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Fig. 7 Thre~ types of Hugoniots. Curve (a) indicates no phase transition, 
curve (b), second-order phase transition, and curve (c), first-order 
phase transition. 



For 77> 77
2

, the· form given by (3, 4) is again employed but with new coefficients in the 

interpolation terms, 

11>112 ' (5, 63) 

where c
32 

and c
33 

are as previously defined. The remaining coefficients are determined by the 

value .of Pc and· its first two 'derivatives at 77
2

, The energy is given by 

where 

1 
· C . C 3C 

Ee('")= Cg+-p {3C32112/38 (C ?'1-1/3) + ~ +~ ~+ _!Q j ., '( 3 33'' fl 2 2/ 3 ·1/ 3 
00 11 ' TJ 

cg= Ec(771) - _PI ! 3C321'12/3 ,r (C 11 -1/3) + c38 + ~ 2 + 
2 -3 33 2 772 2 2/3 

00 ~ 

3C40 . 
--""T/3 I 
112 

(5. 64) 

(5.65) 

&-
3 

is given by (3. 19), and Ec (77
2

) is computed from (5. 62). For pressures sufficiently high, a 

well-defined Hugoniot is again formed in this region for compressions somewhat greater than 112· 

Some approximate relations can be given for the form of the Hugoniot for the above 

relations. However, this calculation has not as yet been fully tested in hydrodynamic code use. 

The interaction with nonthermodynamic quantities, e.g., artificial viscosity, is not completely 

known. For this reason only the input quantities will be given here, an~· it is suggested that this 

calculation· be used only with the greatest care. 

Five input qua~tities are required. Let these be denoted by D1, D2, D3, D4, and D5• 

D
1 

is the density p
1

• If n
1 

< p
00

, this calculation is not used, D2 is the density p2• If D2 < D1• 

the value of D is set equal to D
1

• This defines a second-order transition. D
3 

is the pressure 
2 . 

P ctr' If n
3 

s 0, the value of Tr used in Section III is employed to calculate D3• D 4 is related to 

dP 

d17 el f/ . 
2 
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If 

D = 0 
4 

D < 0 
4 

(5. 66) 
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d
2

P 
o5 is related to -fl 

dT) 712 

If 

(5. 67) 

D
5 

< 0 , 

Note that if D
1 

is properly defined but D
2 

= D
3 

= D 4 = D
5 

= 0, no transition occurs, since all 

fun'ctions are continuous. 

* VI. ELECTRONIC CONTRIBUTION TO THE EQUATION OF STATE 

In nearly all calculations of the equation of state, the electronic contribution is the most 

complex and costly. There are two methods of determining these terms in common use. At low 

densities, ionization equilibrium calculations are appropriate and, with valid expressions for 

electrostatic interactions, can be used at relatively high densities. For high compressions, 

temperature-dependent Thomas-Fermi calculations are available. 

One of the fundamental differences in these two calculations is that, in the former, the 

average thermodynamics is computed with regard for all possible systems, whereas in the latter 

the the'rmodynamics of a single average system is calculated. In spite of this and numerous 

other differences, it has been found that the two methods, properly employed, are not in serious 

disagreement. It should be remembered that the electronic term is defined to vanish at zero 

temperature. Hence the zero-temperature Thomas-Fermi values must be subtracted from the 

normal calculation of the same density. This eliminates many of the effects of degeneracy. 

Surprisingly, the largest differences in the two calculations, in regions where electronic terms 

are important~ occur at relatively high temperatures where the ionization calculation yields an 

atomic shell structure effect that the Thomas-Fermi calculation does not. 

>:c 
This section is identical to Section Vin R2, 
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The method used here is the simplest available, The average atom ionization model 

developed by the Russians, with modifications for low and high degrees of ionization, is of both 

sufficient accuracy and speed to be used in a calculation of this type. Any number of elements 

can be treated with a very dependable method, The reader is referred to the excellent text of 

Zel 'dovich and Raizer
19 

for a ~omplete discussion. Here, only the information required for 

numericar evaluation is given. 

In the original development of the routines given here, it was planned that the ionization 

calculation should be used only at low densities and high temperatures. An exact and consistent 
. . . . . . . 20 

table of scaled temperature-depende·nt Thomas-Fermi values was available. However, once it 

was discovered that the two calculations were quite similar, the method was changed to the 

present form. There is a considerable saving in storage requirements, and the problem of 
. . 

switching calculations in a consistent manner is eliminated. 

46 

The following notations are used: 

Zl. = atomic number of element l. 

atomic weight of element i. 

atomic mass of element i. 

number fraction of element i. 

N = total number of atoms per unit mass 
0 

Ni. = number of i. atoms per unit mass 

N = number of free electrons per unit mass 
e 

N~ num.ber of i. atoms per unit mass of net ionic charge i 

I~ ith ionization potential of eleme~t i. 

m = average atomic mass 

z.Q = average ionization number of element .Q 

Z = average ionization number 

A = average atomic weight 

Z average atomic number 
m 



Self-obvious relations involving these quantities that will later be required are: 

and 

where N is the Avogadro number. 
av 

L::c.e 1, 
1 

N ZN 
e o 

N =C lrn=Li Ni 
.R. .R. • .R. 

l 

N =LiN. , 
0 R. ... 

(6. 1) 

(6, 2) 

(6. 3) 

(6. 4) 

(6. 5) 

(6, 6) 

(6. 7) 

(6. 8) 

(6. 9) 

(6. 10) 

The principle problem in this calculation is determination of the average degree of 

ionization of the various atoms. Ideal gas relations are used in computing the thermodynamics. 

No pressure ionization or related effects are considered, The electronic free energy is 

F = e 
(6.11) 
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where 

2(21TM k) 3/ 2 

A= e 
h 3 

-3 
:::.6 x 1021.(ev)-3/2 cm ., (6. 12) 

k 

Q(Z£) = LI~+ CZ£ - k) I~+l (6. 13) 

and k = k(.£) is the next integer smaller than Z.£" The relations of interest are 

p =ZN pkT 
e o 

(6. 14) 

(6. 15) 

(6, 16) 

- 2'Z 
C = 3/2 N k {z+ T oZ} +)' N Ik+l _£_ 

ve o oT ""; ~· £ ::T 
(6, 17) 

e - " ap { _-2 } 
"1T = Nopk z + T oT ' (6, 18) 

and 

oP . az 
_e ;, N kT { Z + p -) ap o ap (6. 19) 

In an ionization equilibrium calculation, the ionic populations are determined by a set of 

equations of the form 
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i 
N.2 
-. -

1 
= K (p, T) 

?\T1-
L~£ 

(6. 20) 



subject to the constraints on the total number of particles given by (6. 9). The function K(p, T) can 

be extremely complex in detailed calculations. In the simplest case, the normal Saha equations, 
. 21 

it can be shown that 

ui 

exp {-

i 

K(p, T) = .e. µ e + 11} 
i=l kT 
u.£ 

ui 2(27TM kT)3 / 2 

(- :~T) .R. e (6. 21) = i=l exp 

u.e. PN h
3 

e 

by matching chemical potentials through appropriate relations, where U~ is the internal partition 

function, µ is the electronic chemical potential, and nondegenerate statistics are assumed, All 
. e 

U~ are assumed to be equal. By combining (6.12), (6.20), and (6,21), it is easily shown that 

i i 

l = AT3/2 exp ~- I..e) 
N

i-1 pN T 
.R. e 

(6. 22) 

where both the temperature and ionization potential are in units of electron volts. 

The above set of equations may be solved by iteration. However, the Russian method is 

considerably faster, requires less storage, and usually yields nearly the same result. For 

reasons that will become clear shortly, there are separate calculations for single- and multi­

element materials. 

VI-1. Single-Element Ionization 

First consider low and high degrees of ionization. These two cases will be solved 

exactly, with the assumption that only two ionic species are present', The subscript I.., denoting 

the element number, will be retained for continuity, 

For Z ~ 1/2, it is assumed that only neutral and singly ionized atoms are present. It 

then follows that 

1 -N=N=ZN 
e i. o 

N° = N (1 - Z) , 
1 0 

(6. 23) 

(6. 24) 
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and 

1 
N1 · Z Kl 
- = -- = 
N° 1 - Z Z 

1 

(6, 25) 

where 

(6. 26) 

. 1 
and T .and I 1 are both assumed .to be in units of 'electron volts, Clearly, the desired quantities 

are 

and 

- 1 Z=-
2 

.IK2 + 4K - K I 1 1 1 1 • 

1 
az "' Kl i i - z ! I~+ 11 I 
oT T ! K + 2z ! I 2 TI , 

1 

(6, 27) 

(6. 28) 

(6. 29) 

When Z <? z
1 

- 1/2, only the ions of het charge z
1 

and z
1 

- 1 are present; In this case 

_ zi. z -1 
N = ZN = Z N + (Zn - 1) Nn i. 

e 0 .f. .f. L L 
(6. 30) 

and 

(6. 31) 

With the definition 

AT3/2 Z1 
K = -- exp (- I IT) 

2 PN 1 
0 

(6. 32) 
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the result is easily shown to be 

