
WHAT IS IGRAPH?

WHAT IS IGRAPH NOT?

THE ARCHITECTURE OF IGRAPH

USING IGRAPH FROM R USING IGRAPH FROM PYTHON

HOW TO GET HELP OR REPORT BUGS?
http://igraph.sf.net/docs.html
http://igraph.wikidot.com
http://igraph.sf.net/support.html
http://igraph.sf.net/bugs.html

Documentation
Wiki
Mailing lists
Bug tracker

AUTHORS & ACKNOWLEDGMENTS
Gábor Csárdi (Gabor.Csardi@unil.ch)
Department of Medical Genetics, University of Lausanne

Tamás Nepusz (tamas@cs.rhul.ac.uk)
Centre for Systems and Synthetic Biology, Department of
Computer Science, Royal Holloway, University of London

Thanks to: the authors of third-party algorithms (BLISS,
DrL, spinglass & walktrap clustering, Viger-Latapy graph
generator), Jeroen Bruggeman, Tom Gregorovic, Bernie
Hogan, Peter McMahan and all the people who reported
bugs or contributed code to igraph.

ALGORITHMS IN IGRAPH
Graph generators
rings, stars, lattices, trees ● famous graphs by name ●
Erdos-Renyi random graphs ● linear, nonlinear and aging
preferential attachment ● Watts-Strogatz model ● forest
fire model ● geometric random graphs ● many others...

Centrality properties
degree ● closeness ● betweenness ● eigenvector centrality
● PageRank ● hub and authority scores ● Burt's constraint
scores ● betweenness estimation

Structural properties of graphs
density ● reciprocity ● clustering coefficient ● k-cores ●
girth ● spanning trees ● articulation points ● max-flows
and min-cuts ● vertex and edge connectivity ● maximal
and largest cliques ● independent vertex sets

Shortest path calculations
breadth first search ● Dijkstra's algorithm ● Bellman-Ford
algorithm ● Johnson's algorithm ● diameter ● all shortest
paths between two vertices

Community detection methods
strongly/weakly connected components ● Newman-Girvan
method ● greedy modularity optimization ● spinglass
clustering ● walktrap clustering ● multilevel clustering
(Louvain method) ● label propagation ● modularity

Layout algorithms and visualization
circle and sphere layout ● Fruchterman-Reingold in 2D and
3D ● Kamada-Kawai in 2D and 3D ● Large Graph Layout
(LGL) ● DrL algorithm ● Reingold-Tilford tree layout ●
plotting graphs in PNG, PDF and SVG formats

Importing from and exporting to foreign formats
adjacency matrices ● edge lists (numeric and symbolic) ●
NCOL ● LGL ● Pajek ● GraphViz (export only) ● GML ●
GraphML ● GraphDB

A platform for the analysis of large complex networks
igraph is a tool intended for researchers working with
large datasets that can be represented in network form. It
contains a simple but efficient indexed edge-list data
structure for such data, along with implementations of
many classical graph theory algorithms and more recent
network analysis methods, from simple shortest path
calculations to advanced graph clustering heuristics.

A library optimized for speed and efficiency
The core of igraph is implemented in 100% C and C++, so
it is fast and efficient. (If not, then it is a bug, mail us and
we will fix it). There is no built-in limit on the number of
vertices and edges. If your graph can fit into the memory
of your computer, then igraph can handle it. We have
successfully analyzed graphs with 2.1 million vertices and
15 million directed edges with ease.

A tool for rapid algorithm prototyping
igraph has interfaces for higher level languages such as R,
Python or Ruby. You can leverage the full power of igraph
from these languages without having to write a single line
of C code. Combining igraph with a higher level language
provides a productive research environment where trying
out new ideas is only a matter of a few lines of code.

Platform independence
igraph runs on all the three major operating systems:
Windows, Linux and Mac OS X.

