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ABSTRACT

7 A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic
code is described. The information generated is thermodynamically complete and self-consistent.
The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all
types of phase mixtures are treated. Energy transport properties-are calculated.

The set of subroutines form a package which can easily be included in other hydro-
dynamic codes. .
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IMPROVEMENTS IN THE CHART D
RADIATION-HYDRODYNAMIC CODE III: REVISED ANALYTIC
EQUATIONS OF STATE

I. INTRODUCTION

Through 1970, three reports were issued concerning the CHART D radiation diffusion-
hydrodynamic code. 1=d This report is the second of three currently being published to update
the program, The main body of CHART D is described in the first report. 4 The third report
details several user aid programs, o In the following these reports will be referred to as R1, RZ2,

R3, R4, and R5.

The present subject is the analytic or in-line equation-of-state (EOS) subroutines
originally considered in R2, Some of the calculations in the current version are identical to
those in the earlier work. In others, the physical models are the same, but modifications have
been made to the numerical methods to improve accuracy and speed, Finally, several new
features have been added. Among others, these include a melt transition, hot electron conduction
properties, and a system of changing interatomic potentials to match gas phase and critical point

data.

As detailed in R4, CHART D has two types of EOS, Either or both can be employed in a
given problem. The tabular form is capable of handling nearly any data but requires extensive
data processing and tape and machine storage. In general, this form is quite inflexible in that
the user has no conirol over the thermodynamic properties in the table and normally must rely

on someone.else to generate the data.

The analytic forms, on the other hand, are quite flexible and easy to use. Programs are
described in R5 with which the input parameters can be adjusted to yield an EOS of nearly any-
thing, However, this form is slower in code operation than the tabular data and sometimes yields

results of less accuracy. For example, the radiation opacities are normally better in the tables,

As with the calculation in R2, several ground rules were established:

1. The input parameters are to be kept at a minimum and as simple as possible.

2. The package of subroutines, when called with temperature and density defined, should
unfalteringly return complete and self-consistent thermodynamic data and an effective Rosseland

opacity, including conduction effects.



3. The speed of evaluation and storage requirements should be compatible with hydro-

dynamic code conditions,
4. The range of validity should cover all possible equilibrium conditions,

5. Models should be as physically realistic as possible, considering the other

conditions,

6. Linkage to the rest of the hydrodynamic code should be minimized to allow easy

inclusion of the entire package into other codes with no modifications.
It is felt that the current computation satisfies the requirements as well as is possible.

One major limitation is that no provisions are included to treat molecules. An accurate
method of handling molecﬁles was ruled out by the third of the above conditions, If they are
necessary in the problem at hand, a tabular EOS must be used, 6 The magnitude of this problem
becomes more apparent by observing that, for many-element materials, the number of molecular
combinations becomes extremely large. The storage and time required for such a calculation

would be out of range of that possible,

As before, only equilibrium properties are treated, No effort has been made to describe
deviatory, rate-dependent, or nonequilibrium effects. These computations can be handled as
perturbations to the equilibrium conditions as, for example, is the elastic-plastic calculation

given in R4,

The notation and units employed are as follows:

p = density (gm/cc)

T = temperature (eV = 11605°K)

F = Helmholtz free energy (ergs/gm)
P = pressure (dynes/cm2)

E = specific energy (ergs/gm)

S = specific entropy (ergs/gm eV)

C. = heat capacity (ergs/gm eV)

0
u

sound speed (cm/sec)

Rosseland opacity (cm2 /gm)

R
n



In the description of a material, a set of constants (Cj, j = 1, 54) will be generated, The

elements of this array are defined throughout the report. A summary is given in Appendix B,

1I. GENERAL FORMULATION

The generation of thermodynamically complete and consistent equation-of-state (EOS)
information is most easily accomplished by formulation in terms of one of the thermodynamic
potentials in its natural variables. For the present work, the logical choice is the Helmholtz
free energy F, with density p and temperature T as the independent variables, All other thermo-
dynamic functions may be computed from various derivatives of the free energy.” The required

relations are

P=p —33’ (2.1)
_?F
5= -3z 2.2)
- .2 2 E
E=F+TS=- T o= ), (2.3)
2
cyisE--T L, (2.4)
3T
222 EF (2. 5)
3T F 3paT °* :
and
3B, &, 2 3F -
dp pap p apz' y

The procedure for treating these variables in hydrodynamic calculations has been discussed in
R4,

For stability of the numerical integration of the hydrodynamic equations, the time step is

limited by a function containing the sound speed CS. From the definition

¢, = Vi) (2.7)



and various thermodynamic relations, it can be shown that

1/2
)
o 3T
€™ (ﬁ) alioe . (2.8)
T pc,

Other interesting relations are the expressions for the constant pressure heat capacity CP )

r(2E)’
. oT
Gl =l

4 p
P v pZ(EE) 3
3p T

(2.9)
the linear expansion coefficient & , -
1 43
o= = =— (._p_) :.—1- P (2. 10)

and the isothermal bulk modulus B,

(2, 11)

5+ (&)

A fundamental assumption in the formulation presented here is that the EOS may be
-written as a superposition of terms appropriate to various physical phenomena, Three major
divisions are made for atomic and electronic interactions at absoluie zero temperature, thermal
motion of atoms and ions, and thermal motion, excitation, and ionization of electrons. The free

energy expressing this division is written as
F(p, T) = EC(P) * Fn(P, T) + Fe(p. T) 3 (2.12)

where the subscript ¢ refers to the zero-temperature isotherm or cold component, n refers to the
nuclear or atomic component, and e refers to the electronic component. This does not imply that
the effects are independent; the opposite is true. However, in the models, the coupling will be

minimized,

According to the third law of thermodynamics, the entropy must vanish at zero temper-
ature so that the energy and free energy are identical, This result is built into the notation of

Eq. (2.12), Both Fn and F‘3 are defined to vanish at zero temperature. Each of the thermo-



dynamic functions may be written in a form similar to (2, 12). For example, it follows from

(2. 1) that the pressure is given by

2 dEc 2 BFn 2 BFe
P=p s +p —-—Bp +p T (2. 13)

= P )+ Pn(p, T) * Pe(p. T) .

In the following sections, models are constructed for the various terms. Using the above

method insures thermodynamic consistency.

III, ZERO-TEMPERATURE ISOTHERM

First consider the equation of state at zero absolute temperature. The energy and pres-

sure are related by the expression

sz

= -—c.
Pc T (3. 1)

Define poo as the density of the solid at zero pressure and temperature and
n = P/POO (3.2)

as the compression, It should be noted that poo is slightly greater than the normal room temper-
ature density Po because of thermal expansion, The relation of Po and Pys is considered in

Section III-3. Eguation (3. 1) can be written as
n
1 )
B =5— [ poan, (3. 3)
00 7

where the zero point of energy has been defined to be at poo’

Expressions for these terms are developed in the following sections, Different forms of
description will be used for different compression regions. The relations are special cases of

those employed with the tabular EOS as related in Section VI-2 in R4,



m1-1, Compressed States

For compressed states (n > 1), there are only two regions where the equation of state is
well known. For sufficiently large compressions (n > 20), it is generally assumed that zero-
temperature Thomas-Fermi statistical calculations are realistic. The pressures at these
densities are sufficient to crumple any electronic energy levels or bands near the edge of the
atom into a continuum. Possibly the most realistic of these types of calculations are those of
Kirshnits7 and Kal:i.tkinB (TFC), since both quantum and exchange corrections are applied,
Theoretically, the region near 7=1 is not well understood. Very large attractive and repulsive
forces tend to cancel, and the accuracy required in the computation of each would be out of the
guestion. Normal methods cannot consistently predict the density Pso to better than about 10
percent. Progress is being made in the area but the cancellation problem is so severe that it is

unlikely that sufficient improvement will be available in the near future.

Fortunately, experimental data are available near n = 1. This information is, however,
limited to pressures far below the high compression region, There is a wide range of compres-

sions of interest where there are no experimental or theoretical data.

To the upper reaches of experimental data, many substances show phase transitions
which result in a more closely.packed structure and decreased compressibility. This, of course,
leads to kinks, or discontinuities, in the slope of Pc' In simple materials, most of the phase
changes observed in Hugoniot data appear to be of the second order, although a few first-order
changes are clearly seen. A summary by Al'tshuler and Bakanova9 illustrates much of the
available data, For composite materials, it should be expected that much more complex structure
should be found. Such transitions generally occur at pressures of less than a megabar. At
higher pressures, transitions accompanied by changes in band populations are possible, However,
these should not affect the compressibility to any great extent, since the crystal symmetry is
unchanged, Hence, it is expected that PC should be a smooth function at sufficiently large com-
pressions. Insofar as Hugoniot states are concerned, the last transition encountered is the

melting transition. In aluminum this occurs at about 2 megabars.

A discussion of phase changes is given in Section V., TFor the present, only materials
where PC is a smooth function of n are considered. A simple interpolation from the experimgntal
data at 7 = 1 to the high-density limits is employed. For simple materials, this procedure has
been studiédlo and is probably as accurate as any available method, since extrapolations of low-
and high-density data tend to merge. For more complex materials, little else can be done

because of the almost total lack of data.

An interpolation function for the pressure which is both convenient and well-behaved is

5/3 1/3 / /3

P =C_.7n exp(-CBS‘n

1/3 2
i 39 )-(C34+c35n +C36n L, n>1, (3. 4)

10



where the subscripts are identical to those used in the computer coding. For large comrg‘essions,
Eq. (3.4) is identical to the TFC result, provided the first two coefficients are given by

5/3
c. -3 (1’)1/3 | Poo’ | (3. 5)
32 20mM 3 l M $ :
e a
and
2 1/3

 AORNLE (48 1ig N i
Ca3° 2 -k 2..1/3()2p t (2,6)

Sh (1277 2) l 00

where Z is the atomic number, Ma is atomic mass, h is Planck's constant, Me is electronic

mass, and e is the electronic charge.

In the limiting form for large compressions, C

and C
7?5/3 avid 7’4/3.

32 33 yield the coefficients of the

two leading powers, The first term is that of a free electron gas. The advantages
of writing the two leading powers of 7 is the form given by the first term in (3. 4) was pointed out
by Barnes, 11 However, the exponentiai coefficient is determined by a slightly different rule in
the present calculation, This term accurately describes the entire Thomas-Fermi calculation
for compressions down to about 5 or 10, For smaller values of 7 it gives a smaller and more

realistic pressure than the exact Thomas-Fermi result,

The three remaining coefficients in (3, 4) are determined by experimental data atn = 1,
By definition, the pressure is required to vanish, and the bulk modulus and Griineisen coefficient

are related to its first and second derivatives. The bulk modulus at n = 1 is given by

dpP

el
S (3.7)

The Griineisen coefficient

r-2 (:_1;)0 (3. 8)

can be related to the cold compression curve by use of any of several theoretical models. The
three most widely accepted models are of Slater, L2 Dugdale and MacDonald, L and free~volume

theory. 4 It has been shown that the results of all three calculations can be written in the single

. 15
expression
2
dr dP
g o2 S 2.2y
= _l(z-t)-q-.l dn 3 (3
T'=-3 2 ap . . 9)

—& o2ty
dn 3 ¢

11



where t = 0, 1, or 2 for Slater, Dugdale and MacDonald, and free-volume relations, respectively.

If we define

Tr=t-1, (3. 10)
the expression of current interest is
2
roo=2B1 dP;| =1_%T1"' {fs 10)
oo dn n

It is often observed that the Dugdale and MacDonald form (Tl.. = 0) is superior for metals,
and ionic crystals are best described by the free-volume relations (Tr = 1), However, there are
exceptions to both rules; for example, aluminum seems to require the Slater relations (Tr..= -1).
In Section VIII-1 a method of determining a proper value of TI" from Hugoniot and zero pressure
isobar data is given, Here it is assumed that TI" is known, All constants in (3. 4) are now

determined, The results are

9 -C33 &
C34={5+3C33+1/2C33}C32€ -9]300]:1 , (3. 12)
2 “Ca3 A
I R L S W - F (3. 13)
2 “Ca3 .
C36={10+4C33+ 1/2 C33}C32 e - 3500{31"», 1} , (3. 14)

where
(3. 15)

Rather wide ranges of the input quantities Boo" 1"00, and Tl" are acceptable; however,
there are some physical limitations to be considered, It is not difficult to show that the second
derivative in (3. 11) must be positive if shock waves are to propagate as shocks and not dispersing
pressure pulses, This means that the stiffness must increase with compression. Otherwise,
compressive shock waves cannot exist. It then follows that

1

+ =
roo ST

1,>0. (3. 16)

In most situations this causes no problem.

12



The internal energy is determined by substitution of (3. 4) into (3.3), The resulting

expression can be integrated with the result that

C 3C 3C
1 2/3 -1/3 34 35 36
E = —I3c..n & (C,.n )+ + + -C , m>1, (3.17)
T V) 333 n 2712{3 nl/3 37
where
3C,
Cgy = 3C3p63(Cg5) = Cgy = —5— = 3Cyq s (3.18)
and
' w
~ = —
é”a(x)é_— t 8 e B dt (3.19)
1

is the third exponential integral,

III-2,  Expanded States

There are several features to be considered in relation to the form for expanded states
n < 1. For slightly expanded states, 0.8 $7n £1, and temperatures below melt, a tension region
will be built into the state surface. At low densities the material should be gas-like, In the
intermediate region, the mixed-phase properties are very much dependent on Pc and Ec which, in
effect, determine the form of the interatomic potential, The full extent of these functions is

given later,

Two forms for Pc are available whenn < 1. Except for slight modifications, the first
form is identical to that given in R2, The second treatment is a system whereby corrections to

the first method can be inserted by hindsight if the results seem unsatisfactory.
A modified form of the Morse interatomic potential yields a pressure of the form

v C‘Gu]

= ‘ansl. (3. 20)

C
_ 2/3’ 5
B -C4'n le

v=1-n-1/3. {3.21)

This form was selected over other theoretically justifiable expressions, for example, a

Lennard-Jones (6-12), 6~9, or Morse-Coulomb potential, since Eq. 3.20 seems to yield the

most reasonable results under the widest circumstances.,

13



The corresponding energy is easily shown to be

3C C. v c_ v
RIS [ WAL TR VRC NP Sy (3.22)
c P c Cc

00 5 B

The lattice separation or zero-temperatﬁre sublimation energy is then
(3.23)

As PC given by (3,20) clearly vanishes at n=1, the two additional conditions required to determine
the coefficients in (3. 20) are taken from (3.7) and (3, 11). The procedure insures that Ec' Pc

and g};’_q are continuous at 7¢1, Egq. (3.11) is rewritten as

1 d'zpc 1~ =
— e = + = =
gh= =5 g =T *5 T~ T (3.24)
oo dn
It is normally assumed that
’I‘r = Tr (3.25)
and
I'=r, (3.26)
a®p
so that zc is also continuous at n=1. If difficulty is encountered, these relations are modified,
dn

The discontinuity in the second derivative creates no major problems in such cases.