(6, 33) 

- zi. 
oz = K2 ~ z..e - z 11~ + Ll 
oT T 12 z - K2 + zi. - 1 2 T J 

(6, 34) 

and 

az K2 I z.E - z l 
3'P·"' - P) 2z - K + z - 1 • 

l 2 1 

(6. 35) 

lf neither of the above calculations apply, the Russian method is used in the range 

1/2 < Z < Z.Q. - 1/2, Equation (6, 22) is replaced by an expression of the form 

- AT3/2 -
Z = - exp (-I /T) 

PN 1 
0 

(6. 36) 

where ~ is an interpolated ionization potential function, If n is an integer and 

n - 1/2 :s; Z < n + 1/2 , (6. 37) 

then 

- n - n+l -li. = li.(n + 1/2 - Z) +Ii. (Z + 1/2 - n) (6. 38) 

The value of Z is adjusted by a Newton's iteration until Eqs, (6, 36) and (6, 38) are satisfied. The 

derivatives are obtained from 

and 

where 

oz - J 3 ~ l ~ - - ! - = Z (- + -c I 1 T + Z /:::,. I I 
oT 2 T I ( i. J 

az ZT a;;= -
pjT+z1:::,.~} 

This is the complete single-element calculation, 

(6. 39) 

(6, 40) 

(6, 41) 
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Vl-2, Multiple-Element Ionization 

The multielement calculation is similar to the sin·gle-element version. Here a value of 

Z is guessed and the values· of. Zi calculated as described· below.·. ·In general; . this set of .zi ·will 

not yield a value of Z by (6, 7) consistent with the assumed value. Again we use a Newton 1s cor­

rection, where 

(6. 42) 

is the change in Z for the next iteration, 

For each element the calculation is similar to the previous one, except that both Z and 

Zi.. are included in each relation, The results are, for Zi ~ 1/2: 

and 

with . 
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(K + Z)2 , 
.el 

z(z i 2· (Z )2 
i i. aZ 

- K£1p - K£1 op ' 

, 
__ AT3 /2 1; 

exp(-T) 
p No 

z : ·z - z 
i.. l! -z. + 1\1'2 

oz 
oT ' 

(6. 43) 

(6. 44) . 

(6, 45) 

(6. 46) 

(6, 47) 

(6. 48) 



and 

with 

For 1/2 < z
1 

< z
1 

- 1/2: 

and 

z = i. 

z.R. 

z K12 L~+ 2-J­-----2 T /2 T 
(Z + K.f

2
l 

a'K1 z K.e 2 

ap " - p(z + K.u>2 

K.'12 az 
- )2 oT ' 
(Z + K.112 

AT3/2 Z1 
K = -- exp (-I. /T) 12 P N /1. 

0 

lAT3/2 f In+l (n - 1/2) - In (n + 1/2) + T .en ----
£. R.. Zp N 

. 0 

oz.e , T T oZ} n 
_ : - ) - · + - ;;--- It::. 1

1 op ~ p z uP 

(6, 49) 

(6, 50) 

(6, 51) 

(6. 52) 

(6. 53) 

(6. 54) 

(6. 55) 

(6. 56) 
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where n is an integer, 

n :- 1/2 ~ Zl ~~n + 1/2· (6. 57) 

and 

(6. 58) 

The deriv.atives of Z required in (6, 17), (6. 18), and (6. 19) are calculated by noting in each of the 

above cases that 

and 

where a
1 

and tJ
1 

are known, With the applicfi!.tion of (6; 7), the result is 

and 

oz ap = 

which .completes the_multielement calculation. 
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(6. 59) 

(6. 60) 

(6. 61) 

(6, 62) 

... 

• 



:'I 

VII. RADIATION FIELD AND ENERGY TRANSPORT PROPERTIES 

The thermodynamic properties of the radiation field are not included as part of the 

analytic equation-of-state package in the current coding. In CHART D the radiation terms are 

added in a separate computation as detailed in R4. At sufficiently elevated temperatures, these 

terms are dominant. If it is desirable to include these terms in the package, the best position 

would be just before the computation of the sound speed in the subroutine ANEOS (see card 4082 

in Appendix G of R4), 

Since this EOS package is to operate in a radiation diffusion-hydrodynamic code, a 

value must also be supplied for the Rosseland mean opacity. Define>.. as the Rosseland mean 

free path and K as the Rosseland mean absorption coefficient. These two quantities are related 
r . 

by 

1 
>..=PK ' (7,1) 

r 

where p is the density. 

It is possible to include the effects of other transport phenomena in the radiation diffusion 

relations. Complete details are given in R4. Two p~ocesses treated in this manner in the current 

coding are normal thermal conduction (phonon) and hot electron transport. 

is replaced by Keff where 

The term K in (7. 1) . r . 

(7. 2) 

Expressions for the three terms on the right hand side of (7, 2) are developed below. 

However, it should be remembered that these are approximate relations and the results are not 

of the same caliber as the information in the tabular EOS, 

VII-1. Ross eland Mean Opacity 

An analytic formulation of the Rosseland mean which has the wide range of validity 

required for the present calculation was developed by the Russians in conjunction with the ionization 

calculation given earlier. The end result of their elegant calculation is
19 

1011 
p z z2 

KR = - 2 7/ 2 + 
A T 

o. 4 z 
m (7. 3) 
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where 

z2 = L; c 22 
' .£ .£..£. 

(7. 4) 

At high temperatures, Eq. (7. 3) gives answers close to the most detailed calculations 

available. In general, it tends to slightly overpredict K • At low temperatures, Eq. (7, 3) is, r . 
of course, not valid; however, in this case, radiation diffusion is usually not irnportant. The 

following material becomes dominant in (7, 2). 

VII-2. Thermal Conduction 

At sufficiently low temperatures the most important term in (7. 2J is the thermal or 

phonon conduction term. As w.ith most properties of solids, it is hard to predict from theoretical 

models. A simple representation of experimental data is employed. Two input parameters are 

required. 

The heat flux is 

FH=-H'i7T~ (7,5) 

where H is the conductivity and a ·characteristic function of the material. Generally, the de­

pendence of H on density is slight, and it is possible to represent approximately the experimental 

data for many materials over limited ranges of temperature by the expression 

c41 
H = H T 

0 
(7. 6) 

where H
0 

and C 
41 

are material ~onstants and input ·parameters. The conduction term in (7. 2) is 

then
4 

p 
(7. 7) 

where 

(7. 8) 

and a iS the Stefan-Boltzmann constant. Note that the units required of H are ergs/ (cm sec eV) 

which should be reflected in H 
0 

and C 
41

. 
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Obviously, it is not possible to describe abrupt changes in conductivity .by . (7. 6), Such 

changes sometimes occur with phase transitions but data are limited. If these effects are 

important, either the coding must be modified or a tabular EOS should be employed, 

VII-3, Hot Electron Conduction 

At intermediate temperatures and high densities, the dominant energy transport 

mechanism is the diffusion of hot electrons. The relations to describe this phenomenon have 

been developed by Mestel
22 

and put in good numerical form by Cox. 
23 

Unfortunately, accurate evaluation requires good .values of the electronic chemical 

potential, The calculation in Section VI assumed nondegenerate statistics, which affects the 

computed chemical potential, As a res\llt, only the nondegenerate limit of the conductivity 

expressions can be \lsed. However, a low-temperature modification is made to ensure a proper 

joining to the phonon conduction term, 

The energy flux resulting from electron diffusion is written as 4 

F = - L \IT 
L ' 

(7. 9) 

where L is the conductivity. In the nondegenerate limit
2 3 

32k7/2 T5 / 2 
L = 4 I 

rr v'2rrm e Z ® 
(7. 10) 

® = - Rn l { 2 } 
2 i - co s e (7, 11) 

and 

(7. 12) 

where k is Boltzmann 1s constant. m the electronic mass, e the electronic charge, h Planck's 

constant, Z is given by (6, 7) and N by (6, 10). The term® varies greatly only for small 9, In 
' ' 0 ' ' 

light of the other approximations, it seems reasonable to use 

l 2 1/ 3 l ( 7 l ® ~ ln (!) = .R. n 2 ../3ink (3TT ) YT = ln ) 6. 18 x 10 VT ~ .!. .ln 2 
e h <P N > i 7 3 l (pN 11I3 2 

0 0 

(7. 13) 
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This approximation ·eliminates the necessity of computing the cosine function. The expression 

required for (7. 2) is 

3 
K = 16a T 

L 3pL 

Tr a .J2iiffi e 
4 VT Z ® 

6k7/2p. 

416 v'T Z ®/P. 

(7. 14) 

There is a problem with this expression at low temperatures, since Z approaches zero 

so rapidly that (7. 14) tends to overshadow the phonon conduction term. This unreasonable 

behavior is a result of the approximations and can be fixed by requiring 

(7. 15) 

wh~re c 22 is given by (7. 8). This strange relation results from forcing the electronic and phonon 

conduction terms to join smoothly together at a temperature of 1 eV. In the case that phonon 

conduction is not included, 

(7. 16) 

is assumed, 

It must be admitted that the above relations are very crude representations of Mestel's 

express'ions. However, unless the computation in Section VI is completely reworked, little 

improvement is possible. For the present purpose, it wa~ felt that a crude approximation was 

better than completely ignoring the process. Much better values are available with the tabular -

EOS data. 

