SCORES COMPOSITION BASED ON THE GUIDO MUSIC NOTATION

ABSTRACT

Based on the Guido Music Notation format, we have de-
veloped tools for music score composition, i.e. operators
taking score both as target and as arguments of high level
transformations applicable for example to the time do-
main (e.g. cutting the head or the tail of a score) or to
the structural domains (e.g. putting scores in sequence or
in parallel). Providing these operations at the score level is
particularly convenient to express music ideas and to com-
pose these ideas in an homogeneous representation space.
However, scores composition gives raise to a set of issues
related to the music notation consistency. The paper in-
troduces the Guido Music Notation format, presents the
score composition operations, the notation issues and a
proposal to solve them.

1. INTRODUCTION

The GUIDO Music Notation format [GMN] [4] has been
designed by H. Hoos and K. Hamel more than ten years
ago. It is a general purpose formal language for represent-
ing score level music in a platform independent plain text
and human readable way. It is based on a conceptually
simple but powerful formalism: its design concentrates
on general musical concepts (as opposed to graphical fea-
tures). A key feature of the GUIDO design is adequacy
which means that simple musical concepts are represented
in a simple way and only complex notions require com-
plex representations.

Based on the GMN language, the GUIDO Library
[2, 3] provides a powerful score layout engine that dif-
ferentiates from the compiler solutions for music notation
[S, [1] by its ability to be embedded into standalone ap-
plications, and by its fast and efficient rendering engine,
making the system usable in real-time for simple music
scores.

Based on the combination of the GUIDO language and
engine, score composition operators have been designed,
providing rhythmic or pitch transformations, time selec-
tions, composition in sequence or in parallel, etc.

Music notation is the most common representation
used by musicians. Developing score level composition
operators provides an homogeneous way to write scores
and to manipulate them while remaining at a high mu-
sic description level. Moreover, the design allows to use
scores both as target and as arguments of the operations,
enforcing the notation level metaphor.

However, applied at score level, these operations raise
a set of issues related to the music notation consistency.

As a solution, we propose a simple typology of the music
notation elements and a set of rules based on this typology,
to enforce the music notation coherence.

This paper introduces the GUIDO Music Notation for-
mat, the next sections present the score composition oper-
ations, the related notation issues and the proposed solu-
tions.

2. THE GUIDO MUSIC NOTATION FORMAT

2.1. Basic concepts

Basic GUIDO notation covers the representation of notes,
rests, accidentals, single and multi-voiced music and the
most common concepts from conventional music notation
such as clefs, meter, key, slurs, ties, beaming, stem direc-
tions, etc. Notes are specified by theirname (a b c d e
f g h), optional accidentals C# and ’&’ for sharp and
flat), an optional octave number and an optional duration.
Duration is specified in one of the forms:

"x’enum’ /' denom dotting

’«’enum dotting
' /" denom dotting

where enum and denom are positive integers and dotting
is either empty, ’.”, or ... When enum or denom is omit-
ted, it is assumed to be 1. The duration represents a whole
note fractional.

When omitted, optional note description parts are as-
sumed to be equal to the previous specification before in
the current sequence.

Chords are described using comma separated notes
enclosed in brackets e.g {c, e, g}

2.2. GUIDO tags

Tags are used to represent additional musical information,
such as slurs, clefs, keys, etc. A basic tag has one of the
forms:

\tagname
\tagname<param—-list>

where param-1ist is a list of string or numerical argu-
ments, separated by commas (’,”). In addition, a tag may
have a time range and be applied to a series of notes (e.g.
slurs, ties, etc.); the corresponding forms are:

\tagname (note-series)

\tagname<param-list> (note-series)

The following GMN code illustrates the concision of
the notation; figure[T|represents the corresponding GUIDO
engine output.

[\meter<"4/4"> \key<-2> c d e& £/8 g]

eSE ==

Figure 1. A simple GMN example

2.3. Notes sequences and segments

A note sequence is of the form [tagged-notes]
where tagged-notes is a series of notes, tags, and
tagged ranges separated by spaces. Note sequences repre-
sent single-voiced scores. Note segments represent multi-
voiced scores; they are denoted by {seg-1ist} where
seg-1list is a list of note sequences separated by com-
mas as shown by the example below (figure [2):
{legfl, [aeal}

— —
N

Figure 2. A multi-voices example

2.4. Advanced GUIDO.

The advanced GUIDO specification provides more tags
and more control over the score layout. In particular, it
introduces tags parameters like dx and dy for fine posi-
tioning of the score elements, notes and rests format spec-
ifications, staff assignments, etc. Below is an example of
advanced guido with the corresponding output (figure[3)).