From these relations it follows that

c5=31~‘]1+ -2 2,’, (3.27) :
i g [Feel]
o 5
i 00 J
c ,=3%1- 1-—2_ (3. 28)
6 ] 2‘
p E i
(s]e] s
and
C, = 3B, /(C. - CQ) . (3.29)

14



While, on theoretical grounds, imaginary coefficients might be justifiable, it is clear from (3.27)

and (3, 29) that we must require

< 1 (3. 30)

for numerical reasons. If condition (3. 30) is not satisfied by the given values, T is increased until

it is,

Problems can also be encountered with (3, 20) at low densities, As n=0, Pc also
vanishes, The question is, however, whether it vanishes with sufficient rapidity to be physically
realistic. Since C5 >C6 follows from (3.27) and (3, 28), the dominant term in (3, 20) at low

densities is

C.v
P =C4‘n e . (3. 31)

Quite arbitrarily, we impose the condition that Pa should not exceed a value Pmax atm = 10-3.
Pmax is taken currently as 1 atm, This insures that regions of large tensions will not exist in

the vapor phase. Substitution of expressions for C4 and C6 into (3. 31) yield the result that

B
—22__ exp {zrTa-s TES S (3. 32)
200 T's .

where Sq is the square root term in (3.27) and (3,28), If (3.32) is not satisfied by the given
values, I is decreased until it is, if possible. The exact form of (3, 32) is not critically
important, The main purpose is to insure that C6 is sufficiently large so that the gas phase acts

as a gas,

Note that, of the two reasons for not using (3.25), the first yields f"r > TT‘ while the
second results in T < T, In either case a message will be generated by the code, explaining

T r
that the change has been made, It is unlikely that any other observable effects will be found,

In some situations it has been found that the above expression for Pc, when coupled to
the thermal components discussed in Section IV, can produce some features objectionable to the
problem at hand, For example, the critical point could occur at too high a temperature and
pressure, or the sound velocity in the liquid state could be in error. Provisions have been made
to permit corrections to be made by hindsight to obtain the desired property. For compressions

less than C54 < 0, 95, the function

= 2‘ _’ng 1 ’
P=E 1- -0.2;, C (3. 33)
537 ‘ C54$ C54 ‘ s 54

15



can be added to the right-hand side of (3,20). The values of C,, and C54 are input parameters,

53
The corresponding energy term is

53 | J_I,4
Dpoo ll-C54’ B nSC54 (3. 34)

which is added to the right-hand side of (3.22). These forms join smoothly and do not alter the
separation energy, so that (3.23) is still valid., The computed constants in (3, 20) are unchanged.
In effect, the addition of (3. 33) changes the shape of the interatomic.potential while not modifying
its basic properties. At lower densities, (3.33) has the form of a Van der Waal's interaction.

Thoughts on the selection of C53 and C54 are given in Appendix E,

III-3, Relation to Reference Point Conditions

The three parameters poo‘ Boo' and 1"OO are required as inputs for the following calcu-
lation., Unfortunately, exact values are not normally known for materials of interest, The more
usual situation is that the properties of a material are known at some reference point p'o, T0
(usually room temperature), and it is important that the EOS correctly predict these properties.

It should be noted that poo and Boo are the most critical insofar as the solid material is

concerned, Because of the way roo and T_, enter the relations, they are of lesser importance.

T
Hence only slight error results from the approximation

1"Oo = 1"0 (3. 35)
in the present calculation, With the solid thermal components given in the next section and a
power series expansion of Pc about Py approximate values are obtained for Pss and BOO. In the
calculation given in R2 these values were considered as final and most of the time they were suf-
ficient. However, for materials with a relatively small bulk modulus, the truncated power series
is in error. A final iteration has been added to complete the calculation. It is a two-variable
Newton iteration for the values of B00 and poo to yield the correct values of the reference point

pressure PO (usually zero or one atmosphere) and the bulk modulus BO. The required expressions

are
3B 3B
s o)
Bo h Bn * 3R ABnn * 3p Apoo ) % 3. 36)
00 00
and
BPO 3P
= + +
PO 1-30 B ABOO ap Apoo f (3.37)
oo 00

16



where the quantities on the right-hand side are evaluated fromthe current values and those on the

left are the desired results. The procedure is repeated until ABOO and Apoo vanish,

The input parameters for this computation are po, To‘ Po’ ES, Bo' and TI" In
Section VIII-1 an input option is discussed in which Hugoniot data can be substituted for the latter
two of these. A simple calculation is provided to relate the Hugoniot parameters to Bo and Tl"'
Details are given later; however, it should be remembered that the above calculation is always

employed, regardless of the input option,

IV. NUCLEAR CONTRIBUTION TO THE EQUATION OF STATE

In this section the nuclear contribution is considered. These terms are intended to

describe the kinetic motion of atoms and ions in both solid and gaseous states.,

wv-1, Debye=-Grineisen Solid

The thermodynamics of simple solids are usually well described by the Debye~Griineisen
equation of state, with appropriate density variations of the Debye temperature and Griineisen

coefficient. The thermal contribution to the free energy is

Fyy = N kT {3 £n(1 - e'e/T) - D(G/T)} y (4. 1)

where € is the density-dependent Debye temperature, No is the number of atoms per unit mass,

and

: X .
Dexy:= i3 f YY
X o e

g%, (4.2)
-1
The corresponding expressions for pressure, energy, and entropy are
Py = 3ToN kTD®/T) , (4. 3)
ED = 3NokTD(6/T) ’ (4, 4)
and
sp= - N x [8en0t - /Ty - 4pie/m], (4.5)

17



where T is the Griineisen coefficient and related to 6 by

-Ldé

T 8 ap (4. 6)

In the case where T >> 8, the above expressions may be written
Fp = N kT {34n@@/T) -1}, (4.7)
PD = SFpNOkT ’ ‘ (4. 8)
ED = BNOkT R (4.9)

and

Sp= - Nk i3 £n(8/T) - 41 . (4, 10)

The density variation of I and 8 could be calculated from either the Slater, Dugdale and
MacDonald, or free-volume relations, Eq. (3.9), with the cold compression curve discussed in the
last section, However, it is often observed experimentally that, for small compressions, T is
nearly inversely proportional to the density. This also seems to be a fair approximation to the
results of the theoretical models over small ranges. For large compressions the limiting value
of T'for all materials is that of a free electron gas of 2/3. A relation that approaches both limits,
is properly behaved in the intermediate region, and leads to much faster evaluation than the above

theoretical models is

s +c24(1-;°—) R (4.11)

The coefficient C24 should be 2/3 to reach the correct limit as p =, However, in problems

where only slight compressions are encountered {n £ 1.3), C, may be set to zero to improve

24
speed, The Debye temperature is found from integration of (4,6), If 60 is the reference Debye

temperature, then it is' easily shown that

2
C e p
-g (L) % 2 o - 42+ 22
6= (4 exp;ro(l P, lP) 2c24(3 42 2) : (4. 12)
o t o2 /1
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Iv-2, Ideal Gas

At sufficiently high temperatures or low densities, the nuclear term should describe an
ideal gas. Let us define N‘2 as the number of atoms per unit mass with atomic number le and m,

as its atomic mass, Clearly, the relation
= . 3
N, 3 N, (4.13)
2

follows from the definitions, The thermodynamic expressions appropriate to this situation are

‘ U‘e(Zﬂm‘ekT)s/2 )
= - +
Fg kTENJZ t.@n —3 1‘, (4,14)
) . P
PG = Noka . (4. 15)
-3
EG =3 NokT . (4. 16)
and
( |y, (ZmzﬂkT)slz
SG=kZN2 tﬁﬂ——s "'5/2;, (4.17)
I} NZph

where U_2 are the internai partition functions. In the present calculation all Uﬂ are taken as unity,
For ionized gases, the above expressions should be modified so that the sums include all states of
ionization, However, since the treatment of ionization discussed in the later sections is of the
average atom type, only one term is required for each atomic number. Note that these relations

assume a monatomic gas phase. No provisions are made for molecules,

Iv-3. Interpolation Method

The principal difficulty in joining these two limiting theories together is the region of
melting. This transition is considered in Section V-1, Here an interpolation method suggested
by the Russians, 18 but in a somewhat different form, is developed. The nuclear free energy is

boldly written as

_ - 3
Fn—NokT{SEn ©/7T) 1+ fn (1+9)) , (4, 18)
where
C13p2/3 T
e (4. 19)
6
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and

e L . (4. 20)
NS/Z M3/2 j
o £

At low temperatures () << 1), Eq, (4. 18) reduces to (4. 7) and the thermodynamics to that
of a solid, For sufficiently high temperatures () >> 1), gaseous thermodynamics are the result as
the limiting form of (4. 14) is obtained. Communal free energy and entropy terms are properly

included. The corresponding interpolation equations for pressure, energy, and entropy are

. 3T+
¥ _pNokT{1+z,b ) (4.21)
=3 2y
En-2 NokT{l"'w} M (4.22)
and
= - - g i—w_-
Sn Nok{Sﬁn(G/T) 4+22n(1+h'l)+2 1+w}' (4.23)

Clearly, these expressions do not yield a true melting transition, but in many cases they are

acceptable for hydrodynamic code use in this form.,

There is still one major problem in the development of these relations, Both (4,11) and
(3. 9) are unacceptable for I' at low densities. It has been found that a simple extrapolation of the

form

. 2
r_clsp +c17p+1,p<po (4. 24)

is sufficient, where C16 and C17 are determined so that T" and % are continuous at p = po. This

form has no physical basis and is used only because it works well, To illustrate fully the nature

of this expression, further relations are required. When Eq. (4. 6) is integrated, the result is

gl 2
6-C14-pexp{-2- Cyg P +c17p} y (4.25)
where
eO
C14 = a EXE (-zro +3/2) . (4. 26)
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The Debye temperature given by (4. 25) clearly has no relation to Debye theory and is purely an
extrapolation. However, the value of 8 given by (4.25) decreases rapidly as the density decreases
from Py Hence ¥, given by (4,19), increases rapidly with decreasing density, thereby yielding
gaseous thermodynamic relations in which I is not used. An important point is that the rapid
change from solid to vapor equation-of-state relations occurs in a region where the one-phase
calculation is not used, It will be eliminated from the final thermodynamic functions by a
Maxwellian construction between the solid or liquid and vapor phases as discussed in Section V,
The overall effect of (4,24) is to provide a reasonable extrapolation of the high-density properties
to the mixed-phase boundary, a gas at low densities, and a single form convenient for numerical

computation,

With increasing temperature the interpolation problem diminishes, Near the critical
point, ¥ is generally in the range of 10 to 100, The exact critical point parameters depend only
slightly on the form given by (4. 24), Because of the relat‘:ion given by (4,6), a change in T is
reflected by a change in 8 and ) which have opposite effects on the equation of state and tend to
cancel, Under the present formulation, the critical parameters are principally determined by

the expressions used for the zero-temperature isotherm and melt transition,

The approximation leading from (4. 1) to (4. 7) has some undesirable effects on the
equation of state. The entropy calculated from (4.23) does not vanish at zero temperature., It
would be a simple matter to correct this by including the proper terms in (4. 18) and its deriva-
tives, However, this would require the evaluation of the Debye function in the hydrodynamic code.
While this presents no difficulty, it is not believed that the accuracy gained is worth the increased
computational time required. The only noticeable effect in a hydrodynamic calculation is seen in
materials with unusually high Debye temperatures, The calculated entropy at low temperatures

can be negative. This has no real effect on the hydrodynamic calculation,

The derivatives of the thermodynamic functions which are required can be shown to be

aEn Eﬂ .L"J
Con™ 37T Z—T_il'(l.;.w](g‘;w}. 4.27)
\

P P

_n__n (% 3T - 1)

ST 0T {1 () Greo)) (4. 28)

and

PR “( : )2(31-- o Pt (4. 29)
3p P 1+ /34T + §) 1+y dp * .
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where

P
dr' _ o} 3
ek —pz (T, -2¢,,(0-p /o) ,P2p_ (4. 30)
and
dr _
dp " 2C1gP tCyqs PP, (4.31)

1v-4, Relation of the Griineisen Coefficient and
Other Material Properties

Extensive tables of reference for Griuneisen coefficients (1"0) are available. Unfortunately,
many of these have been adjusted for special purposes or do not represent what they are supposed
to represent., A serious error is made by using an "effective" Griineisen coefficient determined

from a porous material by the relation

il

. ' (4, 32)

Ol
[

1-.eff

where the pressures are in excess of the yield point. 1"0 in this paper applies only to the full
density material. An effective value for a porous state calculated by (4. 32) can be, and normally

is, considerably different.

PO may be expressed in terms of quantities easily measured at low tempei‘atures. When

the relation

('g_g)p 0 ('*:ﬁ)P (Z‘,?)T (4. 33)

rozl (f2) fE (4.39)

v p
by
T {3 . ap
p 2
cp-c, =L () (28 . . 35
P v pz_ aTP o0 /o
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At the point of reference the above quantities are

B
(Z—P) e (4. 36)
2 i po
and
ip_) -
(aT P- 30‘opo : (4. 37)

where o, is the coefficient of linear expansion, The reference value of the Griineisen coefficient

is then

3 B 3:1013
Lo " poco a 3 : @ i)
o v pOCP - QaOTOBO
In the present situation,
C =3Nk . (4. 39)
v o

It is clear from (4. 38) that a small value of I‘o will yield a small expansion coefficient.
This can sometimes cause unrealistic behavior when the porous material computation of R4 is
used. Using a small effective value of I determined by (4. 32) and experimental data, as 1"0, in

effect includes the distention properties twice,

V. PHASE TRANSITIONS AND RELATED PROPERTIES

There exist certain areas on the thermodynamic surface where several phases of the
material are simultaneously present. An example of such a coexistence region is the melt
transition, where both the liguid and solid states are found, It is generally not possible to
describe material in such a condition by a single function such as given by (2. 12). Each phase
must be considered separately and mixture rules applied to find the effective properties., Consider
a mixture of Phase 1 and Phase 2. One expression of the Gibbs phase rule says that in equilibrium

the temperatures, pressures, and chemical or Gibbs potentials of the phases must be the same:

ol R N (5. 1)

Pl(pl,T) = Pz(Pz; T) (5.2)
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and
Gl(pl, T) = Gz(pz, T) , (5. 3)
where p1 and pz are the respective phase densities and
G=E-TS+P/p=F+P/p (5. 4)
is the Gibbs potential, Assume that
Py Py (5. 5)
One of the main problems in employing this type of formulation is determination of these phase
densities. The numerical difficulties involved are covered below, For the present it is assumed
that p1 and pz are known as functions of temperature,
To evaluate the thermodynamic properties of a state
<
PL<pP<P,y (5. 6)

and of the proper temperature, the following relations apply. The mass fractions of 1 and 2 are

Mf%li:z.-:li 5.7)
and

M2=1-M1=.§g=pp2 :::i . (5.8)

The thermodynamic functions are then
E =M, E % ME, , (5.9)
S= M151 & MZSZ » (5.10)
P=P =P, , (5. 11)
2. %p‘;lf’il} s, =gt (5.12)
=0, (5. 13)
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and

2 1 2 '
= - +
Cy= Bl *Myam "My ar e . BeId

where (5.12) is the Clapeyron=-Clausius relation and the total derivatives in (5. 14) must be

determined from the component phase data, With some effort it can be shown that

. : %p [p i P [—-——p i ]&} (5. 15)
TT ", - Py | 2F, - Ay | T P1F, ey | T
and for each phase,
dE, dp
i 1 5
3T C +-§- tP [ ﬁ' . (5, 16)
Py

The phase density derivatives are determined along the boundaries of the mixed~phase region.

