
PROVIDING A RESTFUL MUSIC NOTATION WEB API

M. Solomon, D. Fober, Y. Orlarey, S. Letz
Grame

Centre national de création musicale
mike@mikesolomon.org - {fober, orlarey, letz}@grame.fr

RÉSUMÉ

The Guido HTTPD Server is a RESTful server that ex-
poses many elements of the public GUIDO Engine API
to clients. This article resumes the core tenants of the
REST architecture and goes on to explain the functioning
of the GUIDO server with several examples, concluding
with potential applications of the server.

1. ONLINE MUSICAL EDITING

As client-server models for the processing, visualizing and
analysis of data become more widespread in mobile com-
puting (WordPress, YouTube, Instagram, SoundCloud),
music engraving has entered the fray with various web-
based score editing services. This section explores several
categories of online musical editing services, concluding
with a discussion of general trends in current technologies
and the main problems that the tool outlined in this paper
– the GUIDO HTTPD server – seeks to address.

1.1. Online music notation editors

As of the writing of this paper (2014), there are three main
online musical score editors – Noteflight, Melodus and
Scorio. Noteflight and Melodus seek to provide a full-
featured music editing platform online, similar to Google
Documents’ role in the world of office suites. Scorio is
a hybrid tool that mixes rudimentary layout via a mo-
bile editing platform with publishing-quality layout via
JIT compilation through LilyPond when possible.

1.2. Online score sharing software

Several music tools, such as Sibelius, MuseScore [1], Mae-
stro, and Capriccio, offer online services where scores
composed using this software can be uploaded, browsed,
and downloaded online. Capriccio, can be run online in
limited form as a Java applet. MuseScore, Sibelius, and
Maestro allow for automatic score/MIDI synchronisation
of embedded files.

1.3. Online music JIT compilation services

WebLily, LilyBin, and OMET are all JIT compilation ser-
vices that run the LilyPond executable to compile uploaded
code and return embedded SVG, canvas or PDF visualiza-
tions depending on the tool. The GUIDO note server [5]

uses libGUIDOEngine to compile Guido Music Notation
Format [4] strings into images.

1.4. A RESTful alternative

All of the tools describe above facilitate the creation or vi-
sualization of scores via a variety of input methods (WYSI-
WYG, text, MusicXML etc.) but are not designed to facil-
itate low-latency server-client exchanges of score-related
information. This is, in part, due to the fact that the ma-
jority of automated music engraving programs do not offer
public APIs and are not designed to provide end-user in-
formation other than visual representations of scores and
various non-human-readable file formats. The GUIDO
Engine API [2] seeks to remedy this issue by offering a
public API that reports information about scores such as
the number of pages, duration, and the placement of mu-
sical events both in time and on the page. The represen-
tational state transfer [6], or REST architectural style, is
well suited for exposing this public API via the web be-
cause of several features such as its use of both data and
metadata so that data can be decoded by clients, its in-
sistence on a uniform interface, and its stateless function-
ing. This is further discussed in Section 4 and Section 5.
The GUIDO HTTPD server thus fills a gap in online score
editing technology similar to the gap filled by Atom web
feeds in news services.

2. REPRESENTATIONAL STATE TRANSFER

Representational state transfer [6] is an ubiquitous con-
temporary server architecture style [7]. The REST archi-
tecture is elaborated as a response to existing hypermedia
systems and is intended as a set of constraints to facil-
itate exchange in these systems. The architectural style
is based on a traditional client-server model with the de-
sign trade-off that the server is stateless, meaning that all
of the information required to process a request is con-
tained in the request itself and the server does not need
to store intermediary states. In order to speed up interac-
tion with the server, the REST architecture calls for client-
side caching of data, which can potentially eliminate cer-
tain redundant server requests. It also calls for a uniform
interface, harmonizing all applications’ interactions with
the server at the expense of application-specific interac-
tion models that could speed up exchanges. Layering is



possible in this model, with intermediary servers translat-
ing various forms of shorthand into longer or less human-
readable server commands. With this layering comes the
constraint that exchanging agents cannot “see” beyond the
layer with which they are communicating. Like other as-
pects of REST, this is intended to encapsulate all informa-
tion in a single request made to a single agent. As the bur-
den on the client to be server-compliant is high in REST,
the architectural style provides an optional constraint of
servers’ offering downloadable code-on-demand (scripts,
applets, etc.) to ease client-side software development.

