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Abstract

Automatically spacing a line of music has been
discussed various times in the past. All of the so far
published algorithms are variations of a scheme
originally published by Gourlay in 1987. In general,
Gourlay’s algorithm produces nicely spaced lines of
music. However, the algorithm inherently fails to give
good results in certain situations, where equal
spacing of equal note durations is desired. A number
of examples for these cases are presented in this
paper. A solution to the problem is presented, which
improves the existing model and leads to an improved
algorithm for spacing a line of music that very closely
resembles human spacing.

The improved algorithm for spacing is a three step
process, which is based upon Gourlay’s original
work: first, regions of notes with equal duration are
determined in the score. Then, for each such region it
is checked, whether the original Gourlay algorithm
calculates spacing errors. If this is the case, an
alternate spacing is calculated and applied, if certain
tolerance conditions are met.

The paper includes various examples comparing the
different spacing algorithms and shows how the
improved algorithm handles spacing better than all of
the most popular existing notation systems.

1 Introduction

Traditionally, musical information is transmitted
using scores. Today, quite a number of music
notation systems are in use, most of which include
expert knowledge of conventional music notation.
One of the most important properties of conventional
music notation is the strong coupling of graphical
appearance with the underlying musical semantics. A
well written score is easy to read and perform,
because the intended musical ideas are clearly visible.
One aspect of good music notation concerns the
connection between note duration and the associated
white space: a long note is followed by more space
than a short note. The process of automatically
determining the amount of white space in between
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notes (and rests) is called spacing. Spacing a line of
music has been discussed quite often in the past
[Byr84, Gou87, BH91, HB9S, Gie01]. The most
important contribution to the problem was given by
Gourlay in 1987. His spacing model, which in turn
was inspired by Donald Knuth’s work on TEX
[KP81], seemingly builds the basis for a large number
of the currently implemented notation systems . His
model can be described as a Spring-Rod-Model 2 : a
line of music is interpreted as a collection of springs
with some spring constants on which a force is
exerted to stretch or shrink the line to a desired
length. Rods are introduced to ensure that noteheads
and musical markup (like for example accidentals) do
not collide, especially when spacing is tight. The rods
are used to pre-stretch the springs to have a
guaranteed minimal extent. In contrast to formatting
text, the issues found in formatting music are more
complex. Because simultaneous voices must be
vertically aligned, a spacing algorithm must be
capable of handling overlapping note durations in
different voices while still maintaining a spacing that
closely follows individual note durations.

All of the subsequently published work on
spacing a line of music can be described as minor
variations of Gourlay’s original model. It was
therefore somewhat surprising to detect that
Gourlay’s algorithm (and therefore all of its direct
descendants) fails to produce good spacing in certain
situations. The reason for these deficiencies stems
from the fact, that sequential individual notes with
equal duration might be spaced unequally because of
simul-taneous notes in other voices. As stated above,
the coupling of note duration and spacing is very
strong, therefore notes with equal duration should be
spaced equally whenever possible. Because these
cases do occur in real scores (and also in computer

' Obviously, it is not really possible to detect the implemented
spacing algorithm for software that is distributed without the
source code.

? The original article by Gourlay does not use the word “springs”
but speaks of boxes and glue, which in turn was inspired by TgX .
We find that the term “spring” more closely corresponds to the
physical model being used.



generated music), a solution to the problem was
searched for and found. This solution led to an
improved algorithm for optimally spacing a line of
music that automatically detects and corrects the
above mentioned spacing errors. First, regions of
notes with equal duration are determined in the score.
Then, for each such region it is checked, whether the
original Gourlay algorithm creates spacing errors. If
this is the case, an alternate spacing is calculated and
applied, if certain tolerance conditions are met.

Figure 1 shows, how the improved spacing
algorithm (b) compares to Gourlay’s original
algorithm (a): The spacing of the triplet in the first
voice is exactly equal when the improved algorithm
is used. This effect is highly desirable, because the
graphical appearance of the triplet now directly
conveys that each individual triplet note has equal
duration.
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Figure 1: Gourlays’ original algorithm (a) compared
to the improved spacing algorithm (b).

The improved algorithm has been implemented in
the GUIDO Notation Renderer, which is used to create
conventional scores from GUIDO descriptions [Ren00,
HHRK98]. Because the GUIDO Notation Renderer is
also used in the NoteServer [RH98], the improved
algorithm can be directly examined online” .

The rest of this paper is structured as follows:
first, an overview of Gourlay’s algorithm for spacing
a line of music is given. Another publication on
spacing and some music notation systems using
Gourlay’s algorithm are shortly mentioned. We then
show how Gourlay’s algorithm fails to space even a
simple example of a rhythmically complex section.

