
Providing Music Notation Services over Internet

Mike SOLOMON, Dominique FOBER, Yann ORLAREY and Stéphane LETZ
Grame

Centre national de création musicale
Lyon - France

mike@mikesolomon.org, {fober, orlarey, letz}@grame.fr

Abstract
The GUIDO project gathers a textual format for mu-
sic representation, a rendering engine operating on
this format, and a library providing a high level sup-
port for all the services related to the GUIDO for-
mat and it’s graphic rendering. The project includes
now an HTTP server that allows users to access the
musical-score-related functions in the API of the
GUIDOEngine library via uniform resource identi-
fiers (URIs). This article resumes the core tenants of
the REST architecture on which the GUIDO server
is based, going on to explain how the server ports
a C/C++ API to the web. It concludes with several
examples as well as a discussion of how the REST
architecture is well suited to a web-API that serves
as a wrapper for another API.

1 Online musical editing
As client-server models for the processing, visual-
izing and analysis of data become more widespread
in mobile computing (WordPress, YouTube, Insta-
gram, SoundCloud), music engraving has entered
the fray with various web-based score editing ser-
vices. The GUIDO HTTP server merges the idea of
a web-based music editor with a RESTful web ser-
vice in order to expose the public API of the GUI-
DOEngine library[Hoos and Hamel, 1997]. This
section explores several categories of online musi-
cal editing services, concluding with a discussion of
general trends in current technologies and the main
problems that the tool outlined in this paper – the
GUIDO HTTP server – seeks to address.

1.1 Online music notation editors
As of the writing of this paper (2014), there are
three main online musical score editors – Note-
flight1, Melodus2 and Scorio3. Noteflight and Melo-
dus seek to provide a full-featured music editing
platform online, similar to Google Documents’ role

1http://www.noteflight.com
2http://www.melod.us
3https://scorio.com

in the world of office suites. Scorio is a hybrid tool
that mixes rudimentary layout via a mobile edit-
ing platform with publication-quality layout via JIT
compilation through LilyPond when possible.

1.2 Online score sharing software
Several music tools, such as Sibelius4, MuseScore
[Bonte, 2009], Maestro5, and Capriccio6, offer on-
line services where scores composed using this soft-
ware can be uploaded, browsed, and downloaded
online. Capriccio, can be run online in limited form
as a Java applet. MuseScore, Sibelius, and Maestro
allow for automatic score/MIDI synchronisation of
embedded files.

1.3 Online music JIT compilation services
WebLily7, LilyBin8, and OMET9 are all JIT compi-
lation services that run the LilyPond executable to
compile uploaded code and return embedded SVG,
canvas or PDF visualizations depending on the tool.
The GUIDO note server [K. and Hoos, 1998] uses
the GUIDOEngine library to compile Guido Music
Notation Format [Hoos et al., 1998] strings into im-
ages.

1.4 A RESTful alternative
All of the tools described above facilitate the cre-
ation or visualization of scores via a variety of in-
put methods (WYSIWYG, text, MusicXML etc.)
but are not designed to facilitate low-latency server-
client exchanges of score-related information. This
is, in part, due to the fact that the majority of auto-
mated music engraving programs do not offer public
APIs and are not designed to provide end-user infor-
mation other than visual representations of scores
and various non-human-readable file formats. The
GUIDO Engine API [Daudin et al., 2009] [Grame,

4http://www.sibelius.com
5http://www.musicaleditor.com
6http://cdefgabc.com
7http://weblily.net
8http://www.lilybin.com
9http://www.omet.ca

http://www.noteflight.com
http://www.melod.us
https://scorio.com
http://www.sibelius.com
http://www.musicaleditor.com
http://cdefgabc.com
http://weblily.net
http://www.lilybin.com
http://www.omet.ca


2014b] seeks to remedy this issue by offering a pub-
lic API that reports information about scores such
as the number of pages, duration, and the place-
ment of musical events both in time and on the page.
The representational state transfer [Fielding, 2000],
or REST, architectural style, is well suited for the
porting of an API to the web because it is opti-
mized for a system that is stateless, meaning that
it does not require remembering intermediary states
of a user. Contrast this to, for example, a server
that needs to retain an undo history or the state of a
logged-on user. As a result, the design of the server
is clearer, quick and easy to scale [Richardson and
Ruby, 2008]. This is further discussed in Section 3
and Section 4. The GUIDO HTTP server thus fills
a gap in online score editing technology similar to
the gap filled by Atom web feeds in news services.

