
5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 1 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

Home/

 News Docs Download Mailing List SVN

Demo Examples
All the demo examples are in the distribution package, see Download. This page contains precompiled
executables with screenshots and brief explanations. It is safe to download and run the executables,
there are no viruses and no any trojan code. Also, there is nothing installed on your computer, you just
download, unpack, run, and see the examples. However, it's always a good idea to double check
everything with your favorite anti-virus software before running. If you don't trust it, you can download
the sources (see Download), compile and run the examples, and of course, analyse the source code for
any possible destructive subroutines. I have no responsibility if your computer is infected with some
virus program.

The image examples require file spheres.bmp for Windows executables, and spheres.ppm for Linux
ones. Download them from here:

 (../spheres.bmp)
 (../spheres.ppm)

You can also use any other .BMP or .PPM file of about the same size. The .BMP file must be of 24 bit
TrueColor, the .PPM one must be of type P6 (24 bit per pixel RGB). There are two ways to use your own
files in image demo examples. You can simply call it spheres.bmp or spheres.ppm and put them to
the directory where you run the examples, or indicate the name of the file in the command line, for
example, image_filters.exe my_image.bmp

Screenshot Source Code and Description Executable

All examples in one package

lion.cpp This is the first example I used to implement and debug
the scanline rasterizer, affine transformer, and basic renderers. You
can rotate and scale the “Lion” with the left mouse button. Right
mouse button adds “skewing” transformations, proportional to the
“X” coordinate. The image is drawn over the old one with a cetrain
opacity value. Change “Alpha” to draw funny looking “lions”. Change
window size to clear the window.

idea.cpp The polygons for this “idea” were taken from the book
"Dynamic HTML in Action" by Eric Schurman. An example of using
Microsoft Direct Animation can be found here: ideaDA.html. If you
use Microsoft Internet Explorer you can compare the quality of
rendering in AGG and Microsoft Direct Animation. Note that even

https://web.archive.org/web/20181020120149/http://antigrain.com/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/news/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/doc/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/download/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/maillist/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/svn/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/download/index.html#PAGE_DOWNLOAD
https://web.archive.org/web/20181020120149/http://antigrain.com/download/index.html#PAGE_DOWNLOAD
https://web.archive.org/web/20181020120149/http://antigrain.com/spheres.bmp
https://web.archive.org/web/20181020120149/http://antigrain.com/spheres.ppm
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/examples_amiga.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/ideaDA.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea.zip

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 2 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

when you click "Rotate with High Quality", you will see it “jitters”. It's
because there are actually no Subpixel Accuracy used in the
Microsoft Direct Animation. In the AGG example, there's no jitter
even in the “Draft” (low quality) mode. You can see the simulated
jittering if you turn on the “Roundoff” mode, in which there integer
pixel coordinated are used. As for the performance, note, that the
image in AGG is rotated with step of 0.01 degree (initially), while in
the Direct Animation Example the angle step is 0.1 degree.

lion_outline.cpp The example demonstrates my new algorithm
of drawing Anti-Aliased lines. The algorithm works about 2.5 times
faster than the scanline rasterizer but has some restrictions,
particularly, line joins can be only of the “miter” type, and when so
called miter limit is exceded, they are not as accurate as generated
by the stroke converter (conv_stroke). To see the difference,
maximize the window and try to rotate and scale the “lion” with and
without using the scanline rasterizer (a checkbox at the bottom). The
difference in performance is obvious.

aa_demo.cpp Demonstration of the Anti-Aliasing principle with
Subpixel Accuracy. The triangle is rendered two times, with its
“natural” size (at the bottom-left) and enlarged. To draw the
enlarged version there is a special scanline renderer was written (see
class renderer_enlarged in the source code). You can drag the whole
triangle as well as each vertex of it. Also change “Gamma” to see
how it affects the quality of Anti-Aliasing.

