
5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 1 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

Home/
News/

 News Docs Download Mailing List CVS

Version 2.4 Release Notes
Include Files
Source Files
Renames
Span Generators and Scanline Renderers
Low Level (pixfmt) Renderers
Image and Pattern Transformers
Compound Shape Rasterizer
Path Storage
Custom Clippers in the Rasterizers

There are changes in the design, files, and interfaces are made, so that, you will have to spend some
time for migratintg your applications. I tried to maintain is as painless as possible, but still some
concepts have changed. There some files were removed from the package, but not functionality.

Include Files

Removed Files

include/agg_render_scanlines.h

include/agg_span_generator.h

include/agg_span_image_resample.h

include/agg_span_image_resample_gray.h

include/agg_span_image_resample_rgb.h

include/agg_span_image_resample_rgba.h

include/agg_span_pattern.h

include/agg_span_pattern_filter_gray.h

include/agg_span_pattern_filter_rgb.h

include/agg_span_pattern_filter_rgba.h

include/agg_span_pattern_resample_gray.h

include/agg_span_pattern_resample_rgb.h

https://web.archive.org/web/20180720115010/http://www.antigrain.com/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/doc/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/download/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/maillist/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/cvs/index.html

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 2 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

include/agg_span_pattern_resample_rgba.h

New Files

include/agg_image_accessors.h

include/agg_path_length.h

include/agg_rasterizer_cells_aa.h

include/agg_rasterizer_compound_aa.h

include/agg_rasterizer_sl_clip.h

include/agg_span_pattern_gray.h

Source Files

Removed Files

src/agg_path_storage.cpp

src/agg_rasterizer_scanline_aa.cpp

Renames

Old Name New Name

rect rect_i

pod_array pod_vector

pod_deque pod_bvector

Span Generators and Scanline Renderers
Removed files include/agg_render_scanlines.h and include/agg_span_generator.h. The major change is:
In AGG v2.3 it was the responsibility of the span generator to allocate and provide an array of colors,
which was conceptually wrong. That is, the function was:

color_type* generate(int x, int y, unsigned len);

Now it is:

void generate(color_type* span, int x, int y, unsigned len);

It means that the space for the color array is provided externally. This approach has more consistency
and simplifies span generators and converters.

It also means that the span generators don't need to have span allocators inside, which simplified their
creation. Span allocators are now passed to the scanline rendering functions and classes. That is, before

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_length.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_cells_aa.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_compound_aa.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_pattern_gray.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_basics.h.html#rect_i
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_array
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_vector
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_bvector

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 3 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

(for example):

// AGG v2.3
typedef agg::span_allocator<color_type> span_alloc_type;
typedef agg::span_gouraud_rgba<color_type> span_gen_type;
typedef agg::renderer_scanline_aa<base_ren_type, span_gen_type> ren_type;

span_alloc_type span_alloc;
span_gen_type span_gen(span_alloc);
ren_type ren(ren_base, span_gen);

Now:

// AGG v2.4
typedef agg::span_allocator<color_type> span_alloc_type;
typedef agg::span_gouraud_rgba<color_type> span_gen_type;
typedef agg::renderer_scanline_aa<base_ren_type, span_alloc_type, span_gen_type> ren_type;

span_alloc_type span_alloc;
span_gen_type span_gen;
ren_type ren(ren_base, span_alloc, span_gen);

It may look more complex, but it isn't. Now you can simplify it and do without the scanline renderer
class at all:

// AGG v2.4
typedef agg::span_allocator<color_type> span_alloc_type;
typedef agg::span_gouraud_rgba<color_type> span_gen_type;

span_alloc_type span_alloc;
span_gen_type span_gen;
. . .
agg::render_scanlines_aa(ras, sl, ren_base, span_alloc, span_gen);

However, the renderer_scanline_aa class template is still useful, it's left for the sake of compatibility and
for creating new function templates, like this:

template<class Ren>
void render_something(Ren& renderer)
{
 . . .
}

This function will work equally well with renderer_scanline_aa_solid and arbitrary renderer_scanline_aa.

Below is the summary of the scanline renderering function and classes in agg_renderer_scanline.h. The
names refer to:

render_scanline_* - a function that renders a single scanline.

render_scanlines_* - a function that renders the content of a rasterizer or a scanline
container, such as

rasterizer_scanline_aa,

scanline_storage_aa,

serialized_scanlines_adaptor_aa,

etc.

renderer_scanlines_* - a class template with the scanline renderer interface, basically a

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_scanline_storage_aa.h.html#scanline_storage_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_scanline_storage_aa.h.html#serialized_scanlines_adaptor_aa

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 4 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

simple wrapper over the scanline rendering function.

