Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

THE gXelem PROJECT

Home/
Tips & Tricks/

Anti-Grain Geometry

News Docs Download MailingList CVS

Working with Gradients
A Simple Step-by-Step Tutorial

This article will explain to you how to set up gradients and render them. We will use a simple command-
line example that produces the result in the agg test.ppm file. You can use, for example » IrfanView
(www.irfanview.com) to see the results.

You will need to tell the compiler the AGG include directory and add three source files to the project or
to the command line: agg rasterizer scanline aa.cpp, agg trans affine.cpp, and
agg sqgrt tables.cpp. You can find the source file here: &8 (gradients.cpp).

#include <stdio.h>

#include <string.h>

#include "agg pixfmt rgb.h"

finclude "agg renderer base.h"

#include "agg renderer scanline.h"
#include "agg scanline u.h"

f#include "agg rasterizer scanline aa.h"
#include "agg ellipse.h"

#include "agg span gradient.h"

#include "agg span_interpolator linear.h"

enum

frame width = 320,
frame height = 200
bi

// Writing the buffer to a .PPM file, assuming it has
// RGB-structure, one byte per color component

bool write ppm(const unsigned char* buf,
unsigned width,
unsigned height,
const char* file name)

FILE* fd = fopen(file name, "wb");

if (£d)

{
fprintf (£fd, "P6 %d %d 255 ", width, height);
fwrite(buf, 1, width * height * 3, fd);
fclose (fd) ;
return true;

}

return false;

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ients_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 1 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/tips/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/news/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/download/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/maillist/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/cvs/index.html
https://web.archive.org/web/20180707024309/http://www.irfanview.com/
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/src/agg_trans_affine.cpp.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/src/agg_sqrt_tables.cpp.html
https://web.archive.org/web/20180707024309/http://antigrain.com/tips/gradients_tutorial/gradients.cpp
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_pixfmt_rgb.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_base.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_scanline_u.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html

Anti-Grain Geometry - Working with Gradients

// A simple function to form the gradient color array
// consisting of 3 colors, "begin", "middle", "end"

template<class Array>

void fill color array(Arrayé& array,
agg::rgba8 begin,
agg::rgba8 middle,
agg::rgba8 end)

unsigned i;

unsigned half size = array.size() / 2;
for(i = 0; 1 < half size; ++i)
{
array[i] = begin.gradient (middle, i / double(half size));

}
for(; 1 < array.size(); ++1i)

{

int main ()
{
unsigned char* buffer = new unsigned char[frame width * frame height

agg::rendering buffer rbuf (buffer,
frame width,
frame height,
-frame width * 3);
// Pixel format and basic renderers.
typedef agg::pixfmt rgb24 pixfmt type;

typedef agg::renderer base<pixfmt type> renderer base type;

// The gradient color array

typedef agg::pod auto array<agg::rgba8, 256> color array type;

// Gradient shape function (linear, radial, custom, etc)

typedef agg::gradient x gradient func type;

// Span interpolator. This object is used in all span generators

// that operate with transformations during iterating of the spans,
// for example, image transformers use the interpolator too.
typedef agg::span_interpolator linear<> interpolator type;

// Span allocator is an object that allocates memory for

// the array of colors that will be used to render the
// color spans. One object can be shared between different

array[i] = middle.gradient(end, (i - half size) / double(half size));

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL

5/5/19, 9:24 PM

Page 2 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#rendering_buffer
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_pixfmt_rgb.h.html#pixfmt_rgb24
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_array.h.html#pod_auto_array
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_x
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

// span generators.
typedef agg::span_allocator<agg::rgba8> span allocator type;
// Finally, the gradient span generator working with the agg::rgba8

// color type.
// The 4-th argument is the color function that should have

// the [] operator returning the color in range of [0...255].
// In our case it will be a simple look-up table of 256 colors.
[/ =—mmmm e

typedef agg::span gradient<agg::rgbas,
interpolator type,
gradient func type,
color_ array type,
span_allocator type> span gradient type;

// The gradient scanline renderer type
typedef agg::renderer scanline aa<renderer base type,
span_gradient type> renderer gradient type;
// Common declarations (pixel format and basic renderer).
pixfmt type pixf (rbuf);

renderer base type rbase (pixf);

// The gradient objects declarations

e
gradient func type gradient func; // The gradient function
agg::trans affine gradient mtx; // Affine transformer
interpolator type span_interpolator (gradient mtx); // Span interpolator
span_allocator type span allocator; // Span Allocator

color array type color array; // Gradient colors

// Declare the gradient span itself.

// The last two arguments are so called "d1" and "d2"

// defining two distances in pixels, where the gradient starts

// and where it ends. The actual meaning of "d1" and "d2" depands
// on the gradient function.

span_gradient type span gradient (span_allocator,
span_interpolator,
gradient func,
color array,
0, 100);

// The gradient renderer

renderer gradient type ren gradient (rbase, span gradient);

// The rasterizing/scanline stuff

agg::rasterizer scanline aa<> ras;
agg::scanline u8 sl;

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 3 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_scanline_u.h.html#scanline_u8

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

// Finally we can draw a circle.

rbase.clear (agg::rgba8 (255, 255, 255));

fill color array(color array,
agg::rgba8(0,50,50),
agg::rgba8 (240, 255, 100),
agg::rgba8(80, 0, 0));

agg::ellipse ell (50, 50, 50, 50, 100);
ras.add path(ell);

agg::render scanlines(ras, sl, ren gradient);
write ppm(buffer, frame width, frame height, "agg test.ppm");

delete [] buffer;
return 0O;

It looks rather complex, especially the necessity to declare a lot of types and objects. But the
“complexity” gives you freedom, for example, you can define your own gradient functions or even
arbitrary distortions.