Certain specific architectural elements are put into place
in order to facilitate the above-described architecture. In
addition to the transferring of data, REST calls for the
transferring of meta-data about a server response. This al-
lows for the client side to have information about how to
de-encode the response without needing to send specific
de-encoding instructions. REST encourages resource re-
quests that favor the retrieval of conceptually relevant en-
tities rather than specific entities at a point in time. For
example, a request to the server for “best movies of 1964”
or “weather in Lyon” should change with time rather than
pointing to an arbitrary entity responding to this request at
a given time.

A server compliant with the REST architecture is said
to be a RESTful server.

3. THE GUIDO HTTPD SERVER : AN OVERVIEW

The GUIDO Hypertext Transfer Protocol Daemon (HTTPD)
server is an austerely RESTful server that compiles strings
written in the GUIDO Music Notation (GMN) Format and
reports to the client several representations of this data. It
accepts user requests via two main methods of the HTTP
protocol: POST, used to place elements on the server, and
GET, used to retrieve information about elements on the
server.

3.1. The POST method

POST, as implemented by the GUIDO server, is RESTful
insofar as it does not save any information about the user
state and only saves information sent by the user.

Assuming that a GUIDO HTTPD server is running on
the subdomain http://guido.grame.fr on port
8000, a POST request containing GMN code [a b c d]
is sent via curl as follows:

curl -d"data=[a b c d]" http://guido.grame.fr:8000

Assuming that the GMN code is valid, response, in JSON,
gives the user a unique identifier generated using an SHA-
1 tag corresponding to the input file. This ensures that the
server will not store the same information multiple times:

{

"ID": "07a21ccbfe7fe453462fee9a86bc806c8950423f"

}

This is the server’s internal representation of the GMN
code and used for all subsequent requests to the server. To
access it, it is appended onto the URI. The following is a
simple request using the SHA-1 tag:

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f

It results in the image seen in Figure 1.

Figure 1. Score with SHA-1 tag
07a21ccbfe7fe453462fee9a86bc806c8950423f.

3.2. The GET method

GET requests query the server for information about scores.
The main return type is JSON for all queries related to in-
formation about a score, MIDI for midi realizations of the
score, and PNG for all queries asking for visual repre-
sentations of the score itself. The latter is also possible in
JPEG and SVG. All return types are specified in meta-data
as per REST guidelines (see Section 2).

4. THE GUIDO HTTPD SERVER AS A RESTFUL
SERVER

To summarize the main tenants of a restful posited by
Fielding [6], a restful architecture implements the follow-
ing design features :

1. Client-Server Interaction
2. Stateless
3. Client-Cache
4. Uniform Interface
5. Layered System
6. Code-on-Demand (optional)

The GUIDO server implements all architectural elements
of a RESTful server. Its design also encourages client-side
RESTful practices. The following subsections treat each
criteria above individually, concluding with a discussion
how the GUIDO server uses HTTP as well as a compari-
son to previously-discussed web-based musical engraving
services.

4.1. Client-Server

The GUIDO server performs only server-related tasks in-
sofar as it processes incoming requests and sends responses.
It performs no client-side tasks. The server does not needed
provide clients with tools for inputting requests or decod-
ing responses. This is because the server is a HTTP server,
meaning that client-side HTTP connectors [6], such as
libcurl or a web-browser, can send and retrieve data.

http://guido.grame.fr


4.2. Stateless

The GUIDO server retains no information about users’
queries related to scores, nor does it rely on previous states
in order to generate its current state. It clearly separates
the posting of scores via the POST method (see Section 3.1)
versus the retrieval of data about those scores via the GET
method (see Section 3.2).

4.3. Client-Cache

The RESTful recommendation calls for the ability of clients
to cache common requests, which is beyond the purview
of the GUIDO server. However, Fielding [6] also de-
scribes the possibility of a server cache in order to speed
up server interaction. However, the GUIDO server does
not have a cache for GET requests save an Apache-like log
file. This is because the processing time of GET requests
is not necessarily slower than reading from a cache. The
GUIDO server does, however, maintain a small internal
cache of recently consulted abstract and graphical repre-
sentations of [2] scores in order to avoid persistent GMN
complication.