VIII. HUGONIOT RELATIONS 

An equation of state can be completely defined witho,ut any refer_ence to experimental 

Hugoniot data, As a result, a routine is included to calculate the Hugoniot. In Section VIll-1, 

an input option is discussed which allows approximate inclusion of experimental data. 
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known, 

The Rankine-Hugoniot relations w~ich describe the behavior .at a shock front are well 

If p.. T., P ., and E. are the initial conditions and p , T , P , and E are those of the 
l l l l s s s s 

shocked material, the conservation relations yield 

E - E . = _21 (P + p. ) s i . {
p - p l 

s l s i P. p 
l B 

(8. 1) 

At a fixed set of temperatures, the values of p which solve this expression are computed s 
by an iterative procedure. The shock and material velocities are computed from the relations 

(8. 2) 

and 

u u (1 - p.fp ) • 
m s i s 

(8. 3) 

The inputs required for this computation are P. and T .• As related in Appendix A, these 
l l 

variables are named RHUG and THUG, . Any initial state can be defined, although the most 

interesting case is from the reference points P and T • 
- 0 0 

In some cases, approximate Hugoniots for distended materials may be determined with 

this computation. If the initial density is sufficiently small that it lies to the left of the shaded 

area in Fig, 6, the code will treat the material as a solid-vapor inixtu:r:e. The initial pressure 

is the vapor pressure which is zero insofar as this calculation is concerned, This state is much 

like a porous material of zero crush strength. More exact calculations are available with the 

test programs in RS. 

VIII-1, Relation of Experimental Hugoniot Data and Input Parameters 

An option is available which permits experimental data to be defined in place of the 

parameters B
0 

and Tr defined in Section III. As is shown below, this computation is approximate, 

and results should be checked carefully, 

It is often observed that experimental Hugoniot data may be expressed in the form 

u = s + s
1
u 

s o m 
(8. 4) 

within experimental error, where S
0 

and s
1 

are constants. It can easily be shown that (8, 4) can­

not describe any material to very high pressures, Neither is it possible to generate an EOS with 

the current package which will exactly satisfy (8, 4), On the other hand, (8, 4) is a good 
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approximation at low pressure for a large number of substances, Here, this is employed by using 

expansions of the thermodynamic functions about the points P and T and relating these to S and s
1

• 
0 0 0 

If the initial state i is taken to be the reference point, · ' (8, 2) and (8, 3) may be written as 

P=P +PUU 
o o s m 

and 

u 
e_ = s 
p u - u o s m 

By combining these relations it may be shown that 

and 

(~:) I = s! 
s p T 

o o· 

(:2:) 
p sl 

· pT 
0 0 

2S
2 
0 

= -- (2S
1 

- 1) , 

(8, 5) 

(8. 6) 

(8. 7) 

(8, 8) 

where the well known property of second-order tangency between the Hugoniot and reference 

is~ntrope has been employed. 
19 

If it is assum·ed that the. thermal component of pressure is 

independent of the density near p =.P I the relation 
0 

may be used to show that 

and hence 
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(~:) I 
s p T 

0 0 

B ·= p { s2 - 3r2N kT . } , 
0 0 0 0 0 0 

(8, 9) 

(8. 10) 

(8, 11) 



In the same manner the second derivative yields an expression for Tr' The relation is some­

what more complex than that in R2. The current form is 

where 

34> s 2 
po o 

Tr::---­
Bo 

- Jr (8. 12) 
0 

(8. 13) 

Unfortunately, neither P or B are known at this point iri the calculation. The value oo 00 

iZ> is near unity, but better values can be obtained 'by using the e~pressions 

and 

where 

and 

c
1 

(1 + 2 c.
2

l .+ B
0 

/ 

p ""'P \1-Bcl rl 
00 0 

00 , 

c
1 

= 3 r p N k T 
0 0 0 0 

I · (r -2 \ l B )l 
2 s1 - 1 - ~I \1 - Po:! . 

In (8, 17), 4> = 1 is used to allow solution without iteration, 

(8. 14) 

(8, 15) 

(B, 16) 

(8. 17) 

Thus approximate values of the input parameters B
0 

and Tr may be determined from the 

experimental constants in (8. 4), However, again it should be stressed that the results should be 

checked to determine their acceptability. 
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IX. PROPERTIES OF THE ANEOS PACKAGE 

A complete. listing of the ANEOS package is given in R4. 'In that version the dimensions 

are set for 20 different equations of state. The storage required on the CDC 6600 with the FUN 

compiler is about 37200 octal locations. The speed of evaluation varies considerably with the 

various options. An average is approximately 10-
3 se~ond per point (3. 6 x 10

6 points/hr), but it 

can easily vary by a factor of two either way. By far the slowest computation in the present 

package is. for mixed liquid-solid states, as discussed in Section V-1. These will be improved 

in the future. 

IX-1. Coding Structure 

The entire ANEOS package is made up of 14 subroutines. The following list gives the 

name and purpose of each, Only those subroutines which may be called externally include the 

argument list. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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ANEOS (T, RHO, P, E, S, CV, 
DPDT, DPDR, FKROS, CS, KPA, 
MAT) 

ANEOSl 

ANEOS2 (IGK, NUM, !TAPE, IZETL) 

ANION! 

ANION2 

ANION3 

EPI~T3 

ANTWOPH 

ANPHASE 

ANMAXW 

ANLS 

ANHUG 

ANPHTR 

ANDA TA 

Running entry point controls all cakulations 
after initialization, 

Nuclear and cold components. 

Main setup r.outine. 

Single-element ioni zation calcula.tion. 

Multielement ionization calculation, 

A part of the multielement ionization 
calculation. . . 

Evaluates the third exponential integral. 

Evaluates thermodynamic functions for liquid­
vapor and· solid-vapor states. 

Setup for liquid-vapor and solid-vapor 
calculations. 

A part of the setup for liquid-vapor and solid­
vapor calculations. 

Treats the liquid-solid (melt) transition, 

Calculates Hugoniots. 

Setup for solid-solid transitions. 

Contains all 'constants, such as ionization 
potentials, required by the other routines. 

; . . .. ·. 

·-



There are only three external links, detailed below (a, b, c), which couple the ANEOS 

package to the rest of the hydrodynamic code. 

(a) Subroutine ANEOS is the running mode entry point. Three of the arguments must be 

defined as inputs to the computation. They are the temperature T, the .density RHO, and MAT. 

The latter is the absolute value of the EOS nu.mber assigned to the material in question in the 

computation under item (b), below. All other arguments are computed by the various routines 

and returned as answers. P is pressure, E is the energy, S is the entropy, CV is the constant 

volume heat capacity, DPDT is the pressure derivative with respect to temperature, DPDR is the 

pressure derivative with respect to density, FKROS is the effective Rosseland mean absorption 

coefficient, and CS is the sound speed, The variable KPA indicates what type of phase structure 

is present. The code is 

1 = A one-phase state for an EOS without the melt transition. 

2 = A liquid-vapor or solid-vapor state, 

3 Indicates that a negative pressure has been set to zero as discussed in Section V-6, 
Code should not be run in this condition. 

4 A solid state for an EOS with the melt transition. 

5 A liquid-solid state for an EOS with the melt transition. 

6 = A liquid state for an EOS with the melt transition. This also includes pure vapor 
states. 

(b) Subroutine ANEOS2 is the initialization mode entry point, This computation must be 

completed before any calls to ANEOS are made. In CHART D this subroutine is called only once 

to generate all required equations of state. However, the coding is such that separate calls can 

be made for each material under consideration, Results can be requested from ANEOS for each 

material after that material has been initialized. 

The argument IGK may be 1, 2, or 3. The initialization occurs for !GK = 1. NUM is the 

number of equations of state to be generated and IZETL is an array containing the EOS numbers, 

All data cards discussed in Appendix A are read during this call. When IGK = 2, a complete dump 

of the calculated constants sufficient to restart the computation is produced on tape unit !TAPE, 

For IGK = 3, this dump is read from !TAPE. The latter two calls are designed to operate in 

conjunction with hydrodynamic code restart options, No input cards are necessary for a restart. 

(c) COMMON/BIG/ is used in subroutines ANHUG and ANDATA for initial data storage. 

The size of this block depends on the number of EOS stored in the library. After initialization is 

complete, the common block is not required and can be used elsewhere. In CHART D this space 

is used to store tabular EOS data read from tape following the ANEOS package initialization. 
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IX-2. Library Features 

Library facilities have been provided as a convenience to the users so that frequently 

employed EOS information need not be pWlched for each problem.· The'requir~d input data is 

listed in Appendix A. Basically, the information put on cards 2, 3, 4, and 5 is store~ in data 

statements. Each user can modify th~ library to meet his requirements, For illustrative purpof?eS, 

an example is shown at the end of subroutine ANDATA in the listing in R4. The information neces­

sary to modify the library is obvious, The variable NUMTAB is the total number .of library 

equations of state in the lis.t and shoul~ be adjusted with each a,ddition or. deletion. The contents 

of the example library are given in Appendix C, 

• I 

64 

·. 



