Towards a Music Source Wiki

Mike Solomon
Grame
mike@mikesolomon.org

ABSTRACT

The Music Source Wiki project aims to create a wiki for the
collective editing, visualization and auralization of musical-
source documents on the web. It will do so by developing
a robust music representation language that describes sev-
eral music phenomena (notation, audio, processes) through
a small axiomatic language. A web API will be created to
transmit this language between terminals, and a wiki-like
website will allow for the realtime editing and just-in-time
compilation of musical source documents. The present pa-
per presents the basic objectives of the project as well as
three major phases into which the research and develop-
ment will be divided. The project is a joint endeavor be-
tween researchers affiliated with the Grame (Lyon) and the
Sibelius Academy (Finland).

1. INTRODUCTION

The Music Source Wiki (MSW) project unites the fields
of computer science, software engineering and music in
order to solve longstanding problems about musics repre-
sentation on a computer as well as its ability to be dis-
tributed across multiple terminals. To frame the problem,
we consider the representation of music in state-of-the-art
realtime and non-realtime music notation environments. !
Realtime environments, such as MuseScore [1], concen-
trate on the direct manipulation of graphical objects, often
using approximations of complex structures in order to fa-
cilitate quick rendering. Non-realtime score editors, such
as LilyPond [2], allow for robust musical representations at
the expense of interactivity. We see this disparity of music
representation in realtime and non-realtime notation envi-
ronments as a fundamental problem in the field. Rich mu-
sic representation and realtime interactivity should not be a
trade-off — instead, the two should complement each other.
The hampering effects of this issue are most visible in the
online domain, where music notation has lagged behind
other fields that have made headway into the realtime/non-
realtime problem. Online text editors, for example, allow

! The terms “realtime” and “non-realtime” are heavily connotated in
computer music as having to do with digital signal processing. Here,
the paradigm is extended to music notation software. Realtime describes
tools where the result of an action is represented just after the action,
whereas in a non-realtime paradigm, the rendering of actions comes after
their entry

Copyright: (©2014 Mike Solomon et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Mika Kuuskankare
Sibelius Academy
mkuuskan@siba.fi

Dominique Fober
Grame
fober@grame. fr

people to develop documents in realtime while retaining a
rich view of these documents. The same is true of photo
editing on mobile devices, where users can apply filters to
their photos almost instantly thanks to automatic uploads
and downloads to and from central servers. We imagine a
world where the same is possible in music where, thanks
to a robust theoretical framework for the representation of
music transmitted to powerful servers over the web, users
can work with rich representations of music in realtime
spanning several areas of musical production such as nota-
tion, synthesis, signal processing and analysis.

This paper offers a practical roadmap of the MSW project.
The project seeks to provide an online music-source wiki-
inspired platform that lets multiple users edit and visualize
musical documents in realtime. After surveying the state-
of-the-art and describing the objectives of the project, it
discusses the three major phases of research necessary for
the implementation of a music-source wiki: (1) the cre-
ation of a robust music representation language; (2) the
elaboration of open web specifications for the transmission
of this language; and (3) the construction of a collaborative
on-line musical-source editing platform.

2. STATE-OF-THE-ART

All computer-assisted music notation programs are based
on languages for the representation of music that are more
or less exposed to users. While it is difficult to know the
nature of the representation in closed-source paradigms,
open-source editors use music representation languages based
on a wide range of assumptions about how notated music
should be encoded. Certain formats, such as MusicXML [3]
and MEI [4], represent music in a nested manner, ascrib-
ing events to instruments or voices and qualities to events.
The language of the SCORE program focuses more on the
physical placement of musical glyphs. Yet others, like the
LilyPond [2] and Guido [5] languages, provide human-
readable formats where notes, articulations, dynamics, and
rhythms are specified by their names in a given language.
Some paradigms, like that of MuseScore, offer no user-
accessible textual representation of music, translating a users
point-and-clicks into internal objects that represent musi-
cal symbols.