4.4. Uniform Interface

This is, according to Fielding [6], the most important as-
pect of RESTful architecture. The principle is also at the
core of the GUIDO server. Rather than providing several
ways of doing the same thing, the GUIDO server only ever
provides one way of interpreting requests and representing
information. Furthermore, the way data is retrieved is uni-
form for similar requests and derives from the mapping of
URI segments to API functions (see Section 5). The in-
convenience of this is that URIs sent to the GUIDO server
are long and only partially readable (the SHA-1 tag gen-
erated after POST requests is not - see Section 3.1). This
difficulty can be mitigated by layered systems that provide
score-access shortcuts.

4.5. Layered System

For all but the most technologically savvy of users, a lay-
ered system is required to use the GUIDO server. For ex-
ample, users wishing to map a GUIDO-generated PNG
to an HTML canvas would need a library that translates
GUIDO dates and boxes into programmatic JavaScript.
This is because the server is a lightweight wrapper around
the GUIDO public API, which is itself created to provide
generic structures that allow for the easy manipulation of
musical information.

4.6. Code-on-Demand

The GUIDO server does not currently provide Code-on-
Demand as its functionalities are intended to have almost
one-to-one correspondence with the GUIDO public API.
As a future project, a group of best-practice calls to the
server in JavaScript, curl, and wget can be elaborated as
well as language-specific response parsers. The decision

to send all GET information via JSON (save graphical rep-
resentations of scores) facilitates parsing that, to an extent,
eases the need to provide code to developers and can be
seen as an architectural decision in the spirit of code-on-
demand.

4.7. HTTP

According to Fielding [6], a RESTful server must be able
to send both data and meta-data in responses. The GUIDO
server uses HTTP in order to do this via libmicrohttpd [3],
sending both a MIME type and data in its responses.

4.8. REST and online music engraving

As stated in Section 1.4, the GUIDO HTTPD server seeks
to provide a full implementation of the RESTful architec-
ture recommendations for server constructions in order to
facilitate the transfer of visual score representations and
score-related data. It offers stateless, server-only func-
tionality via a uniform interface. While this is done at
the expense of application-specific shortcuts and human-
interpretability, it favors parsing by intermediary tools and
a robust palate of extractable data. In this way, it is ideal
for web-based and mobile applications that wish to out-
source score-data calculation to a server instead of link-
ing to a library or running an executable. The next sec-
tion describes how this data is extracted via the exposure
of GUIDO Engine’s public API via a standardized URI-
construction system.

5. THE GUIDO HTTPD SERVER AS AN API

The GUIDO HTTPD server attempts to expose as much of
the public API of the GUIDO Engine as possible, imple-
menting one-to-one equivalencies with its functions when
possible. Arguments are passed to these functions via op-
tional key-value pairs in the URI’s query part. Defaults
are provided for all key-value pairs in case of omission.
An exhaustive overview of the API can be found in the
GUIDO HTTPD server’s documentation[8].

This section aims to discuss some of the broad deci-
sions made in exposing a C API via a web interface, giv-
ing three exhaustive examples at the end showing how the
API is exposed.

5.0.1. Function as URI segment

A function in the GUIDO public API is represented as an
segment of the URI sent to the server. For example, the
function GuidoGetPageCount in the GUIDO public
API is represented as the URI segment pagescount.

The GUIDO public API provides two generic categories
of functions:

• Functions reporting information about GUIDO.
• Functions reporting information about a specific score

processed by GUIDO.



API Function URI segment score?
GuidoGetPageCount pagescount Yes
GuidoGetVoiceCount voicescount Yes
GuidoDuration duration Yes
GuidoFindPageAt pageat Yes
GuidoGetPageDate pagedate Yes
GuidoGetPageMap pagemap Yes
GuidoGetSystemMap systemmap Yes
GuidoGetStaffMap staffmap Yes
GuidoGetVoiceMap voicemap Yes
GuidoGetTimeMap timemap Yes
GuidoAR2MIDIFile midi Yes
GuidoGetVersionStr version No
GuidoGetLineSpace linespace No

Table 1. GUIDO API public functions and their repre-
sentations as URI segments.