RE.FERENC ES 

l. Thompson, S. L., CHART D: A Computer Program for Calculating Problems of 
Coupled Hydrodynamic Motion and Radiation Flow in One Dimension, SC-R~~69-613, 
Sandia Laboratories, Albuquerque, New Mexico, November 1969. 

2, Thompson, S, L., Improvements in the CH.ART D Radiation-Hydrodynamic Code I: 
Analytic Equations of State, SC-RR-70-28, Sandia Laboratories, Albuquerque, New 
Mexico, January 1970, 

3, Thompson, S. L,, User 1s Manual for CHART D, SC-DR-70-654, Sandia Laboratories, 
Albuquerque, New Mexico, December 1970, 

4, Thompson, S. L,, and Lauson, H. S,, Improvements in the CHART D Radiation­
~ydrodynamic Code II: A. Revised Program, SC-RR-710713, Sandia Laboratories, 
Albuquerque, New Mexico, February 1972, 

5. Thompson, s. L,' and Lausen, H. s~ I Improvements in the CHART D Radiation­
Hydrodynamic Code IV: User Aid Programs, SC-DR-710715, Sandia Laboratories, 
Albuquerque, New Mexico, February 1972, · 

6, Thompson, S. L. and Mccloskey, D, J., THERMOS-A Thermodynamic Eguation of 
State, Sandia Laboratories, Albuquerque, New Mexico, to be published. 

7. Kirzhnits, D, A,, JETP 32, 115 (1957), [Soviet Physics - JETP 2_, 64 (1957)]. 

8, Kalitkin, N. N,, JETP ~. 1534 (1960), (Soviet Physics - JETP .!..!_. 1106 (1960)]. 

9. Al 1tshuler, L. V., and Baka.nova, A. A,, USP, Fiz, Nauk 96, 193 (1968), [Soviet 
Physics - Uspekhi !.!,. 678 (1969)], 

10, Kalitkin, N, N,, and Govorukhina, I, A., Fizika Tverdoga Tela 1.• 355 (1965), 
[Soviet Physics - Solid State J_, 287 (1965)]. 

11. Barnes, J, F., Phys. Rev. 153, 269 (1967). 

1~. Slater. J. C., Introduction to Chemical Physics (McGraw-Hill Book Co., New York, 
1939). 

13, Dugdale, J, S., and MacDonald, D. K. C., Phys. Rev. 89, 832 (1953). 

14. Hirschfelder, J. o., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases 
and Liguids (John Wiley and Sons, New York, 1954). 

15, Al'tshuler, L. V,, Usp, Fiz. Nauk _!!2., 197 (1965), [Soviet Physics Uspekhi _!!, 52 
(1965)]. 

16, . Kormer, S, B., Funtikov, A, I., Urlin, V. D., and Kolesnikova, A. N •• JETP 42, 
686 (1962), [Soviet Physics - JETP _!1, 477 (1962)], 

17. Boade, R. R., X-Ray Induced Impulse in Porous Metals (U), SC-DR-710705, Sandia 
Laboratories, Albuquerque, New Mexico, February 1972, SRD. 

18. Grover, R., J. Chem. Phys, .2..2,. 3435 (1971). 

65 



19. Zel 1dovich, Ya. B., and Raizer, Yu. P., Ph sics of Shock Waves and Hi h Tem er­
att.ire Uydrodynamic Phenomena, [ed. Hayes, w. D., and Probstein, R. F. 
(Academic Press, New York, 1966), 

20. Developed by D, J. McCloskey, Sandia Laboratories, Albuquerque, New Mexico, 

21, Aller, L. H., Astrophysics - The Atornospheres of the Sun and Stars (Ronald Press, 
New York, 1963), 

22. Mestel, L,, Proceedings of the Cambridge Philosophical Society, 46, 331 (1950), 

23, Cox, A. N., Stars and Stellar Systems, Vol Vill, Stellar Structures, (ed, Aller and 
McLai.1ghlin] Nniversjty of Chicago, 1965), . 

66 



·. 

., 

/ 

, 
I 

Appendix A 

INPUT CARDS 

67-68 



1· . 



-. 

Appendix A 

INPUT CARDS 

The input cards described here are the same as those in Appendix I of R4, The infor­

mation in brackets refers to sections or equations in this report. The equation-of-state number 

must be from -1 to -20. All temperatures are in unite of electron volte, Other units are cgs. 

Card 1, Format (13, 15, 12, 5A10, 2E10. 3) 

Variable 1. 
(1-3) 

Variable 2. 
(4-8) 

Variable 3, 
(9-10) 

Variables 4-8. 
(11-60) 

Variable 9. 
(61-70) 

Variable 10, 
(71-80) 

Equation-of-state number (negative number), 

Library equation-of-state number if desired; otherwise 

zero.t 

Used only with a library equation of state. 

This variable determines the type of analytic calculation 

(see variable 2, card 2 be.low). 

If out of range 0 to 4, or library information is only for 

a gas, this input is ignored. 

Fifty-column identification label: any BCD information. 

RHUG = T~e initial density for the Hugoniot calculation. 

If zero, the calculation is skipped. If negative, the 

initial density is taken to be the reference density 

(variable 3, card 2 below) [VIII]. 

THUG = The initial temperature for the Hugoniot calcu­

lation. If zero, the calculation is skipped. 

If negative, the initial temperature is taken to be the 

reference temperature (variable 4, card 2 below) (VIII]. 

t 
See Appendix C for contents, 

[ Preceding pagQlank j 0 'l; & ~ 69 



The Hugoniot calculation should normally be used only t o test new equation of state 

information. 

~**'~***'~***************~'************~'********! 
* * ~ U a libr ary equation of state is re quest ed, ~ 

: no further data cards are r e quired. ~: 

* ~ 
*******************'~*"~***************~'** ~''~**** 

Ca rds 2, 3, and 4, Format (8El 0. 3) 
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In the listing, the following variables are called ZB(l), I = 1, 24. 

Variable 1. 
(1-10) ' 

Variable 2, · 
(11-20) 

Variable .3~ 
(21-30) 

Variable 4. 
(31-40) 

Variable 5, 
(41-50) 

Variable 6, 
(51-60) 

Variable 7. 
(61-70) 

Variable 8, 
(71-80) 

The number of elements in this material. 

Switch for type of equation of state. 

O. - Solid-gas without electronic terms and without 

detailed treatment of the liquid-vapor region. 

1 • .. - Solid-gas with electronic terms but without . 

detailed treatment of the liquid-vapor region. 

2. - Gas only with electronic terms, 

3. - Saine as O., but with a detailed treatment of the 

liquid-vapor region. -

4 • ..: Same as 1., .but with a detai.led treatment of the 

liquid-vapor region, 
,· 

p . ..: Referenc.e density [III-3] . . 
·O 

T - ~eference temperature ~III- 3 J • 
0 

.. 

. If T · s: 0, code sets T = O. 02567785ev (298°K), 
. · ·o o 

P · - Reference pressure (normally O) [III-3], 
0 

B - Reference bulk modulus (positive number) [III-3], 
0 . 

or 

(-:s
0

) - Constant in linear Hugoniot shock-particle velocity 

relation (negative number) [ VIII-1 J , 

r - Reference Gri.ineisen coefficient [ 4. 11] • 
0 

0 - Reference Debye temperature; If 0 s: 0, code 
0 0 

sets tl = o. 025 [4. 12], 
. 0 

.· 

·. 



. . 

Variable 9, 
(1-10) 

Variable 10, 
(11-20) 

Variable 11. 
(21-30) 

Variable 12. 
(31-40) 

Variable 13. 
(41-50) 

Variable 14. 
(51-60) 

Variable 15, 
(61-70) 

Variable 16 
(71-80) 

Variable 17. 
(1-10) 

Tr - Parameter [3.10], 

Tr = - 1, Slater theory, 

Tr= O, Dugdale and MacDonald theory, 

Tr= 1, free-volume theory, 

or 

S1 - Constant in linear Hugoniot shock-particle velocity 

relation [VIII-1], 

Input variable is defined in relation to variable 6, 

3C 24 - Three times the limiting value of the Griineisen 

coefficient for large compressions, usually either 

2 or 0, When a value of 2 is used, c
24 

= 2 / 3 

[ 4.11]. 

E - Zero temperature separation energy [ 3, 23] , s 

T - Melting temperature [ V- 5 J m 
or 

(-E ) - Energy to the melting point at zero pressure from 
m the reference point [V-5]. 

C 5 3 
- Parameter for low density Pc modification to move 

critical point (normally zero) [3, 33], 

C 54 - Parameter for low density Pc modification to move 

critical point (normally zero) [3. 33]. 

Ii' C 
54 

= O and C 
53 

1 0, codes sets C 
54 

= o. 95, 

H - Thermal conductivity coefficient. If zero, thermal 
0 

c'onduction is not included. Note that the units of 

H = H
0 

TC 41 ·are ergs/ (cm .sec eV) [ 7, 6]. 