gamma_correction.cpp Anti-Aliasing is very tricky because
everything depends. Particularly, having straight linear dependence
“pixel coverage” → “brightness” may be not the best. It depends
on the type of display (CRT, LCD), contrast, black-on-white vs
white-on-black, it even depends on your personal vision. There are
no linear dependencies in this World. This example demonstrates the
importance of so called Gamma Correction in Anti-Aliasing. There
a traditional power function is used, in terms of C++ it's
brighness = pow(brighness, gamma). Change “Gamma” and
see how the quality changes. Note, that if you improve the quality on
the white side, it becomes worse on the black side and vice versa.

gamma_ctrl.cpp This is another experiment with gamma
correction. See also Gamma Correction. I presumed that we can do
better than with a traditional power function. So, I created a special
control to have an arbitrary gamma function. The conclusion is that
we can really achieve a better visual result with this control, but still,
in practice, the traditional power function is good enough too.

rounded_rect.cpp Yet another example dedicated to Gamma
Correction. If you have a CRT monitor: The rectangle looks bad - the
rounded corners are thicker than its side lines. First try to drag the
“subpixel offset” control — it simply adds some fractional value to
the coordinates. When dragging you will see that the rectangle is
"blinking". Then increase “Gamma” to about 1.5. The result will
look almost perfect — the visual thickness of the rectangle remains
the same. That's good, but turn the checkbox “White on black” on
— what do we see? Our rounded rectangle looks terrible. Drag the
“subpixel offset” slider — it's blinking as hell. Now decrease

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/idea_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_stroke.h.html#conv_stroke
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_outline_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_demo_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_correction_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/research/gamma_correction/index.html#PAGE_GAMMA_CORRECTION
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_ctrl_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rounded_rect_amiga.gz

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 3 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

"Gamma" to about 0.6. What do we see now? Perfect result! If you
use an LCD monitor, the good value of gamma will be closer to 1.0 in
both cases — black on white or white on black. There's no perfection
in this world, but at least you can control Gamma in Anti-Grain
Geometry :-)

gamma_tuner.cpp Yet another gamma tuner. Set gamma value
with the slider, and then try to tune your monitor so that the vertical
strips would be almost invisible.

rasterizers.cpp It's a very simple example that was written to
compare the performance between Anti-Aliased and regular polygon
filling. It appears that the most expensive operation is rendering of
horizontal scanlines. So that, we can use the very same rasterization
algorithm to draw regular, aliased polygons. Of course, it's possible
to write a special version of the rasterizer that will work faster, but
won't calculate the pixel coverage values. But on the other hand, the
existing version of the rasterizer_scanline_aa allows you to change
gamma, and to "dilate" or "shrink" the polygons in range of ± 1
pixel. As usual, you can drag the triangles as well as the vertices of
them. Compare the performance with different shapes and opacity.

rasterizers2.cpp More complex example demostrating different
rasterizers. Here you can see how the outline rasterizer works, and
how to use an image as the line pattern. This capability can be very
useful to draw geographical maps.

component_rendering.cpp AGG has a gray-scale renderer that
can use any 8-bit color channel of an RGB or RGBA frame buffer.
Most likely it will be used to draw gray-scale images directly in the
alpha-channel.

polymorphic_renderer.cpp There's nothing looking effective.
AGG has renderers for different pixel formats in memory,
particularly, for different byte order (RGB or BGR). But the renderers
are class templates, where byte order is defined at the compile time.
It's done for the sake of performance and in most cases it fits all
your needs. Still, if you need to switch between different pixel
formats dynamically, you can write a simple polymorphic class
wrapper, like the one in this example.

gouraud.cpp Gouraud shading. It's a simple method of
interpolating colors in a triangle. There's no “cube” drawn, there're
just 6 triangles. You define a triangle and colors in its vertices. When
rendering, the colors will be linearly interpolated. But there's a
problem that appears when drawing adjacent triangles with
Anti-Aliasing. Anti-Aliased polygons do not "dock" to each other

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_tuner.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_tuner.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gamma_tuner.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizers2_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/component_rendering_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/polymorphic_renderer_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud.tar.gz