To represent this distinction via that GUIDO server, the
function is elaborated as a URI segment in the path part
of the URI either after the server’s URI (for information
about GUIDO) or after the SHA-1 tag of a score (for in-
formation about a specific score processed by GUIDO).
For example,

curl http://guido.grame.fr:8000/version

reports the version of both GUIDO and the GUIDO server
and thus does not need a SHA-1 tag. On the other hand,
the URI

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/voicescount

exposes the API function GuidoCountVoices via the
URI segment voicescount, giving the voice count of
specific score.

Table 1 contains a succinct list of the servers’ nam-
ing conventions showing the name of a function in the
GUIDO public API, its representation as a server URI seg-
ment, and if it is score-specific or generic to all of GUIDO.
Note that the only generic URI segment that does not cor-
respond to a GUIDO public API function is server,
which gives the version number of the server and thus is
not related to the GUIDO API proper.

5.0.2. Arguments as key-value pairs

Several of the API functions listed in Table 1 require argu-
ments in order to generate results. For example, the func-
tion GuidoGetStaffMap requires an argument staff
specifying the staff for which the map should be gener-
ated. These arguments are specified in key-value pairs in
the URI.

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/staffmap?staff=1

Default arguments are provided for all argument-taking
functions in case the user fails to specify an argument.

5.0.3. Layout and formatting options as key-value pairs

The GUDIO server allows for the specification of several
parameters relating to the layout and formatting of scores
as key-value pairs. These parameters are used in sev-
eral different ways in the GUIDO public API. Some, such
as topmargin, are become values of structures such as
GuidoPageFormat. Others, such as resize, repre-
sent calls to functions that effect layout (in this case
GuidoResizePageToMusic). Yet others, such as
width, are used at several points in the layout process
depending on the chosen backend. Rather than devising
separate URI construction conventions to represent differ-
ent layout and formatting information in GUIDO, all lay-
out and formatting options are implemented as key-value
pairs to make interacting with the server uniform in keep-
ing with RESTful style.

In order to deal with malformed URIs, the GUIDO
server provides defaults for out-of-range or nonsensical
values and ignores nonsensical keys.

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/?

topmargin=0.0&format=jpg&resize=useless&foo=bar

In the above example, the topmargin and format val-
ues in the query part of the URI are used by the server
whereas resize is given its default value because
useless is useless and foo is ignored because it is not
a valid key.

5.0.4. JSON as structs

GUIDO provides several structures in its public API for
the transmission of information that falls outside standard
C types. For example, the Date struct is a numerator-
denominator pair used to specify a point in time in a score.
The Time2GraphicMap struct is a composite structure
consisting of pairs of TimeSegment and FloatRect
structures. TimeSegment corresponds to beginning and
end Date instances whereas FloatRect shows four
points in graphical space.

To represent these structures in server responses, the
GUIDO server uses JSON where key-value pairs corre-
spond to a structure’s element’s name and its value. For
example, in the JSON returned in Section 5.0.7, time
corresponds to a TimeSegment and graph corresponds
to a FloatRect.

5.0.5. Example: voicescount

The command voicescount returns the number of voices
in a score. It exposes the GUIDO Engine API method
GuidoCountVoices. For example, the request:

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/voicescount

yields the following result:



{

"07a21ccbfe7fe453462fee9a86bc806c8950423f": {

"voicescount": 1

}

}

5.0.6. Example: pageat

The command pageat returns the page given a specific
date, expressed as a rational number. It exposes the GUIDO
Engine API method GuidoFindPageAt. For example,
the request:

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/pageat?date=1/4

yields the following result:

{

"07a21ccbfe7fe453462fee9a86bc806c8950423f": {

"page": 1,

"date": "1/4"

}

}

5.0.7. Example: staffmap

The command staffmap returns a map of the space each el-
ement of a given staff takes up in 2D space (represented by
a box) and time space (represented as an interval of ratio-
nal numbers). It exposes the GUIDO Engine API method
GuidoGetStaffMap. For example, the request:

curl http://guido.grame.fr:8000/

07a21ccbfe7fe453462fee9a86bc806c8950423f/staffmap?staff=1

yields the following result:

