SCORES COMPOSITION BASED ON THE GUIDO MUSIC NOTATION

D. Fober, C. Daudin, S. Letz, Y. Orlarey
Grame - Centre national de création musicale
{fober, daudin, letz, orlarey } @grame.fr

ABSTRACT

Based on the Guido Music Notation format, we have devel-
oped a library - the GuidoAR library - that provides a simple
and efficient memory representation of the music notation as
well as score level operations. Applying operations at score
level (like cutting the score head or tail) gives raise to a set of
issues related to the music notation consistency. We present
the Guido Music Notation format, the GuidoAR library, the
score composition operations, the music notation related is-
sues and a proposed way to solve them.

1 INTRODUCTION

The Guido Music Notation format (GMN) [1] [2] has been
designed by H. Hoos and K. Hamel more than ten years ago.
It is very close to the Lilypond format[3] [4] but it has ap-
peared before. The GMN format is a general purpose formal
language for representing score level music in a platform in-
dependent plain text and human readable way. It is based
on a conceptually simple but powerful formalism: its de-
sign concentrates on general musical concepts (as opposed
to graphical features). A key feature of the Guido design
is adequacy which means that simple musical concepts are
represented in a simple way and only complex notions re-
quire complex representations.

Computer music is rich of many score level music repre-
sentation languages [S][6][7]1[8][9]. This paper doesn’t aim
at making a comparison between these languages and the
main reason we chose the GMN format for this work is the
language simplicity and readability, in combination with the
availability of the Guido Engine [10][11], a powerful open
source C/C++ library for music score layout and graphic
rendering based on the GMN format, providing an easy way
to dynamically experiment with score level operations.

Based on the GMN format, we have developed a C++
library, the GuidoAR library, more suitable to implement
score composition operations than the Guido Engine inter-
nal memory representation. Composition operations are ba-
sic operations like transposition, cutting the head or the tail

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

of a score, putting scores in sequence or in parallel, etc. Im-
plementing these operations gave quickly raise to a set of
issues related to the music notation consistency. To solve
these issues, we propose a simple typology of the music no-
tation elements and a set of rules based on this typology to
enforce the music notation consistency.

Music notation is the most common representation used
by musicians. Developing score level composition opera-
tions provides an homogeneous way to write scores and to
manipulate them while remaining at a high music descrip-
tion level. Moreover, the design allows to use scores both
as target and as arguments of the operations, enforcing the
notation level metaphor.

This paper introduces first the Guido Music Notation for-
mat, next the GuidoAR library is presented and the last sec-
tion presents the score composition operations, the related
notation issues and the proposed solution.

2 THE GUIDO MUSIC NOTATION FORMAT

2.1 Basic concepts

Basic Guido notation covers the representation of notes,
rests, accidentals, single and multi-voiced music and the
most common concepts from conventional music notation
such as clefs, meter, key, slurs, ties, beaming, stem direc-
tions, etc. Notes are specified by theirname (a b ¢ d e £
g h), optional accidentals C# and &’ for sharp and flat),
an optional octave number and an optional duration.
Duration is specified in one of the forms:

"%’enum’ /’denom dotting
’x"enum dotting
' /" denom dotting

where enum and denom are positive integers and dotting
is either empty, ’.’, or ’..”, with the same semantic than the
music notation. When enum or denom is omitted, it is as-
sumed to be 1. The duration represents a whole note frac-
tional.

When omitted, optional note description parts are as-
sumed to be equal to the previous specification before in
the current sequence.

Chords are described using comma separated notes en-
closed in brackets e.g {c, e, g}

2.2 Guido tags

Tags are used to represent additional musical information,
such as slurs, clefs, keys, etc. A basic tag has one of the
forms:

\tagname

\tagname<param—-list>
where param-1ist is a list of string or numerical argu-
ments, separated by commas (’,’). In addition, a tag may
have a time range and be applied to a series of notes (like
slurs, ties etc.); the corresponding form is:

\tagname (note-series)

\tagname<param-list> (note-series)

The following GMN code illustrates the concision of the

notation; figure 2 represents the corresponding Guido en-
gine output.

[\meter<"4/4"> \key<-2> c d e& £/8 g]

Ese=—=

Figure 1. A simple GMN example

2.3 Notes sequences and segments

A note sequence is of the form [tagged-notes] where
tagged-notes is a series of notes, tags, and tagged ranges
separated by spaces. Note sequences represent single-
voiced scores. Note segments represent multi-voiced scores;
they are denoted by {seg-1list} where seq-list is a
list of note sequences separated by commas as shown by the
example below:
{legfl, laeal}
The corresponding output is given by figure 2.