3 The NoteServer is a free online service, which creates music
notation from GUIDO descriptions. It is available at
http://www .noteserver.org
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Finally, the improved algorithm is introduced and it is
demonstrated, how the problematic cases are then
spaced in an optimal way. Additionally, a passage
from a real score is spaced using the original and the
improved algorithm, which closely resembles the
spacing of a human engraver. The conclusion
discusses some issues that could still be improved in
the presented solution.

2 Gourlay’s Algorithm for Spacing

This section gives a brief overview of Gourlay’s
algorithm for spacing a line of music [Gou87] and
shortly discusses additional publications and notation
systems based on it. Obviously, some of the details of
Gourlay’s algorithm are omitted to focus on the
relevant issues being improved later.

The basic idea of Gourlay’s algorithm can be
summarized as follows: a single line of a score is
interpreted as a list of onset times, which is sorted by
time position; an onset time occurs whenever a note
or rest begins in one of the voices. In order to
determine the correct amount of space to put in
between the onset times, springs are inserted between
successive onset times. In order to stretch (or shrink)
the line to its desired length, a force is exerted on the
whole collection of springs. Each spring is then
stretched (or shrunk) depending on the force and the
spring constant, which mainly depends on the spring
duration* and on the duration of notes (or rests)
present at the time position of the spring. Hooke’s
Law describes, how a force F, an extent x and a
spring constant ¢ are related: F=c-r. To avoid
collisions of noteheads, accidentals, and other
musical markup, rods are introduced, which
determine the minimum stretch for one or more
springs.

Calculation of spring constants

The calculation of spring constants in Gourlay’s
algorithm, which will be modified by the improved
algorithm, needs to be examined more closely.
Basically, the space placed after a note (or rest) solely
depends on the duration of the event: there 1is
generally less space placed after a sixteenth note than
after a whole note. A suitable way to calculate the
actual amount of space for a given duration d is given
by the formula

space(d) = 1(d) - space(dmin)
where (1)

d
P(d) =14 a-log, (d——>
where a is some constant (usually in the range of 0.4
and 0.6), and d,,;, is some smallest duration for which
the required space is predefined. In current notation
software (like, for instance in Finale, LilyPond, etc.)

* The term “spring duration” is defined exactly below.



quite a number of minor variations of this scheme are
actually implemented (see for example [Gie01]), but
the general principle of using a logarithmic function
for calculating the required space is agreed upon
widely. Tweaking the parameters for @ and Armin
results in slightly different spacing and it is usually a
matter of personal (or publishers) taste, which values
to use.

The formula for y(d) from equation (1) is also
used to determine the spring constants for a given line
of a score: Let s be a spring between two successive
onset times o0, and o,. The resulting spring duration d,
is simply d, = timeposition(o,) - timeposition(o,). Let
d; be the shortest duration of all notes (or rests)
beginning or continuing at timeposition(o,). Then the
spring constant c is calculated as

d; 1

“T 4, 9(d;) - space(dumn)

()

Gourlay introduced this formula in order to get
optimal spacing even when rthythmically complex
structures (like tuplets versus triplets) are present.

As indicated above, a number of variations of
Gourlay’s algorithm have been proposed. The newest
publication on spacing a line of music is by Haken
and Blostein [HB95]. They were the first to actually
use the terms springs and rods. Even though their
terminology is different, the general ideas of Gourlay
are present. The only significant difference lies in the
handling of rods, which are called blocking widths by
Gourlay. Haken/Blostein introduced an elegant way
to pre-stretch the springs using a two-step process:
first, only those rods are considered that only stretch
one spring. Then the remaining rods (which all span
more than one spring) are checked. In this phase, the
required force to stretch a chain of springs to the
desired rod length is calculated. The rod requiring the
maximum force is applied first; other rods stretching
the same springs can then be discarded. This
procedure is more efficient than Gourlay’s original
algorithm, which just iterates through all rods without
pre-sorting.

GNU LilyPond, a musical typesetting system
based on TEX [NNOI], is also using Gourlay’s
algorithm for spacing a line of music. One interesting
detail of LilyPonds spacing is the fact that the value
for dnin in equation (1) is determined separately for
each measure. This sometimes leads to an uneven
spacing of measures, which might be musically
misleading as shown in Figure 2, where the general
rthythm of measures one and two is quite similar, but
the spacing is very uneven.’

Figure 2: LilyPond Spacing Problem

* Obviously, it can be argued, whether a spacing like this is
desirable or not.

The spacing algorithms used by commercial
notation software are usually not disclosed: therefore,
a small number of spacing tests were performed with
the two most popular systems Finale and Sibelius’. In
the case of Finale, it seems like some variation of
Gourlay’s algorithm is used: the obtained spacing for
rhythmically complex pieces is generally very good.
Sibelius, on the other hand, created awkward spacing
even for some rather simple examples. It seems like
the used algorithm does not allow noteheads to
overlap, even if they are in completely independent
voices. Figure 2 shows, how Sibelius fails to space a
rhythmically complex measure in an acceptable way.