 // Render a single, anti-aliased, solid color scanline
 //--
 template<class Scanline, class BaseRenderer, class ColorT>
 void render_scanline_aa_solid(const Scanline& sl,
 BaseRenderer& ren,
 const ColorT& color);

 // Render all scanlines from Rasterizer, as solid color ones,
 // with anti-aliasing
 //--
 template<class Rasterizer, class Scanline,
 class BaseRenderer, class ColorT>
 void render_scanlines_aa_solid(Rasterizer& ras, Scanline& sl,
 BaseRenderer& ren, const ColorT& color);

 // Class template for solid color scanline rendering as it was before
 //--
 template<class BaseRenderer> class renderer_scanline_aa_solid
 {
 . . .
 };

 // Render a single, color span scanline provided by SpanGenerator
 //--
 template<class Scanline, class BaseRenderer,
 class SpanAllocator, class SpanGenerator>
 void render_scanline_aa(const Scanline& sl, BaseRenderer& ren,
 SpanAllocator& alloc, SpanGenerator& span_gen);

 // Render all scanlines from Rasterizer, as color span ones
 //--
 template<class Rasterizer, class Scanline, class BaseRenderer,
 class SpanAllocator, class SpanGenerator>
 void render_scanlines_aa(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
 SpanAllocator& alloc, SpanGenerator& span_gen)

 // Class template for color span scanline rendering as it was before
 //--
 template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
 class renderer_scanline_aa
 {
 . . .
 }

 // Render a single, aliased (binary) solid color scanline
 //--

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanline_aa_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_aa_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 5 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

 template<class Scanline, class BaseRenderer, class ColorT>
 void render_scanline_bin_solid(const Scanline& sl,
 BaseRenderer& ren,
 const ColorT& color);

 // Render all scanlines from Rasterizer, as solid color ones,
 // without anti-aliasing (binary)
 //--
 template<class Rasterizer, class Scanline,
 class BaseRenderer, class ColorT>
 void render_scanlines_bin_solid(Rasterizer& ras, Scanline& sl,
 BaseRenderer& ren, const ColorT& color);

 // Class template for solid color scanline rendering as it was before
 //--
 template<class BaseRenderer> class renderer_scanline_bin_solid
 {
 . . .
 };

 // Render a single aliased (binary), color span scanline provided
 // by SpanGenerator
 //--
 template<class Scanline, class BaseRenderer,
 class SpanAllocator, class SpanGenerator>
 void render_scanline_bin(const Scanline& sl, BaseRenderer& ren,
 SpanAllocator& alloc, SpanGenerator& span_gen);

 // Render all scanlines from Rasterizer, as color span ones,
 // without anti-aliasing (binary)
 //--
 template<class Rasterizer, class Scanline, class BaseRenderer,
 class SpanAllocator, class SpanGenerator>
 void render_scanlines_bin(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
 SpanAllocator& alloc, SpanGenerator& span_gen)

 // Class template for color span scanline rendering as it was before
 //--
 template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
 class renderer_scanline_bin
 {
 . . .
 }

 // Render an abstract Rasterizer to an abstract Renderer. The Renderer
 // can be of the following types:
 // renderer_scanline_aa_solid
 // renderer_scanline_aa
 // renderer_scanline_bin_solid

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanline_bin_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_bin_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_bin_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanline_bin
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_bin
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_bin
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa_solid
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_bin_solid

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 6 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

 // renderer_scanline_bin
 //--
 template<class Rasterizer, class Scanline, class Renderer>
 void render_scanlines(Rasterizer& ras, Scanline& sl, Renderer& ren);

 // A very simple function to render all paths with solid colors
 //--
 template<class Rasterizer, class Scanline, class Renderer,
 class VertexSource, class ColorStorage, class PathId>
 void render_all_paths(Rasterizer& ras,
 Scanline& sl,
 Renderer& r,
 VertexSource& vs,
 const ColorStorage& as,
 const PathId& path_id,
 unsigned num_paths);

 // Render a compound shape from rasterizer_compound_aa
 //--
 template<class Rasterizer,
 class ScanlineAA,
 class ScanlineBin,
 class BaseRenderer,
 class SpanAllocator,
 class StyleHandler>
 void render_scanlines_compound(Rasterizer& ras,
 ScanlineAA& sl_aa,
 ScanlineBin& sl_bin,
 BaseRenderer& ren,
 SpanAllocator& alloc,
 StyleHandler& sh);