Figure 2. A multi-voices example

2.4 Advanced Guido.

The advanced Guido specification provides more tags and
more control over the score layout. In particular, it intro-
duces tags parameters like dz and dy to indicate exact po-
sitioning of the score elements, notes and rests format spec-
ifications, staff assignments, etc. Below is an example of
advanced guido with the corresponding output (figure 3).

\barFormat<"system">

\staff<l> \stemsUp \meter<"2/4">
\intens<"p", dx=lhs,dy=-7hs>

\beam(g2/32 e/16 c*3/32) c/8

\beam (\noteFormat<dx=-0.9%hs>(al/16) c2 f)
\beam(g/32 d/16 hl%3/32) d2/8
\beam(hl/16 d2 g)1,

[\staff<l>\stemsDown gl/8 e

\beam (£f/16 \noteFormat<dx=0.8hs>(g) f a)
a/8 e

\beam(f/16 g £ e)1,

[\staff<2> \meter<"2/4">

\stemsUp a0 f h cl],

[\staff<2> \stemsDown c0 d g {d, a}]
}

=] JIIN[1d

7

p

i

Figure 3. An advanced Guido example

3 THE GUIDOAR LIBRARY

The GuidoAR library is a C/C++ framework providing
a memory representation of the Guido Music Notation
[GMN] as well as basic operations on this representation.
The library name - GuidoAR - stands for Guido Abstract
Representation, referring to the GuidoEngine [12] [10] ter-
minology and opposed to the Guido Graphic Representa-
tion : the abstract representation is intended as the pending
memory representation of the GMN and deals with the log-
ical score layout (stems direction, beaming, etc.) while a
graphic representation is intended to provide exact graphic
formatting information of the score.

The main issues in designing a C++ library to support the
GMN format are related to the significant number of nota-
tion elements: in addition to notes, chords, voices, the for-
mat includes over hundred tags. Thus the cost of describing
all the notations elements, the design of an adequate and ef-
ficient memory representation and the easiness to maintain
and to manipulate have been at the center of the library de-
sign.

3.1 Notation elements representation

The GuidoAR library is based on a single guidoelement
class that contains a name and an attributes list (figure 4). A
guidoattribute has a name, a value and an optional unit
(used for exact positioning).

guidoelement

name

- 0... . -
attributes P—D guidoattribute

name

value

unit (opt.)

Figure 4. Basic objects.

The guidoelement class is specialized to represent the
main elements of the notation (figure 5). Guido tags are
consistently covered by the guidotag class, derived into as
many types as existing tags using templates.

guidoelement
V5 VAR NI VIR,

| ARMusic | | ARVoice | | ARNote | | ARChord | | guidotag |

template<int elt>
class ARTag

Figure 5. The notation elements classes

An automatic memory management using smart pointers
simplifies the programming task. This homogeneous design
leads to simplicity.

3.2 Browsing the representation

The memory representation is organized into a tree similarly
to the GMN hierarchy. The elements support the acyclic vis-
itor pattern [13] and STL iterators as well, providing simple
and powerful ways to browse the music representation. The
following sample code illustrates how to count the notes of
a score using a visitor design:

struct countnotes
int fCount;
countnotes () fCount (0) {}
void visitStart (SARNote&) {fCount++;}
bi

public visitor<SARNote> ({

And the following code implements the same feature with
STL iterators and the count_i £ algorithm.

struct countnotespredicat {
bool operator () (const Sguidoelement elt)
{ return
(dynamic_cast<ARNotex> ((guidoelement*)elt)
? true false); }
bi
countnotespredicat p;
count = count_if (score->begin(),score->end(),p);

These mechanisms are at the basis of all the score composi-
tion operations supported by the library.

4 SCORES COMPOSITION

4.1 Basic operations

Score level operations provided by the GuidoAR library are
given by the table 1. These operations are available as li-
brary API calls and as command line tools as well. Almost
all of the operations take a GMN score and a value param-
eter as input and produce a GMN score as output, but the
value parameter can also be indicated using another GMN
score. For example, the guidotop operation cuts the bot-
tom voices of a score after a given voice number; when us-
ing a score as parameter, the voice number is taken from the
score voices count.

4.2 Notation issues

Actually and to preserve the notation consistency, most of
the score level operations are more complex than simply cut-
ting or adding a branch in the memory representation. We’ll
illustrate the problem with the textual representation which
is equivalent to the memory representation. Let’s take the
example of the tail operation with the following simple
score:
[\clef<"f"> c d e c]

A raw cut of the score after 2 notes would give the [e c]
result which would be naturally rendered as illustrated by
the figure 6 while the use of the same clef is expected.

->
o £ T o
B unexpected
i |
N\clef<"f'>cded _> %
expected

Figure 6. Tail operation consistency

Another example with the sequence operation: a raw
sequence of [\clef<"g"> c d]
and [\clef<"g"> e c]
would give [\clef<"g"> c d \clef<"g"> e c] as
result (figure 7) while the clef repetition is unexpected.