Figure 3: Spacing in Sibelius

3 Spacing Problems in
Algorithm

Gourlay’s algorithm for spacing a line of music
calculates good spacing on a large body of musical
scores. Nevertheless, the original algorithm creates
non-optimal spacing in some cases. Figure 1 (a)
shows, how Gourlay’s algorithm spaces a short two
voice piece. It should be noted, how the individual
notes of the triplet in the upper voice are spaced
differently: the space between the first and the second
note of the triplet is significantly greater than between
the second and the third note, even though their
duration is equal. We call this error “a neighborhood
spacing error “.

Gourlay’s

Springnumber 1 2 3 4

Springduration (d) 1/16 1/48  1/12 /12
Smallest duration (d) 1/16 1/12  1/12 112
Springextent 445 1.25 5.0 5.0
- S'L 5 —5ﬁ+
(a)

¢ For our tests we used Finale 2001b and Sibeljus 1.4
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Springnumber 1 2 3 4 5 6

Springduration (d) 1/16 1/48 1724 1/24 1/48 1/16
Smallest duration (d)) 1/16 1/16 1/16 1/16 1/16 1/16
Springextent 433 1.452.89 2.89 1.45 433
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Figure 4: Spacing of Gourlays’ algorithm including
springs.

The reason for the unequal spacing can be seen
rather easily: as shown in Figure 4 (a) the first triplet
note spans two springs (s; and s2) with spring
constants ¢1 = —:} T ey =
When combining s, and s, into a combined spring s
the spring constants ¢, , is calculated as

1 1
)+ Foley)

and =

A=

(S =

1
T

' 2

It is obvious, that the spring constant ¢, is not
equal to s = 1 = Ulll_) . Therefore, when a force
F stretches the system, the springs s, and s; are
stretched to the extent ry» = £ =F-(¢(f5)+ 30 (5)
and the springs s3 and s4 are both stretched equally to
1y =0y = F-u(i). Clearly, x;, and x3 (and x4) are
not equal.

To understand, why this error does not occur in
the standard 3 against 4 case (see Figure 4 (b)), one
must understand how the fraction §- in equation (2)
is supposed to work: consider Figure 4 (b), which
differs from (a) by replacing the second voice with
four sixteenth notes. Now, the value of d; for each of
the springs is ; , so that each spring is stretched
as a partial of a sixteenth-note spring. To clarify this,
consider springs s, and s; of Figure 4 (b). The

X 1 3 1

respective spring-constants arec; = X - 0y = T (L
N MY FAT6
and =18 4 =2. 1 When combining
a1 Ul5g) 2 ¥(yg)
springs s, and s; the springs constant is
1 1

23 = T/ 3o Ly (L
o) + 3u(yg)  visg)

The result is, that the springs s; and s; are
stretched so that there sequential combination
behaves just as a single spring for one sixteenth note.
The same is true for springs 4 and 5.

One other spacing problem of Gourlay's algorithm
concerns lines of music that are spaced very loosely.
Consider Figure 5, where a single line of music has
been stretched rather heavily. In this case, Gourlay’s
algorithm (a) results in unequal spacing of the eighth-
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notes in the second voice: because of the 32nd notes
in the first voice, the first eighth-note of the second
voice is followed by much more space than the
following ones, which are all spaced equally. The
improved algorithm (b) distributes the space evenly.

Figure 5: Loose Spacing: Gourlay algorithm (a) and
improved algorithm (b)

4 An Improved Spacing Algorithm

It can be deduced from the last section that, for
solving the neighborhood spacing problem, an
algorithm must automatically detect those regions of
springs, where spacing errors might occur and then
set an appropriate value for d; only for the relevant
regions. This is exactly what our proposed improved
spacing algorithm does, which is now described in
detail:

|. The original algorithm of Gourlay for the given
line of music is carried out. For each spring, the
value 1/d; from equation (2) is saved, instead of
directly calculating and saving the spring
constants.

2 For each voice the location of neighborhoods of
notes with the same duration are determined.

3. Each of the calculated neighborhoods from step
(2) is checked for neighborhood spacing errors.
This is done by averaging over the values d; for
each spring covering a note in the neighborhood.
If the average value differs for any note of the
neighborhood, a spacing error is detected.

4. For all error regions of step (3), it is checked,
whether an other neighborhood reaches into it; if
this is the case, then the boundary of the error-
region is extended to also cover the new
neighborhood. This step is necessary so that the
fixing a spacing error in one of the error-regions
does not introduce a new spacing error in another
voice.

5. For the finally determined error-regions of step
(4), three spring constants are calculated: the
spring constant for the original Gourlay
algorithm, the spring constant for using an
average of the d;, and a spring constant which
uses the minimum d; for the whole region.