{
[
\barFormat<"system">
\staff<l> \stemsUp \meter<"2/4">
\intens<"p", dx=lhs,dy=-7hs>
\beam(g2/32 e/16 c*3/32) c/8
\beam (\noteFormat<dx=-0.9%9hs>(al/16) c2 f)
\beam(g/32 d/16 h1%3/32) d2/8
\beam(hl/16 d2 qg)],
[\staff<l>\stemsDown gl/8 e
f/16 \noteFormat<dx=0.8hs>(g) f a a/8 e
f/16 g £ e]l,
[\staff<2> \meter<"2/4">
\stemsUp a0 £ h cl1],
[\staff<2> \stemsDown c0 d g {d, a}]
}

3. COMPOSING MUSIC SCORES

3.1. Operations

Score level operations are given by table [l These
operations are available as library API calls, as com-
mand line tools, or using a graphic environment named
GUIDOCalculus as well. Almost all of the operations take
a GMN score and a value parameter as input and produce

Il
.|
_',"

\I |

I

|

SV

Figure 3. An advanced Guido example

a GMN score as output. The value parameter can be taken
from another GMN score: for example, the t op operation
cuts the bottom voices of a score after a given voice num-
ber; when using a score as parameter, the voice number is
taken from the score voices count.

This design allows all the operations to take place con-
sistently at the notation level. In addition and using the
command line tools, series of transformations can be ex-
pressed as pipelining scores through operators e.g.

head sl s2 | par s2 | transpose "[c "

3.2. Notation issues

Actually, the score composition functions operate on a
memory representation of the music notation. But we’ll
illustrate the notation issues with the textual representa-
tion which is equivalent to the memory representation.

Let’s take an example with the tail operation applied
to the following simple score:

[\clef<"f"> c d e c]

A raw cut of the score after 2 notes would give [e c]
as result, removing the clef information and potentially
leading to unexpected results (figure [4).

->
- £ T o
i o s e s | | unexpected
Il |
[\clef<"f'> cdec] -> %
expected

Figure 4. Tail operation consistency

Here is another example with the seq operation: a raw
sequence of [\clef<"g"> c d]
and [\clef<"g"> e c]
would give [\clef<"g"> c d \clef<"g"> e c |
where the clef repetition (figure3)) is useless and blurs the
reading.

H H

e s

Figure 5. A raw sequence operation

operation args description
seq sl s2 puts the scores s1 and s2 in sequence
par sl 52 puts the scores s1 and s2 in parallel
rpar s1s2 puts the scores s1 and s2 in parallel, right aligned

top sl [n|s2]

takes the n top voices of s1;

when using a score s2 as parameter, n is taken from s2 voices count

bottom sl [n|s2]

takes the bottom voices of s1 after the voice n;

when using a score s2 as parameter, n is taken from s2 voices count

head sl [d|s2]

takes the head of s1 up to the date d;

when using a score s2 as parameter, d is taken from s2 duration

id. but on events basis i.e. the cut point is specified in n events count;

when using a score s2 as parameter, n is taken from s2 events count

when using a score s2 as parameter, d is taken from s2 duration

id. but on events basis i.e. the cut point is specified in n events count;

when using a score s2 as parameter, n is taken from s2 events count

when using a score s2 as parameter, i is computed as the difference between

when using a score s2 as parameter, d is computed from s2 duration

evhead sl [n | s2]
tail sl [d]|s2] takes the tail of a score after the date d;

evtail 51 [n]s2]

transpose s1 [i | s2] transposes s1 to an interval i;
the first voice, first notes of s1 and s2
duration sl [d|r|s2] stretches sl to a duration d or using a ratio r;

applypitch sl s2 applies the pitches of s1 to s2 in a loop
applyrythm s1 52 applies the rhythm of s1 to s2 in a loop

Table 1. Score level operations

Some operations may also result in syntactically in-
correct results. Consider the following code:
[g \slur(f e) c]
slicing the score in 2 parts after £ would result in
a) [g \slur(f] andb) [e) c]
i.e. with uncompleted range tags. We’ll use the terms
opened-end tags to refer the a) form and opened-begin
tags for the b) form.
These simple examples illustrate the problem but there
are many more cases where the music notation consis-
tency has to be preserved across score level operations.

4. MUSIC NOTATION CONSISTENCY

We propose a simple typology of the notation elements
regarding their time extent and a set of rules defining ade-
quate consistency policies according to the operations and
the elements type.

4.1. Notation elements time extent

The GMN format makes a distinction between position
tags (e.g. \clef, \meter) and range tags (e.g. \slur,
\beam). Position tags are simple notations marks at a
given time position while range tags have an explicit time
extent: the duration of the enclosed notes. However, this
distinction is not sufficient to cover the problem: many of
the position tags have an implicit time duration and gen-
erally, they last up to the next similar notation or to the
end of the score. For example, a dynamics last to the next
dynamic or the end of the score.