Table 1. Score level operations
tool name and args description

guidoseq s1 s2 puts the scores sl and s2 in sequence
guidopar s1 s2 puts the scores s1 and s2 in parallel
guidorpar s1 s2 puts the scores s1 and s2 in parallel but right aligned
guidotop s1 [n | s2] takes the n top voices of s1;
when using a score s2 as parameter, n is taken from s2 voices count
guidobottom s1 [n | s2] takes the bottom voices of s1 after the n voice;
when using a score s2 as parameter, n is taken from s2 voices count
guidohead s1 [d | s2] takes the head of s1 up to the date d;
when using a score s2 as parameter, d is taken from s2 duration
guidoevhead s1 [n | s2] id. but on events basis i.e. the cut point is specified in n events count;
when using a score s2 as parameter, n is taken from s2 events count
guidotail s1 [d | s2] takes the tail of a score after the date d;
when using a score s2 as parameter, d is taken from s2 duration
guidoevtail s1 [n | s2] id. but on events basis i.e. the cut point is specified in n events count;
when using a score s2 as parameter, n is taken from s2 events count
guidotranspose s1 [i | s2] transposes sl to an interval i;
when using a score s2 as parameter, ¢ is computed as the difference between
the first voice, first notes of s1 and s2
guidoduration s1 [d | f | s2] stretches s1 to a duration d or using a factor f;
when using a score s2 as parameter, d is computed from s2 duration
guidoapplypitch s1 s2 applies the pitches of sl to s2;
the pitches list is applied in a loop up to the end of s2
guidoapplyrythm s1 s2 applies the rhythm of s1 to s2;
the durations list is applied in a loop up to the end of s2

0H 0H

LESS =

Figure 7. A raw sequence operation

Some operations may also result in syntactically incor-
rect results. Consider the following code:
[g \slur(f e) c]
slicing the score in 2 parts after £ would result in
[g \slur(f] (a) and [e) c] (b)
i.e. with uncompleted range tags. We’ll further use the terms
opened-end tags to refer the a) form and opened-begin tags
for the b) form.
There are many more cases, where the music notation
consistency has to be preserved through scores composition
operations.

4.3 Notation elements time extend

One way to solve the problem is to make a typology of the
notation elements regarding their time extend and to define
adequate consistency policies according to the operations
and the element type.

The GMN format makes a distinction between position
tags (like \clef or \meter) and range tags (\s1lur, \beam,
etc.): range tags have an explicit time extend (the duration
of the enclosed notes) and position tags are simply notations
marks at a given time position. However, this distinction is
not sufficient to cover the problem: many of the position
tags have an implicit time duration and they generally last
up to the next similar notation or to the end of the score. For
example, a \meter tag lasts to the end of the score or to the
next meter notation. The table 2 presents a simple typology

Table 2. Typology of notation elements.

time extend description sample
explicit duration is explicit slurs, cresc.
from the notation etc.
implicit element lasts to the meter, clef,
end of the score or to key, etc.
the next similar element
others structure control coda, da capo,

repeats, etc.
new line,

new page, etc.
breath mark,
bar, etc.

formatting instructions

notation marks

of the music notation elements. All the Guido range tags
correspond to the explicit time extend elements and most
of the position tags have an implicit time extend. Based on

this typology, a set of simple rules for score level operations
could partially solve the notation issues:

e when computing the end of a score, all the explicit
time extend elements must be properly closed,

e when computing the beginning of a score, all the
pending explicit time extend elements (i.e. opened-
begin tags) must be recalled,

e when computing the beginning of a score, all the cur-
rent implicit time extend elements must be recalled,

e when putting scores in sequence, implicit time extend
elements starting the second score must be skipped
when they correspond to current existing elements.

No provision is made for the notation elements falling into
the other time extend category except for the structure con-
trol elements (see section 4.5).

4.4 Operations reversibility

The above rules solve most of the notation consistency is-
sues but they do not permit the operations to be reversible.
Consider a score including a slur, sliced in the middle of this
slur and restored by putting the parts back in sequence. The
resulting score will include two slurs (figure 8) instead one,
due to the rules that enforce closing opened-end tags and
starting opened-begin tags.

6—+—+ 0—F——+—
M -> Mﬁiﬂ
Q) Q) N——

Figure 8. A score sliced and put back in sequence

Here to solve the problem, we’ll need the support of the
GMN language. The idea is to keep the history of the range
tags by introducing a new tag parameter to indicate tags cre-
ation corresponding to opened-end and opened-begin tags.
The parameter has the form:

\tag<open="type">

where open is the parameter name

and type is between begin and end
corresponding respectively to opened-begin and opened-end
tags. Next, we introduce a new rule for score level opera-
tions. Let’s first define adjacent tags as tags placed on the
same voice and not separated by any note or chord.

e adjacent similar tags carrying an open parameter are
mutually cancelled when the first one is opened-end
and the second one opened-begin.