Span clipping was removed from the scanline renderers, which simplified the design considerably and
made it more flexible. It means that if the rasterizer produces scanlines from -10000 to 10000 and your
window is only 800x600 it will work much slower than before, because the span generator will have to
generate the whole 20000 pixels span. To prevent from this slowdown just use clipping in the rasterizer:

ras.clip_box(0, 0, 800, 600);

Low Level (pixfmt) Renderers
All low level renderers now can work with custom pixel accessors, instead of former hardcoded
rendering_buffer. For the sake of compatibility there are pixfmt_rgba32 and all other are “typedefed”.

For example, you can use rendering_buffer_dynarow that allocates the pixel rows on demand as
needed. You can also write your own pixel accessor provided the interface equivalent to
rendering_buffer or rendering_buffer_dynarow.

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_bin
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_all_paths
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_compound_aa.h.html#rasterizer_compound_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_compound
https://web.archive.org/web/20180720115010/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#rendering_buffer
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_pixfmt_rgba.h.html#pixfmt_rgba32
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rendering_buffer_dynarow.h.html#rendering_buffer_dynarow
https://web.archive.org/web/20180720115010/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#rendering_buffer
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rendering_buffer_dynarow.h.html#rendering_buffer_dynarow

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 7 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

Image and Pattern Transformers
The image and pattern transformers are now combined. For example, before it was declaration:

 // AGG v2.3
 template<class ColorT,
 class Order,
 class Interpolator,
 class WrapModeX,
 class WrapModeY,
 class Allocator = span_allocator<ColorT> >
 class span_pattern_filter_rgba_bilinear :
 public span_image_filter<ColorT, Interpolator, Allocator>
 {
 . . .
 };

Now it is:

 // AGG v2.3
 template<class Source, class Interpolator>
 class span_image_filter_rgba_bilinear :
 public span_image_filter<Source, Interpolator>
 {
 . . .
 };

The idea is to move the pixel wrapping functionality into a separate abstract image source. It allows us
to get rid of a lot of almost duplicate code and extend the functionality. Template parameter Source can
be one of the following types (agg_image_accessors.h):

image_accessor_clip - image accessor with clipping, works as former
span_image_filter_rgba_bilinear, etc.

image_accessor_no_clip - no clipping, that is, it can be used only if you are really-really sure
there will be no requests for pixels out of image bounds. If there are, there will be memory
access violations. It's provided just in case if the performance is really very critical, but not
recommended for general use because it's dangerous.

image_accessor_clone - new functionality. If the requested pixel is out of bounds the boundary
pixels are cloned. Very useful to reproduce functionality of some libraries like PDF.

image_accessor_wrap - provides functionality of the former pattern transformers. Parameters
WrapX, WrapY can be of the following types:

wrap_mode_repeat

wrap_mode_repeat_pow2

wrap_mode_repeat_auto_pow2

wrap_mode_reflect

wrap_mode_reflect_pow2

wrap_mode_reflect_auto_pow2

Below is an example if pattern transformer (texture-like) declarations and rendering:

 // AGG v2.3
 typedef agg::span_allocator<color_type> span_alloc_type;
 span_alloc_type sa;

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter.h.html#span_image_filter
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter_rgba.h.html#span_image_filter_rgba_bilinear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter.h.html#span_image_filter
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#image_accessor_clip
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter_rgba.h.html#span_image_filter_rgba_bilinear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#image_accessor_no_clip
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#image_accessor_clone
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#image_accessor_wrap
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_repeat
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_repeat_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_repeat_auto_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_reflect
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_reflect_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_reflect_auto_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 8 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

 agg::image_filter<agg::image_filter_hanning> filter;
 typedef agg::wrap_mode_reflect_auto_pow2 remainder_type;

 typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type;
 interpolator_type interpolator(mtx);

 typedef span_pattern_filter_2x2<color_type,
 component_order,
 interpolator_type,
 remainder_type,
 remainder_type> span_gen_type;
 typedef agg::renderer_scanline_aa<renderer_base_pre, span_gen_type> renderer_type;

 span_gen_type sg(sa,
 rbuf_img(0),
 interpolator,
 filter);

 renderer_type ri(rb_pre, sg);
 agg::render_scanlines(g_rasterizer, g_scanline, ri);