C 41 - Temperature dependence of thermal conduction 

coefficient (see variable 15) [7. 6]. 

p . - Lowest allowed solid density, usually about 0, 8 p , mm o 
If zero or negative, code sets P . = O. 8 P [V-3] • min o 
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Variable is: 
· (lr-·20) 

Variable 19. 
(21-30) 

Variable 20. 
(31-40) 

Variable 21. 
(41-50) 

Variable 22. 
(51-60) 

Variable 23. 
(61-70) 

Variable 24. 
(71-80) 

.. 

Parameter n
1 

) 
Parameter D

2 

Parameter n
3 

\, 

Parameter D 4 } 

Parameter D
5 

' ' Solid - solid phase transition 
parameters (normally 0) [V-7]. 

Hf - .Heat of fusion to determine melt transition pa,rameters [V-1]. 

If Hf = 0, no transition is included. · 
' 12 

If Hf< 0, .code sets Hf= 1. 117 x 10 T ml A (ergs/ gm), 

where A is the average atomic weight. 

NOTE: Code will run slower if the melt tra:nsition is 

included. Use only when necessary and after testing. 

P;_ IP s - Ratio of liquid to solid density at melt point. 

or 

(-pi.) - Density of liquid at melt point. 

If Hf 'f 0 a~d Pi.fps= 0, code sets Pi.fps= D. 95 [V-1]. 

For a gaseous equation of state, varial;>les 5 to 14 and 17 to 24 are read but not used. 

Card 5, Format (5(F5. 0, ElO. 3)) 

There is one set of the following variables for each .element in variable 1, card 2. I = 1, 

number of elements [VI]. 

Variable Odd 

Variable Even. 

. . 
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Z(I) -:- Atomic number of element. 

Unnormalized atomic number fraction of element [COTO) J, 
or 

- Unnormalized atomic weight fraction of element. All elements 

should be defined in the same way • 

·'. 
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SUMMARY OF CONTENTS OF THE C ARRAY 
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Appendix B 

SUMMARY OF CONTENTS OF THE C ARRAY 

Throughout this report a set of constants (Cj, j = 1, 54) has been defined to describe a 

material. Here a summary is given with references to the point of definition in the text. 

C. Storage for: 

1. 11
1 

of Eq, (5, 60) if defined for a solid-solid phase transition; otherwise, large 

number. 

2. 

3. 

4. 

s. 

6. 

7, 

a. 

. 9. 

10, 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18, 

19. 

20. 

11
2 

of Eq. (5, 61 ), 

B [Eq, (3, 7)]. 
00 

Constant in Eq. (3, 20), 

Constant in Eq. (3, 20), 

Constant in Eq • . (3. 20). 

P t (Section V-7) if defined for a phase transition, c r 

Ec (17
1

) in Eq. (5, 62) if defined for a phase transition, 

Constant in Eq, (5, 65) if· define~ for a phase transition • 

ES [Eq. (3, 23)], 

p reference density [Section III-3]. 
0 . 

T reference temperature [Section lll-3] 
0 

Constant in Eq. (4, 20), 

Constant in Eq. (4. 26), 

r [ Section IV -1 ]. 
0 

Constant in Eq. (4. 24), 

Constant in Eq, (4. 24). 

T [Section V-5]. m 

p [Section III], 
00 . 

P [Section III-3], 
0 

75 



76 

21, 

22. 

23. 

24. 

25. 

26. 

27, 

28. 

29. 

30. 

31. 

B [Section III-3], 
0 

Constant in Eq. (7, 8). 

p i [Section V-3], . 
mn 

Constant in Eq, (4. 11). 

9 [Eq, (4.12)], 
·O 

Z [Eq, (6. 5)]. 
m 

N [Eq.(6,10)]. 
0 

Number of.elements in material. 

A [Eq. (6. 2)]. 

EOS \ype .switch, input variable 2, 

Internal storage loc~tion, 

32. Constant in Eq. (3, 4). 

33, Constant in Eq, ; (3, 4)~ 

34, Constant in Eq, (3, 4), 

35, Constant in Eq. (3. 4). 

36. Constant in Eq, · (3. 4), 

37, Constant'in Eq. (3, 18), 

38. Constant in Eq. (5 •. 63), 

39. · Constant in Eq. (5, 63). 

40. Constant in Eq. (5, 63), 

41. Constant in Eq. (7. 6). 

·42. Constant in Eq. (7. 15). 

43. Constant in Eq, (5, 22), 

44. Constant in Eq. (5. 22), 

45. Constant in Eq. (5. 22). 

46. psm [Section V-1], 

47. p
1 

[Section V-1]. 
m· 

48. [Sedion V-1], 

49. [Section V-1]. 

.. 

.. 

-. 

·. 



50, Constant in Eq, (5. 41). 

51. Constant in Eq, (5. 42). 

52, [Section V-1 J, 

53, Constant in Eq, (3. 33). 

54, Constant in Eq. (3. 33). 
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Appendix C 

·SAMPLE LIBRARY 

The following tables list the contents of the sample library given in R4 at the end of 

subroutine ANDATA. These are for illustrative purposes and might not represent the best 

available data. Tables 1 through 5 are as given in R2. Tables 6 through 9 include both a melt 

transition and thermal conduction. 
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fl TR ( f)iJ y) 

7R( l) = J.00()1)()(\f+tl'l /~I ( (/) = 

7PC ?): ?. • (J 0 () () (J (j F + (J (J /µ ( l fl I= 

7R( 1) = 0. 

7R( 4)= 0. 

7R( c;, = () . 
7J.J( "'>= () . 
7R( 7)= (). 

7R( ~l= n • 

z ( 1) = 7 

7 ( ?l = A 

7< '.'ll= }.R 

7µ ( l ; , = 

7.R (I?)= 

714 ( 11) = 

7W(}4):: 

7P ( 1 c:;): 

7R (] i'I) = 

r,0T( ll= 7 0 R4SSF-OJ 

· \.OT( ?I= ?.J07SF-0J 

rorc 1>= 4.10no~-01 

() . 
() . 
(). 

(1 • 

(). 

(). 

n. 

o. 

r,n IJl 

7RI 1 ) = 1. onnnoor+oo ?~( q): () . 
7R( 2>= 4.000000F+OO 7.R(}I"): 2.onrlnooF +on 

ZRI )): l .910000F.+Ol 7R ( 11 ) = l.4c::;OoOOF+l0 

7R( 41= o. 7R(}?J: i .1c:;1 nnoF.-CJl 

ZR( t;) = o. 7P(}l): 0. 

ZR( f,) = l.7S'l000f•l2 7R(}4): n. 

7R( 7>= 3.(Jt;4QOOF+CJO 7R(}c;): () . 
7R( P): 1. sc; 1 !lOOF-0?. ZR ("li',): () . 

7 ( 1 ) = 79 1'.:0TI ll= l.f1n·OOF•OO 

7H I 1 7) ·= (J • 

?f~ (If-< I= 0. 

7H(lQ): 0. 

]R ( ?(J):: (J • 

ZRl?ll= I) • 

7~(?2)= 0. 

i.'HC?.~l= P. 

ZR(?4l= 0. 

7.H I l 71· = G • 

{H(}P): 0. 

ZRC19l= (). 

zi:i 1201 = o. 

ZRl?ll= o. 

ZR<2?>= o. 

]R(?Jl= o. 

ZR<?.4l= o. 
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7 Fl ( 1 l = 1 • ll n n f1 0 n F • n n -, , . ( r; l = - J • 11nn11 r; n;. + n,' I'' I 1 7 >::: fl • 

7r:i ( ?I= 4 • 0 (\ n n I) () ~ + () rr I l~ ( l I ) = ? • r. 0 n r1_ r; n ~ + r; r, /H ()I-'): '/ . 
7P( 1) = ? 0 7••(1nnnF +111"• /'-'!I l ) = l • ;> n r1 n ' ' r, " + l l i' '' r J 'i) = r ~ • ... 
7q( 4) = 0. 7P(\?l= I' , () ,) !) n fl f: F - 1, ?. i ~' (? \•) ::: r; • 

71-q SJ= 0. /f'(Jl): 
,, / c1 ( ;. J I : (I o 

7P( ~)= 7.1--..-~nnonF•11 1 p ( 11• l = n • ?µ ( ;.-;- ) = (I • 

7R( 7)= ? 0 0hOnrJOF+nn 7>.q)'-·)= ,·1 • ;'"P(?J): u. 

7r:i ( "J = ~.41nr1onF-n? /P ( l ~) = (I, (P(?4): Ii • 

7. ( l l = l 1 rnr < 1 l = l , n O (t n F + n Ir 

4 ~FL.-Yl_I Tl''' 

71-l ( 1 ) = 1. onnnor.F +11·1 7 ._ ( ()) = 1 • n c l n n (' ~ + 11 o l .. ( l 71 = . (I • 

7P( ? ) -=- 4,0111)1)()('\f'+()('\· ,7,l ( l fl)= ? , () ,) ~ r r rrc + (1 (. ;1r .... ( l fl)= 0. 