At present, there are a large number of score editors for
desktop computers. The two de facto industry standard no-
tation programs are Finale and Sibelius. The most notable
free software projects are LilyPond and Guido. Both of
these programs compile documents written in LATEX like
markup languages that are used to describe the contents
of a musical score in textual form. WYSIWYG interfaces

mailto:mike@mikesolomon.org
mailto:mkuuskan@siba.fi
mailto:fober@grame.fr
http://creativecommons.org/licenses/by/3.0/

for these programs, such as Denemo (LilyPond) and Gui-
doEditor (Guido), provide a point-and-click interface that
is translated into markup language before being compiled.
Additionally, there are several lightweight notation editors,
such as abc and Gscore, for typesetting relatively simple
notation. Finally, NoteAbility provides another paradigm
where the software functions like an advanced image edi-
tor with music-notation specific functionalities.

Recently, web-viewable score editors have started to emerge.
There are three main online musical score editors: Note-
flight, Melodus and Scorio. Noteflight and Melodus seek
to provide a full-featured music editing platform online,
similar to Google Documents role in the world of office
suites. Scorio is a hybrid tool that mixes rudimentary lay-
out via a mobile editing platform with publication-quality
layout via JIT compilation through LilyPond when pos-
sible. Several music tools, such as Sibelius, MuseScore,
Maestro, and Capriccio, offer online services where scores
composed using this software can be uploaded, browsed,
and downloaded online. WebLily, LilyBin, and OMET
are all JIT compilation services that run the LilyPond ex-
ecutable to compile uploaded code and return embedded
SVG, canvas or PDF visualizations depending on the tool.
The Guido HTTP server is the only RESTful web music
notation service, allowing the extraction of musical data
via a and the rapid compilation of musical scores [6].

Incorporating recording, synthesis and digital signal pro-
cessing is a recent phenomena. The majority of approaches
follow one of two organizational principles: (1) a nota-
tion plugin is used to send control data to DSP objects; or
(2) audio is linked to staves that are visualized in a score
editor. The former solution does not provide publication-
quality typesetting, whereas the latter has a limited number
of DSP options and little integration with the notation en-
gine.

3. OBJECTIVES

The objectives of the MSW project look to solve several of
the problems discussed in the introduction and that remain
unsolved in the state-of-the-art. While its final form will be
a wiki-like platform enabling remote collaboration on mu-
sical documents, the various steps building up to this plat-
form will result in numerous theoretical and technological
advances in music representation and music’s transmission
over the web.

The fundamental theoretical impediment that has hindered
the development of such a platform is the lack of a robust
music representation language that can describe multiple
musical phenomena. Representing musical practices in di-
verse fields such as music education, music information
retrieval, music composition, computational musicology,
acoustics, digital signal processing, and performance re-
quires versatile representations, flexible visualizations, in-
teractivity, accessibility of data, and musical knowledge
encoded into the system. Currently, there is no general pur-
pose piece of software that works equally well for all the
aforementioned fields in addition to being a high-quality
typesetting tool. This is not for lack of sufficient techno-
logical know-how, but rather a more fundamental problem

of a lack of a music representation language that can unite
multiple musical domains. These observations lead to the
first objective of the MSW project.

Objective 1

Develop a music representation language that allows
for the articulation of multiple existent conventions
in musical notation and sound, the invention of new
conventions, and the realization of these conventions
in realtime and non-realtime environments at various
levels of refinement, including publication-quality scorep
and concert-quality sound.

Taking the need for robust computer-based music repre-
sentations as a starting point, this project looks to consider
that need in light of state-of-the-art trends in computing.
It is undeniable that the majority of software development
is going into the cloud and that music technology is be-
coming more democratized, with musics creation and per-
formance happening increasingly by means of laptops and
tablets. We believe, then, that a state-of-the-art sound and
music computing environment based on rich music repre-
sentation must allow for cloud computing. It should allow
users to create and communicate using open web protocols
and standards and platform-independent technologies. De-
cisions about what processes and data can be offloaded to a
central server, how data can be compressed, how users can
collaborate on a common project, and how the sharing and
forking of musical projects takes place should be encoded
in the music representation language itself and transmit-
table via web protocols. This leads to the second objective
of the project.