When the chain rule

_.=——+—---—1 (5-17)

and (5.12) are employed, it follows that

3p. oP 8P
_.‘.J.l_ = fz_f.g_] {s -85 » = L] /1 (5. 18)
oT Py~ Pf 17 T2f T AT |/ 3p, '

Mixed-phase states possess several interesting properties, Note from (2, 8) and (2, 10)
that both the constant pressure heat capacity C and the linear expansion coefficient & are
undefmed This result reflects the fact that, at constant pressure, the temperature of a phase
mixture cannot be increased, Also note that the isothermal bulk modulus vanishes, The
adiabatic bulk modulus and the sound speed do not vanish but can become very small in some

regions. This causes some strange and interesting effects in hydrodynamic calculations,

Methods have been included to treat four types of phase transitions. Liquid-solid
(melting), liquid-vapor (boiling), solid-vapor (sublimation), and some simple solid-solid |
transitions which are optional, The first of these was not available in the computation in R2.
Since zll these phase changes occur at relatively low temperatures, the thermal electronic terms
are not included in the mixture relations, since they would have little effect other than to slow the

computation.
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V-1, Melt Transition and the Liguid Equation of State

The method of treating the melt transition in the current version is a recent addition.
An earlier unreported method was found to be inadequate in several cases, Some calculations in
17 ; ;
which the previous form is used have been reported. The changes in the present form will not

modify the results and conclusions of these calculations to any great extent,

The present calculation is still experimental and might be modified. The physical
relations employed seem to be realistic and reliable., However, the numerical procedure can be
quite slow in relation to other thermodynamic regions. Work is under way to try to improve the

situation,

The normal approach to this problem would be to generate independent state surfaces
for the liquid and solid with the methods used in Sections IIl and IV or an equivalent, Denote

the liquid functions by £ and the solid by s. The difference is
Fm(P;T)= Fﬂ(p’T)- Fs(p;T) N (5- 19)
where m denotes the "melt contribution. " In terms of the notation of (2, 12),

FS(P. T) = Ec(p) + Fn(p, ) 5 (5. 20)

The approach employed here is to rewrite (5,19) as
F,p, T) = F (0, T)+ F_ (0, T) (5.21)

and try to generate expressions for the melt contribution, The liquid functions are then computed
by adding these terms to the solid expressions. This procedure has several advantages, the
principal one being that there is a much greater chance of producing usable relations, On the
other hand, it is suggested that the results be checked by one of the test programs in R5 before

a hydrodynamic code run is attempted.

Clearly, the main problem is to find the proper function for Fm(p, T). It is not hard to
find a form that gives proper behavior in the region of zero pressure melt. The difficulty is to
determine functions which fit this requirement and which do not destroy the description in other
regions, This is more severe than it might seem, since Fm(P, T) and all of its derivatives must
asymptotically become negligible with respect to the corresponding term in FS(P, T) at high
temperatures and both high and low densities. If it fits these requirements, the exact form does
not seerh to be of great importance. Such a function is
Bic,. o?, (5. 22)

- a
F_(,T)=C,, JT p +C,, P a5 P
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where
y)B * (5.23)

andg, B, ¥, C and C 45 are constants. It is not difficult to show from the expressions for

43’ C44‘
Ps that @, B, and ¥ must all lie between 0 and 1/2, The values in current use are

@=0.3,
g=0.1, (5. 24)
y=0.2,

but they can easlly be changed if the need arises. The C parameters are treated as material con-
stants determined by input parameters and properties of F. The temperature dependence of

(5. 22) is constrained by the corresponding terms in Fs' The required thermodynamic functions

are:
_ at+l B+1 y+1
P, * oG VT o +BC, P HyC, P . (5. 25)
_ o B v
ZEm-I/ZC43 d}Tp+C44p +c45p . (5.26)
G %
5 = -2 y (5. 27)
m 2 VT
Gy p*
Cvm= N (5028)
4 VT
®  ac. *!
m _ 43
5T ° 3 (5.29)
2 JT
and
aPm' ) o B Y
5p T @) Cuy VT PN+ BB C 07 4yl C g P (5. 30)

It can be shown that each term becomes small compared to the corresponding golid expression at

extremes of temperature and density.
Two input material quantities must be given: the heat of fusion Hf and a parameter which

defines the density of the liquid at the triple temperature Pym* The C constants are determined

as follows: From the solid and vapor EOS, the end points of the triple line are calculated. Define
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-Psm as the solid density and TIn as the triple line or reference melt temperature. This compu-

tation is part of the procedure detailed in Section V-2,

It is assumed that

psm>p£m : (.31)
The three relations required to compute the C values are:
Pl(pﬂm'Tm) Ps(psm m) = P (p T )+ P (Pﬁm m) ’ (5. 32)
El(p'e T )= Es(psm m) + Hf = Es(pzm, Tm) + Em(pﬁm‘ Tm) : (5. 33)
and
G (plm m = Gs(psm' Tm) , (5. 34)
where G is the Gibbs potential. A more useful form of (5, 34) is
H P, T ) |P -p
i s sm’ m sm  £m
S, (4 )e B lp, T )demed
£m’ m s sm’ "'m Tm Tm [p P ‘
(5. 35)
=8 0y T 0TS b, T )

The liquid state surface is now completely defined,

The entire extent of the equilibrium phase boundaries can now be calculated as a function
of temperature, As an example, the results for aluminum are shown in Fig, 1. In this case,
H, =3.98x 109 ergs/gm and pﬂm/psm = 0,924, More details are given in Appendix D, Note that

f
the melt curve extends into regions of tensions (P < 0) for T < Tm.

The phase densities may be computed by a two-variable Newton's iteration, The

quantities
£ =P n Pﬂ {5, 36}
s
and
v = GS - G‘2 (5.37)

are defined, Given the proper densities, both .# and ‘4 vanish. After noting the relation

3G _ 1 3P
T (5. 38)
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it is easily shown that the corrections are

P {:?’-'Pl"&’} (

Ap_ = = 5. 39)

a aPs. pﬂ ps
P
and

p ;.r-P a,r)
£ s

Ap; smim———— (5, 40)
op

The problem of how to employ this in the code must now be resolved, One approach
would be to compute the phase densities at a mesh of temperatures during the initialization calcu-
lation and interpolate for intermediate values during the running mode, This type of procedure
is used for those transitions involving the vapor as related in Section V-2, However, in the
present situation, a rather large number of points would be required for accuracy because of the
steepness of the surfaces and the nearness of the two densities, As a result, in the current
version the Newton iteration is used in the running modc of operation. A number of checks have
been included to make this computation as fast as possible, but future modifications are probably

required in this area if all else proves satisfactory.

When the EOS package is called, with temperature and density defined, a set of tests is
applied to determine whether the point in question clearly lies in either the one-phase liquid or
solid regions: This is the condition if the point does not lie in the shaded area in Fig, 2.
48° C49, and C52 are determined to help bound the melt region. Lines A and B
serve the same purpose and, respectively, have the forms

Temperatures C

= + s
T Tm CSO(P pZm) (5.41)
and
T=T_+C_.(b-p) . (5. 42)
m 51 o

For a point in the shaded area the iteration is started to determine Py and Py This computation is

performed in the subrouiine ANLS,

Under certain conditions this iteration may be terminated before final convergence. The

exact values of pﬂ and Ps are important only if

o

2<P<PS. (5. 43)
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If, during the iteration, it becomes clear that (5.43) is not satisfied, no more computations are

performed. In the case where a step in the iteration yields
<
1- 04 p p£ ]

ApJZ >0 , (5. 44)

and

Ap >0 ,
it is assumed that p, T represents a liquid state. On the other extreme,

p> 1.04ps B

b <, 5. 45)

and
<
Ap 0

indicate a solid state. Both conditions state that the iteration is moving away from the given
density. There is no assurance that this procedure (called the fast iteration) will always give the
correct answer, Hence, during the initialization, an extensive series of test calculations is made
to test the method, If the computation at any point fails, the slower method of forcing complete

convergence is imposed,

When the iteration is completed, it should be clear which phase or phases and thermo-
dynamic relations are appropriate, If.(5.43) is satisfied, Egs. (5.7) through (5. 18) are used
with 1 = liquid and 2 = solid.

As stated before, a study is under way to try to improve the numerical methods employed
in this computation. Clearly, storage limitations and reliability requirements pose sorme major

problems.

v-2. .Liquid-Vapor and Solid-Vapor Transitions

In nearly all problems involving materials which are heated above melt, mixed-phase
regions involving the vapor are encountered in the relief process. This area is also of great
importance in the rapid heating of porous materials, g The treatment given here is much like
that detailed in R2, Little trouble has been found with the previous method. One addition is a
backup computation in the determination of the critical point, The temperature mesh was also
modified slightly for equations of state with a melt transition as defined in the last section,
However, much of the coding had to be redone because of the order in which information was

required.
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Generally, the method is as follows. First, for those materials where the melt tran-
sition is to be included, the triple line properties are determined. This must be done so that the
liquid EOS or, more correctly, the melt contribution can be defined. Then, with use of the liquid
EOS, the critical point is located, At a set of temperatures determined by the critical and melting
temperatures, the phase densities are located, On the high-density side, either the liquid or
solid EOS is used, depending on the relation to the melting point. In the running mode, the proper-

ties of mixed-phase states are determined by interpolation in this stored mesh.

The critical point is located by determining the density, pc, and temperature, TC, where

p 3%

) S
3 2

)

= 0. (5. 46)

As in R2, a two-variable Newton's method is employed, Temperature and density corrections are

computed by

3P 3%p ) aZP 3%p
20 aTsz apz 3paT
Ap = 5 3 5 3 (5.‘47)
EP 3P FP ISP
2T ap a‘03 a,pz 3Tap2

and
2
32py sp 2
<2 30 .. 8
AT - 2L — - (5. 48)
g&P-3-P 3P 5P
8T3p 3pS apz ETapz‘
: . o - <1 3P "
until the corrections are negligible. Only the guantities 3 and ST are calculated from analytic

expressions. The higher order derivatives required in (5,47) and (5, 48) are computed numerically

by using a grid of nine points.

In some cases, problems can arise when the third derivatives in the above expressions

happen to be near zero. A backup calculation is provided if this procedure fails, The code

attempts to follow the curve defined by

2F ;. (5. 49)

The critical point is taken to be the first maximum temperature computed on this curve,

34



Below the critical point, the phase densiti_é_,s are computed in a method similar to that in

Section V-1, The relations are

P = P -P (5' 50)
X v

and

-6 -G , (5,51)
X v

where the subscript v represents vapor and x either liquid or solid, depending'on whether the

temperature is above or below melt. The corrections to the phase densities are

P P?-P.G
X v
Ap = l z } (5.52)
x 8 Px pv px
op
and
P P-RG
\4 X
ip_ = ] = . (5, 53)
¥ an pv px
op

Special care must be taken to treat very small vapor-phase densities which may occur at low

temperatures.

The results for aluminum are typical and are shown in Fig, 3. The section of the melt
curve is the same as that in Fig. 1. The position of the critical point has been adjusted by using
the function given by (3, 33). Details are given in Appendix E. This is not yet the final form of
the EOS to be used in the hydrodynamic code. Below the triple line, a modification is made to

treat tensions in solid materials, This feature is detailed in the next section.

The two curves resulting from (5. 46) on the single-phase surface for a normal EOS are
shown in Fig. 4. Thib; surface must be used in all the mixed-phase construction. The critical
point is at the intersection. Under some conditions these curves may not have the proper form.
A clearly unacceptable result is shown in Fig. 5, Three points satisfy the mathematical con-~
ditions defining the critical point, The difficulty is reflected in the code output as a lack of
convergence in the mixed-phase calculation. Because of a rather complex interaction of the input
parameters, no single input can be blamed for this problem. Generally, some unrealistic input
number is the cause, In any case, something must be changed slightly to produce a usable form.,

The test programs in R5 can be used to study and correct the problem,
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In the running mode, the EOS package must be called, with temperature and density
defined, The routines first check to determine whether the point in question lies in a region
where a liquid-vapor or solid-vapor state might exist, When the results of this test are positive,
phase densities are interpolated from the stored arrays. The check given by (5, 6) is then
applied. In the current situation, 1 = vapor and 2 = x, as defined above, For a mixed~phase
state the thermodynamic functions are determined by using Egs. (5, 7) through (5, 16}, except that
(5, 11) is modified slightly in some cases when Mx ~ 1 to insure continuity, The phase density

derivatives are determined directly from the interpolation expressions so that (5, 18) is not used.

V=3, Tensions in Solid Materials

To properly treat the response of solid materials, allowance must be made for regions
of tensions (P < 0) in the state functions, In CHART D this is accomplished by using a part of
the one-phase surface in a region that, by equilibrium thermodynamic logic, should be a mixed-
phase solid-vapor state, Figure 6-4 in R4 illustrates the procedure used for both the tabular and

analytic EOS forms. For any state where
p z p i ] T = T 2 ’ (5' 54)

the one-phase result is used. The term pmin is an input parameter with a default value of 0.8 Do.
The above condition includes solid, solid-liquid, and a small pure liquid region on the one-phase

state surface.

There are two checks which should be applied to Pmin' First of all, the tensions allowed
should be more than sufficient to satisfy the fracture models; i, e,, P(pmin' T), Ts ’I‘m must be
larger in magnitude than any stress calculated in the code before fracture. Clearly, this means

that at least

. .
pmin pi m = (5. 55)
where pim is the density of the liguid at the triple line as discussed in Section V-1, A nonfatal

message will be generated if (5, 55) is not satisfied,

The other condition is numerical and related to the melt transition. The results for
aluminum are shown in Fig, 6. Note that the melt transition extends into the tension region and
intersecis the line at Prnin {= 2,305 gm/cc). For numerical reasons it is required that the solid-
phase line and pmin intersect., In some cases the code will increase the value of pmin to satisfy
this requirement. However no automatic adjustment in conflict with (5. 55) is allowed, In this
case the code will generate a message concerning a low-temperature melt error, and an alternate

treatment of the melt transition described in the next section will be used.
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V-4, Alternate Treatment of Melting

In many problems the full treatment of the melt transition given in Section V-1 is not
required. Some of the more obvious are calculations where the material is either well above or

below melt. For these cases an alternate method is provided.