2 Representational state transfer
Representational state transfer [Fielding, 2000] is an
ubiquitous contemporary server architecture style
[Richardson and Ruby, 2008]. The REST archi-
tecture is intended as a set of constraints to facil-
itate exchange in systems that deliver and report
on hypermedia resources. The architectural style is
based on a traditional client-server model with the
design trade-off that the server is stateless, mean-
ing that all of the information required to process
a request is contained in the request itself and the
server does not need to store intermediary states.
In order to speed up interaction with the server,
the REST architecture calls for client-side caching
of data, which can potentially eliminate certain re-
dundant server requests. It also calls for a uni-
form interface, harmonizing all applications’ inter-
actions with the server at the expense of application-
specific interaction models that could speed up ex-
changes. Layering is possible in this model, with
intermediary servers translating various forms of
shorthand into longer or less human-readable server
commands. With this layering comes the constraint
that exchanging agents cannot “see” beyond the
layer with which they are communicating. As the
burden on the client to be server-compliant is high
in REST, the architectural style provides an optional
constraint of servers’ offering downloadable code-
on-demand (scripts, applets, etc.) to ease client-side
software development.

Certain specific architectural elements are put
into place in order to facilitate the above-described
architecture. In addition to the transferring of
data, REST calls for the transferring of meta-data
about a server response. This allows for the client
side to have information about how to de-encode
the response without needing to send specific de-

encoding instructions. REST also encourages re-
source requests that are constructed in a hierarchical
and human-readable manner. For example, access-
ing today’s weather in Lyon, France is preferably
http://website.fr/France/Lyon/weather/today

rather than
http://website.fr/?country=France&town=Lyon
&feature=weather&date=today

A server compliant with the REST architecture is
said to be a RESTful server.

3 The GUIDO HTTP server : an overview
The GUIDO Hypertext Transfer Protocol Daemon
(HTTP) server is a RESTful server that com-
piles strings written in the GUIDO Music Notation
(GMN) Format into musical scores and reports to
the client several representations of this data.10 It
accepts user requests via two main methods of the
HTTP protocol: POST, used to place elements on
the server, and GET, used to retrieve information
about elements on the server.

3.1 The POST method
POST, as implemented by the GUIDO server, is
RESTful insofar as it does not save any information
about the user state and only saves information sent
by the user.

Assuming that a GUIDO HTTP server is run-
ning on the subdomain http://guido.grame.fr
on port 8000, a POST request containing GMN code
[a b c d] is sent via curl as follows:
curl -d"data=[a b c d]" http://guido.grame.fr:8000

Assuming that the GMN code is valid, response,
in JSON, gives the user a unique identifier generated
using an SHA-1 tag corresponding to the input file.
This ensures that the server will not store the same
information multiple times:
{
"ID": "07a21ccbfe7fe453462fee9a86bc806c8950423f"

}

This identifier is generated via the SHA-1 cryp-
tographic hashing algorithm [Gallagher, 2012] that
encodes any digital document as a 160-bit hash or
key. The algorithm has a low incidence of colli-
sion ( 1

263 ), making it almost impossible for two doc-
uments to share the same SHA-1 key.

This is the server’s internal representation of the
GMN code and used for all subsequent requests to
the server. To access it, it is appended onto the URI.
The following is a simple request using the SHA-1
tag (hereafter shortened to facilitate readability) that
results in the image seen in Figure 1.

curl http://guido.grame.fr:8000/07a21...0423f

http://guido.grame.fr


Figure 1: Score with SHA-1 tag 07a21...0423f.