Objective 2

Create open web standards for the communication of
musical information between clients and a server, al-
lowing for the distributed processing and storage of
musical data.

Once a robust music representation is in place that can be
communicated via open web standards, several forms of
music collaboration will be easier to undertake. While
there are many domains in which this could be relevant
(computer-assisted composition, live digital signal process-
ing), the goal of this project is to build a wiki-like music-
source platform upon these technologies.

Objective 3

Construct a music-source wiki that allows musical
scores, sound, and processes to be collaboratively ar-
ticulated and maintained.

The objective of this platform is to fill a gap in current on-
line music sharing services. While there are several ser-
vices that allow for the sharing of finalized music scores

and recordings (SoundCloud, IMSLP), there are no current
platforms dedicated to collaborating on the sources of mu-
sical scores, audio, performances and analyses in real time.
Furthermore, no projects allow for the forking of musical
data a la github, nor do any projects allow for complete
outputs in multiple formats as Faust [7] does for digital sig-
nal processing. Once this platform exists, a wealth of col-
laborative projects will be possible such as crowd-sourced
critical editions, real analysis involving several remote col-
laborators, etc.. By relying on the computation power of a
central server, it will allow for realtime collaboration that
benefits from the precision achieved in non-realtime envi-
ronments.

4. MUSIC REPRESENTATION

The project will start with a theoretical inquiry into the rep-
resentation of music, using multiple existing representa-
tional languages as starting points to frame questions such
as:

e Using Hoare’s work on axiomatic approaches to pro-
gramming [8] as a basis, what are the atomic units
with which musical sound, ideas, procedures and
data can be represented?

e In what ways can these units be combined to form
larger structures?

e To what extent are these structures combinable and
transmutable into other exchange formats?

The methodology used to answer these questions will start
with a survey of existing music representations, resulting
in the creation and publication of a comprehensive litera-
ture review that covers: (1) major computer-music encod-
ing formats [5] [2] [3] [9] [4], (2) traditional representa-
tions and encodings of music, including various notation
systems [10] and formalizations of sound synthesis and
treatment methods [11] [12], and (3) theoretical texts on
music representation, from early theories like Rameau’s
treatises on figured bass [13] to later works like Schenkers
reductive analysis methods [14].

During this phase, special attention will be given to the
transversality of our music representation language. Var-
ious phenomena, such as notation, performance practice,
musical algorithms and processes, sound synthesis and sig-
nal processing will all have to be articulated via a com-
bination of atomic elements in this music representation.
Furthermore, we will need to elaborate structures that al-
low for the linking of these elements. This idea is par-
tially implemented in visual programming environments
like Max/MSP, where notation structures can drive digi-
tal signal processing and vice-versa. Our project seeks to
generalize this to multiple aspects of music representation,
control and computation. For example, links between no-
tation and process can control choices regarding realtime
versus non-realtime execution so that computation is reac-
tive with respect to content.

From these observations, a music representation language
will be elaborated along the following theoretical guide-
lines: (1) the theory of representational language creation

[15] [16], (2) the theory of process and algorithm formal-
ization [17], and (3) the theory of transcribing and storing
language via exchange formats [18] [19]. The results of
this research will be published as a technical report, offer-
ing a complete grammar and alphabet for music represen-
tation as well as rules for building a vocabulary. Several
case studies will show how the language can encode im-
portant musical works and concepts.