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 4 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

correctly, there visual artifacts at the edges appear. I call it “the
problem of adjacent edges”. AGG has a simple mechanism that
allows you to get rid of the artifacts, just dilating the polygons
and/or changing the gamma-correction value. But it's tricky, because
the values depend on the opacity of the polygons. In this example
you can change the opacity, the dilation value and gamma. Also you
can drag the Red, Green and Blue corners of the “cube”.

gradients.cpp This “sphere” is rendered with color gradients
only. Initially there was an idea to compensate so called Mach
Bands effect. To do so I added a gradient profile functor. Then the
concept was extended to set a color profile. As a result you can
render simple geometrical objects in 2D looking like 3D ones. In this
example you can construct your own color profile and select the
gradient function. There're not so many gradient functions in AGG,
but you can easily add your own. Also, drag the “gradient” with the
left mouse button, scale and rotate it with the right one.

gradient_focal.cpp This demo evolved from testing code and
performance measurements. In particular, it shows you how to
calculate the parameters of a radial gradient with a separate focal
point, considering arbitrary affine transformations. In this example
window resizing transformations are taken into account. It also
demonstrates the use case of gradient_lut and gamma correction.

conv_contour.cpp One of the converters in AGG is
conv_contour. It allows you to extend or shrink polygons. Initially, it
was implemented to eliminate the “problem of adjacent edges” in
the SVG Viewer, but it can be very useful in many other applications,
for example, to change the font weight on the fly. The trick here is
that the sign (dilation or shrinking) depends on the vertex order -
clockwise or counterclockwise. In the conv_contour you can control
the behavior. Sometimes you need to preserve the dilation
regardless of the initial orientation, sometimes it should depend on
the orientation. The glyph ‘a’ has a “hole” whose orientation differs
from the main contour. To change the “weight” correctly, you need to
keep the orientation as it is originally defined. If you turn
“Autodetect orientation…” on, the glyph will be extended or shrinked
incorrectly. The radio buttons control the orientation flad assigned to
all polygons. “Close” doesn't add the flag, “Close CW” and “Close
CCW” add “clockwise” or “counterclockwise” flag respectively. Note,
that the actual order of vertices remains the same, the flag is being
added despite of the real orientation. Try to play with it.

conv_dash_marker.cpp The example demonstrates rather a
complex pipeline that consists of diffrerent converters, particularly,
of the dash generator, marker generator, and of course, the stroke
converter. There is also a converter that allows you to draw smooth
curves based on polygons, see Interpolation with Bezier Curves. You
can drag the three vertices of the “main” triangle.

conv_stroke.cpp Another example that demonstrates the power
of the custom pipeline concept. First, we calculate a thick outline
(stroke), then generate dashes, and then, calculate the outlines
(strokes) of the dashes again. Drag the verices as in the previous
example.

mol_view.cpp This is rather a complex but effective example that
renders 2D organic molecules from the popular MDL Molecule Format

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients.cpp.html
https://web.archive.org/web/20181020120149/http://www.cquest.utoronto.ca/psych/psy280f/ch3/mb/mb.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradients_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradient_focal.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradient_focal.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_gradient_lut.h.html#gradient_lut
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gradient_focal.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_contour.h.html#conv_contour
https://web.archive.org/web/20181020120149/http://antigrain.com/svg/index.html#PAGE_SVG
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_contour.h.html#conv_contour
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_contour_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/research/bezier_interpolation/index.html#PAGE_BEZIER_INTERPOLATION
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_dash_marker_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/conv_stroke_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view.cpp.html

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 5 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

(SDF). Press the left mouse button to rotate and scale the molecule,
and the right one to drag it. PageUp, PageDown keys switch between
the molecules in the file. Look at the performance, and note, that the
molecules are being drawn from scratch every time you change
anything.
A little note for chemists. There's no ring perception is done, so that,
the double bonds in rings are drawn incorrectly, but understandable.
Also note, that even very complex molecules with macrocycles,
drawn in limited space still remain consistent and recognizable.