7. ~l( 1) -= l .~4c:,'10nF+!ln /W (} j) = -~ , i-. • 11' r' r. r1 r- • l I 7R(\ti): I) • 

7i::< ( 4)= n. 7 t"" i l ;;>) = J.l4()!)!)flf-(1l 7P!?Ol= 0. 

7R( c;) = 0. 7'""' ( J 1) = 11 • 7P (? 1) = 0. 

7P( I',)= · - 7 • co 0 () (l f\ F + n c;_ /~l(]'•l= I) • lf"P?l= I) • 

~ . 

?R( 7)= I .11nnor.F +on 7:.. < I c; l = (\ . fP.(/?Jl= o. 

7.P. ( ~l= 9,-9QC..r)flflF-n? 71..; ! If- l = () . zr:r24l= I) • 

7 ( l l = 4 rnT< ll= l. n000F.• nn 
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71'l ( 1) = } 0(lllO()llOF. +00 7P( '-)): n. 7~ ( 17) = (1 • 

7P( ?)= 4.onnnooF+nn 7t~(l0l= 2.nnnoooF+on 7P. ( 11-1) = ><. J~oonn~~ +rin 

7R( 1) :: 7. R.<;Ol)OOF+On lRllll= 7.JM>OOOF + 10 7~1(jQ): h.7C,OQOOF+nn 

7R < 4)= I) • 7.~ ( l?> = ?."?llf'lnOF-01 7R(?fll= l. \;.>()QnOJ:+l I 

7P ( i;_)::: n • 71-·<(13l= 0. 78 < 2 I>= 2.1onnooi:+1:.-

?P ( "'l = l .91•'0nOF+J? 1>J(}4l= 0. l"lt'?l.= c ... ononncir+l? 

7P( 7) = J.7~rn00F+OO 71-1(}<;): n. lR ( ?~$) = n • 

7P( R) = (l. ZR!ti:.l= n. 71=< ( ?4) = (I • 

7 ( 1 ) = ?.f:. COT( ll= i.nonOF+l)O 

Al\JF'nc; L 18Pfl~Y ~llJMRFR 

zi::q 1 ) = l.O('IOOOOF+OO 7R( ql= -1.onnnnOF•OO 7!:l ( 171 = 2.305000f+l)0 

ZR< 21= 4.0nonOOf+OO 7.R!l()J= 2.ononOOF+OO ZR(l~I= 0. 

ZR! ll= 2.1nr1nnOF+OO ZR<lll= i .2nnnooF+l l l'R(}QI= 0. 

ZR! 4l= (1 • ZP ( 1 ;:> l = -6.A<QOOOF+09 ZR<?Ol= 0. 

lR( !:'ii= n. Z~<l1l= 1.snnnooF+l? ZR(2ll= 0. 

7R! Al= 7.f.10000F+li 7q(l4)= R • o n n n 0 o F. - o l · 7R<22l= 0. 

7R( 71 = ?.060000f+OO ZR!l~l= 2. 71) n On 0 F + 11 (!:l(?Jl= 3.9AOOOOF:+ll9 

7R! RI= 3.43".IOOOE-O?. 7R(\f.I= o. ZR(24l= 9. 24000 (JE-n l 

l( 1>= 13 r.oT< ll= l.OOOOE+OO 
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·i 

·I ., ,, 
.'j 

. -

·. 

.. :'. 
·' _ ... ···.· 

-:.. ·-·- .... - - ·----·- -·-- -.-·-- - ----------~---------:-------------- --------.--·- -------------. ··- .... -·- - -

ANFOS (TRRARY N~M8ER 7 . 

ZR< 1 i = 1.ooooooE•OO ZR! 9): l .4MOOOF•OO ZB<l7l= 9.940000E+0() 

ZB< 21= 4.000000E+OO ZR<lO)= 2.ooooooE+OO ZB<IB>= o. -- -- .. ---- ··---

7A! 31= 1~11S000f+Ol ZR< 11 l = 9.SOOOOOF+09 78(19)= 0. - ... - . --~-- ·- ·------- -· .. - ---- - -·· - . 

ZR< 41= 0. ZB < 12 i = -4. 0~00.00f +08 ZB!20l= o. --· ---· ... -·-· -- . . ··-- -- .. '· 

ZR! 51= o. ZR<l3>= 2.ooooooE+J.2 ZR!2ll= o • 
···~- ----- -- - ..... - -

7R( 6l= -2.051000f.+OS ZR!l4l= · O. 7FlC22l= O. -- __ _. _ --·-------------- -·- ·---------:· ··-- -~-.,.---··-- .. - - --- ..... ---· 

ZR< 7 >:: 2 • 77 0 0 0 0 E + 0.0 · Z R C 1 5 ) = 4 • 0 0 0 0 0 0 f • l 0 l R < 2 3 ) = 2 • 3 0 0 0 0 0 f + 0 A ·.· . .. ·---- --~----- ·-· --· ---·. --~------ - ·- .. ·- -- - --- - ·-·-

ZR ( R) = 7.600000E-OJ ZAC16l= o. ZB<24>= 9.670000E-Ol 

--- ------ - ---.- - ..... "l -··-·-- ... ... 

-. 

ANEOS LIBRARY NUMAER 8 REIM 

ZB< ·11= l.OOOOOOE•OO 7.B< '91= l.1?4000E+OO ZB<l7>= o. 
·------··- ·--·· ·- - ------- ·- -· :- ---·-·-. ·· - ... ,_.:.._ _____ , ___ . ... ... - .. 

ZR< 21= 4.000000E+O_O lA(lOI= . 2.oooooOE+OO o. 
' .. . . . .. - . ··- ..... - -· ·-· . -- -

ZR( JI= l.8SlOOOE+OO ZR<l l>= J.6QOOOOE+ll 

ZR< 41= o. lAC·12J= -3.hAOOOOE+lO ZE\<20>= o. 

ZRC SI= o. 2'B<l3l= o. ZA<21>= 0 • . 
- - - ___ .., __ --------

.ZR< 6>= ' -7.99AOOOE+OS ZR!l41= ·o. 2'8(22>= o. 

Z B I 7l .= l • l 6 0 0 0 Of + 0 0 ·' ZRltS>= 2.90~000E+l0 
,. 

. . . ..... ·--: -.... : '- ..... - -·-·. -· - ~- -- -: ---·-·-.:";"·~: _____ ---: _____ :._ _____ :__ -------------.---- ---------::---------- ------------------ - -- - - .. 
: j." ·.'.\ .· .. 

_·_z J .JL=: - ~ ____ f_Q!_( 'J_!_:_ ___ !'_• o_ooo~!QQ __ ----------- --- ------------ ·----. . . . ----- ·· · --· 

'• 
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q 

7 Fl ( 1) = 1.ononn0F+oo ll-l ( q) = l • 1+ 1.i. q o n o F + o o 7~117)= (). 

7Fl! ?l= 4.onnoonF.+nn 7'"'(11'): 2.f)OIJOOOF+OO 78(1P):: () . 
7R( 11·= p. 94 IH1 0 n F. n 0 ZfJ(lll= 5.?c;;on(10F+Jn 7P(l9): 0. 

7R( 4)= 0. Z~<l?.>= -4~6·'7nOOF+09 lRl?O)= (I • 

7P( c;) = o. lP I 11> = ~.onooonF•l?. ZRl?ll= 0. 

ZP( ~l= -3.9401)CIOF+oc; ZP(14)= 7,0()0flOOF-01 ZFll?.?>= 0. 

7P( 7) = l.QQOOOOf:+OO 7Rl]5): 4,4fl0f100F+11 7.Rl2.J): 2,0C!SOOOF+O'l 

7R( ~l= 2.7Jf1000f-f)? 7RIIF->= o. 2'Rf?4): -f1,?l7000F+fl0 

71 ll= ?9 COT( l>= 1.onnOf•Of) 
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Appendix D 

SAMPLE CALCULATIONS FOR ALUMINUM 

The normal printed output produced during the generate mode for a material is shown on 

the following pages, The data are for library number 6 in Appendix C, In this listing, COT(l) = C. 
l 

of Eq, (6. 1) and FNl(I) = Ni of Eq, (6, 9), Plots of computed results are shown in Figs, D-1 

through D-12, Figures D-8 through D•12 employ ·a grid equally spaced on log (p) and log (T), All 

plots were produced by the program CKEOS described ~n RS. 