Technically speaking, the need to use an SHA-1
key in order to access scores and score-related in-
formation is not strictly RESTful. A strictly REST-
ful implementation would embed the score in ev-
ery GET request. In accepting a GMN score via
POST, the server must “remember” the score, which
violates the principle of statelessness. The posting
of a resource on the server is generally considered
an acceptable compromise [Richardson and Ruby,
2008] so long as it is uniquely identifiable in an URI
and the resource cannot be modified once uploaded
on the server. This is the case with scores on the
GUIDO server.

3.2 The GET method
Requests sent via GET query the server for infor-
mation about scores. The main return type is JSON
for all queries related to information about a score,
MIDI for midi realizations of the score, and PNG
for all queries asking for visual representations of
the score itself. The latter is also possible in JPEG
and SVG. All return types are specified in meta-data
as per REST guidelines (see Section 2).

3.3 Uniform interface
The RESTful style specifies that a server’s interface
must be uniform, meaning that the operations that
it executes must be the same for all clients inter-
acting with the server. Furthermore, these opera-
tions should be conceptually different with no over-
lap and should ideally be widely used. The HTTP
standard provides several atomic options that allow
for the uniform interaction with a server [Richard-
son and Ruby, 2008]. The GUIDO web API uses the
GET and POST methods from HTTP via libmicro-
httpd [Grothoff, 2014], leaving out less widely-used
methods such as PUT and DELETE in an effort to
expose its full functionality to the largest group of
client applications possible.

4 The GUIDO HTTP server as an API
The GUIDO HTTP server attempts to expose as
much of the public API of the GUIDO Engine
as possible, implementing one-to-one equivalencies
with its functions when possible. Arguments are

10In this paper, the terms “GMN” and “score” are used inter-
changeably when talking about music treated by or stored on
the server.

passed to these functions via optional key-value
pairs in the URI’s query part. Defaults are pro-
vided for all key-value pairs in case of omission.
An exhaustive overview of the API can be found in
the GUIDO HTTP server’s documentation[Grame,
2014a].

This section aims to discuss some of the broad
decisions made in exposing a C++ API via a web
interface, giving three exhaustive examples at the
end showing how the API is exposed.

4.1 SHA-1 key as musical score
Section 3.1 entertains the manner in which SHA-
1 keys replace GMN scores in URIs sent to the
server via in order to avoid having to send GMN
scores in GET requests. This key corresponds to
both an ARHandler, or Abstract Representation,
and GRHandler, or Graphic Representation of a
score in the GUIDO API. These two structures are
used in order to generate information about the mu-
sical contents of a score (ARHandler) as well as
its layout (GRHandler). The representation of both
structures by one SHA-1 key allows the user to have
a unique point of entry for each GMN score that
conflates the data generated by several structures.

4.2 Function as URI segment
A function in the GUIDO public API is represented
as a segment of the URI sent to the server. For
example, the function GuidoGetPageCount in the
GUIDO public API is represented as the URI seg-
ment pagescount.

The GUIDO public API provides two generic cat-
egories of functions:

• Functions addressed to the engine and report-
ing information about GUIDO.

• Functions addressed to a specific score pro-
cessed by GUIDO.

With the C/C++ API, functions addressed to a
score take score handlers as argument, which may
be viewed as pointers to the internal score object.
With HTTP, the SHA-1 tag plays the role of these
score score handlers and the complete URI defines
the scope of the request :

• Requests addressed to the engine are not pre-
fixed.

• Requests addressed to a specific score are pre-
fixed by the SHA-1 key.

For example,
http://guido.grame.fr:8000/version

reports the version of both GUIDO and the GUIDO
server. On the other hand, the URI



C/C++ API URI segment scope
GuidoGetPageCount pagescount score
GuidoGetVoiceCount voicescount score
GuidoDuration duration score
GuidoFindPageAt pageat score
GuidoGetPageDate pagedate score
GuidoGetPageMap pagemap score
GuidoGetSystemMap systemmap score
GuidoGetStaffMap staffmap score
GuidoGetVoiceMap voicemap score
GuidoGetTimeMap timemap score
GuidoAR2MIDIFile midi score
GuidoGetVersionStr version engine
GuidoGetLineSpace linespace engine

Table 1: GUIDO API public functions and their
representations as URI segments.

http://guido.grame.fr:8000/<key>/voicescount
where <key> is a SHA-1 key

exposes the API function GuidoCountVoices via
the URI segment voicescount, giving the voice
count of specific score.