6. The difference of the original Gourlay constant
and the average constant is determined. If it is



within a tolerance band (less than 0.05), then the
average value for d; is taken for the region.
Otherwise, the difference of the original constant
and the minimum d;-constant is calculated. If this
difference is within another tolerance band (less
than 0.17), then the minimum duration of the
region is chosen as d;. Otherwise the original
Gourlay value for d; is chosen for the region.

7. Before a line is finally spaced, an additional step
is performed to avoid the wrong spacing of
loosely spaced lines. This is done by
determining, whether any note with the smallest
note duration of the whole line is followed by
more than two noteheads of white space using
the calculated spring constant. If this is the case,
the smallest note duration for the whole line is
taken as a value for d; and the spring constants
for the line are recalculated accordingly.’

The values for the tolerance bands for step 6 of
the algorithm have been chosen through various
experiments. Figure 6 shows an example for taking
the average (a), the minimum (b) and the original
Gourlay value (c). Although the neighborhood
spacing error in the first voice is removed in cases (a)
and (b), choosing the average value results in too
little space for the short notes in the beginning of the
second voice. Choosing the minimum duration (b)
results in a spacing, which is too wide. In this
example, the original Gourlay algorithm (c) gives the
best result, although the neighborhood spacing error
in the first voice is clearly visible. The tolerance
bands are indications, when to tolerate a
neighborhood spacing error so that the overall
spacing remains acceptable.
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" This step was performed to obtain the result of Figure 5 (b).
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Figure 6: Showing the effect of choosing different
relative duration values.

To see, how the algorithm solves the
neighborhood spacing problem of the last section (see
Figure 4 (a)), we give a trace of the improved
algorithm.

1. The original Gourlay algorithm is used to
determine the values 1/4 for each spring: 16, 12,
12, 12. These values can be found in Figure 4 (a).

2. The first voice has a neighborhood list of (1, 3, 4,
5) which means, that the notes covering springs 1
up to 3 (not including the last value) and 3 to 4
and 4 to 5 are successive notes having the same
duration (in our example this is 1/ 12). There is
no neighborhood list for the second voice.

3. The neighborhood list (1, 3, 4, 5) is checked for
spacing errors: the average for the first note
(going from springs 1 up to 3) is (16+12)/2 = 14,
the average for the second and third note is both
12. Therefore, a spacing error is detected.

4. Because there are no more neighborhoods, the
error region reaches from spring 1 up until spring
5.

5. The three spring-constants are calculated:
Sgourlay = 1.81665, Sinimum = 1.60325,
Saverage = 1.81631.

6. The difference ISgourlay = Saverage/ = 0.00034 is
within the tolerance band. Therefore, the average
value for 1/d; = (16+12+12+12)/4 = 13 is chosen.
Spacing is done, as if the smallest duration is a
13th note.

The resulting spacing can be seen in F igure 7 (a)
and (b), which also shows a comparison to the old
Gourlay algorithm (c).

(a) Improved algorithm with springs



(c) Gourlay algorithm

Figure 7: Correction of neighborhood spacing errors
by the improved algorithm

To show that the algorithm not only concerns
somewhat constructed examples, Figure 8 shows a
two-measure excerpt from a Fugue by J.S.Bach
(BWV 856) as it is spaced by Finale (a), the
improved algorithm (b) and in the Henle Urtext
edition (c), which has been spaced by an expert
human engraver [vI70]. It is clearly visible, that (b)
and (c) strongly emphasize on the equal spacing of
the eighth-notes in the bass voice of the second
measure, whereas the spacing algorithm of Finale®
spaces the first eighth note tighter than the following
two. Of course it can be argued, whether the spacing
of (b) and (c) is better than the spacing in (a); it is
surely a matter of personal taste and also of musical
semantics which spacing is preferred. The point made
here is that any spacing algorithm should be
adjustable to accommodate personal preferences.
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® Finale spaces this example similar to Gourlay’s algorithm.
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Figure 8: Bach Fugue BWV 856: Finale (a),
improved algorithm (b), hand engraver (c)

5 Conclusion

An improved algorithm for spacing a line of
music was presented. It enhances Gourlay’s original
algorithm by taking the equal spacing of neighboring
notes with the same duration into account. The
improved algorithm spaces some instances of
complex rhythms better than any of the existing most
used notation systems. The algorithm can
nevertheless be implemented easily. While the results
are very promising, some parts of the algorithm might
further be improved: first, the detection of
neighborhoods could be extended to also cover
sequential equal note durations in different voices,
not only for each voice independently. Second, the
tolerance bands could be further refined. One easy
solution for determining regions for equal spacing
would be to explicitly ask the user to provide this
information.

The automatic generation of conventional scores
still remains to be a complex problem. Although
many improvements in automatic notation systems
have been made, quite some time is still required to
obtain good results in any possible perceivable
situation.
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