alpha_mask.cpp Alpha-mask is a simple method of clipping and
masking polygons to a number of other arbitrary polygons. Alpha
mask is a buffer that is mixed to the scanline container and controls
the Anti-Aliasing values in it. It's not the perfect mechanism of
clipping, but it allows you not only to clip the polygons, but also to
change the opacity in certain areas, i.e., the clipping can be
translucent. Press and drag the left mouse button to scale and rotate
the “lion”, resize the window to grnerate new alpha-mask.

alpha_mask2.cpp Another example of alpha-masking. In the
previous example the alpha-mask is applied to the scan line
container with unpacked data (scanline_u), while in this one there a
special adapter of a pixel format renderer is used
(pixfmt_amask_adaptor). It allows you to use the alpha-mask with
all possible primitives and renderers. Besides, if the alpha-mask
buffer is of the same size as the main rendering buffer (usually it is)
we don't have to perform clipping for the alpha-mask, because all
the primitives are already clipped at the higher level, see class
amask_no_clip_u8. Press and drag the left mouse button to scale
and rotate the “lion” and generate a new set of other primitives,
change the “N” value to generate a new set of masking ellipses.

alpha_mask3.cpp Yet another example of alpha-masking. It
simulates arbitrary polygon clipping similar to gpc_test.cpp. Alpha-
Masking allows you to perform only the Intersection (AND) and
Difference (SUB) operations, but works much faster that conv_gpc.
Actually, there're different compexities and different dependencies.
The performance of conv_gpc depends on the number of vertices,
while Alpha-Masking depends on the area of the rendered polygons.
Still, with typical screen resolutions, Alpha-Masking works much
faster than General Polygon Clipper. Compare the timings
between alpha_mask3.cpp and gpc_test.cpp.

circles.cpp This example just demonstrates that AGG can be
used in different scatter plot apllications. There's a number of small
circles drawn. You can change the parameters of drawing, watching
for the performance and the number of circles simultaneously
rendered. Press the left mouse button to generate a new set of
points. Press the right mouse button to make the points randomly
change their coordinates. Note, that the circles are drawn with high
quality, possibly translucent, and with subpixel accuracy.

graph_test.cpp Yet another example of the
"general" kind. It was used mostly to compare the
performance of different steps of rendering in order
to see the weaknesses. The WIn GDI+ analog of it
looks worse and works slower. Try

 (GDI_graph_test.zip) and compare it with the

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/mol_view_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask2.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt_amask_adaptor
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_alpha_mask_u8.h.html#amask_no_clip_u8
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask2.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask2_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask3.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask3.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_gpc.h.html#conv_gpc
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_gpc.h.html#conv_gpc
https://web.archive.org/web/20181020120149/http://www.cs.man.ac.uk/aig/staff/alan/software/
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask3.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask3.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_mask3_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/circles_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/GDI_graph_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test.tar.gz

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 6 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

AGG one. The most disappointing thing in GDI+ is that it cannot
draw Bezier curves correctly. Run the GDI+ example, choose menu
Image/Bezier curves, expand the window to about 1000x1000
pixels, and then gradually change the size of the window. You will
see that some curves miss the destination points (the centers of the
node circles). That looks really ridiculous, so, I overcame my laziness
and made an animated GIF of 5 screenshots.

multi_clip.cpp A testing example that demonstrates clipping to
multiple rectangular regions. It's a low-level (pixel) clipping that can
be useful to draw images clipped to a complex region with
orthogonal boundaries. It can be useful in some window interfaces
that use a custom mechanism to draw window content. The example
uses all possible rendering mechanisms.

perspective.cpp Perspective and bilinear transformations. In
general, these classes can transform an arbitrary quadrangle to
another arbitrary quadrangle (with some restrictions). The example
demonstrates how to transform a rectangle to a quadrangle defined
by 4 vertices. You can drag the 4 corners of the quadrangle, as well
as its boundaries. Note, that the perspective transformations don't
work correctly if the destination quadrangle is concave. Bilinear
thansformations give a different result, but remain valid with any
shape of the destination quadrangle.