Table 1 contains a succinct list of the servers’
naming conventions showing the name of a func-
tion in the GUIDO public API, its representation as
a server URI segment, and it’s scope. Note that the
only generic URI segment that does not correspond
to a GUIDO public API function is server, which
gives the version number of the server and thus is
not related to the GUIDO API proper.

4.3 Arguments as key-value pairs
Several of the API functions listed in Table 1 require
arguments in order to generate results. For example,
the function GuidoGetStaffMap requires an argu-
ment staff specifying the staff for which the map
should be generated. These arguments are specified
in key-value pairs in the URI.

http://guido.grame.fr:8000/<key>/staffmap?staff=1

Default arguments are provided for all argument-
taking functions in case the user fails to specify
an argument. These arguments are values that
would work in the majority of scores (for example,
page=1) and often come from defaults provided in
the API.

4.4 Layout and formatting options as
key-value pairs

The GUIDO server allows for the specifica-
tion of several parameters relating to the lay-
out and formatting of scores as key-value pairs.
These parameters are used in several different
ways in the GUIDO public API. Some, such as
topmargin, become values of structures such as

GuidoPageFormat. Others, such as resize, repre-
sent calls to functions that effect layout (in this case
GuidoResizePageToMusic). Yet others, such as
width, are used at several points in the layout pro-
cess depending on the chosen backend. Rather than
devising separate URI construction conventions to
represent different layout and formatting informa-
tion in GUIDO, all layout and formatting options
are implemented as key-value pairs to make in-
teracting with the server uniform in keeping with
RESTful style.

4.5 Return values
In order to handle the diversity of return types pro-
vided by the GUIDO API, the server attempts to
find MIME types that best approximate the values
returned by API functions. Sometimes, there is a
direct correspondance. For example, the formats of
images returned by the GUIDOEngine library when
compiled with Qt (JPEG, PNG and SVG) are all
MIME types.

In many cases, the GUIDO API returns custom
structures that have no MIME type equivalent. In
these cases, JSON [Crockford, 2013] is used to rep-
resent hierarchical relationships contained within
these structures.

For example, the Time2GraphicMap struct
is a composite structure consisting of pairs
of TimeSegment and FloatRect structures.
TimeSegment corresponds to beginning and end of
a musical event whereas FloatRect corresponds
to its placement on the page. To represent these
structures in server responses, the GUIDO server
uses JSON where key-value pairs correspond to
a structure’s element’s name and its value. An
example of this is given in Section 4.6.3, time cor-
responds to a TimeSegment and graph corresponds
to a FloatRect.

4.6 Examples
4.6.1 voicescount
The command voicescount returns the number of
voices in a score. It exposes the GUIDO Engine
API method GuidoCountVoices. For example, the
request:

http://guido.grame.fr:8000/<key>/voicescount

yields the following result:

{
"<key>": {

"voicescount": 1
}

}

where "<key>" is the SHA-1 key given by the URI.



4.6.2 pageat
The command pageat returns the page given
a specific date, expressed as a rational num-
ber. It exposes the GUIDO Engine API method
GuidoFindPageAt. For example, the request:
http://guido.grame.fr:8000/<key>/pageat?date=1/4

yields the following result:
{

"<key>": {
"page": 1,
"date": "1/4"

}
}

4.6.3 staffmap
The command staffmap returns a map of the space
each element of a given staff takes up in 2D space
(represented by a box) and time space (represented
as an interval of rational numbers). It exposes the
GUIDO Engine API method GuidoGetStaffMap.
For example, the request:
http://guido.grame.fr:8000/<key>/staffmap?staff=1

yields the following result, abbreviated below to
minimize its space on the page:
{

