
 The problem

SCORES LEVEL COMPOSITION BASED ON THE
GUIDO MUSIC NOTATION

D. Fober, Y. Orlarey, S. Letz
Grame - Centre National de Création Musicale

{fober,orlarey,letz}@grame.fr

Based on the Guido Music Notation format, we have developed tools for music score ”composition”, i.e. operators that take scores
both as target and arguments of high level transformations, applicable for example to the time domain (e.g. cutting the head or the
tail of a score) or to the structural domains (e.g. putting scores in sequence or in parallel). Providing these operations at score
level is particularly convenient to express music ideas and to compose these ideas in an homogeneous representation space.

 The Guido Music Notation Format
 {
 [
 \pageFormat<w=21.5cm,h=15cm,tm=2mm,bm=2,lm=4,rm=2>
 \barFormat<"system"> \staff<1> \stemsUp \meter<"2/4">
 \intens<"p", dx=1hs,dy=-7hs>
 \beam(g2/32 e/16 c*3/32) c/8
 \beam(\noteFormat<dx=-0.9hs>(a1/16) c2 f)
 \beam(g/32 d/16 h1*3/32) d2/8
 \beam(h1/16 d2 g)],

 [\staff<1>\stemsDown g1/8 e
 f/16 \noteFormat<dx=0.8hs>(g)
 f a a/8 e
 f/16 g f e],

 [\staff<2> \meter<"2/4">
 \stemsUp a0 f h c1],

 [\staff<2> \stemsDown c0 d g {d, a}]
 } �

��

�

������
���

��						

������
����
������
�����
�

��						
������
���

��						
������
�����
��							
������
����

��						

������
��
��							 �

��
������
��
��						

�����
���
��						 �

������
���

��							
�����
�����
�

������
�����
��

��						

�����
����

��						
������
�����
�

��							

�����
�����

��						

������
��

��						
��

������
��
��						

�������
��
�										 �
��

��
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Scores level composition gives raise to a set of
issues related to the music notation consistency.
Applying operations at textual description level
almost works syntactically but mostly produces
undesired notations.

 Proposed solution Operations

International Computer Music Conference - ICMC 2012 - Ljubljana, Slovenia September 9-14, 2012

Example 2 : useless clef repetition
[\clef<"g"> c d] [\clef<"g"> e c] [\clef<"g"> c d \clef<"g"> e c]

Example 1: syntax error

Cut [g \slur(f e) c] [g \slur(f]

?

Composition

• putting scores in sequence
• putting scores in parallel using different alignments (left, right)

Selection

• cutting parts in the time dimension (head, tail), using time based or
event based specification

• cutting voices in the vertical dimension

Transformation

• transposition
• time stretching
• pitch profile application
• rythm profile application

 Availability

Based on elements time extend

Terminology

• opened-end tags :
• opened-begin tags :
• pending repeat :

[g \slur (f]

[e) c]

Rule based operations

• computing the beginning of a score:
1) the pending explicit time extent elements must be properly opened (i.e. opened-begin tags)
2) the current implicit time extent elements must be recalled

• computing the end of a score:
3) the explicit time extent elements must be properly closed (i.e. opened-end tags)

• putting scores in sequence:
4) implicit time extent elements starting the second score must be skipped when they correspond

to current existing elements
• structure control:

5) computing the end of a score: every pending repeat end must be closed with a repeat end tag
6) from successive unmatched repeat begin tags, only the first one must be retained

Reversibiity

• a new tag parameter : open = [begin | end | begin-end]
• a new rule : opened-end followed by opened-begin are mutually cancelled

[\atag<open="end">(f g)] [\atag<open="begin">(f e)]

[\atag(f g f e)]

time extent description sample
explicit
implicit
others

-
-

duration is explicit from the notation slurs, cresc.
element lasts to the next similar element or to the end of the score meter, dynamics, key
structure control coda, da capo, repeats
formatting instructions new line, new page
misc. notation elements breath mark, bar

[\repeatBegin a g]

As command line tools allowing series of transformations to be expressed
as pipelining scores through operators e.g.

head s1 s2 | par s2 | transpose "[c]"

Integrated into GuidoCalculus, an application providing a graphic user
interface and intuitive drag and drop features.

As source code: part of the guidolib project open source project
(guidoar repository).

Links:
http://guidolib.sf.net
http://sourceforge.net/projects/guidolib/