Thus when a score level operation encounters a form like:
\tag<open="end"> (f g) \tag<open="begin">(f e)
it should transform it to:
\tag(f g £ e)
which solves the reversibility issue.

4.5 Structure control issues

Elements relevant to the others / structure control time ex-
tend category may also give rise to inconsistent notation: a
repeat begin bar without repeat end, a dal segno without
segno, a da capo al fine without fine, etc. We introduce 2
new rules to catch the repeat bars issue. Let’s first define a
pending repeat end as the case of a voice with a repeat begin
tag without matching repeat end.

e when computing the end of a score, every pending
repeat end must be closed with a repeat end tag.

e from successive unmatched repeat begin tags, only
the first one must be retained and from successive re-
peat end tags, only the last one must be retained.

No additional provision is made for the other structure con-
trol elements: possible inconsistencies are ignored but this
choice preserves the operations reversibility.

5 CONCLUSION

Music notation is complex due to the large number of nota-
tion elements and to the heterogeneous status of these ele-
ments. The proposed typology in table 2 is actually an ar-
bitrary simplification intended to cover the needs of score
level operations but is not representative of this complex-
ity. However, it is based on the music notation semantic and
thus could be reused with any score level music represen-
tation language. Apart from the reversibility rules defined
in 4.4 that require the support of the music representation
language to operate, all the other rules are independent from
the GMN format. Most of the elements relevant to the oth-
ers time extend category have been ignored by the proposed
rules, which may result in non-standard layout (e.g. inco-
herent formatting instructions), but it preserves the opera-
tions reversibility. Thus the score composition operations
do not guaranty a correct automatic music layout. In a fu-
ture work, we plan to transform the notation into a lambda
calculus based programming language [14] with these oper-
ations as language operators.

6 REFERENCES

[1] Hoos H., Hamel K. A., Renz K., and Kilian J. The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music. In Pro-

ceedings of the International Computer Music Confer-
ence, pages 451-454. ICMA, 1998.

[2] H. H. Hoos and K. A. Hamel. The GUIDO Music No-
tation Format Specification - version 1.0, part 1: Basic
GUIDO. Technical report TI 20/97, Technische Univer-
sitat Darmstadt, 1997.

[3] Han-Wen Nienhuys and Jan Nieuwenhuizen. LilyPond,
a system for automated music engraving. In Proceed-
ings of the XIV Colloquium on Musical Informatics (XIV
CIM 2003), May 2003.

[4] Han-Wen Nienhuys. Lilypond, automated music format-
ting and the art of shipping. In Forum Internacional Soft-
ware Livre 2006 (FISL7.0), 2006.

[S] Walter B. Hewlett. MuseData: Multipurpose Repre-
sentation. In Selfridge-Field E., editor, Beyond MIDI,
The handbook of Musical Codes., pages 402-447. MIT
Press, 1997.

[6] David Huron. Humdrum and Kern: Selective Feature
Encoding. In Selfridge-Field E., editor, Beyond MIDI,
The handbook of Musical Codes., pages 376—401. MIT
Press, 1997.

[7] E. Selfridge-Field. DARMS, Its Dialiects, and Its Uses.
In Beyond MIDI, The handbook of Musical Codes.,
pages 163—174. MIT Press, 1997.

[8] Smith Leland. SCORE. In Beyond MIDI, The handbook
of Musical Codes., pages 252-280. MIT Press, 1997.

[9] M. Good. MusicXML for Notation and Analysis. In
W. B. Hewlett and E. Selfridge-Field, editors, The Vir-
tual Score, pages 113—-124. MIT Press, 2001.

[10] D. Fober, S. Letz, and Y. Orlarey. Open source tools for
music representation and notation. In Proceedings of the
first Sound and Music Computing conference - SMC’04,
pages 91-95. IRCAM, 2004.

[11] C. Daudin, D. Fober, S. Letz, and Y. Orlarey. The Guido
Engine - a toolbox for music scores rendering. In Pro-
ceedings of the Linux Audio Conference 2009, pages
105-111, 2009.

[12] Kai Renz. Algorithms and Data Structures for a Music
Notation System based on GUIDO Music Notation. PhD
thesis, Technischen Universitit Darmstadt, 2002.

[13] A. Alexandrescu. Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied. Addison-
Wesley, 2001.

[14] Y. Orlarey, D. Fober, and S. Letz. Lambda Calculus
and Music Calculi. In ICMA, editor, Proceedings of the
International Computer Music Conference, pages 243—

250, 1994.