5. WEB-MUSIC SPECIFICATION

After having formalized a music representation language,
we will turn to the objective of creating a web music spec-
ification that allows this language to be expressed across
multiple terminals interacting with a server via a cloud ar-
chitecture. The open web specifications used to transmit
the codified format of our abstract musical representation
will be created using a methodology similar to that cre-
ated for the Guido web API [6]. In the Guido web API,
a Representational State Transfer (REST) server architec-
ture style [20] [21] is used to translate an Application Pro-
gramming Interface (API) into Uniform Resource Identi-
fiers (URISs) via a set of mapping conventions.

The same process of translation will be used in the cre-
ation of open web specifications for our abstract musical
representation, extending these specifications to describe
musical sound and processes. To verify the portability of
these specifications, they will be parallelly developed in
several common web interchange formats (JSON, XML,
URIs, etc.), aiming to achieve the same representational
elegance and simplicity in all of these formats. The re-
sult of this research will be a published open specifica-
tion as well as a series of libraries in common web lan-
guages (JavaScript, PHP, etc.) to facilitate exchange via
these specifications. The specification will be empirically
validated via a series of regression tests that verify the
transferring of every element of the abstract musical rep-
resentation over the web and the effective encoding, de-
coding and translation of these test results into several pro-
gramming languages and open standard formats.

6. COLLABORATIVE MUSIC EDITING
PLATFORM

The Music Source Wiki (MSW) will be a nexus where mu-
sicians can work collaboratively on musical projects. It
consists in three sub-parts — a central server for data stor-
age and processing, an online music source editor, and an
online music source visualizer.

6.1 Server

The MSW server will store all musical data in the music
representation format discussed in Section 4, receiving and
sending information using the web standards discussed in
Section 5. Its ambition is to be able to input and output as
many common music exchange formats as possible, both
proprietary and non-proprietary, so that users can always
work in formats with which they are comfortable. This

means that multiple conversion scripts will need to be im-
plemented to translate formats into and out of our music
representation language. Regression tests will verify:

e Lossless translation into and out of the internal mu-
sic representation language. For example, a Mu-
sicXML file translated into and out of the internal
language should have the same content as the origi-
nal version.

e Zero-artifact translation between different languages.

For example, translating a MusicXML to MEI docu-
ment by means of our internal representation should
remove elements of MusicXML that are not encod-
able in MEI without adding unwanted artifacts.

6.2 Source editor

The MSW score editor will be an on-line web editor of-
fering both a markup-language format like LilyPond and
a WYSIWYG format like MuseScore. It will allow for
the specification of musical information as well as the use
of global style sheets for the formatting of that informa-
tion. Basic sound synthesis and DSP commands will be
built into the source editor so that users can mix elements
of music notation and electronic music in the same doc-
umenet. Depending on the scope of the source and the
modifications being made to a given document, the server
will make reactive decisions about when to update compi-
lation, how much to compile and the level of approxima-
tions that documents should have, caching fully-compiled
versions frequently.

6.3 Source visualizer

The ultimate goal of the MSW project is to offer a source
visualizer that renders the content of the source editor so
that users notice almost no delay. The visualizer will pro-
pose various filters (only certain pages of a score, certain
parts, etc.). Like most WikiMedia sites, discussion and log
pages will accompany every project.

7. CONCLUSION

The MSW initiative unites three research axes into one
project:

e The elaboration of a robust musical representation
language.

e The creation of open web standards for the transmis-
sion of this language.

e The construction of a music source wiki based on
this representation language that is transmitted via
the open protocols.

The project brings together several researchers affiliated
with the Grame and Sibelius Academy. Its provisional
timetable is elaborated in Table 1. This paper surveys the
major themes united in this project in hopes of widening
the community of researchers participating in its develop-
ment.

2016 | Publication of a technical report with the

music representation language.

2017 | Publication of an open web specification
for the transmission of this language.
2019 | Launch of the MSW website.

Table 1. A provisional timeline for the MSW project.

Acknowledgments

The authors would like to thank the Grame and the Sibelius
Academy for support in writing this paper. They would es-
pecially like to thank Vesa Norilo for his help in formaliz-
ing musical representation issues in digital signal process-
ing.