The table [2] presents a simple typology of the music
notation elements, mainly grounded on their time extent.
Based on this typology, provisions have to be made when:

e computing the beginning of a score:

1) the pending explicit time extent elements (i.e.
opened-begin tags, see section [3.2)) must be
properly opened

2) the current implicit time extent elements must
be recalled,

e computing the end of a score:

3) the explicit time extent elements must be prop-
erly closed (i.e. opened-end tags)

e putting scores in sequence:

4) implicit time extent elements starting the second
score must be skipped when they correspond
to current existing elements.

Concerning the other time extent category, provisions are
made for the structure control elements (see section[4.3)).

4.2. Operations reversibility

The above rules solve most of the notation issues but they
do not permit the operations to be reverted: consider a
score including a slur, sliced in the middle of the slur and
reverted by putting the parts back in sequence. The re-
sult will include two slurs (figure @ due to the rules 1)

time extent description

sample

explicit duration is explicit from the notation
implicit
others structure control

- formatting instructions
- notation marks

element lasts to the next similar element or to the end of the score

slurs, cresc.

meter, dynamics, key
coda, da capo, repeats
new line, new page
breath mark, bar

Table 2. Typology of notation elements.

0 | /uu\ | 0H | y L |
G oo oo | > oo
'3) [3) ~——
Figure 6. A score sliced and put back in sequence

and 3) that enforce opening opened-begin tags and clos-
ing opened-end tags.

To solve the problem, we need the support of the GMN
language: we introduce a new tag parameter, keeping the
history of a range tag, and indicating when it corresponds
to an opened-end and/or opened-begin tag. The parameter
has the form:

\tag<open="type">
where type is in [begin, end], corresponding respec-
tively to opened-begin and opened-end tags.

Next, we introduce a new rule for score level opera-
tions. Let’s first define adjacent tags as tags placed on the
same voice and not separated by any note or chord.

e adjacent similar tags carrying an open parameter
are mutually cancelled when the first one is opened-
end and the second one opened-begin.

Thus when a score level operation encounters a form like:
\anytag<open="end"> (f g)
\anytag<open="begin"> (f e)

it should transform it to:

\anytag(f g £ e)

4.3. Structure control issues

Elements relevant to the others / structure control time
extent category may also give rise to inconsistent notation:
a repeat begin bar without repeat end, a dal segno without
segno, a da capo al fine without fine, etc. We introduce
new rules to catch the repeat bar issue. Let’s first define
a pending repeat end as the case of a voice with a repeat
begin tag without matching repeat end.

e when computing the end of a score, every pending
repeat end must be closed with a repeat end tag.

e from successive unmatched repeat begin tags, only
the first one must be retained.

e from successive repeat end tags, only the last one
must be retained.

No additional provision is made for the other structure
control elements: possible inconsistencies are ignored but
this choice preserves the operations reversibility.

5. CONCLUSION

Music notation is complex due to the large number of no-
tation elements and to the heterogeneous status of these
elements. The typology proposed in table [2]is actually a
simplification intended to cover the needs of score level
operations but it is not representative of this complexity.
Howeyver, it reflects the music notation semantic and could
be reused with other score level music representation lan-
guage. Thus apart for the reversibility rule that requires
the support of the music representation language, all the
other rules are independent from the GMN format and ap-
plicable in other contexts.

6. REFERENCES

[1] A. E. Daniel Taupin, Ross Mitchell. Musixtex using
tex to write polyphonic or instrumental music.
[Online]. Available: http://icking-music-archive.org/

[2] C. Daudin, D. Fober, S. Letz, and Y. Orlarey, “The
Guido Engine - a toolbox for music scores rendering.”
in Proceedings of the Linux Audio Conference 2009,
2009, pp. 105-111.

[3] D. Fober, S. Letz, and Y. Orlarey, “Open source tools
for music representation and notation.” in Proceed-
ings of the first Sound and Music Computing confer-
ence - SMC’04. IRCAM, 2004, pp. 91-95.

[4] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in

Proceedings of the International Computer Music
Conference. ICMA, 1998, pp. 451-454.

[5] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for automated music engraving.” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), May 2003.

http://icking-music-archive.org/

	1 Introduction
	2 The Guido Music Notation format
	2.1 Basic concepts
	2.2 Guido tags
	2.3 Notes sequences and segments
	2.4 Advanced Guido.

	3 Compositing Music Scores
	3.1 Operations
	3.2 Notation issues

	4 Music Notation consistency
	4.1 Notation elements time extent
	4.2 Operations reversibility
	4.3 Structure control issues

	5 Conclusion
	6 References