"<key>": {
"staffmap": [

{
"graph": {

"left": 916.18,
"top": 497.803,
"right": 1323.23,
"bottom": 838.64

},
"time": {

"start": "0/1",
"end": "1/4"

}
},
.
.
.
{

"graph": {
"left": 2137.33,
"top": 497.803,
"right": 2595.51,
"bottom": 838.64

},
"time": {

"start": "3/4",
"end": "1/1"

}
}

]
}

}

5 Conclusion
The GUIDO HTTP server uses RESTful architec-
tural principles such as statelessness, a uniform in-
terface and a separation of client-server functional-
ity in order to provide low-latency information re-
trieval. Information corresponds to uploaded GMN
scores, encoded as various MIME types and trans-
mitted via the HTTP protocol. The server exposes
the robust GUIDO Engine public API via an inter-
face based on standardized URI construction. It is
intended for use by various applications needing to
visualize musical scores and process score-related
data. It is especially well-suited as an alternative
to embarking libraries or external applications in
score processing software. As cloud computing
and mobile human-computer interaction becomes
more common, this form of data transmission and
processing is increasingly necessary. The GUIDO
HTTP server intends to fill this by following REST-
ful architectural recommendations that have proven
successful in other server-based services.

The GUIDO project is an open source project
hosted by sourceforge11. The GUIDO HTTP server
is running at

http://guidoservice.grame.fr/.

6 Acknowledgements
This work has been realized in the framework of the
INEDIT project that is supported by the French Na-
tional Research Agency [ANR-12-CORD-0009].

References
T. Bonte. 2009. MuseScore: Open source
music notation and composition soft-
ware. Technical report, Free and Open
source Software Developers’ European
Meeting. http://www.slideshare.net/
thomasbonte/musescore-at-fosdem-2009.

D. Crockford. 2013. The json data interchange
format. Technical report, ECMA International,
October.

C. Daudin, D. Fober, S. Letz, and Y. Orlarey.
2009. The Guido Engine - a toolbox for music
scores rendering. In Proceedings of the Linux Au-
dio Conference 2009, pages 105–111.

R. Fielding. 2000. Architectural Styles and the
Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine.

P. Gallagher. 2012. Secure hash standard (shs).
Technical report, National Institute of Standards
and Technology, March.

11http://guidolib.sf.net

http://guidoservice.grame.fr/
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://guidolib.sf.net


Grame, 2014a. Guido Engine Web API Docu-
mentation v.0.50.

Grame, 2014b. GuidoLib v.1.52.

C. Grothoff. 2014. GNU libmicrohttpd:
a library for creating an embedded http
server. http://www.gnu.org/software/
libmicrohttpd/index.html.

H. H. Hoos and K. A. Hamel. 1997. The GUIDO
Music Notation Format Specification - version
1.0, part 1: Basic GUIDO. Technical report TI
20/97, Technische Universitat Darmstadt.

H. Hoos, K. Hamel, K. Renz, and J. Kilian. 1998.
The GUIDO Music Notation Format - a Novel
Approach for Adequately Representing Score-
level Music. In Proceedings of the International
Computer Music Conference, pages 451–454.
ICMA.

Renz K. and H. Hoos. 1998. A Web-based Ap-
proach to Music Notation Using GUIDO. In Pro-
ceedings of the International Computer Music
Conference, pages 455–458. ICMA.

L. Richardson and S. Ruby. 2008. RESTful Web
Services. O’Reilly Media.

http://www.gnu.org/software/libmicrohttpd/index.html
http://www.gnu.org/software/libmicrohttpd/index.html

	Online musical editing
	Online music notation editors
	Online score sharing software
	Online music JIT compilation services
	A RESTful alternative

	Representational state transfer
	The GUIDO HTTP server : an overview
	The POST method
	The GET method
	Uniform interface

	The GUIDO HTTP server as an API
	SHA-1 key as musical score
	Function as URI segment
	Arguments as key-value pairs
	Layout and formatting options as key-value pairs
	Return values
	Examples
	voicescount
	pageat
	staffmap


	Conclusion
	Acknowledgements