8. REFERENCES

[1] T. Bonte, “MuseScore: Open source music no-
tation and composition software,” Free and Open
source Software Developers’ European Meeting, Tech.
Rep., 2009, http://www.slideshare.net/thomasbonte/
musescore-at-fosdem-2009.

[2] H.-W. Nienhuys, “Lilypond, automated music format-
ting and the art of shipping.” in Forum Internacional
Software Livre 2006 (FISL7.0), 2006.

[3] M. Good et al., “Musicxml: An internet-friendly for-
mat for sheet music,” in XML Conference and Expo.
Citeseer, 2001, pp. 3-4.

[4] P. Roland, “The music encoding initiative (mei),” in
Proceedings of the First International Conference on
Musical Applications Using XML, 2002, pp. 55-59.

[5] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in
Proceedings of the International Computer Music Con-

ference. ICMA, 1998, pp. 451-454.

[6] M. Solomon, Y. Orlarey, D. Fober, and S. Letz, “Pro-
viding music notation services over internet,” in Pro-
ceedings of the Linux Audio Conference, Karlsruhe,
2014.

[7] Y. Orlarey, D. Fober, and S. Letz, “Faust: an efficient
functional approach to dsp programming,” New Com-
putational Paradigms for Computer Music, 2009.

[8] C. A. R. Hoare, “An axiomatic basis for computer
programming,” Communications of the ACM, vol. 12,
no. 10, pp. 576-580, 1969.

[9] J. L. Alvaro and B. Barros, “Musicjson: A represen-
tation for the computer music cloud,” in Proceedings
of the 7th Sound and Music Computer Conference,
Barcelona, 2010.

[10] C. Hultberg, The printed score as a mediator of musi-
cal meaning approaches to music notation in western
tonal music. Lund University, 2000, vol. 2.

http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009

[11] S. J. Mason, Feedback Theory: I. Some Properties of
Signal Flow Graphs. Massachusetts Institute of Tech-
nology, Research Laboratory of Electronics, 1953.

[12] J. Foote, “Visualizing music and audio using self-
similarity,” in Proceedings of the seventh ACM inter-
national conference on Multimedia (Part 1). ACM,
1999, pp. 77-80.

[13] J.-P. Rameau, Traité de [’harmonie réduite a ses
principes naturels. Paris: Jean-Baptiste-Christophe
Ballard, 1722.

[14] H. Schenker, Der freie Satz. Vienna: Universal Edi-
tion, 1935.

[15] G. Wagner, “How to design a general rule markup lan-
guage,” in In Invited talk at the Workshop XML Tech-
nologien fiir das Semantic Web (XSW 2002. Citeseer,
2002.

[16] S. M. Shieber, “The design of a computer language for
linguistic information,” in Proceedings of the 10th In-
ternational Conference on Computational Linguistics
and 22nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, 1984, pp. 362-366.

[17] A.Salwicki, “Formalized algorithmic languages,” Bull.
Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys, vol. 18, no. 5,
pp. 227-232, 1970.

[18] L. Qiu, “Programming language translation,” Cornell
University, Tech. Rep., 1999.

[19] T. R. Gruber, “A translation approach to portable on-
tology specifications,” Knowledge acquisition, vol. 5,
no. 2, pp. 199-220, 1993.

[20] R. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. disserta-
tion, University of California, Irvine, 2000.

[21] L. Richardson and S. Ruby, RESTful Web Services.
O’Reilly Media, 2008. [Online]. Available: http:
/Mbooks.google.fr/books?id=XUaErakHsoAC

http://books.google.fr/books?id=XUaErakHsoAC
http://books.google.fr/books?id=XUaErakHsoAC

	 1. Introduction
	 2. State-of-the-art
	 3. Objectives
	 4. Music representation
	 5. Web-music specification
	 6. Collaborative music editing platform
	6.1 Server
	6.2 Source editor
	6.3 Source visualizer

	 7. Conclusion
	 8. References

