\left( \mathrm{+}, a, b \left( c + d\right) \right)
2 \cdot 3
\left( a_0^2 \right)
e_{\left( \frac{a ^ b}{c} \right) }^x e ^ \left( \frac{- x^2}{a^2} \right) \left( f \right)
\left( \begin{array}{cccc} \cos a & \frac{b}{c+1} & c & d \\ d & \frac{e}{f} & f & g \\ d & \frac{e}{f} & f & g \\ d & \frac{e}{f} & f & g \\ h & \frac{i}{j} & j & k \end{array} \right) f = e ^ \left( \frac{- x^2}{a^2} \right) \left( f \right)
\left( \begin{array}{cccc} a & b & c & d \\ d & u & f & g \\ h & i & j & k \end{array} \right)
\frac { \exp \left( - x ^ { 2 } \right) } { \sin x }
p(x) = { \sum_{m=0}^n } a_m x^m = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n
\left( \frac{d f \left( g \left( x \right) \right) }{dg \left( x \right) } \right)
\frac{d^m}{dx^m} f \left( x \right)
\frac{d}{dx} f \left( g \left( x \right) \right) =
\left(
\frac{d f \left( g \left( x \right) \right) }{dg \left( x \right) }
\right)
\left(
\frac{d g \left( x \right) } {dx}
\right)
{{math:
\frac{d}{dx} f \left( g \left( x \right) \right) =
\left(
\frac{d f \left( g \left( x \right) \right) }{dg \left( x \right) }
\right)
\left(
\frac{d g \left( x \right) } {dx}
\right)
:math}}