{

"07a21ccbfe7fe453462fee9a86bc806c8950423f": {

"staffmap": [

{

"graph": {

"left": 916.18,

"top": 497.803,

"right": 1323.23,

"bottom": 838.64

},

"time": {

"start": "\"0/1\"",

"end": "\"1/4\""

}

},

{

"graph": {

"left": 1323.23,

"top": 497.803,

"right": 1730.28,

"bottom": 838.64

},

"time": {

"start": "\"1/4\"",

"end": "\"1/2\""

}

},

{

"graph": {

"left": 1730.28,

"top": 497.803,

"right": 2137.33,

"bottom": 838.64

},

"time": {

"start": "\"1/2\"",

"end": "\"3/4\""

}

},

{

"graph": {

"left": 2137.33,

"top": 497.803,

"right": 2595.51,

"bottom": 838.64

},

"time": {

"start": "\"3/4\"",

"end": "\"1/1\""

}

}

]

}

}

6. CONCLUSION

The GUIDO HTTPD server uses RESTful architectural
principles such as statelessness, a uniform interface and
a separation of client-server functionality in order to pro-
vide low-latency information retrieval. Information cor-
responds to uploaded GMN scores, encoded as various
MIME types and transmitted via the HTTP protocol. The
server exposes the robust GUIDO Engine public API via
an interface based on standardized URI construction. It
is intended for use by various applications needing to vi-
sualize musical scores and process score-related data. It
is especially well-suited as an alternative to embarking li-
braries or external applications in score processing soft-
ware. As cloud computing and mobile human-computer
interaction becomes more common, this form of data trans-
mission and processing is increasingly necessary. The
GUIDO HTTPD server intends to fill this by following
RESTful architectural recommendations that have proven
successful in other server-based services.



References
[1] T. Bonte. MuseScore: Open source music no-

tation and composition software. Technical
report, Free and Open source Software De-
velopers’ European Meeting, 2009. http:
//www.slideshare.net/thomasbonte/
musescore-at-fosdem-2009.

[2] C. Daudin, Dominique Fober, Stephane Letz, and
Yann Orlarey. La librairie guido – une boite à out-
ils pour le rendu de partitions musicales. In ACROE,
editor, Actes des Journées d’Informatique Musicale
JIM’09 – Grenoble, pages 59–64, 2009.

[3] C. Grothoff. GNU libmicrohttpd: a li-
brary for creating an embedded http server.
http://www.gnu.org/software/
libmicrohttpd/index.html, 2014.

[4] H. Hoos, K. Hamel, K. Renz, and J. Kilian. The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music. In
Proceedings of the International Computer Music
Conference, pages 451–454. ICMA, 1998.

[5] Renz K. and H. Hoos. A Web-based Approach to Mu-
sic Notation Using GUIDO. In Proceedings of the In-
ternational Computer Music Conference, pages 455–
458. ICMA, 1998.

[6] Fielding R. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[7] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Media, 2008.

[8] M. Solomon. Guido server documentation.
http://www.mikesolomon.org/guido/
server/index.html, January 2014.

http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.gnu.org/software/libmicrohttpd/index.html
http://www.gnu.org/software/libmicrohttpd/index.html
http://www.mikesolomon.org/guido/server/index.html
http://www.mikesolomon.org/guido/server/index.html

	 Online musical editing
	 Online music notation editors
	 Online score sharing software
	 Online music JIT compilation services
	 A RESTful alternative

	 Representational state transfer
	 The GUIDO HTTPD server : an overview
	 The POST method
	 The GET method

	 The GUIDO HTTPD server as a RESTful server
	 Client-Server
	 Stateless
	 Client-Cache
	 Uniform Interface
	 Layered System
	 Code-on-Demand
	 HTTP
	 REST and online music engraving

	 The GUIDO HTTPD server as an API
	 Function as URI segment
	 Arguments as key-value pairs
	 Layout and formatting options as key-value pairs
	 JSON as structs
	 Example: voicescount
	 Example: pageat
	 Example: staffmap


	 Conclusion

