Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

THE Nelce@ PROJECT

Rosen » Anti-Grain Geometry

Research/
News Docs Download MailingList SVN

Interpolation with Bezier Curves

A very simple method of smoothing polygons

Initially, there was a question in » comp.graphic.algorithms how to interpolate a polygon with a curve in
such a way that the resulting curve would be smooth and hit all its vertices. » Gernot Hoffmann
suggested to use a well-known B-Spline interpolation. » Here is his original article. B-Spline works good
and it behaves like an elastic ruler fixed in the polygon vertices.

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 1 of 10


https://web.archive.org/web/20181014015406/http://antigrain.com/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/research/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/news/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/doc/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/download/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/maillist/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/svn/index.html
https://web.archive.org/web/20181014015406/http://groups.google.com/groups?hl=ru&group=comp.graphics.algorithms
https://web.archive.org/web/20181014015406/http://www.fho-emden.de/~hoffmann/
https://web.archive.org/web/20181014015406/http://www.fho-emden.de/~hoffmann/spline04112001.pdf

Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

But I had a gut feeling that there must be a simpler Anchor 2 —_
method. For example, approximation with cubic Bezier b
curves. A Bezier curve has two anchor points (begin and Control 2— >

end) and two control ones (CP) that determine its shape.

More information about Bezier curves can be found using (Control | —»m=
any »search engine, for example, on » Paul Bourke's
excellent site. Our anchor points are given, they are pair
of vertices of the polygon. The question was, how to
calculate the control points. I ran » Xara X and drew this
picture. It was pretty easy and I decided to try to
calculate their coordinates. It was obvious that the control
points of two adjacent edges plus the vertex between
them should form one straight line. Only in this case the
two adjacent curves will be connected smoothly. So, the
two CP should be the a reflection of each other, but... not -

quite. Reflection assumes equal distances from the central

point. For our case it's not correct. First, I tried to calculate a bisectrix between two edges and then
take points on the perpendicular to it. But as shown in the picture, the CP not always lie on the
perpendicular to the bisectrix.

Anchor | —

Finally, I found a very simple method that does not require
any complicated math. First, we take the polygon and
calculate the middle points A; of its edges.

Step 1.
Calculate points A, as
middle points of each edge

Here we have line segments C; that connect two points A; of
the adjacent segments. Then, we should calculate points B;
as shown in this picture.

f L)
L oL\
Step 2. L1

Calculate points B, lying

on the line segments between each A,
as a proportion L1 /L2 =d1 /d2

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 2 of 10


https://web.archive.org/web/20181014015406/http://www.google.com/
https://web.archive.org/web/20181014015406/http://astronomy.swin.edu.au/~pbourke/curves/bezier/
https://web.archive.org/web/20181014015406/http://www.xara.com/
https://web.archive.org/web/20181014015406/http://antigrain.com/__code/include/agg_line_aa_basics.h.html#bisectrix
https://web.archive.org/web/20181014015406/http://antigrain.com/__code/include/agg_line_aa_basics.h.html#bisectrix

Anti-Grain Geometry - Interpolation with Bezier Curves

4 Step 3.
If we move the line segments
C, to the respective vertices as
shown, we will have control

points for cubic Bezier curves.

Using coefticient K, we can
change the length of C, adjustig
the shape of the curve.

5/5/19, 9:18 PM

The third step is final. We simply move the line
segments C; in such a way that their points B; coincide
with the respective vertices. That's it, we calculated the
control points for our Bezier curve and the result looks
good.

One little improvement. Since we have a straight line

~—“— that determines the place of our control points, we can

\‘v; ;,-__ =

move them as we want, changing the shape of the
resulting curve. I used a simple coefficient K that moves
the points along the line relatively to the initial distance
between vertices and control points. The closer the
control points to the vertices are the sharper figure will
be obtained.

Below is the result of rendering a popular in » SVG lion in its original form and with Bezier interpolation

with K=1.0

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION

Page 3 of 10


https://web.archive.org/web/20181014015406/http://www.w3.org/Graphics/SVG/

Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

v ¢ R

O X ; ’

Original polygons Smooth polygons

And the enlarged ones.

(auBachMmacning

|http://antigrain.com/research/bezier_interpolation/index.html

INTERNET ARCHIVE @ @ 8

165 captures
27 Jun 2004 - 14 Oct 2018 JRN

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 4 of 10


https://web.archive.org/web/
https://web.archive.org/web/*/http://antigrain.com/research/bezier_interpolation/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.html
https://archive.org/account/login.php
http://faq.web.archive.org/
https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.html#close
https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.html#
https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.html#
https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.html#expand

Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

The method works quite well with self-intersecting polygons. The examples below show that the result is
pretty interesting.

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 5 of 10



Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 6 of 10



Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

This method is pure heuristic and empiric. It probably gives a wrong result from the point of view of
strict mathematical modeling. But in practice the result is good enough and it requires absolute
minimum of calculations. Below is the source code that has been used to generate the lions shown
above. It's not optimal and just an illustration. It calculates some variables twice, while in real programs
we can store and reuse them in the consecutive steps.