simple_blur.cpp The example demonstrates how to write
custom span generators. This one just applies the simplest “blur”
filter 3x3 to a prerendered image. It calculates the average value of
9 neighbor pixels. Just press the left mouse button and drag.

gpc_test.cpp General Polygon Clipper by Alan Murta is the
most reliable implementation of the polygon boolean algebra. It
implements Bala R. Vatti's algorithm of arbitrary polygon clipping
and allows you to calculate the Union, Intersection, Difference, and
Exclusive OR between two poly-polygons (i.e., polygonal areas
consisted of several contours). AGG has a simple wrapper class that
can be used in the coordinate conversion pipeline. The
implementation by Alan Murta has restrictions of using it in
commercial software, so that, please contact the author to settle the
legal issues. The example demonstrates the use of GPC. You can
drag one polygon with the left mouse button pressed. Note, that all
operations are done in the vectorial representation of the contours
before rendering.

pattern_fill.cpp The example demonstrates how to use
arbitrary images as fill patterns. This span generator is very simple,
so, it doesn't allow you to apply arbitrary transformations to the
pattern, i.e., it cannot be used as a texturing tool. But it works
pretty fast and can be useful in some applications.

raster_text.cpp Classes that render raster text was added in
AGG mostly to prove the concept of the design. They can be used to

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/graph_test_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/multi_clip_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/perspective_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/simple_blur_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.cpp.html
https://web.archive.org/web/20181020120149/http://www.cs.man.ac.uk/aig/staff/alan/software/
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gpc_test_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_fill_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text.zip

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 7 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

draw simple (aliased) raster text. The example demonstrates how to
use text as a custom scanline generator together with any span
generator (in this example it's gradient filling). The font format is
propriatory, but there are some predefined fonts that are shown in
the example.

image1.cpp This is the first example with the new "reincarnation"
of the image transformation algorithms. The example allows you to
rotate and scale the image with respect to its center. Also, the image
is scaled when resizing the window.

image_alpha.cpp A very powerful feature that allows you to
simulate the alpha-channel on the basis of some functioon. In this
example it's brightness, but it can be of any complexity. In the
example you can form the brightness function and watch for the
translucency. Resize the windows to move the image over the
backgraund.

image_filters.cpp The image transformer algorithm can work
with different interpolation filters, such as Bilinear, Bicubic, Sinc,
Blackman. The example demonstrates the difference in quality
between different filters. When switch the “Run Test” on, the image
starts rotating. But at each step there is the previously rotated
image taken, so the quality degrades. This degradation as well as
the performance depend on the type of the interpolation filter.

image_fltr_graph.cpp Demonstration of the shapes of different
interpolation filters. Just in case if you are curious.

image_transforms.cpp Affine transformations of the images.
The examples demonstrates how to construct the affine transformer
matrix for different cases. See the “readme!” file for details. Now
there are methods in trans_affine that allow you to construct
transformations from an arbitrary parallelogram to another
parallelogram. It's very convenient and easy.

image_perspective.cpp Image perspective transformations.
There are two types of arbitrary quadrangle transformations,
Perspective and Bilinear. The image transformer always uses reverse
transformations, and there is a problem. The Perspective
transformations are perfectly reversible, so they work correctly with
images, but the Bilinear transformer behave somehow strange. It
can transform a rectangle to a quadrangle, but not vice versa. In this
example you can see this effect, when the edges of the image "sag".
I'd highly appreciate if someone could help me with math for

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/raster_text_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image1_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_alpha_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_fltr_graph_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_transforms_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective_sun.tar.gz

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 8 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

transformations similar to Bilinear ones, but correctly reversible (i.e.,
that can transform an arbitrary quadrangle to a rectangle). The
bilinear transformations are simple, see agg_trans_bilinear.h and
agg_simul_eq.h

distortions.cpp To transform an image as well as to define a
color gradient you have to write several declarations. This approach
can seem difficult to handle (compared with one function call), but
it's very flexible. For example, you can add an arbitrary distortion
function. This mechanism is pretty much the same in image
transformers and color gradients. Try to play with this example
changing different parameters of the distortions.