The example renders a circle with linear gradient from (0,0) to (100,0). In AGG you can define an
arbitrary color function, in our case it's a simple look-up table generated from three colors, start,

middle, and end.

Here is the result (the axes and text were added in » Xara X):

AY

Start Color
Middle Color
End Color

| |
d1=0 d2=100

It also can seem like an overkill for this simple task, but later you will see that it's not so.

The next step is one little modification. Modify the following:

// Declare the gradient span itself.

// The last two arguments are so called "d1" and "d2"

// defining two distances in pixels, where the gradient starts

// and where it ends. The actual meaning of "d1" and "d2" depands
// on the gradient function.

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL

Page 4 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180707024309/http://www.xara.com/

Anti-Grain Geometry - Working with Gradients

span_gradient type span gradient (span_allocator,
span_interpolator,
gradient func,
color array,
50, 100);

5/5/19, 9:24 PM

The result:

| |
di=50 d2=100

It should explain those freaky d1 and d2 arguments. In fact, they determine the geometrical start

and end of the gradient and their meaning depends on the gradient function.

Now change the gradient function:

// Gradient shape function (linear, radial, custom, etc)

typedef agg::gradient circle gradient func type;

Set d1 back to 0:

// Declare the gradient span itself.
// The last two arguments are so called "dl1" and "d2"

// defining two distances in pixels, where the gradient starts
// and where it ends. The actual meaning of "d1" and "d2" depands

// on the gradient function.

span_gradient type span gradient (span_allocator,
span_interpolator,
gradient func,
color_array,
0, 100);

And modify the circle:

agg::ellipse ell1(0, 0, 120, 120, 100);

The result:

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL

Page 5 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_circle
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

Y

|
d1=0 d2=100

Modify d1 again:

// Declare the gradient span itself.

// The last two arguments are so called "d1" and "d2"

// defining two distances in pixels, where the gradient starts

// and where it ends. The actual meaning of "d1" and "d2" depands
// on the gradient function.

span_gradient type span gradient (span_allocator,
span_interpolator,
gradient func,
color array,
50, 100);

| |
di=50 d2=100

So that, in case of a radial gradient, d1 and d2 define the starting and ending radii.

By default the origin point for the gradients is (0,0). How to draw a gradient in some other place? The
answer is to use affine transformations. Strictly speaking, the transformations are fully defined by the
span interpolator. In our case we use span_interpolator_linear with an affine matrix. The linear

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 6 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

interpolator allows you to speed up the calculations vastly, because we calculate the floating point
coordinates only in the begin and end of the horizontal spans and then use a fast, integer, Bresenham-
like interpolation with Subpixel Accuracy.

Add the following code somewhere before «calling agg::render scanlines(ras, sl,
ren gradient);

gradient mtx *= agg::trans affine scaling(0.75, 1.2);
gradient mtx *= agg::trans affine rotation(-agg::pi/3.0);
gradient mtx *= agg::trans_affine translation(100.0, 100.0);
gradient mtx.invert();

And modify the circle:

agg::ellipse ell (100, 100, 120, 120, 100);

Y,

4

A X

| |
0 100

The code of initializing of the affine matrix should be obvious except for some strange
gradient mtx.invert (). It's necessary because the gradient generator uses reverse
transformations instead of direct ones. In other words it takes the destination point, applies the
transformations and obtains the coordinates in the gradient. Note that the affine transformations allow
you to turn a circular gradient into elliptical.

Now it should be obvious how to define a linear gradient from some Pointl to Point2. So, get back
to the original code and add the following function:

// Calculate the affine transformation matrix for the linear gradient
// from (x1, yl) to (x2, y2). gradient d2 is the "base" to scale the
// gradient. Here dl must be 0.0, and d2 must equal gradient d2.

void calc linear gradient transform(double x1, double yl, double x2, double y2,
agg::trans_affine& mtx,
double gradient d2 = 100.0)

double dx = x2 - x1;

double dy = y2 - yl;

mtx.reset () ;

mtx *= agg::trans_affine scaling(sgrt(dx * dx + dy * dy) / gradient d2);
mtx *= agg::trans affine rotation(atan2(dy, dx));

mtx *= agg::trans_affine translation(xl, yl);

mtx.invert () ;

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ients_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 7 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_scaling
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_rotation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_basics.h.html#pi
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_translation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_scaling
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_rotation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_translation

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

Then modify the circle:

agg::ellipse el11(100, 100, 80, 80, 100);

And add the transformations:

calc linear gradient transform(50, 50, 150, 150, gradient mtx);

‘Y

| |
0 100

Try to play with different parameters, transformations, and gradient functions: gradient_circle,
gradient_x, gradient_y, gradient_diamond, gradient_xy, gradient_sqrt_xy, gradient_conic. Also look at
the gradient functions and try to write your own. Actually, the set of the gradient functions in AGG is
rather poor, it just demonstrates the possibilities. For example, repeating or reflecting gradients should
be implemented in gradient functions (or you can write adaptors that will use the existing functions).

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 8 of 9


https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_circle
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_x
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_y
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_diamond
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_xy
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_sqrt_xy
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_conic
https://web.archive.org/web/20180707024309/http://antigrain.com/mcseem/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/mcseem/index.html

Anti-Grain Geometry - Working with Gradients 5/5/19, 9:24 PM

https://web.archive.org/web/20180707024309/http://antigrain.com/tips...ents_tutorial/gradients_tutorial.agdoc.htmI#PAGE_GRADIENTS_TUTORIAL Page 9 of 9