// Assume we need to calculate the control
// points between (x1,yl) and (x2,v2).

// Then x0,y0 - the previous vertex,
// x3,y3 - the next one.
double xcl = (x0 + x1) / 2.0;
double ycl = (y0 + yl1) / 2.0;
double xc2 = (x1 + x2) / 2.0;
double yc2 = (yl + y2) / 2.0;
double xc3 = (x2 + x3) / 2.0;
double yc3 = (y2 + y3) / 2.0;

double lenl = sqgrt (x1-x0) +
double len2 = sqgrt((x2-x1) * (x2-x1) + (y2-yl) * (y2-yl));
double len3 = sqgrt((x3-x2) * (x3-x2) +

w
N
|
bl
(@]

*

double k1 = lenl / (lenl + len2);
double k2 = len2 / (len2 + len3);

double xml = xcl + (xc2 - xcl) * kl1;
double yml = ycl + (yc2 - ycl) * kl;

double xm2 = xc2 + (xc3 - xc2) * k2;
double ym2 = yc2 + (yc3 - yc2) * k2;

// Resulting control points. Here smooth value is mentioned

// above coefficient K whose value should be in range [0...1].
ctrll x = xml + (xc2 - xml) * smooth value + x1 - xml;

ctrll y = yml + (yc2 - yml) * smooth value + yl - yml;

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION

Page 7 of 10



Anti-Grain Geometry - Interpolation with Bezier Curves

ctrl2 x = xm2 + (xc2 - xm2) * smooth value + x2 - xm2;
ctrl2 y ym2 + (yc2 - ym2) * smooth value + y2 - ym2;

5/5/19, 9:18 PM

And the source code of an approximation with a cubic Bezier curve.

//
//
//
//
//

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION

Number of intermediate points between two source ones,
Actually, this value should be calculated in some way,
Obviously, depending on the real length of the curve.
But I don't know any elegant and fast solution for this
problem.

#define NUM STEPS 20

void curved (Polygon* p,

double x1, double y1, //Anchorl
double x2, double y2, //Controll
double x3, double y3, //Control?2
double x4, double y4) //Anchor?2

double dx1 = x2 - x1;

double dyl = y2 - yl;
double dx2 = x3 - x2;
double dy2 = y3 - y2;

double dx3 = x4 - x3;
double dy3 = y4 - y3;

double subdiv_step = 1.0 / (NUM _STEPS + 1);
double subdiv_step2 = subdiv_step*subdiv_step;
double subdiv step3

double prel = 3.0 * subdiv_step;

double pre2 = 3.0 * subdiv_step2;
double pre4 = 6.0 * subdiv_step2;
double pre5 = 6.0 * subdiv_step3;
double tmplx = x1 - x2 * 2.0 + x3;
double tmply = yl - y2 * 2.0 + y3;
double tmp2x = (x2 - x3)*3.0 - x1 + x4;
double tmp2y = (y2 - y3)*3.0 - yl + vy4;

double fx = x1;
double fy = yl;

double dfx = (x2 - x1)*prel + tmplx*pre2 + tmp2x*subdiv_step3;
double dfy = (y2 - yl)*prel + tmply*pre2 + tmp2y*subdiv step3;

double ddfx
double ddfy

tmplx*pred4 + tmp2x*preb5;
tmply*pred + tmp2y*preb5;

double dddfx = tmp2x*preb5;
double dddfy = tmp2y*pre5;

int step = NUM STEPS;

// Suppose, we have some abstract object Polygon which
// has method AddVertex(x, y), similar to LineTo in

// many graphical APIs.

// Note, that the loop has only operation add!

subdiv_ step*subdiv step*subdiv_ step;

Page 8 of 10


https://web.archive.org/web/20181014015406/http://antigrain.com/__code/include/agg_curves.h.html#curve4

Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

while (step--)
{
fx += dfx;
fy += dfy;
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
p->AddVertex (fx, fy);
}
p->AddVertex (x4, y4); // Last step must go exactly to x4, vy4

You can download a working application for Windows that renders the lion, rotates and scales it, and
generates random polygons. &8 Interpolation with Bezier curves (bezier_interpolation.zip). Press left
mouse button and drag to rotate and scale the image around the center point. Press right mouse button
and drag left-right to change the coefficient of smoothing (K). Value K=1 is about 100 pixels from the
left border of the window. Each left double-click generates a random polygon. You can also rotate and
scale it, and change K.

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 9 of 10


https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/bezier_interpolation.zip
https://web.archive.org/web/20181014015406/http://antigrain.com/mcseem/index.html
https://web.archive.org/web/20181014015406/http://antigrain.com/mcseem/index.html

Anti-Grain Geometry - Interpolation with Bezier Curves 5/5/19, 9:18 PM

https://web.archive.org/web/20181014015406/http://antigrain.com/research/bezier_interpolation/index.htmI#PAGE_BEZIER_INTERPOLATION Page 10 of 10