This calculation was the only option provided in R2 and is, in reality, no special calcu-
lation at all, The melt corrections are not included and the liquid and solid equations of state are

identical. In this case

Py = P (5. 56)

and

H.=0 , (5.57)
as related to Section V-1, On the other hand, the tension region of Section V-3 is retained.

It is suggested that this option be used whenever possible after the relation of the melt

temperature and energy below are studied.

V-5. Relation of Melt Temperature and Energy

Input options are provided so that either the melt temperature Tm or the melt point
energy Em may be defined, These quantities are related so that only one can be specified. In
either case Tm is the variable stored., When Em is given, the code follows the zero pressure

isobar to find a temperature corresponding to Em.

The variable Em can represent two different quantities, depending on which treatment of
the melt transition is employed, For the full calculation of Section V-1, Em is the energy of .,

incipient melt with respect to the reference point. This is expressed as

Em - Es (ps m’

T )-E,.T) (5.58)
in the notation of (5. 33).
For the simplified treatment of melting in Section V-4, Em should be the energy of com~

pleted melt, The two values differ by the heat of fusion Hf. Obviously, the latter method will

yield a higher melting temperature than the former,
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The heats of fusion for most simple materials are all well known. For those substances
1
where Hf is not available, a simple scaling relation has been developed by Grover. . Expressed

in the units of current interest, the result is

T
B = 1,117 x 1012 B (2ZE8) (5. 59)
f A " pgm

where A is the atomic weight.

V-6, Alternate Treatment of Liguid-Vapor and Solid~Vapor
Transitions

The detailed computation explained in Section V-2 is not required for some problems,
One of the more obvious cases is where the temperatures remain below melt and the mixed-phase
regions are never entered, An alternate method of treatment, similar in concept to that in

Section V-4 is provided.

This calculation simply ignores the existence of phase mixtures and evaluates from the
single-phase surface, except that tensions are suppressed above the melt temperature. This
violates a multitude of thermodynamic inequalities and destroys the carefully constructed self-
consistence of the EOS information., For this reason it is suggested that this option only be used
for materials that remain in the solid state. Under this condition, the results of the present
calculation are identical to those of the more complex form and there is a saving of computer

time.

This computation is employed as a backup to the more detailed method. In-case of a
catastrophic failure of the iterations in Section V-2 during the generate mode, this form is tried
in order to save the calculation, Error messages are generated when this occurs, The test

programs in RS should be used to locate and correct the difficulty,

*
V=1 Simple Solid-Solid Transitions

As discussed in Section III, many substances undergo phase transitions upon compression
which result in a more closely packed structure and decreased compressibility., In this section, a
method is given whereby some such transitions may be treated in an approximate manner. Both
first- and second-order transitions are considered, However, the discussion is restricted to cases
that do not depend on the temperature. In many instances, especially those that occur at high
pressures, this seems sufficient. This restriction allows all changes to be made in the cold
components. The thermal components will not be altered. While this procedure is surely not

completely correct, it does allow at least a partial treatment.

Y
This section is identical to Section IX in R2,
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In Fig. 7, three types of cold compression curves and the associated Hugoniots are
shown, Curve (a) is for a simple material showing no apparent phase changes. This type of
data is treated by the method given in Section III, Curves (b) and (¢) represent second- and first-
order changes, respectively. The second-order transition is clearly a special case of the first-

order transition, Thus all relations developed below will be for the more complex case.

The notation is as shown in Fig. 7. The term Ptr is the pressure at which the first odd
behavior is noted in the Hugoniot. The term Pctr is the cold pressure and pl is the density at
this point. The lower density Phase 1 exists at this density and below, The higher density
Phase 2 exists for p 2 p2 , where pz = Pl. If p2 = pl, the transition is of the second order; if

p2 > pl, it is of the first.
Denote

Ty ™ pllpoo (5. 60)

and
Ny = 92/900 ; (5.61)

A three-part description of PC is required. In the regionn <n,, Ea. (3. 4) is employed with a

slight modification. At 7 =7n,, we require that P = P ., As (3. 4) has no free parémeters,
g 1 a e ctr

this is accomplished by ignoring condition (3,11), An effective value of TF is calculated so that

& (& and C, . are computed.

the above requirement is satisfied. New values of C 35° C3g° 37

34*

In the region m <ns Ngs the value of Pc = Pctr is constant. The energy is given by

n
P
ctr _d_‘rz
E n)+3 f 2

00 n
7

Ec(n)

1
(5.62)

tr‘ 1]
E (bt —am Al <nsm,,
™ O P I T

where Ec(nl) is computed by (3, 17), In this region a unique Hugoniot curve may not be defined.
If the thermal components of pressure do not increase with sufficient rapidity, a two-wave shock

structure will result., Discussions of this phenomenon are found in Al'tshuler's work,
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Fig. 7 Three types of Hugoniots, Curve (a) indicates no phase transition,
curve (b), second-order phase transition, and curve (c), first-order
phase transition,



For > Nos the form given by (3. 4) is again employed but with new coefficients in the

interpolation terms,

1/3

~if
39"

5/

" 3 3.
pC(n)—cazn exp(-C 447 ) ic38+c +C

n>n, , (5. 63)

where C,, and C,, are as previously defined. The remaining coefficients are determined by the

value of Pc and-its first two 'derivatives at Mg The energy is given by

C.n . C 3C

A 1 2/3 5« =18 38 .3 739 40
Ec(n) =Cy*s {3c32n &5(Cqam ) + - b5 _2"/'§+ 173 }, (5.64)
00 7 n
where
C C 3C
- 1 2/3 -1/3 38 .3 39 40 .

Co=E ) - 5 [3Cym, " &(Cogny "Nt =3 —3+ —33 |- (5. 85)

00 2 Mg Ny

6‘3 is given by (3. 19), and Ec(nz) is computed from (5, 62). For pressures sufficiently high, a

well-defined Hugoniot is again formed in this region for compressions somewhat greater than nz'.

Some approximate relations can be given for the form of the Hugoniot for the above
relations. However, this calculation has not as yet been fully tested in hydrodynamic code use,
The interaction with nonthermodynamic quantities, e.g., artificial viscosity, is not completely
known. For this reason only the input quantities will be given here, and it is suggested that this

calculation be used only with the greatest care.

Five input quantities are required. Let these be denoted by Dl' D2, D3‘ D4, and Ds.
D1 is the density Pye If D1 < Poo? this calculation is not used, D2 is the density p2. If D2 Dl'
the value of D2 is set equal to Dl’ This defines a second-order transition, D3 is the pressure

P, . IfD, =0, the value of Tl" used in Section III is employed to calculate D3. D4 is related to

ctr 3
dP
—_
dn n,
If
dP_
= ———n
D, o., @ n, D, ;
d
D =0 i:. = n_z i . (5 66)
4 ‘odnn, \my) dan'n, :
dP_ dP,
D,<0, —| =-D — "
4 todn n, 4 dn 'ny
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d2P
D5 is related to 2° .
dn ”2

I
dch|
D,>0 , =D, ;
5 dnz Ny 5
a’p ny\e &P
D=0 , —5= (—) =, 3 (5.67)
an® M2 \"1/ ap* ™ :
d2Pc| qucl
D < 0 » L D .
3 an? M2 S an® ™M

Note that if D1 is properly defined but D2 = D3 = D, = D, = 0, no transition occurs, since all

functions are continuous,

%
VI. ELECTRONIC CONTRIBUTION TO THE EQUATION OF STATE

In nearly all calculations of the equation of state, the electronic contribution is the most
complex and costly, There are two methods of determining these terms in common use. At low
densities, ionization equilibrium calculations are appropriate and, with valid expressions for
electrostatic interactions, can be used at relatively high densities. For high compressions,

temperature-dependent Thomas=Fermi calculations are available,

One of the fundamental differences in these two calculations is that, in the former, the
average thermodynamics is computed with regard for all possible systems, whereas in the latter
the thermodynamics of a single average system is calculated, In spite of this and numerous
other differences, it has been found that the two methods, properly employed, are not in serious
disagreement. It should be remembered that the electronic term is defined to vanish at zero
temperature, Hence the zero-temperature Thomas-Fermi values must be subtracted from the
normal calculation of the same density. This eliminates many of the effects of degeneracy.
Surprisingly, the largest differences in the two calculations, in regions where electronic terms
are important, occur at relatively high temperatures where the ionization calculation yields an

atomic shell structure effect that the Thomas-Fermi calculation does not.

mThis section is identical to Section V in R2,
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The method used here is the simplest available, The average atom ionization model
developed by the Russians, with modifications for low and high degrees of ionization, is of both
sufficient accﬁracy and speed to be used in a calculation of this type., Any number of elements
can be treated with a very dependable method, The reader is referred to the excellent text of
Zel'dovich and Raizer]'9 for a coniplete discussion. Here, only the information required for

numerical evaluation is given.

In the original development of the routines given here, it was planned that the ionization
calculation should be used only at low densities and high temperatures. An exact and consistent
tabie of scaled temperature-dependent Thomés-Fermi values was available, o However, once it
was discovered that the two calculations were quite similar, the method was changed to the
present form. There is a considerable saving in storage requirements, and the problem of

switching calculations in a consistent manner is eliminated.
The following notations are used:

Z, = atomic number of element £
A = atomic weight of element £

m, = atomic mass of element £

£
CE = number fraction of element £
No = total number of atoms per unit mass
-Ng = number of £ atoms per unit mass
Ne = number of free electrons per unit mass
N.jé = number of £ atoms per unit mass of net ionic charge i
Ii = im ionization potential of elemeﬁt £
m = average atomic ma‘ss
Zﬂ = average ionization number of element £
Z = average ionization number
A= average atomic weight
Zm = average atomic number
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Self-obvious relations involving these quantities that will later be required are:

Zcy=1, (6.1)
A=D C,A, . (6.2)
Y
m, =A£/Nav . (6.3)
m=A/NaV=§ C,m, , (6.4)
zm=§>c1 Z, » | (6.5)
= el
Zi—;lNi s (6. 6)
1
z='2cJE z, , (6.7)
2
N =ZN |, (6, 8)
e (o]
_ —_ i
NI-C,alm—?Nl . (6. 9)
and
N°=§N2 s (6, 10)

where Nav is the Avogadro number,
The principle problem in this ¢alculation is determination of the average degree of
ionization of the various atoms. Ideal gas relations are used in computing the thermodynamics.

No pressure ionization or related effects are considered, The electronic free energy is

3/2

F_ = - ZN KT {zn(AT
e [e]

— ) + 1; +Z N,QEZ) , (6.11)
PN Z 2
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where

3/2
2(2rM k) -3
&= e 56 % 1021'(é'v) 3/2cm ¥, (6.12)
3
b
k
= i, = k+1
AZ)= L+ (Z,-01L ", (6.13)
i=1

and k = k{¢) is the next integer smallér than Z,. The relations of interest are

)
P_=ZN_pkT , | (6. 14)
E =S ZNKT+Z N.QZ.) 6. 15)
e 2 o) P 2 2! :
3/2
S =ZNk )Rl — +5/z} , (6. 16)
€ NZ ‘
DO
= g} 5 K A
C 3/2Nok{z+TaT +ZNBI£ = . (6. 17)
3P o
e N ok (T4 w2
aT—Nopk{Z+Ta } (6. 18)
and
oP ; _
e :nkrlZepdZ
T—-NOKT{Z+pap}. (6. 19)

In an ionization equilibrium calculation, the ionic populations are determined by a set of

equations of the form

——=K{,T) , (6.20)
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subject to the constraints on the total number of particles given by (6.9). The function K, T) can

be extremely complex in detailed calculations., In the simplest case, the normal Saha equations,

it can be shown that21

i i
UE ; pe + I,Q
KR T~ & ™R
U l
i
vt 2¢mm kT)?/? i
= }.2_1 £ 3 exp _kiif (6.21)
U}Z PN _h

by matching chemical potentials through appropriate relations, where U; is the internal partitionﬁ
function, Heo is the electronic chemical potential, and nondegenerate statistics are assumed, All

UZ are assumed to be equal, By combining (6.12), (6,20), and (6,21), it is easily shown that

N 3/2 I

s AT ) :

1" AN exp ( 'I‘) N (6.22)
NE

where both the temperature and ionization potential are in units of electron volts,

The above set of equations may be solved by iteration. However, the Russian method is
considerably faster, requires less storage, and usually yields nearly the same result. For
reasons that will become clear shortly, there are separate calculations for single- and multi~

element materials,

Vi-1, Single-Element Ionization

First consider low and high degrees of ionization. These two cases will be solved
exactly, with the assumption that only two ionic species are present. The subscript £, denoting

the element number, will be retained for continuity.