lion_lens.cpp This example exhibits a non-linear transformer
that “magnifies” vertices that fall inside a circle and extends the rest
(trans_warp_magnifier). Non-linear transformations are tricky
because straight lines become curves. To achieve the correct result
we need to divide long line segments into short ones. The example
also demonstrates the use of conv_segmentator that does this
division job. Drag the center of the “lens” with the left mouse button
and change the “Scale” and “Radius”. The transformer can also
shrink away the image if the scaling value is less than 1. To watch
for an amazing effect, set the scale to the minimum (0.01), decrease
the radius to about 1 and drag the “lens”. You will see it behaves like
a black hole consuming space around it. Move the lens somewhere
to the side of the window and change the radius. It looks like
changing the event horizon of the “black hole”. There are some more
screenshots of the poor lion: Sad Lion, Cyclop Lion, Lion in
Trouble (being eaten by the black hole), an animated GIF.

trans_polar.cpp Another example of non-linear transformations
requested by one of my friends. Here we render a standard AGG
control in its original form (the slider in the bottom) and after the
transformation. The transformer itself is not a part of AGG and just
demonstrates how to write custom transformers (class
trans_polar). Note that because the transformer is non-linear, we
need to use conv_segmentator first. Try to drag the value of the
slider at the bottom and watch how it's being synchronized in the
polar coordinates. Also change two other parameters (Spiral and
Base Y) and the size of the window. Don't worry much about the
transformed_control class, it's just an adaptor used to render
the controls with additional transformations. The use of
trans_polar is quite standard:

agg::trans_polar tr;
agg::conv_transform<SomeVertexSource,
 trans_polar> tp(some_source, tr);

scanline_boolean.cpp A new method to perform boolean
operations on polygons (Union, Intersection, XOR, and
Difference). It uses the scanline approach and in typical screen
resolutions works much faster (about 10 times) than vectorial

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_trans_bilinear.h.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_simul_eq.h.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_perspective_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/distortions_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_trans_warp_magnifier.h.html#trans_warp_magnifier
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_segmentator.h.html#conv_segmentator
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_sad.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_cyclop.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_black_hole.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_sgi.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_sun.tar.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/lion_lens_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_polar.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_polar.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_segmentator.h.html#conv_segmentator
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_conv_transform.h.html#conv_transform
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_polar.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_polar_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean.cpp.html

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 9 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

algorithms like General Polygon Clipper. It preserves perfect
Anti-Aliasing and besides, can work with translucency. There are
two XOR operations, Linear XOR and Saddle XOR. The only
difference is in the formula of XORing of the two cells with
Anti-Aliasing. The first one is:
cover = a+b; if(cover > 1) cover = 2.0 - cover;

The second uses the classical “Saddle” formula:
cover = 1.0 - (1.0 - a + a*b) * (1.0 - b + a*b);

The Linear XOR produces more correct intersections and works
constistently with the scanline rasterizer algorithm. The Saddle XOR
works better with semi-transparent polygons.

scanline_boolean2.cpp This is another example of using of the
scanline boolean algebra. The example is similar to Demo
gpc_test.cpp. Note that the cost of the boolean operation with
Anti-Aliasing is comparable with rendering (the rasterization time is
not included). Also note that there is a difference in timings between
using of scanline_u and scanline_p. Most often scanline_u
works faster, but it's because of much less number of produced
spans. Actually, when using the scanline_u the complexity of the
algorithm becomes proportional to the area of the polygons, while in
scanline_p it's proportional to the perimeter. Of course, the
binary variant works much faster than the Anti-Aliased one.

freetype_test.cpp This example demonstrates the use of the
FreeType font engine with cache. Cache can keep three types of

data, vector path, Anti-Aliased scanline shape, and monochrome
scanline shape. In case of caching scanline shapes the speed is
pretty good and comparable with Windows hardware accelerated font
rendering.