This equation of state was used for the example in Section V-6 of R4. 
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-~ L PlRARY "llJMPE~ TYPE 4 

ALUHtNlJ"I 

Fi I fll Ur1JNU'11'1 I IS ~1:0Uf'STi::1 

ZP! ll= 1.oJOCC~"~,~·r~ 
ZP( 21= 4.~~0uOJnOJF.+f'O 
ZA( 31= 2.7~0"~J~~~F+(D 

Z~( 41= 2.~n77S'>OJJE-r2 

Z P ( '3 I= J. 
ZA< i=.1= 7.~iooo~uo~"+11 
ZP! 71= ~.L~ano1o~~"+DL 
ZA( ~I= l,4!U0~10CO~-C2 

Cl ti= 1.JrOOOQ~J0+10" 
c ( ~) = (1. 

c1 ll= e.J1s20~3qi=.:+11 

Cl 41= ~.11377~24~E+11 
Cl C:): 7.22~~51~JOE+JQ 
c1 ~>= 3,1!9t48470E+ao 
C.C 'I = '1 • 
Cl ll'I = 0, 
c ( 91 = 'l. 
c110>= 1.2coaornoc"q1 
c111>= 2.7~c:orJo~E+JQ 

r<t2l= 2.~~7 7 q~1:0F-J2 

C!131= 7,71 7 1"'2J1L'"-:JC: 
C!14l= ~.248~~gg~1c:--~4 

c11~1= 2.0Eo~o~10~~+JI 
C!1~l=-4.279e~~3~t'"-11 
C!17l= 1.~4814~14,~+J~ 

C!181= ~.~398~R2e3E-~2 

Z< 11= 13 

Z1! g1:-1,J~G~O~C90E+GO 

zq1101= 2, JOOODOOODE+CO 
?q(111= 1.200~00000~+11 
Z~<121=-F,,~39~000COE+rg 
?q(i'!I= J,r;JrQOOCOOf'+12 
1q1141= e.~o~aooooo~-~1 
'~<1e1= 2.1noooocoor+11 
7111i:.1= r. 

C<191= 2.75~2~7764E+OO 
i:1::>01= a. 
c1211= ?,~1JaruoooE+11 
r.12~1= 2,02qn2Q~JGE+01 

· r;12!1= 2.1~,.;orno~~E+oc 

C!241= ~.66~66F,~67E•01 

r-:12~1::: !,43G..i~J~OOl'"·~2 

r.C2f>J:: 1o30~3fJOOOQE+01 

r;(2?):: 21?32~8559eE+22 

r'(2~J::: 1.0111LOOOOF+O~ 

C!2~1= 2.E>932LOOuCE+n1 
r.ciJ): 4,~1Ja~~OOOF+OO 
r.1311= 1.r'J~'HCOOCf+OC 
C!32l= 1.~J~496582F+13 
C!~31= !.t~~!E>o108E+OO 
r,(~41= c.7~7~1R28~E+11 

C!35l=-!,6l~4232~5F+12 
".(~<,I: ~.33%.%17&;E+12 

REFE~E~rE ~CI~T ~o~aTTIO~~ 
T= z.i;F, 77 EC:E-~? ~Mn= 2,?Q~JJOf+~O 

P: 9.~94?!8E-~3 e: 2.e~~1~7~+rQ 

s: 1.11~3gs~+11 r.v= 1.06q~g1~+11 
OPOT= ;,q~~e~~~+11 ~ei~= 2.B2~q2~E+11 

RG= 1,631L~OE+11 r.~= c:,~z3q~~E+O~ 

7i<1'1= 2.3D500Cu00E+O~ 
Zl3<tel= o. 
7q11~l= o. 
7'H2CI= O, 
/''l!21l= o. 
7q1221= o. 
7qf2~l= 3,98GOOOOOOE+oq 
7~1241= 9,24000GOOOE-01 

CC~7l= 51891943437E+12 
C<~.~l= Oo 
C<:!~!I= Q, 

r.C401= Do 
('(411= o. 
cc•21= 1.oooooooooE-01 
C(43l=~1.328989614E+1C 
C(441=-1,632413953F+11 
C(4'31= 1,5327~7735E+11 
C(4~l= 2,572087979E+OO 
C!471= 2,376609293E+Or 
C(4B>= 6.685052934E+OO 
cci.q1= 1.B247269t4E-02 
r.1c:~1= 3.0~n420076E•01 
cce1J= 3,2F,6405421E·01 
cce21= 7,876590532E·01 
ccc:~i= 3.s~oooooooE+12 
CC54l= ~.OJOOOOOQOE-01 

Reprodu ced from 
best avail·able c:opy·: 
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TW0- 0 HdS': CDl.CllUPO'l Fl),? '1A T~"'Itll 6 
CPI"' H'Ol PCINT 
RHO= 4. 7?f~~21""-C:t "'= q , 0 4 ·p 2 42 "' - L l P: '>.1'i71289f+IJ9 
E= 1.tt)l:':!r'.'•+11 "= Fi, 24J12A5E+11 NT'I'= 9 · 

' TWO-PHASF. E'OIJN !')dP!ES 
T ~~Olt1 "L TQ EL I r'l SLtr. r.ua 

~~OVAP PVAP EVAP SVAP GVllP 
i 

a. "5875"'- 11 &.~~~~c;::-~1 s.oci21:;0F+1q 1.L051Gft11 . F-, C'7933E+11 -4.001fi4E+11 
10 .,,q777z::-~1 5.C92"'0E+·)9 1.t41;67F+11 l':o'.'6729F+11 - 4. 0 0 1€14 E + 11 

l! 

7,F.7377E-.11 "','>7f'2G::--u1 4,1zgi.grq9 9. 4491;c:iE+10 5. 994HE+11 -:i. &01 .. eE+ 11 
p 20247 7 3'::-['1 4.12CJ49"'+·l9 1o1'.'68H+11 f.. "1 .. 15E'+11 -3.!'i01"8E+11 

6 .9iH79F.- J1 o,'l'19t3i::-01 ~.26'i~9E"+·l'l 11.c:i2103E+10 'i,91721EH1 -3.20429E+11 
e 1,"Fi2~2<'-C1 3.2~'i~9F+J'3 1.1179H+11 F-,c.497i:;e:+11 -3. 204291'.+ 11 

6,3\13!11E-J1 ~.~ai.47•-rt 2.'i~(i?31" +19 8.42~'>CE+10 '5.P~ 1H3E+11 •2. 81C 46E+ 11 ., 
l• n 7 U1C.:-L 1 2. c:o iJ "3S::+J9 1.t9:!!\H+11 F-,481&0E+11 -z • 3 1 0 ljfi E + 11 

5.Fi11'83"-J1 "·"-11'5t.'::-01 1• F\'?414E' t·lq 1.c;i:ir,ocr+10 c:;,7'542FiE+11 - 2. 4 Z ~ Sit E + 11 
7 1.1c;c;4-i::-ri 1.0"414!".+J9 1.uo57H+11 Fi."'1~97E+11 •2,42~54E+11 

4.'P38'it-".1 1.~231F+t'O 1. 2&7191"+~3 7,4"77Ef+10 -:;. f-57fle E'+ 11 ·2.03531E+11 
f -. , 7 '-3'PG::-oz 1.2"'719E+Jq 1.l.' .. 1+52f+11 ~."<;127€+11 •2.03531E+11 

t, • 24cl8B""-u 1 1o11Lqi'C+OO ~.u1'57f>E+P c..e949tE+10 c:;,i:;:pa,2E'+11 •1•&5607E+11 
f, c;,i.142~=-r.2 11.~t'i"Fi•+i~ 1.0C·019f+11 ~. i:.0013E+11 -1. 6%07E+ 11 

J.r;s3<:ioE-n1 1."'37F',L,:'+QJ 4.3~945F'+J~ Fi. 214C.1E +10 c:,:.ti;~r:;JE+11 -1.2es1+3E+11 
6 1,1f-"5~""-G2 4, -:r~qi.<;f'+ld 9.F-25fo2f+1~ "· flng1 E'+11 -1. ?Bc:;i.3E+11 

2,1pgg2E-01 1.G2!2Bf.+CO 1.75an1"'+H <; • C tJ iJ.O C ~ + 1 ~ "· '?7'5f>f>E'+11 ·9. H1c.11~+ 10 
n l."4210::-02 1.79'I01E+J3 c.1.2u~12F+10 f'.~115!!E'+11 •9,'H191E+10 

2.1-:i ~Q4f-J 1 t.'3170()'.::tJ:J 3. ?f>i~ 4 B"'+iJ 7 3. ~"21'.15F+10 4, !25fi9E+11 ·Fi.tJe.c;1;::+10 
4 4,11r;c:q<o-G3 1. 2c:10 "'+]? 'l.7Fi370~+10 1.1c;192E+11 -'3.13651E+10 

1.8511,5"-"1 ?.~c:r,2fl'O+(l:: Fi,759711"+1<; 2,7J58H+10 i.,r21C9E+11 -4. 708fllt~+.10 
L 1.i1+-:i~s::-u . 1 S , 15 q c: BF' + J f.>. R. n0?97E+10 1.r:1168E+11 -4.1aee.1+i::+10 

1.5oaqfi""·31 2.17:'"4~+Gu !."27.0E+j<; 2.211u7F+10 ~.7081oOE+11 -J.3B47r.E+10 
4 g,q4 .. c;z .. -~:i 1,F.27·'C,,-+1G B. 723'-C3E'+10 ~.::>FiFi07E+11 -3. 38471tE+1C 

1.H11l47E·'1 ?,??Cl??"'+G, ?.1'1" 7 41"+]2 1.749CJ(.(+10 :!, '..'1;2&F.E+ 11 -2.112550::+10 
~ o,41~c:2"'-08 ':!.Cu377H12 g,giu~43F+1d 1. l!Mll8E+12 •2.17255E+10 