For Z < 1/2, it is assumed that only neutral and singly ionized atoms are present. It
then follows that

N =N, =ZN_, (6.23)

(6.24)

Z
n
Z
[0}
-
]
i
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and

1
N = K
%z 5
NE 1-2 Z
where
3/2
_ AT 1
K, = oN, exp ( II/T) (6.26)

and T and Ii are both assumed to be in units of electron volts, Clearly, the desired quantities

are
=.1 ‘/ I
Sug { Ki+ 4K, 1\1] s (6.27)
= K %= I
3Z 1‘ 1-2 ”3 1)
ST T =12 T =
i, +22) 2 T
and
= K o
_aé___l‘._l'Z’ ) (6.29)
PP lxl + 27|
When Z = Zl - 1/2, only the ions of net charge Zﬂ and Z.E - 1 are present, In this case
_ ZJ2 2.1-1
Ne=ZNo=Z£ Nﬁ F ‘Zl-l) le (6.30)
and
2 Z.=1
sy =
N0 = Nﬂ E N‘2 + NJZ . (6.31)
With the definition
3/2 z
_AT 2
K, = PN, exp (-1,7/T) , (6.32)
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the result is easily shown to be

___1- ) _ '-. _ - 2
2=z {zl 1=K, + J(zﬁ 1 Kz) + 4K, zﬁi . (6. 33)
3z Ky Ay =& 3 L |
ITT | Ty 6. 34
2Z-K,+2,-1 ‘
and
2z K| Zy-Z
.—p:-T - ¢ (6-35)
122.-:{ +Z =1

If neither of the above calculations apply, the Russian method is used in the range

1/2<Z < Z.Q - 1/2, Equation (6.22) is replaced by an expression of the form

AT3/2

PNO

Z =

exp (- I_llT) . (6. 36)

where -I} is an interpolated ionization potential function, If n is an integer and

n-1/2<Z<n+1/2 , . (6.37)
then
T -0m+1/2-2)+ 1;”1<E+ 1/2 - n) . (6. 38)

The value of Z is adjusted by a Newton's iteration until Egs. (6.36) and (6, 38) are satisfied. The

derivatives are obtained from

= 1,
:—-=z’(%+%}/§T+EAE; (6.39)
and
%:-_.:z_-l__. . (6. 40)
PIT+Z 2T,
where
oT, ='IE+1 -1 . 6. 41)

This is the complete single-element calculation,
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VI-2, Multiple-Element Jonization

The multielement calculation is similar to the single-element version. Here a value of
Zis guessed and the valués of 2:2 calculated as described below.: .In general,  this set of .Zﬁ ‘will
not yield a value of Z by (6.7} consistent with the assumed value. Again we use a Newton's cor-

rection, where

YA (6, 42)
3z
ZCI—_‘Q =
£ "3z

is the change in _Z_ for the next iteration,

For each element the calculation is similar to the previous one, except that both Z and

Zﬁ are included in each relation. The results are, for -Z_Z <1/2:

Z,=K,, /K, +2), : (6.43)
3Z, (Z)° K
2 2 21
i = - — (6. 44) .
3Z 01 (K,  + 2)
ne e D 1
2y 22 {3 Ll Ba ez _——
3 K, T |2 Tj L
21
and
s e T
3Z, :_Z(ZE) -(zﬂ) Z -
o8 Egif  Byy 9P
with
/2 it
3
. _A _ 2
Kil_ 5 No exp ( T) ‘ (6,47)
Forzﬂ = Zl - 1/2:
-Z£='Z£—_—Z > (6.48)
Z+ Ky,
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3Z K
.22, (6. 49)
3Z (Z+K,,)
e,z Tels ] e 2 _
T 7, K£2’2 T )2 T G+ K£2)2 3T
and
o ST TR S v (6.51)
[ = 2 = 2% :
p(Z + K£2) (Z + Klz’
with
3/2 Z
_AT 2
Kpg " S exp - 1,7/T) (6. 52)
For 1/2 <Ez <z, -1/2:
3/2
+
1, Y- 1/2) -1, (n+ 1/2) + T 4n iﬁT (
— ' . Zp N0
2‘2 = n ’ (6.53)
81,
d3Z.
v
'—:='_Tn. (6.54)
dZ zol,
2 f  [ar®?\ 3 TZ|, =
5T ° In (= 33T /AII s (6.55)
l Zp N Z
0y
]
and
d3Z i -
yi T, T 3 n
—— |t — — A
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where n is an integer,

H-1/25Z,<n+1/2, ‘ | (6. 57)
and
n_mtl _.n
IS D P e (6. 58)

The derivatives of Z required in (6. 17), (6.18), and (6. 19) are calculated by noting in each of the

above cases that

aT 3% 3T
and
_aazz = B, + '’ %Z ) (6. 60)
P 3z p
where o, and ﬂl are known, With the application of (6.7), the result is
2z 2C, %
Ty ¢ m—————— (6.61)
: 5Z,
1-2 C.E —
32
and
= XC,8
a—z = _—ﬁ—zT- ) (6_ 62)
o 3 ’
1- Zcﬂ-—:
3Z

which completes the multielement calculation,
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VII. RADIATION FIELD AND ENERGY TRANSPORT PROPERTIES

The thermodynamic properties of the radiation field are not included as part of the
analytic equation-of-state package in the current coding. In CHART D the radiation terms are
added in a separate computation as detailed in R4, At sufficiently elevated temperatures, these
terms are dominant, If it is desirable to include these terms in the package, the best position
would be just before the computation of the sound speed in the subroutine ANEOS (see card 4082
in Appendix G of R4).

Since this EOS package is to operate in a radiation diffusion-hydrodynamic code, a
value must also be supplied for the Rosseland mean opacity, Define XA as the Rosseland mean

free path and Kr as the Rosseland mean absorption coefficient. These two guantities are related

by

(7.1)

where p is the density,

It is possible to include the effects of other transport phenomena in the radiation diffusion
relations. Complete details are given in R4, Two processes treated in this manner in the current
coding are normal thermal conduction (phonon) and hot electron transport. The term Kr in (7, 1)

is replaced by Keff where

1 1. 1 1
= b e e,
Keff Kr KH KL

(7.2)

Expressions for the three terms on the right hand side of (7. 2) are developed below,
However, it should be remembered that these are approximate relations and the results are not

of the same caliber as the information in the tabular EOS.

VII-1, Rosseland Mean Opacity

An analytic formulation of the Rosseland mean which has the wide range of validity
required for the present calculation was developed by the Russians in conjunction with the ionization

calculation given earlier. The end result of their elegant calculation is]'g

1011 p'zzz 0,4 Z
Kp * ot . (7.3)
A°T A
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where

_ . _
Z -%chZ z, . . (7. 4)

At high temperatures, Eq. (7. 3) gives answers close to the most detailed calculations
available. In general, it tends to slightly overpredict Kr’ At low temperatures, Eq. (7.3) is,
of course, not valid; however, in this case, radiation diffusion is usually not important. The

following material becomes dominant in (7. 2).

VII-2, Thermal Conduction

At sufficiently low temperatures the most important term in (7. 2) is the thermal or
phonon conduction term, As with most properties of solids, it is hard to predict from theoretical
models. A simple representation of experimental data is employed. Two input parameters are

required,
The heat flux is
F.=-H% T, (7.5)

H

where H is the conductivity and a characteristic function of the material. Generally, the de-
pendence of H on density is slight, and it is possible to represent approximately the experimental

data for many materials over limited ranges of temperature by the expression

H=H T ; (7.86)

where H0 and C41 are material constants and input -parameters. The conduction term in (7.2) is

then4
3-C
o 10> Cp T Y o
H 3pH P !
where
_ 160
C22 “3H (7.8)

U

and ¢ is the Stefan-Boltzmann constant. Note that the units required of H are ergs/(cm sec eV)

which should be reflected in HO and C41.
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Obviously, it is not possible to describe abrupt changes in conductivity by (7.6). Such
changes sometimes occur with phase transitions but data are limited. If these effects are

important, either the coding must be modified or a tabular EOS should be employed.

VII-3, Hot Electron Conduction

At intermediate temperatures and high densities, the dominant energy transport
mechanism is the diffusion of hot electrons, The relations to describe this phenomenon have

been developed by Mestel22 and put in good numerical form by Cox, 23

Unfortunately, accurate evaluation requires good values of the electronic chemical
potential. The calculation in Section VI assumed nondegenerate statistics, which affects the
computed chemical potential, As a result, only the nondegenerate limit of the conductivity
expressions can be used. However, a low-temperature modification is made to ensure a proper

joining to the phonon conduction term,
The energy flux resulting from electron diffusion is written as4

FL=-LVT-, (7.9)

where L is the conductivity. In the nondegenerate limit23

712 . 5/2
PR L A (7. 10)

7 V3Tm et Z ®

! 2 ,
®-2£n{1-cose} ' (714)
and
f NP = h 1
o- 12 L <in, (7.12)
(31! Vv 3mkT

where k is Boltzmann's constant, m the electronic mass, e the electronic charge, h Planck's
constant, Z is given by (6. 7) and No by (6.10). The term ® varies greatly only for small 8, In

light of the other approximations, it seems reasonable to use

1/3
2. (2vEmk @r®) VT f6.18 x 107 VT
® ~ 4n (5) = 4n {

|1
=4n 2=4n2, (7.13)
i (pNo)I/S (pNo)l[B ; 2
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This approximation-eliminates the necessity of computing the cosine function. The expression

required for (7. 2) is

x . 6o 1
L~ 7L

4 —
- nToA/2Tm e \/iZ@ (7.14)

6 k7/2p

418 VT Z ®/p .

There is a problem with this expression at low temperatures, since Z approaches zero
so rapidly that (7. 14) tends to overshadow the phonon conduction term. This unreasonable
behavior is a result of the approximations and can be fixed by requiring

Z z C42- = C22/144 4 _ (7. 15),

where C22 is given by (7.8). This strange relation results from forcing the electronic and phonon
conduction terms to join smoothly together at a temperature of 1 eV. In the case that phonon

conduction is not included,

C42 = 0.1 (7. 16)

is assumed,

It must be admitted that the above relations are very crude representations of Mestel's
expressions. However, unless the computation in Section VI is completely reworked, little
improvement is possible. For the present purpose, it was felt that a crude approximation was
better than completely ignoring the process. Much better values are available with the tabular

EOS data.

VIII, HUGONIOT RELATIONS
An equation of state can be completely defined without any reference to experimental

Hugoniot data, As a result, a routine is included to calculate the Hugoniot. In Section VIII-1,

an input option is discussed which allows approximate inclusion of experimental data.
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The Rankine-Hugoniot relations which describe the behavior at a shock front are well
known, If pi. Ti’ Pi‘ and Ei are the initial conditions and ps. Ts‘ Ps, and Es are those of the

shocked material, the conservation relations yield

P
o b & i
E_ Ei =3 (PS % Pi) {-———pips } . (8.1)

At a fixed set of temperatures, the values of e, which solve this expression are computed

by an iterative procedure, The shock and material velocities are computed from the relations

P -p, Y2
y_ = &—1—7-8 L (8.2)
8 Pyl = pyiPg) '
and
U, =0 ~-plp). (8.3)

The inputs required for this computation are pi and Ti' As related in Appendix A, these
variables are named RHUG and THUG. Any initial state can be defined, although the most

interesting case is from the reference points po and To'

In some cases, approximate Hugoniots for distended materials may be determined with
this computation. If the initial density is sufficiently small that it lies to the left of the shaded
area in Fig, 6, the code will treat the material as a solid-vapor mixture, The initial pressure
is the vapor pressure which is zero insofar as this calculation is concerned, This state is much
like a porous material of zero crush strength. More exact calculations are available with the

test programs in RG.

VIII-1, Relation of Experimental Hugoniot Data and Input Parameters

An option is available which permits experimental data to be defined in place of the
parameters Bo and TI" defined in Section IIl. As is shown below, this computation is approximate,

and results should be checked carefully,
It is often observed that experimental Hugoniot data may be expressed in the form
= -+
U =5,+5,U (8. 4)

within experimental error, where So and S1 are constants, It can easily be shown that (8, 4) can-

not describe any material to very high pressures. Neither is it possible to generate an EOS with

the current package which will exactly satisfy (8.4), On the other hand, (8.4) is a good
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approximation at low pressure for a large number of substances, Here, this is employed by using

expansions of the thermodynamic functions about the points Po and To and relating these to S0 and Sl'

If 'the initial state i is taken to be the reference point, *(8.2) and (8. 3) may be written as

P=P +p U U (8, 5)
0O 0sm
and
U
p__ s
IR (8.6)
o s m

By combining these relations it may be shown that

ap) 2
(ap i =50 (8.7
pOTO'
and
2
2 28 _
(° E) = =2 (28, ~ 1), (8. 8)
P 1
Bp o
Slp T
pO 0

where the well known property of second-order tangency between the Hugoniot and reference
isentrope has been employed. i If it is assumed that the thermal component of pressure is

independent of the density near p =_po, the relation

2
=
3P 3P - [(%')p
(%) i ($) TS (8.9)
N s i O < CV
may be used to show that
3P _ (3P '
) R e,
pOTO pOTO
and hence
) . 92 ’
B =P, {so - 31'(2)1\1014'1‘0} . (8.11)
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In the same manner the second derivative yields an expression for TI"‘ The relation is some-=

what more complex than that in R2, The current form is

39 p0802 (1‘0-2) B
Tp= —g—— {285, - 1 - |5 1-~—2)0-ar_, (8. 12)
o p S
o0
where
2
e
°-—2°°——°. (8.13)
pO BOO

Unfortunately, neither Po o0 OF Boo are known at this point in the calculation, The value
® is near unity, but better values can be obtained by using the expressions

1 T
B ~5)C, (1+2C)+ B ()1+ l-C(1+.2C.).+B ~ (8.14)
1 2 e}
and
c, ;'1
P NP, g ; (8. 15)
00,
where
C1 =3 ro po No k To (8.16)
and
dp_ S : r -z\ B
b (T~ T e __ o
C, = =5 {231 1 ( = ,1 3 ; (8.17)
[} p S
oo

In (8.17), & = 1 is used to allow solution without iteration,

Thus approximate values of the input parameters Bo and Tl" may be determined from the
experimental constants in (8. 4).

However, again it should be stressed that the results should be
checked to determine their acceptability.
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IX. PROPERTIES OF THE ANEOS PACKAGE

A complete.listing of the ANEOS package is given in R4. 'In that version the dimensions

are set for 20 different equations of state. The storage required on the CDC 6600 with the FUN

compiler is about 37200 octal locations. The speed of evaluation varies considerably with the

various options, An average is approximately 10-3 second per point (3.6 x 106 points/hr), but it

can easily vary by a factor of two either way.

By far the slowest computation in the present

package is for mixed liquid-solid states, as discussed in Section V-1, These will be improved

in the future.

IX-1, Coding Structure

The entire ANEOS package is made up of 14 subroutines, The following list gives the

name and purpose of each, Only those subroutines which may be called externally include the

argument list,

1) ANEOS (T, RHO, P, E, S, CV,
DPDT, DPDR, FKROS, CS, KPA,
MAT)

2) ANEOS1

(3) ANEOS2 (IGK, NUM, ITAPE, IZETL)

(4) ANION1

(5) ANION2

(6) ANION3

(7 EPINT3

(8) -+ ANTWOPH
(9) ANPHASE
(10) ANMAXW

(11) ANLS
(12) ANHUG
(13) ANPHTR

(14) - ANDATA
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Running entry point controls all calculations
after initialization, 4

Nuclear and cold components.

Main setup routine.

Single-élement ionizatio‘n calculation,
Multielement ionization calculation,

A part of the multielement ionization
calculation, '

Evaluates the third exponential integral,

Evaluates thermodynamic functions for liquid-
vapor and solid-vapor states,

Setup for liquid-vapor and solid-vapor
calculations,

A part of the setup for liquid-vapor and solid-
vapor calculations.

Treats the liquid-solid (melt) transition.
Calculates Hugoniots,
Setup for solid-solid transitions.

Contains all ‘constants, such as ionization
potentials, required by the other routines,



There are only three external links, detailed below (a, b, c), which couple the ANEOS
package to the rest of the hydrodynamic code.

(a) Subroutine ANEOS is the running mode entry point. Three of the arguments must be
defined as inputs to the computation. They are the temperature T, the density RHO, and MAT.
The latter is the absolute value of the EOS number assigned'to the material in question in the
computation under item (b), below. All other arguments are computed by the various routines
and returned as answers, P is pressure, E is the energy, S is the entropy, CV is the constant
volume heat capacity, DPDT is the pressure derivative with respect to temperature, DPDR is the
pressure derivative with respect to density, FKROS is the effective Rosseland mean absorption
coefficient, and CS is the sound speed, The variable KPA indicates what type of phase structure

is present. The code is

1 = A one-phase state for an EOS without the melt transition,
2 = A liquid-vapor or solid-vapor state,

3 = Indicates that a negative pressure has been set to zero as discussed in Section V-6,
Code should not be run in this condition,

4 = A solid state for an EOS with the melt transition,
5 = A liquid-solid state for an EOS with the melt transition.