truetype_test.cpp The same as the above, but with using
Win32 API as the font engine (GetGlyphOutline()).

trans_curve1.cpp This is a "kinda-cool-stuff" demo that
performs non-linear transformations and draws vector text along a
curve. Note that it's not just calculating of the glyph angles and
positions, they are transformed as if they were elastic. The curve is
calculated as a bicubic spline. The option "Preserve X scale" makes
the converter distribute all the points uniformly along the curve. If
it's unchechked, the scale will be proportional to the distance
between the control points.

trans_curve2.cpp Similar to the previous demo, but here the
transformer operates with two arbitrary curves. It requires more
calculations, but gives you more freedom. In other words you will
see :-).

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean.gif
https://web.archive.org/web/20181020120149/http://www.cs.man.ac.uk/aig/staff/alan/software/
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean2.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean2.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/scanline_boolean2_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/freetype_test.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/freetype_test.cpp.html
https://web.archive.org/web/20181020120149/http://www.freetype.org/
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/freetype_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/freetype_test_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/freetype_test.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/truetype_test.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/truetype_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve1.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve1.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve1.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve1_ft_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve2.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve2.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/trans_curve2_ft_amiga.gz

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 10 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

aa_test.cpp A test of Anti-Aliasing the same as in
http://homepage.mac.com/arekkusu/bugs/invariance

The performance of AGG on a typical P-IV 2GHz is:
Points: 37.46K/sec, Lines: 5.04K/sec, Triangles: 7.43K/sec

alpha_gradient.cpp The demo shows how to combine any span
generator with alpha-channel gradient.

line_patterns.cpp The demo shows a very powerful mechanism
of using arbitrary images as line patterns. The main point of it is that
the images are drawn along the path. It allows you to draw very
fancy looking lines quite easily and very useful in GIS/cartography
applications. There the bilinear filtering is used, but it's also possible
to add any other filtering methods, or just use the nearest neighbour
one for the sake of speed.
Before running this demo make sure that you have files
1.bmp…9.bmp for Win32, MacOS, AmigaOS, and SDL platforms and
1.ppm…9.ppm for X11.
In the demo you can drag the control points of the curves and
observe that the images are transformed quite consistently and
smoothly. You can also try to replace the image files (1…9) with your
own. The BMP files must have 24bit colors (TrueColor), the PPM ones
must be of type "P6". Also, the heigh should not exceed 64 pixels,
and the background should be white or very close to white. Actually,
the algorithm uses 32bit images with alpha channel, but in this demo
alpha is simulated in such a way that wite is transparent, black is
opaque. The intermediate colors have intermediate opacity that is
defined by the brightness_to_alpha array.

line_patterns_clip.cpp Demonstrates the mechanism of
clipping the polylines and/or polygons with image patterns. Shows
that the clipper maintains correct pattern repetition along the line,
considering clipped parts.

pattern_perspective.cpp Pattern perspective transformations.
Essentially it's the same as Demo image_perspective.cpp, but
working with a repeating pattern. Can be used for texturing.

image_filters2.cpp Another example that demonstrates the
difference of image filters. It just displays a simple 4x4 pixels image
with huge zoom. You can see how different filters affect the result.
Also see how gamma correction works.

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_test.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_test.cpp.html
https://web.archive.org/web/20181020120149/http://homepage.mac.com/arekkusu/bugs/invariance
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_test.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/aa_test_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_gradient.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_gradient.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_gradient.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/alpha_gradient_amiga.gz
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns.gif
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns_clip.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns_clip.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/line_patterns_clip.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_perspective.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_perspective.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_perspective.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters2.zip

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 11 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

image_resample.cpp The demonstration of image
transformations with resampling. You can see the difference in
quality between regular image transformers and the ones with
resampling. Of course, image tranformations with resampling work
slower because they provide the best possible quality.

image_resample.cpp The demonstration of pattern
transformations with resampling. The same as the above but with
texturing patterns.

compositing.cpp Extended compositing modes fully compatible
with SVG 1.2

compositing2.cpp Another demo example with extended
compositing modes.