8. 23'=!114"·" 2 ?..J1i:.i;1"+r~ -"l,fiFi211F-13 1,!li213E+1C 2.e1c;~30 E+11 -1.08887E+H 
fl ::>,1q~~ 1 ::-1i. c;. cc; !I 'I c;.,·_ Jc; .1.17!'> 7 3E'+11 1. 58.81GE+12 -1.aeea1E+10 

e,1c;,.44E-12 ?,'i"4Je"+C:~ ... 6~P.Fi7"-J '1 g,~:>%3E+09 2. 4'5488E+11 -1·1l"'85c.lf.+10 
6 1.1r:;r:,:i~::-14 ~.1B"E·15 · 1.179'34""+11 1 • .:.ot.90E+12 -1.a,,esq::+10 

f>,5j3t.?E· 12 ::>I Fi 1 '1; ":: + r J 1.c;l'5"13"'-P 1.~t.19E+OC) 2.1a11+9E+11 --:.. ec;a!9E+09 ., 
1.i.2i:.2~.;-1q 3.C2"'10"'·11 1.21B9r+·11 ::O.C0273E+12 -"· ec;s J9E+ og 

.. ,44qr;1E-~Z 2,6'j'>c;r:;=:+c,a -1.13"2'5"-12 4,c;322GF+oq 1.73~95E+11 -2.7'963!lE+n9 
p 4,S'17?::l"'·30 7,fiC"i11'""-'?1 1.zz1q~E+11 2.!!444fiE+12 -z. 7% :'"E + 09 

2 ... 119c;c;::-12 ;;>."C1?"'::+:JJ 2.e.z1..r;1E'-n 2.fl~Fi99E+09 1, D3~42E+11 1. 3oi.00E+oe 
e ~.'1~414"-'i~ c;,r,ze.40<'-41 1.21?.~Zf+ll o: o 10'5fl Of+12 1.30400E+08 

L OC" P ( Ii I= LnCl(PL r ..,, = 'If, 
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HELT ('ll~V~ 

T ~c:; PS E'~ ~·') r;s 
~L Pl "L ~L GL 

1o8247E:•a2 2.:'14n'"+·o ...... 411Q:.+11 i;,,cE>49r+oq 1.1~12!"+11 -3,4:'18E+1C 
1i:. 1. tl4<;.•f.+ ~ c -e.. q4'lqt:.+ 1n . 1, 77~4E+1L 2,?F)Q0f+11 •3,4HllF+10 

; 
3.9E.311"-J2 2.:1'1 7 1C'+Jr -t; .1 lli11:+H li,8093E+O~ 1, F 'l :!Sf +11 -2,fi13CiE'+1C 

II 2·12':lQt::+ :IC -i:..i 1i:.1E+H 1. 21121E'+10 2,c;F;r2f'+11 -2.6135!='+10 

£i.u1i;E.-n2 2.i. .'l7"E'+'O -3•1"241:+10 ·7, Cl 374E+O 9 2. nc;1tl"+11 -1,·S315E+1C 
c; 2.2i:.54E'+1r -3 ,ic;24i:+10 1.21i31E+tr 2. 7312F"+11 •1,A315E+1C! 

a.23q~E-02 2.5721f+JO •2,E.8o;i'lC'•Q3 ~.441!E+09 2,4f;73E'+U -1.0669E•10 
0 2. :Hr,F;C'+:J(i -'.'. 1;1',21C::-03 1. 31t21F.:+10 2, i;io; ~ 3F+11 •1,Q6'lCIE'+10 

1,07:?7E-n 2, fi~c;9E'+O i; 3,B<;J'IE+H 1.1571"E+1C 2'. lilif.91"+11 -2.i;;11+1tr+o9 
1 2.i.qnc:=:+~c 3, '15:!1lE+10 1,50'57E+1C 3.0~F>2f+11 -2.5744[+09 

1.3%5E• l1 2. 7''1201:+1)0 9,1412E+10 1 ... 862F+1D 2.esi.&F+U 7,f.764E+D9 
3 . 2. li244E+j(1 9 • 14 ii! c:: + 1 (), 1, 7971E'+H 3.2172F+U 7,87E!C.E+D9 

1o617c:IE•!'l1 z,qzc;1E+Jo 111'1510!:'+11 1,9923E+10 J.t308E'+11 2o12&7F.+1D 
4 2 I 7 ,,F,(jl"+ :) t 1,r,;10E+11 2.27"i4E+1C 3. :!4'1 l;f'+11 2.1267E+10 

2,3r,r,7E-01 3.t'4r::"'+"~ 2,7J40E+11 2. 751',f.,E+1 t 3,1'338F+11 :!.907P.1"+1C 
4 z, 91'?<;"'+:! r 2,7Q40E+11 :,,i..29CIF."+10 3. i.5~1!f+11 3,qQ7flE+10 

J,O!ltOE-'21 3, 3:Hc£+0( 4.2C.30E+11 · J.~146f'+1C :! , ~I+ '.'2F+11 llo 3SOC:E+10 
4 3.2247"'+~(' 4·, 243(),,.+11 4,1954E+1G . 3,r;111tE+11 6,3500F+H 

C..Cl1J9f-jl 3,i:,224c::+~r f,,5540'°+11 r;,i:_,7c;&f+1C :!.47114Et11 9, fl 172E+10 
4 '?'. c;2sQ=:+1 a i:,,c;s1+Jr:+11 5, 91!~7E+1C 3.F.H6E+11 q,811'2f+1C 

c;.2215£-'Jl ... ,~')~AC'+Qi.. 1,J142E+12 ,,3772E+10 :r,c:9P.9F+11 1.4935F.:+11 
I+ "• qlC\CIE+".' G 1. ·~142f.+12 f\, 7" 1HlEt1t 3.1r, 0 aE+11 1. 4935E+ 11 

6. 797"-E.-Jl 4,CjJ:'liC:+JIJ 1. 0:944£+12 -1.2582E+11 3, 7J:'9E+11 2o28C8E+11 
4 4.431~:0:+J!1 1. 'i'li<4C'+12 t.3D18E+11 3.fl52JF+11 2,2808E+11 

a.ei. 1nr-01 c;, B'H""+J r. 2,c;H2'0+12 1. l:l2flH+11 3, 7922E+11 ·3. 'l4'HE •11 
4 'io 121i"'.E+1 C. 2, 5H 2C'+ 12 t.9815f+11 ~. 0 ?:!1F+11 3,S45H+11 

1.152UE+JO ~.1r;F.?E"+J c 4,31i8tl::+.i? 3,0212F.+11 3, 11r,11E+l1 5.fi61'H+11 
4 i::.1J1~i::+10 4,11'ieUF+12 3, iJ91eE'+11 :J;~·'l'P6F+11 i;,&Fi77E+11 

1149971"+;).1 7, "i~1F.'::+'l (j 7,~&9C:"'+12 4, 8!177f+11 '3.C1oeeF+11 9o4D52E+11 

"' 7, 5l'.'fl'::+Ol.. 1.3i;q5f+12 l.+,9891E+11 4.!'11':1f+11 9,4oc;2E+11 

1.as2i.E+J:i ~. tljl'!i"'+;; c 1,c;471~+1:?! ~.2515E+11 J,0275•+11 1. 63%E+ 12 
~ 9.1r:i&1=:+:;r 1,5471=-+1~ ~. 374:tf'+11 c.. ~ 2F.Cif+11 1.&~56E+12 

2.51.+17E+Ji) 1,'!58~E+H 3.4415"°+1'.". 1.479eE+12 '3,gQ!\CJIF+11 3.J205E+12 
1'5 1. 3545"+~ 1 3,441'if"+1 '.' 1, 4ai;c;·E+12 4.Clf\51"+11 3. 0205£+12 

3 , 3 3 II 9 E + J ,_; 2.0111C'+a1 '3.191q!"+13 2.9044E .. 12 :! ,.p 2f:Sf +11 6.0623E+12 
26 2.r:14"':+J1 g. t lt9!"+1 "! i.q21f·F"+12 3. 9111.6f +11 Fi,0623E+12 
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Appendix E 

PROCEDURE OF ADJUSTMENT OF CRITICAL POINT 

The equation of state for aluminum presented in Appendix D has had the critical point 

parameters adjusted by use of Eq. (3. 33). The results of part of a parameter study are shown 

in Fig. E-1. For these curves, c 54 = 0, B. Other values were tried with similar results. 

12 2 
On the basis of these curves, the values c

53 
= 3, 5 x 10 dynes/cm and c

54 
= 0, B were 

selected, While the critical point parameters of aluminum are not well known, the computed 

results with c 53 = 0 seem to have too high a temperature and pressure to be in line with extrapo­

lated experimental data, The values on the right-hand side of the curves are in agreement with 

some recent estimates. 

With this equation of state it is not possible to further decrease the critical pressure by 

increasing c 53 to an appreciable extent. The difficulty discussed in reference to Fig. 5 is 

encountered, This problem will normally control the adjustment possible by (3. 33). 
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