6 = A liquid state for an EOS with the melt transition, This also includes pure vapor
states.

(b) Subroutine ANEOS2 is the initialization mode entry point., This computation must be
completed before any calls to ANEOS are made. In CHART D this subroutine is called only once
to generate all required equations of state, However, the coding is such that separate calls can
be made for each material under consideration, Results can be réquested from ANEOS for each

material after that material has been initialized.

The argument IGK may be 1, 2, or 3. The initialization occurs for IGK = 1, NUM is the
number of equations of state to be generated and IZETL is an array containing the EOS numbers,
All data cards discussed in Appendix A are read during this call. When IGK = 2, a complete dump
of the calculated constants sufficient to restart the computation is produced on tape unit ITAPE,
For IGK = 3, this dump is read from ITAPE. The latter two calls are designed to operate in

conjunction with hydrodynamic code restart options, No input cards are necessary for a restart,

(c) COMMON/BIG/ is used in subroutines ANHUG and ANDATA for initial data storage.
The size of this block depends on the number of EOS stored in the library, After initialization is
complete, the common block is not required and can be used elsewhere. In CHART D this space

is used to store tabular EOS data read from tape following the ANEOS package initialization.
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IX-2, Library Features

Library facilities have been provided as a convenience to the users so that frequently
employed EOS information need not be punched for each problem.” The required input data is
listed in Appendix A, Basically, the information put on cards 2, 3, 4, and 5 is stored in data
statements. Each user can modify the library to meet his requirements. For illustrative purposes,
an example is shown at the end of subroutine ANDATA in the listing in R4, The information neces-
sary to modify the library is obvious, The variable NUMTAB is the total number .of library
equations of state in the list and should be adjusted with each addition or.deletion. The contents
of the example library are given in Appendix C,
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11,

12,

13,

14,
15,
16,
1%,

18,
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Appendix A

INPUT CARDS

The input cards described here are the same as those in Appendix I of R4, The infor-
mation in brackets refers to sections or equations in this report. The equation-of-state number

must be from -1 to -20, All temperatures are in units of electron volts, Other units are cgs,

Card 1, Format (I3, 15, 12, 5A10, 2E10. 3)

Variable 1. Equation-of-state number (negative number).
(1-3)
Variable 2. Library equation-of-state number if desired; otherwise
(4-8)
zero. 1
Variable 3, Used only with a library equation of state,
(9-10)

This variable determines the type of analytic calculation
(see variable 2, card 2 below).
If out of range 0 to 4, or library information is only for

a gas, this input is ignored,

Variables 4-8. Fifty-column identification label: any BCD information.
(11-60)
Variable 8. RHUG = The initial density for the Hugoniot calculation,
(61-70)

If zero, the calculation is skipped. If negative, the
initial density is taken to be the reference density

(variable 3, card 2 below) [VIII],

Variable 10, THUG = The initial temperature for the Hugoniot calcu-
(71-80) lation, If zero, the calculation is skipped,
If negative, the initial temperature is taken to be the

reference temperature (variable 4, card 2 below) [ VIII],

TSee Appendix C for contents.

 Preceding pageShlank et




The Hugoniot calculation should normally be used only to test new equation of state
information,

skl ok ok R AR A SR AR AR KA R
3

If a library equation of state is requested,

-

Rkt
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¥  no further data cards are required. 3
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Cards 2, 3, and 4, Format (8E10, 3) : s

In the listing, the following variables are called ZB(I), 1 =1, 24.

Variable 1. The number of elements in this material.
(1-10) ' x

Variable 2, ° Switch for type of equation of state.
(11-20)

0. - Solid-gas without electronic terms and without

detailed treatment of the liquid-vapor region,

1..- Solid-gas with electronic terms but without .

detailed treatment of the liquid-vapor region,
2., - Gas only with electronic terms,

3. - Same as 0., but with a detailed treatment of the

liquid-vapor region,

4, - Same as 1,, but with a detailed treatment of the

liquid-vapor region,

Variable .3, ' pc.)- 2 Reference density [111-3] .
(21-30) .
Variable 4. T = Refefence temperature D I1I-37,
(Bl=10) I T_ <0, code sets T_ = 0.02567785¢ev (298°K),
Variable 5. P_ - Reference pressure (normally 0) (11-3].
(41-50)
Variable 6. B_ - Reference bulk modulus (positive number) [I1I-3],
(51-60) or
(-‘SO) - Constant in linear Hugoniot shock-particle velocity .

relation (negative number) [ VIII-17,

Variable 7, 1"0 - Reference Griineisen coefficient [4.11]. =t
(61-70) )

Variable 8, 90 - Reference Debye temperature, If 90 < 0, code

(71-80)

sets 8_ = 0.025 [4.12]. ,
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Variable 9,
(1-10)

Variable 10,
(11-20)

Variable 11,
(21-30)

Variable 12,
(31-40)

Variable 13,
(41-50)

Variable 14.
(51-60)

Variable 15,
(61-170)

Variable 16

(71-80)

Variable 17.
(1-10)

TI‘ - Parameter [3.10],

Tl" = - 1, Slater theory,

T = 0, Dugdale and MacDonald theory,

r

TI" = 1, free-volume theory,
or

S1 - Constant in linear Huéoniot shock-particle velocity
relation [ VIII-1],

Input variable is defined in relation to variable 6. .

3C,, ~ Three times the limiting value of the Griineisen

24

coefficient for large compressions, usually either
2 or 0. When a value of 2 is used, C,, = 2/3

[4.11].

2
E, - Zero temperature separation energy [3.23].

T , - Melting temperature [v-5],
or
(-E__) - Energy to the melting point at zero pressure from
the reference point [V-5] .,

C53 - Parameter for low density Pc modification to move

critical point (normally zero) [3.33].

C., - Parameter for low density Pc modification to move

54 :
critical point (normally zero) [ 3,33].

Ii'C54 = 0 and C53 # 0, codes sets C54 = 0,95,

I—I':J - Thermal conductivity coefficient. If zero, thermal
conduction is not included. Note that the units of
H= HOTC41'are ergs/{cm sec eV) [7.6].

C,, - Temperature dependence of thermal conduction

41
coefficient (see variable 15) [7.6].

Prnin - Lowest allowed solid density, usually about 0, 8 Py

If zero or negative, code sets ., =0.8p [V-3].
min o
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Card 5,

Variable 18, Parameter D

(11-20) !
Variable 19. ) Parameter D2
(21-30)
Variable 20. Parameter D3 \ Solid - solid phase transition
(31-40) parameters {normally 0) [ V-7].
Variable 21, Parameter D 4§
(41-50)
Variable 22, Parameter D5
(51-60)
Variable 23, Hf - .Heat of fusion to determine melt transition parameters [V-l].
(61-70) If H = 0, no transition is included. ’ )
If H, < 0, code sets He= 1117 x T T /A (ergs/gm),
where A is the average atomic weight,
NOTE: Code will run slower if the melt transition is
included. Use only Vwk"nen necessary and after testing,
Variable 24, e, lp_ - Ratio of liquid to solid density at melt point,
(71-80) ol ’ '

or
(-p,) - Density of liquid at melt point.
= = 7w
HH # 0andp /p =0, code sets 0, /P = 0.95 [v-1].

For a gaseous equation of state, variables 5 to 14 and 17 to 24 are read but not used.

Format (5(F5,0, E10. 3))

There is one set of the following variables for each element in variable 1, card 2. 1=1,

number of elements [ VI].

72

Variable Odd Z(I) = Atomic number of element.
Variable Even, Unnormalized atomic number fraction of element [COT(I)],
' or

-Unnormalized atomic weight fraction of element. All elements

should be defined in the same way.



Appendix B

SUMMARY OF CONTENTS OF THE C ARRAY
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Throughout this report a set of constants (Cj' j = 1, 54) has been defined to describe a

material.

C.

12,
13.
14,
15,
16,
117,
18,
18,

20,

Appendix B

SUMMARY OF CONTENTS OF THE C ARRAY

Here a summary is given with references to the point of definition in the text.

Storage for:

ny of Eq, (5,60) if defined for a solid-solid phase transition; otherwise, large

number,

n, of Eq. (5.61).

B, [Eq. (3.7)].

Constant in Eq. (3.20),

Constant in Eq. (3.20),

Constant in Eq. (3.20).

Pctr (Section V=-7) if defined for a phase transition,
Ec (171) in Eq, (5, 62) if defined for a phase transition.
Constant in Eq, (5. 65) if defined for a phase transition,
Eg [Eq. (3.23)].

Py referelnce density [ Section III-3].

T  reference temperature [Section 1II-3]

Constant in Eq. (4.20),

Constant in Eq. (4.26).

r, [Section IV-1].

Constant in Eq. (4. 24),

Constant in Eq, (4. 24).

T, [Section V-5].

0o [ Section 1],

P [ Section II-3],
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21,
22.
23,
24,

25,

26.

217,
28.
28.
30,
31,

32,

33,

34,
35,
36,
317,
38.
38.
40,

41,

42,

43.
44,
45.

46,

417,

48,

49,

B, [Section Im-3].

Constant in Eq; (7; 8).

P i [Section V-3]. .

Constant in Eq, (4.11).

8, [Eq. (4.12)].

z_ [Eq. (8.5)].

N, [Eq. 6.10)].

Number of elements in material.
A ‘[Iéq. (6.?)]. _
EOS _-t_;ype-switch, in;ﬁut variable 2, .
Internal storage location,
Constant in Eq, (34)
Constan; in Eq, (3. 4).

Constant in Eq. (3. 4).

" Constant in Eq. (3. 4),

Constant in Eq. (3. 4).
Constant'in Eq. (3.18),

Constant in Eq. (5..63).

" Constant in Eq. (5. 63).

Constant in Eq. (5, 63),

Cor;stant in Eq. (7.6).
Constant in Eq (7.15). -
Constant in Eq. (5.22).
Constant in Eq. (5.22),
Constant in Eq. (5.22).

Psm [section V-1].

Py [ Section V-1].
- .

' [Section V-1],

[Section V-1],




50,
51.
52,
53.

54,

Constant in Eq.
Constant in Eq.
[Section V-17.
Constant in Eq.

Constant in Eq.

(5,41).

(5.42).

(3. 33).

(3..33),
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Appendix C

‘SAMPLE LIBRARY
The following tables list the contents of the sample library given in R4 at the end of
subroutine ANDATA, These are for illustrative purposes and might not represent the best

available data. Tables 1 through 5 are as given in R2, Tables 6 through 9 include both a melt

transition and thermal conduction.
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ANFOS [ TRRAKY SUIMEER ) ATE (DY)

7RE 1)=  3,000000t 0N 7l )= 0, 7H017)= 0.
ZR( 2)= 2.00000GF+00 ZROIN) = D, ZHR()K)= Q.
7R V= 0, 7R(18)= 0, ZH(19Q)=. O,
7R 4)= 0, 7ZR(12)¥= 0, ZR(Z20)= G,
ZRL R)y= 0. ZR{1)= 0, ZR(21)= N,
7R A)= 0, 72 (14)y= N, ZH(?22)= 0,
ZR(O TYy= 0, 7R(18)= 0, ZR123)= 0,
R RYy= 0, 7R(1A)= 0. ZR(P4Y= (0,
Z( 1= 7 COT( 1)=  T7.,R455F=-0)

72( 2)= R COT( 2Y= 2,1075F=n)

720 3)= 1R cOT( 3¥y= 4,7000F=013

ANFNS | TRRARY NLIMRFP e 601N

ZR( 1)= 1.0Nn0000F+00 ZF( 9)= 0, ZRC17Y= G,
7R( 2)= 4,000000F+00 ZR(10)=  2.00N000F+00 ZB{1R)= 0,
ZR( 3)= 1.930000FE+01] ZR{11)=  1.450000F«10 ZR(19)= 0.
7R( 4)= 0. 7R(172)= 1,151000E~01 ZR(20)= 0,
ZR( S)= 0. 7R{13)= 0. 2R(21)= Q.
ZR( A)= 1,750000F+12 7R(14)= 0, ZR(22)= 0.
7R( 7)= 3,054000F+00 7R(18)= 0. ' ZR(23)= 0.
7R{ R)Y= 1,551n00F=02 ZR(1AY= 0, ZR(24)= 0,
7 = 79 COT( 1YY= 1.0000F«00
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AREDNS | TERARY ol IMEFD 4 AL UM i

70 ¢ .”= 1.000000F «0N Tl G) = el JONNAGHF ¢ 00 /LTy =
7R( Py= 4, 000000F+N0MN VA O N PolNNNGNE « G /HlRY =
7RO VY= 2.T700NA0F s 2R(11)= le?00i0i00F 7} ZH14G)Y =
78( 4)= 0, JREY2Y= B NAD0NDGF =1/ FHP0) =
79 BY= U 2IEEYIREE W, FHLF)Y =
7R &)= 7,RANG0NF )} R1ay=  n, : 7Rtrp) =
7RO 7)=  2,0600N0F «00 7REleyz 0, TRIPY) =
7R( Q)=  R,LION0NF=07 JR{16)=  n. F Py e
7C 1y= 13 COTO 1YY= L DNONF+nf

ANFOS LTRRARY HIIMRED 4 ’ ArLYLy T

7R 1)z 1,00G000F+0N 7=¢ )=  1,08]1000F«0( JRO1TY =,
7R P)T 4 ,0NNNOAF+NN: }nt1ﬁ)= 2.0NNPERE S (6 ZHA1R) =
C7RC )= 1 ,B4SN0NF+0N ZR(11)= L Aannnnk e} ZR(14)=
7R( &)= qa, - e ZR(20) =
7R( 5)= 0. M= 0, 7P (1) =
7R AY= =7,970Nn0NF+NG 7H{lar= N0, 7R{»2)=
7R 7)== 1.17000CF+0n 7H()S)= 0. i [P(23) =
ZR( R)= ©6,99580NF=02 7B (16)= D, ZR1z24)=

7( 1)= . & fOTC 1)Y= 10000F+00



AMFOS | TRRARY NUMRFP

7R

7R

7R(

7R (

7R

7R (

7R(

7R (

1)

2 )

1)

4)

26 COT(

1.00000NFE+00
L4,0NN0Q00F+00
T.RASNON0F+NNO
0.

0

1.930N00F+)2
1.750000F+00

0.

ANFNS LTBRAFY MUMRER

7R (

ZR(

7R (

ZR(

7R (

7R (

7R (

7R (

13 coT(

1.000000F+00
4,000000E+00
2.700000F+00
fis

0.