bezier_div.cpp Demonstration of new methods of Bezier curve
approximation. You can compare the old, incremental method with
adaptive De Casteljau's subdivion. The new method uses two criteria
to stop subdivision: estimation of distance and estimation of angle.
It gives us perfectly smooth result even for very sharp turns and
loops.

flash_rasterizer.cpp Demonstration of Flash compound shape
rasterizer. The rasterizer accepts vectorial data in a form of Flash
paths, that is, with two fill styles, fill on the left and fill on the right
of the path. Then it produces a number of scanlines with
corresponding styles and requests for the colors and/or gradients,
images, etc. The algorithm takes care of anti-aliasing and perfect
stitching between fill areas.

flash_rasterizer2.cpp Another possible way to render Flash
compound shapes. The idea behind it is prety simple. You just use
the regular rasterizer, but in a mode when it doesn't automatically
close the contours. Every compound shape is decomposed into a
number of single shapes that are rasterized and rendered separately.

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_filters2.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_resample.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_resample.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_resample.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_resample.jpg
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/image_resample.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/pattern_resample.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing.cpp.html
https://web.archive.org/web/20181020120149/http://www.w3.org/TR/2004/WD-SVG12-20041027/rendering.html#comp-op-prop
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing2.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/compositing2.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/bezier_div.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/bezier_div.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/bezier_div.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer2.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer2.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/flash_rasterizer2.zip

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 12 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

gouraud_mesh.cpp Yet another example that demonstrates the
power of compound shape rasterization. Here we create a mesh of
triangles and render them in one pass with multiple Gouraud shaders
(span_gouraud_rgba). The example demonstrates perfect
Anti-Aliasing and perfect triangle stitching (seamless edges) at the
same time.

rasterizer_compound.cpp This simple example demonstrates a
rather advanced technique of using the compound rasterizer. The
idea is you assign styles to the polygons (left=style, right=-1) and
rasterize this "multi-styled" compound shape as a whole. If the
polygons in the shape overlap, the greater styles have higher
priority. That is, the result is as if greater styles were painted last,
but the geometry is flattened before rendering. It means there are
no pixels will be painted twice. Then the style are associated with
colors, gradients, images, etc. in a special style handler. It simulates
Constructive Solid Geometry so that, you can, for example draw a
translucent fill plus translucent stroke without the overlapped part of
the fill being visible through the stroke.

blur.cpp Now you can blur rendered images rather fast! There two
algorithms are used: Stack Blur by Mario Klingemann and Fast
Recursive Gaussian Filter, described here and here (PDF). The
speed of both methods does not depend on the filter radius. Mario's
method works 3-5 times faster; it doesn't produce exactly Gaussian
response, but pretty fair for most practical purposes. The recursive
filter uses floating point arithmetic and works slower. But it is true
Gaussian filter, with theoretically infinite impulse response. The
radius (actually 2*sigma value) can be fractional and the filter
produces quite adequate result.

…TO BE CONTINUED

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_mesh.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_mesh.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/gouraud_mesh.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizer_compound.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizer_compound.cpp.html
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/rasterizer_compound.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/blur.png
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/blur.cpp.html
https://web.archive.org/web/20181020120149/http://incubator.quasimondo.com/processing/fast_blur_deluxe.php
https://web.archive.org/web/20181020120149/http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Smoothin.html
https://web.archive.org/web/20181020120149/http://www.ph.tn.tudelft.nl/~lucas/publications/1995/SP95TYLV/SP95TYLV.pdf
https://web.archive.org/web/20181020120149/http://antigrain.com/demo/blur.zip
https://web.archive.org/web/20181020120149/http://antigrain.com/mcseem/index.html
https://web.archive.org/web/20181020120149/http://antigrain.com/mcseem/index.html

5/5/19, 9'19 PMAnti-Grain Geometry - Demo Examples

Page 13 of 13https://web.archive.org/web/20181020120149/http://antigrain.com/demo/index.html#PAGE_DEMO