Free (as in speech, not as in beer)
igraph is released under the GNU General Public License,
so it is free for non-commercial and academic uses. You
can download and modify it as you please, you can add
your own algorithms and we will happily include them in
the next release if it is of interest for a broader audience.

igraph is not a desktop application – it is an extension to
programming languages like C, R, Python or Ruby. If you
want to use igraph, you have to write programs in one of
these languages instead of clicking on buttons and menu
items on a nice graphical user interface.

GNU R Python Ruby
Higher level
interfaces

Graph algorithms

Low-level graph representation

Core library
written in C

and C++

Installation and startup

$ easy_install python-igraph
$ python
>>> from igraph import *

Analysing basic graph properties

>>> graph = read("netscience.gml", format="gml")
>>> print graph
Undirected graph (|V| = 1589, |E| = 2742)
>>> graph.transitivity_undirected()
0.69344141488577749
>>> pr = graph.pagerank()
>>> top = sorted(zip(graph.vs, pr), reverse=True)[:3]
>>> print [node["label"] for _, node in top]
['NEWMAN, M', 'BARABASI, A', 'JEONG, H']

Community detection and visualization

>>> graph = load("lousseau_dolphins.gml")
>>> dendrogram = graph.community_walktrap()
>>> cl = dendrogram.as_clustering()
>>> plot(cl, layout="kamada_kawai", vertex_size=20)

Fast prototyping: the clique percolation method (CPM)

def clique_percolation_method(graph, k = 4):
 # Find all cliques of size k
 cliques = map(frozenset, graph.cliques(k, k))
 # Construct clique overlap graph
 edgelist = [dict(source=cl1, target=cl2) \
 for cl1 in cliques for cl2 in cliques \
 if len(cl1.intersection(cl2)) == k-1]
 clique_graph = Graph.DictList(edges=edgelist)
 # Return the members of each connected component
 return (set().union(*members) \
 for members in clique_graph.components())

$ R
> install.packages("igraph")
> library(igraph)

Installation and startup

DOWNLOAD IGRAPH FOR PYTHON
http://pypi.python.org/pypi/python-igraph

DOWNLOAD IGRAPH FOR RUBY
http://igraph.rubyforge.org

DOWNLOAD IGRAPH FOR R
http://cran.r-project.org/web/packages/igraph

DOWNLOAD IGRAPH CORE LIBRARY
http://igraph.sourceforge.net

Palla et al: Uncovering the overlapping community structure of complex
networks in nature and society. Nature 435, 814-818 (2005)

Analysing basic graph properties

> graph <- read.graph("netscience.gml", format="gml")
> c(vcount(graph), ecount(graph))
[1] 1589 2742
> transitivity(graph)
[1] 0.6934414
> deg <- degrees(graph)
> pr <- page.rank(graph)$vector
> V(graph)$label[order(deg, decreasing=TRUE)[1:3]]
[1] "BARABASI, A" "JEONG, H" "NEWMAN, M"

> V(graph)$label[order(pr, decreasing=TRUE)[1:3]]
[1] "NEWMAN, M" "BARABASI, A" "JEONG, H"

Scale-free graphs with different PA exponents

> g <- barabasi.game(100000)
> degrees <- degree(g, mode="in")
> dd <- degree.distribution(g, mode="in", cumulative=T)
> fit <- power.law.fit(degrees, xmin=20)
> plot(dd, log="xy", xlab="degree", ylab="cumulative
+ frequency", col=1, pch=2, main="Nonlinear PA")
> lines(10:500, 10*(10:500)^(-coef(fit)+1))
> powers <- c(0.9, 0.8, 0.7, 0.6)
> for (p in seq(powers)) {
+ g <- barabasi.game(100000, power=powers[p])
+ dd <- degree.distribution(g, mode="in", cumulative=T)
+ points(dd, col=p+1, pch=p+2) }
> legend(1, 1e-5, c(1,powers), col=1:5, pch=1:5, ncol=1)

1 2 5 10 20 50 100 200 500

1e
−
05

1e
−
03

1e
−
01

Nonlinear PA

degree

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