7.630000F+11
?2.06NN00F+00

3.430000E=-02

1=

1)=

1PON 130PT
7R( 9y= 0,
ZRIN)=  2.,0NN000F+00
ZR(11)=  7.300000F +10
7R1P)= P R20PN0F=0]
7H(13)= 0,
79 (l4)= 0.
7ZR(1%)= 0.
ZR(1A)= 0.
1.N000F+N0
ALUMIMUIM/M

7R{ 9)= =1,00NN00F+00

ZR{10) =
ZR(1Y)=
ZR(12)=
ZR(13)=
7R{14)=
ZR{15)=

7R(1A) =

1.0000E+00

2.000000F+00

1.200N00F+11

~6.639000F +09

3.5NN000F+12
AR, 000N00F=01
2.7T00000F+11

0.

/R(17)=
ZP(1H) =
7R(]19)=
ZR(7N) =
/R(21)=
R(22) =
ZR(PY) =

IR(Pu)=

7R(17)=
ZR(1R)=
/R (19)=
ZR(20)=
ZR(21)=
7R(22)=
ZR(?23)=

ZR(24)=

e

HeAn0NNOE+0N
He7S00N0FE «0DN
1.1200n0F +1)
2¢30000NFE+17
L,ONONN0F+)?
B

0o

2.3050N0E+N0

3.980000F+09

9.240000E=-01
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ANFOS LTRRARY NUMBER 7

ZR (
Z8(
78 (

28 (

Z8(

781
ZR (

ZR(

“ANEO

‘A=

LEAD/M

1)= 1.000000E+00 ZR( 9)= 1.4A0000F+00

2)=_ 4,000000E+00  ZB(10)= 2.,000000E+00

. 1.135000E+01

LZRI13)=  24000000E+12 |

g A5 L L ol SR L1 Sl K, LR

712 2.770000E+00

Ry=  7,6000006-03  ZB(16)= 0.

S LIBRARY NUMBER 8

e e

ZAt11)=  9.500000F+09

ZB(12)= -4.090000E+08

ZR( 1)= 1.000000E+00

ZB(

ZR(

2)= 4,000000E+00

3)= 1.851000E+00

T7R(mM =]

ZB( 9)=

ZR(1) =

1.1246000E+00

'2.000000E+00

3,690000E+11

. £BU1D)E  4.000000F210

ZB(17) =
ZB(18)=
7B(19)=
ZB(20)=
ZR(21)=
W daa i b
ZR(23)=

_ZB(24) =

ZB(17) =

- 2R(1R)=

S ZR(19) =

9.940000E +00
s
0.
0.
0.
0.

2.300000F +0A

9.670000E=01]

i

Oy

"0

ZR(

4)= 0.
S)= 0.

6)= =7.,99B000E+05

T

ZB(12)= =3,6R0000E+10

ZB(13)=

0

ZB(20)=

"ZB(21)=

ZB(22)=

0.

0.

0.

7Y= 1.160000E+00

B)= 9.995000E=-02  ZB(16)= =5,434700E-01 2

T ZR(15) =

2.900000E+10

ZB(23)=

1.300000E+10

84

COT('1)= 1:00006+00



ANFNAS LTRAPAKY MUMAFO 9 COPPFR /M

ZRE 1)= 1.000000F+00 ZR({ 9)= 1,48900NF+00 7ZR(17)= 0,
ZR{ ?2)1= 4,0N0N00F+0D ZREINY= 2.000000F+00 7R(1R)= 0.
7R 3= B,94D00NF 400 ZR(11)=  5.250000F+]0 2R(19)= 0.
7R( a4)= 0, ZR(12)= ~4,637000F +N9 2R(20)= 0.
7R S)= 0, ZR(13)=  AL0NONONF«12 ZR(21)= 0,
7R( A)= =3,940000F4+0S ZR(14)=  7.,0000N0F=0) ZR(22)= 0,
7RO 7)=  1.990000F+00 7R(1S)=  4,4N0000F+11 ZR(23)=  2.055000F+n9
7R( A)y=  2,71N0000F-n2 ZR(16)= 0. ZR(24)= =8,217000F+0D

7¢( 1)= 29 COT( 1)= 1,00n0F+0N

85-86
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Appendix D

SAMPLE CALCULATIONS FOR ALUMINUM

The normal printed output produced during the generate mode for a material is shown on
the following pages. The data are for library number 6 in Appendix C, In this listing, COT(I) = Ci
of Eq, (6. 1) and FNI(I) = N, of Eq, (6.9). Plots of computed results are shown in Figs, D-1
through D-12, Figures D=8 through D-12 employ a grid equally spaced on log (0) and log (T), All
plots were produced by the program CKEOS described in RS,

This equation of state was used for the example in Section V-6 of R4.

87-88
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4)

FOS NDATA ECR AMALYTTS EIS NUMAREPR =6 LIRRARY NUMPRER 6 TYPE
ALUMTINUM

RHUR= =1,U(0CE+0" THUG= =1,)9u0E+QOC

LIRRAPY ENS AN}M3TO ( ALUMTINUM/Y ) IS RIQUESTEN

Z8C 1)= 1.0I00077G2E+Cn  Z3( 9)==1.300N0JCIO0E+C0  77(17)= 2,30500C000E+010
ZP( 2)= 4.0G0U0IN0IRE+#CO  Z9(10)= 2,)00000000E+C0 ZB(18)= 0.

IR 3)= 2,7000CInANEecD  7m(41)= 41,2000Q0CO00E+41 7919 = D,

Z0( 4)= 2,5A7785014E=-02 70{(121=-6,A393000CUE+C9 77(20V= 0,

ZP( S5v= 1. 7A(1 = 3,5200000006¢42 27(21)= 0.

ZR( AY= 7,RI000000PF+11  78(14)= AL3000000C0F=C1 78(22)= 0.

ZR{ 7)= 2,L€0N000LDFe0L  7A(LS)= 2,7000060C00F+21 79¢22)= 3,986000000E+009
ZRCE 9)= 3,4200020008-02 7R(1R)= D, 73(24)= 9,240000000E-014

CU 1)Y= 1,400060;304100 C(19)= 2,7522R7764E+00 C(37)= 5,691943L37E+412

CC ?2)= 0. C(2d)= Q. £(23)= 0.

Cl 3= 8.31820A39AZ4+11 C(21)= 7,RTI0CU00CE+1L C(23)= 0.

Cl &)= HeL1137762L0E+1Y N(22)= 2,029620R3(E+401 C(L0)= 0.

Cl R)= 7.2Z20851530E+30 "€ (2= 2,3I150{00NLE+OC C(uir= 0,

Cl A)= 3,1391LBL7IES]0 C(24)= R,ERARHARRATE=-O0L C(u2)= {,000000000E-01

c( 7)= 9, mE25) = 2,433400000F=22 C(u3)=-1,32898961LE¢10

C{ a)= 10, C(26)= 1.307300000E401 ClLL)==1.,632613953F+11

C( 9= 9, C(27)= 2.2322865598E422 C(uS)= 1.532727735€+11

Cl10)= 1.,200000NQC+41 N(29)= 1.,37)7L0000F400 C(u5)= 2,572087979E+00

C11)= 2.,70GC0CI0CE+30 C(23)= 2,6932C000CE+N1 C(L7)= 2,376609293E+DC

F(12)= 2,5677487170F=J2 CN(T))= L,N1IJC0000E+00 C(LB)= 6.,685865233LE+0U

C(L3)= 7.,71777231L%~38 C{(31)= 1.00790C00CF+0C CHLI)= 1,824726914LE-02

Cli4)= 9,248659081F~94 C(22)= 1.5)5496582F¢13 N(=0t= 3,056420076E=-01

C(15)= 2,0EGG0RNC S+ C(23)= 2,1551h564108E¢00 C{=1)= 3,266LB5L21E~01

C(1h) ==4,279825324°=-01 ()= ©,74771428CE+11 C(%2)= 7,876590532E-01

C(17)= 1.54B814PF1LsF4+), C(35)==7,639L22265F+12 C(F3)= 3.500000000E+12

C(18)= 8,7°38R7TR233E~32 N(35)= 2,338AG6175E+12 C(S4)= AR, 030000000E=-01

ZC 1= 13 COTC 13= 1,)"30CF+1D ENIC 1)= 2.,23223F+22

REFERENCZ FCINT FONDTTIONS

Ts 2,5R77E86E=,? RHN=  2,70CJJ0E+00D
Pz 9,M947228E=y3 Fx 2.8051277+0Q
ST 1.11R3C8F+11 V= 1.,069%37C5+414
OPDT= 5,974,866+ 11 neR=  2,825926E+11
AC= 7.633000E+11 £S= 5,42396KE+(05

(»Reprcduced from

best available copy:




90

‘THO=PHASE

THO=PHAST CALCULATTON FOR

CRITITAL PCINT

RHO=
E=

T

8.4 25875F=)1
10

Teh7377E=-01
P

6.,93879€~-)1
€

6.20281E~31
=

5.R1ABIE=11
7

Le9T3B5E-T1
€
Lb,24d88F=y1
3

3.,553A0E-01
e

2.87392E-01
6

2.137%4LF-21
&

1,851 L5E~-n1
L

1.5089RF=11
A
1.16HL7E=71
y

8,239R4LF="2
6

BelS7LkE=]?2
6

6e513LTE=)C
<
WolhABIE=D2
g

24MQG5E=12
' 8

LOC¥P( R)=

Le77€3L21%-(1
111050 2F %11

BOUNDARIES

RHOLTN
_RHOVAP

6.37H865=01
2.927722=01

?.A7625T=i1
2e 2677350

8,76013E=01
1.7h232F=C1

9,30647F-P}
127701 5=01

A0,A115L43=01
1.)65482=01

15725311 +0¢8
T TIAPGZ= 02

1110945400
5,416285-(2

1.237047 407
e WRP525=(2

1,523288+00
1.A4210%2=-02

1.31780Z+434
bhe 1155QE= (3
2WNS6H28E40 0
1,167952=-073

24172374546y
9,347528 =35

2.270797 45,
Q,412527=-08

2. I7RE1F 400
2,198875=14

2.57LIEF+CD
1., IGA2DE-14

2.612,u24CQ
1.u2620Z=19

2.4 5HASSE w00
4.3%7235=30

24 703TI= 4] )
GeS8LILT=RE

1 LnexeL(

MATEOTIAL

-«

e

PLTQ
DYAD

64092505419
5¢L92%0E+39

4.129L97 419
4e12949F+19

Re265R9E+1Y

3.2~588F 4119

2.50C73F+)9
2450u73F+19

1.RTLL4E¥IA
1,67414E4+39

1.26719F+13
1.,2A719€E409

3,01576E+)13
A,0157A/F+79

Le2RALEF+])S
L, 78AL5E+]3

1789015 ¢)3
1.78351E4+03

3a260LBT+]7
T,251077 437

A.75871F+)5

5. 75058F +)16.

3627, 0E+35
Yh27" 28 ¥ Y6

2.09774F 42
2.002778492

3.AR211F-73
S5,M58355% )5

beHIRRTE=)

2,113n1E-]5

1.95713%7=17
Jel2rag= =41

1s135258=]2
7.A0518F=21

2s62LE1E=-]3
5,sh26L0OT =47

RY= RA

= Q,0637242F-(1
= R,2L)12RSE+11

ELIN
EVAP

1.00510F ¢#11
1.1LH67F+11

9, 4tLORCE+1Q
1.1T68T7E+14

A,92103E+10
1.117968F +11

Bel236CE+10
1.09281F+11

7.9360CF+10
1.06578F+11

ToLTITTEE+10
1,0?652F+11

6eE3LSLE+LD
1.00019€+11

Ae21451E#19
9. F25L2F +11

BeCGQREF#1)]
3,2GR12F+10

3,2R205F+10
8,7AR370F+10

2.7358€F+10
8,60797E+10

2421197F¢10

8.72359E4+10

1.74390E+10
3.9R3LIF+1Y

1.24213E+10C
1.17673E+11

8.23363E+09
1.1793LF+11

?7.261975+09
1.21389F+11

4.G3220F+0Q
1.2219RF+11

2.60R3G9E+09
1.21292€+1¢

P= 5,1571289F+09

NTY= 9

SLIC
svap

Fel7T933E+11
Fe26729F+11

B, G9LT7E+11
GolLib15E+1

E.Q1721F¢11
FoLLA?75E+L1

5.E3373E+11
FeLB160E+11

Ce7BL2AE+LL
he€LTA7ESLY

G ESTRAE+LY
6 FSL2TEHLY

S.537L2E+11
FeFO013E+11

S.2R053E+14
FeB7201F441

L.97566E411
6. 81158€E+11

L.3256Q9E+11
7.15482€+11

L,M21C9E+11
7.51168E+14

X, 70840E411
E.PRA07TE+1LL

2, 2R26AE+ 11
1.06NREE+12

2.95930E+11
1.58816E¢12

2.L456L88E+11
1.RA0LA0E+12

2.18149E+11
2.00273E+12

1.73A95E+11
2. BLLLAES1?

1.03RL2E+11
F.10580F+12

AfLI0
GVAP

=4,00164E+11
-4,00164E+11

-2.60148E+11
-3.60168E+11

-3.20L29E+11
-3.20429F¢11

~2.81066E+11
=2.31046E+11

=2+ 420LSWE 11
“2.420545411

=2.03531E+11
©2.03531€E+11

-1.65607E+11
-1,65607E¢ 11

-1.28543E+11
=1.285L3E+11

=9.,311915+10
=9,31191E+10

=6H.136572+10
-5.13657E+10

-4,70B5LE+10
=4, 70B6LES1LLC

=3.3847TU4E®10
=3,38L76LE4+10

=2.17255Z¢10
=2.17255E+10

-1.08887€+10
~1.08E887E+1D

=1.05859€+10
-1.,068595+10

=6.85879E409
~6.85879E409

-2.79638E+0N9
=2.79€285¢09

1.304L00E+08
1.30600E+08

)



4)

MELT CURVE
T
1482L47E=]2

1A

3.9631F-J2
A

6.1)15E=-12
g

8.2388E-02
0

1.0727E-71
3

1.39A6E=)1
3

1.8179€E=-01
&

2¢36K7E=-N1
4

3.0810E=-"1
N

400109F=1
[

5,22156=91
4

6. 797R/E=J1
4

8.8693F=-01
A

1.1520E¢30
L

1.4997F4+)
g

1.,9524LE4+)7
a

2.5417E+uD
15

J3.3JR9E+ )
26

Lo307RE+]T
4o

Seh077E+Q]]
79

Qs
2L

20 2ILATHT D
1. BUSEEHNL

2+ 3171540
2412395 4:C

2. L877E¢0
242R54E4NC

2.57215+40
24 X7H5AT+ID

2. ARRYEHIC
2. LANST+ 50

2073205+7)0
2. h2LLESJQ

2.92515440
20 73R0F+JC

JslUETe0N
2:9325F¢0

2.331L5E+0(
Je22L7F 400

3.A2245 400
1,52845413

Ly ")ZAC+0y
RiQLA9ERN T

4. 517ATH)0
L3127+, 0

e 1891F+]0
S+12R2E+L

Be1SR2E4)C
£.1110E470

7e591RT40(
7453202404

CoBJOLF#ND
9. 7661+ (

1.35835491
135457+

2o 0777401
2a07L7C+)1

307355F4ﬂ1
3. 7TTRER0 L

34283915+9¢
9.28A3C+401

s
PL

=R3,84800411
=8, ALRAE+10

=A.13R1E+1C
“As13RLE+LD

=2,152LE+10
«3.15245+10

=2.6855=03
=2.R6H215=03

3,8539E4+17
3.8530E4140

9.,1412E410
9e1612F+10

1,65100+11
1.,6510E+11

2.7340E+11
2.7040E%+11

bLe242DE+11
Le264320F+11

be55L0F+11
e 554JF+41

1eJ4142E412
leo142f+12

159445412
1.59L45+12

2458125412
2.5912F¢12

Le3h80T¢1?
LeRBF+12

7496955412
7.8695E+12

156716412
1454717412

Jo4L15F+17
S.b415F+1?

9.1919F#13
F.1319F#17

3.30LuE+10
J.TDLLE+1L

2,14075415
241640TF+15

ES
L

6, 649F¢09
1.770LE#LL

h+8093E+(09
1.2821FE+10

7.937LE+D9

1.2R3LE+1LC

,L4L13E+09
1.3L21E+10

1.1577E+1¢(
1,5057€+1¢

1. L8B2F+1D
1.7871E+10

1,9923E+10
2. 27SLE+1(

2.756RE+L(
3.u299F¢10

3.0146F+1C
be195LE+LC

5.6756F¢10
5.,9837E+4(

9,3772E+40
8. 73G6EFLC

“1.2582E+11

1.30168E+11

1.926EE+11
1.9815F+11

3.0212F+11
3.0918E+11

LeBATT7E®11
4bs9801E+11

3.26515E¢11
3,37L2F+11

Lek798E+12
1. 49RCSE+12

2490 LLE*L?
2,92T76F+12

5.h019F¢12
FebIBTF¢L2

2,00T3E+13
2,7086E413

S5
<L

1.1212F+14
2.2hC0E+11

1.6575F¢11
2.561M2F+11

2.2256F+11
2.7312F+11

2.LA7TIF 411
2,9503F+11

2.hHE9F+11
J.09h2E¢11

2,85L6F+11
3.2172€¢14

3.0308E¢11
3, 16F+11

3.1928F+11
3. L50BFE+11

o34 T72F+11

3.57T14E+11

T L7RLESL]
J.ATLEE+LL

I,5989F+11
3.7590F+11

34713SE+11
3.8523F+11

3.,7922E+11
2,9271F+11

3.8017E+11
3.0786F#14

3.9p88F¢11
4.01F1F+14

3. 9275F 411
4,1 2ACE+11

3.9069F+11
4,CINSF+11

YoP2€5F 411
3.91R6F+11

3.6478E+11
3.7393¢¢41

Jo2LLTE+11
3.35L2F¢11

S
GL

=3, L278E+1C
=3.437RFE+10

'20613‘5‘16
=2.61355410

=1.8315E+10

=~1.,8316E+4C

=1.,0889E+10
=1.08R89E+10

«2.5740LF 408
=2:,57TLLE* 09

T+8476LE+0S
7.8764LE+D9

2+1267E+40
2.1267E+10

3.9078F¢10
Y., Q07RE+10

he350CE+10
6.,3500F+1C

9.R172E+10

Q.8172F+1C

1.4935F+11
1,4935E+11

2,2808E+11
2.2808E+114

J.5L51F+41
3.5451E+11

5.6677E+11
S.6077E+11

9,4052E+11
9.4052E+11

1.635RE+142
1.6356E+12

3.0205€+12
3.0205E+12

6.0623E+12
he0623E+12

1,3876E+13
1.38755¢13

4e1259E+13
4e1259E+13

91



26

HUGONIOT

PHN
2.7030E+22
2.7165E40"
2.TULRE+]
2.7907F ¢,
2.8758L+)
2.8955F4+0
3.U395E4+99)
3,13R1F+))
2, 2690E+)n
3.35385417
3.5119F+),
3.60LAF+{G
3.6385E+1]
3.7594F+7)
3.8215F+))
3.87705+20
R.9272E+y .
4Lo0361E402
4.,1279F+))
%,2078E+,)
L,2790F+15
4o3LISE+Y,
4t kD29E4+1)
4o 4580E+7)
L.5398F+ 0
t,5S88E+7)
4.h15RF+ )
L.GBITES )]
447282E47)
4.T7559E+7"
4G.B027E+0;
4.8397F4+3)
Le.B739E+DJ
4,9421F +)9
5.0079E+39
S.U711543)
Se1321F4 2%
5.1911t 2"
5,3931F+)y
5e4S77E+] )
S.hBLTE+D
5.8°02E+))
6.2)1LF4¢])
6.4555E+ )
6.6660E+00
6o BU2LE+ Y
6+9938F 4+ )0
7.1324Es
7.293LE+)y

¢
2% 55785=202
2.6102%=)2
20 780~ ;2
2.96,0E-12
2« PANTE~2
2. 5)LLE-H2
bet y20°=12
e 0ICGz=-02
€aZNG2T=32
Beul¥N==32
1.r"0E~izg
1.2%7%=-31
1.6]%0E=-31
1./20IF=-11
1.R050%-"1
Zeli1TE=09
2.5300E-71
J.(270%=-1
e SJOEE=i 1
Geu10rz-11
4e537LE=-31
CeMILiCE-11
Eo BRPLES ]
E«Q02LE=T1
6.K“D_7-_—'\1
Ta 03055551
TeBIGEE=]1
3.5090%-91

1.233ufE46,
1. L33+
1.5Ju0F+, 0
1.702rF43)
2¢L 3007420
2o 50T RAT
1.000¢T4 0y
Ltefip2=4 0
Se 1M ERI G
Ed 052 E®, L
Te L€AY (
S UG ERQT
9, M)0i+:E
L. 'J1°F+32

crpoath

P
3,39625=91%
L. RILLFE+09
1.2630F+10
2,8261F+1)
Le3IG565Z+1:
A 510CE+1D
1.226AF+11
1.7852254¢11
2.734154141
2.9LLT7E411
T, 86273411
4.530954+11
5.7116E411
5.932BC+11
f.5{C5E+11
7.056LE 411
745712F 41
B.77235+11
9,.3791F+11
1..916E+12
1.13215+12
1.29L5F+12
1.3757E¢12
1.46L45412
1.55115+12
1.53625+12
1.7201F+12
1.900HAE+12
2.0369%+12
2473435442
2.1p155+12
2.23084F4+12
2,31625412

2.4K836412.

2.5211F+12
2+ 7TTSENL 2
2092557+¢12
207735412
3.370655+42
3,322 +12
LyFRELF412
5429795+12
Ba7)74T+12
3% 279Lz 412
Q. 4187F+12
10277174172
1 2] 92883
1,327F+42
1e4777E+17

PC
-1.5281F#+10
-1.0578€+10
-3,1419c499
1.1888E+1(
2.65088F+1(
L,7215E+1¢
1.9272€¢11
1.4459F¢11
2.0082(CF+11
2.,5822F+11
3.2762F¢11
L,0205€¢11
LeS762E+11
S.G721E+11
5.5228¢¢11
5.9412F+11

feIJ1LE+LY

7.210L4LE+1Y
7.99GAF+11
B.T7145F+11
9.3752F¢11
9,9937E+11
1.C579E+12
1,11275+12
-1.15h75E#12
1.2194E4+12
1.270CE+12
1.3520F+12
1.4075€E+12
1.6512E412
1.6945F+12
1.537LF+12
1.5799E+12
1.6AL1E+12
1. 74T2E#12
1,8291€¢12
1,9100E+12
1.9898E¢12
2.1450F+12
2.3713E+12
2.7226E%+12
2, 0458E¢12
2. 6158E+12
4,1965E+12
4,5327E#12
4.90865¢12
S.2L27E+12
5.56)7E4+12
5.91h9E+#12

E
2.2051F+09
2.81C6E+09
2.B4CEF+09Q
2.,G752F409
3.1916E+00
T.A191F+09
5.2671E+09
T.1465F+09
1.7"6R9F+10
1.3566F+10
1.9186F+10
2.4332E+10
2.91R5F+10
3,2766F+10

2. P1BBF+10-

4026 FULF 41D
4.6519F+10
5.6585F+10
6.50RBE+10
7.52L3F¢10
8.51T1E+10
9.2312€+10
1T 1T4F+11
1.0375E+11
1.13C8F+11
1.2575F+11
1. TWEQF+14
1.5172E+11
1.6223F+11
1.7012F+11
1.7805F+11
1.P5C2E+11
1.9403F+11
2.1018F+11
2.264aE+11
2,42095Fe11
2.59€5E+11
2.7627F+11
T.1200E11
3.E112F+11
4o 4590FE+11
SeTI0LEHLL
7.0612F+11
8.7322F+11
1.C6GSFe12
1.,2359F +12
1,7596F+12
1.53R5E412
1,72409F 412

S
1.1166E+11
1.1164E+11
1.1166E+11
1.1183E+11
1.1226E+11
1.1342E¢11
1.2017E+11
1.28u0E+11
1.445CE+11
1.5880E+11
1.8245E+11
2.0133E+11
2.1695FE+11
2.3026€+11

2.4183FE¢11

2.5208E+11
2.6125E+11
2.8073E+11
2.9667E+11
3,10146E+11
3.2182E+#11
3.3212€+11
3.0134E¢11
3.4969E¢11
3.5731E+11
3. 6633E+11
3.7084F¢11
3.8553F+11
3.934LE+11
3.9860E¢11
L. 03LTE+11
4,081DF+11
4,125GE+41
4.2072E+11
§.,2829E+11
4,353CE+11
Lel185E+11
4, LB00E+11
4,5930F+11
4, 7L30Fe1]
4. 95€4E+11
S.1331E+11
5.LLOBF+11
5.6897F+11
S.9031E+11
6.090%F+11
6.2573FE+11
b.4115E+11
feGHBCE+11

v u RHO/RHOO
5.42L05405 G 1.00G0E+00
5.46925¢)5 3.3145F+03 1.0061E400 2 SOLID
5.53925+¢05 B8.4450E+93 1.0155€+400 2 SOLID
5.67585+405 1.8L4L1F404 1.0336E+00 3 SOLID
5,803954G5 2.7800€404 1.0503E+00 3 SOLID
S.975BE+(5 4.034BE¢0L 1.0724E¢+00 3 SOLID
6. 4033E+CS 7.1525FE+06  1.1257E400 & SOLID
5.700LE+GS 9.3181E406 $1.1615E+00 & SOLID
Te12275405 1.2397E+05 1.2107E+00 & SOLID
T.4342E+05 1.4670E+405 1.2659E400 3 SOLID
7.9036E+65 1.8099FE+405 1.2970E+00 & SOLID
B+26595+¢(05 2.07S50F+05 1.3352€+00 3 SOLID
R.5679E+05 2.2961E405 1.3661E+00 3 SOLID ~
8483035465 - 2,LBBGE+05 1.3924E+00 3 SOLID
9, 06LLEFTS 2.6602E4D05 1.4154E+00 3 SOLID
9,27715405 2.8163E+05 1.4359E+0080 3 SOLID
9,47295+05 2.9602E+05 1.4545E+00 3 SOLID
9.9072%405 3,2796E+405 1.494BE+00 3 SOLID
1,0285E+06 3.55765+05 1.,5268E#00 3 SOLID ~
1.06225¢06 3.8063E¢05 1.5585€+400 3 SOLID
1.0929E+06 4.0330E*05 1.58LBE+00 3 SOLIN
1.12135+66 4.2628E+405 1.6087E+00 3 SOLID
1.1678C+06 4.4392F+05 {1,6307E+00 3 SOLIOD
1.1728E+06 4,624BE+05 1.6511E+00 3 SOLID
1.19655¢06 4,.B8015E+05 1.6703c+00 3 SoLIN
1.21915+06 4.9709E+#05 1.6885E+400 3 SOLID
1.24095+06 S.1341E+05 1.705BE400 3 SOLID
1.2898E#G6 S5.4574E+05 1,7334E400 3 MELT
1.31645¢06 S.6L6H6E+05S 1.7512E+00 3 LIGUID
1.334L5E406 5.7847E+05 1.7652E+00 3 LIQUID
1.3522%+06 5,9202E+05 1.778BE+00 3 LIQUID
1.36955¢06 6,0534E¢05 1.7921E+00 3 LIQUIO
1.3865E+06 6.1843E+05 1,8051E+00 2 LIQUIOD
1.4195E+06 6.,44015405 1.830LE+#00 3 (IQUIO
1.4514E+06 6.6885F+05 1.8547E+00 3 LIOUID
1.482254+C6 6.93G3E+35 1.8782E+00 3 LIQUID
1,51215+06 7.1658E+¢05 1.9008E+00 3 LIQUID
1.5611E+56 7.3955E405 1.9226E¢00 3 LIQUID
1.5968Z%06 7.B8383E+05 1.9641iE+00 3 LIQUID
1.675LE+6 B.4L654E+05 2.021LE+00 3 LIQUID
1.79525+y6 9.,4253E+05 2.1056E+00 3 LIQUID
1.906405+36 ~ 1.02985496 2.1779E+0C 3 LIQUIO
2.097654¢06 1.1863E4N6 2.296BE+0C 3 LIQUID
2.2A795+06 1.319564D6 2.3913E+400 3 LIQUID
2.4214%406 1.4L06E+06 2,.4689€%00 3 LIGUIO
2.5623%¢06 1.5512F+06 2.5342E+00 3 LTQUIO
2.69305+406 1.E6534E+06 2,5903E400 3 LIQUID
2.81825¢06 1.7514E406 2,6416E+00 3 LIQUID
294917406 1.8559E%05 2.6976E+3C 3 LIQUID
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PROCEDURE OF ADJUSTMENT OF CRITICAL PQINT

105-106



1
3




Appendix E

PROCEDURE OF ADJUSTMENT OF CRITICAL POINT

The equation of state for aluminum presented in Appendix D has had the critical point
parameters adjusted by use of Eq. (3.33). The results of part of a parameter study are shown
in Fig. E-1, For these curves, C54 = 0, 8. Other values were tried with similar results.

On the basis of these curves, the values C53 =3.5x 1012 dynes/cm2 and C54 = 0.8 were
selected, While the critical point parameters of aluminum are not well known, the computed

results with C5 = 0 seem to have too high a temperature and pressure to be in line with extrapo-

3
lated experimental data, The values on the right-hand side of the curves are in agreement with

some recent estimates,
With this equation of state it is not possible to further decrease the critical pressure by

increasing C53 to an appreciable extent, The difficulty discussed in reference to Fig, 5 is

encountered, This problem will normally control the adjustment possible by (3. 33).
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