 // AGG v2.4
 typedef agg::span_allocator<color_type> span_alloc_type;
 span_alloc_type sa;
 agg::image_filter<agg::image_filter_hanning> filter;

 typedef agg::wrap_mode_reflect_auto_pow2 remainder_type;
 typedef agg::image_accessor_wrap<pixfmt,
 remainder_type,
 remainder_type> img_source_type;

 pixfmt img_pixf(rbuf_img(0));
 img_source_type img_src(img_pixf);

 typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type;
 interpolator_type interpolator(mtx);

 typedef span_image_filter_2x2<img_source_type,
 interpolator_type> span_gen_type;
 span_gen_type sg(img_src, interpolator, filter);
 agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);

For the sake of performance there is span_image_filter_rgba_bilinear_clip is left and it works as former
span_image_filter_rgba_bilinear. In all other cases the difference in performance is very little (in some
cases the performance is even better).

Compound Shape Rasterizer
Added rasterizer_compound_aa and the rasterizers were considerably redesigned. Nopw you can render
compound shapes such as Flash in one pass. An example is in flash_rasterizer.cpp. Below is a very brief
explanation of how it works. If you are nor familiar with Flash data model you can skip this part.

The rasterizer_compound_aa works similar to the rasterizer_scanline_aa, but it takes edges with two
styles: left and right. Then it poroduces a number of scanlines with their own styles and mixes them
into a single colored scanline. The mixing is done in function render_scanlines_compound mentioned

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_filters.h.html#image_filter
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_filters.h.html#image_filter_hanning
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_reflect_auto_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_filters.h.html#image_filter
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_filters.h.html#image_filter_hanning
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#wrap_mode_reflect_auto_pow2
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_image_accessors.h.html#image_accessor_wrap
https://web.archive.org/web/20180720115010/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt
https://web.archive.org/web/20180720115010/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter_rgba.h.html#span_image_filter_rgba_bilinear_clip
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter_rgba.h.html#span_image_filter_rgba_bilinear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_compound_aa.h.html#rasterizer_compound_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/demo/flash_rasterizer.cpp.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_compound_aa.h.html#rasterizer_compound_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_compound

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 9 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

before.

 template<class Rasterizer,
 class ScanlineAA,
 class ScanlineBin,
 class BaseRenderer,
 class SpanAllocator,
 class StyleHandler>
 void render_scanlines_compound(Rasterizer& ras,
 ScanlineAA& sl_aa,
 ScanlineBin& sl_bin,
 BaseRenderer& ren,
 SpanAllocator& alloc,
 StyleHandler& sh);

The main thing here is StyleHandler that maps styles onto particular colors and/or span generators.
It shall have the following interface:

bool is_solid(unsigned style) const;
const rgba8& color(unsigned style) const;
void generate_span(rgba8* span, int x, int y, unsigned len, unsigned style);

If is_solid() returns true then function color() will be called for this style, otherwise
generate_span().

A single compound shape can consist of solid areas, images, patterns, and/or gradients (at the same
time!). It means that the StyleHandler should contain all possible span generators (such as
span_gradient, span_image_filter_rgba_bilinear, etc) and call their generate() functions accordingly.
Before rendering, there can be some preparational steps, such as setting the source images,
transformation matrices, and so on.

Another example is gouraud_mesh.cpp that handles an array of span_gouraud_rgba objects.

Path Storage
The path_storage class is now redesigned and its functionality is split into the container and path
making functions.

Now the declaration of the path_storage looks like follows:

template<class VertexContainer> class path_base { . . . };

Where VertexContainer is one of the following:
vertex_block_storage - functionality as it was before,

vertex_stl_storage - use STL compatible containers, such as std::vector, std::deque, or
AGG ones: pod_vector, pod_bvector.

Examples of declarations:

typedef path_base<vertex_block_storage<double> > path_storage;
typedef path_base<vertex_stl_storage<pod_bvector<vertex_d> > > path_storage;
typedef path_base<vertex_stl_storage<std::vector<vertex_d> > > path_storage;

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines_compound
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_image_filter_rgba.h.html#span_image_filter_rgba_bilinear
https://web.archive.org/web/20180720115010/http://www.antigrain.com/demo/gouraud_mesh.cpp.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_base
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_block_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_stl_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_vector
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_bvector
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_base
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_block_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_base
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_stl_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_array.h.html#pod_bvector
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_basics.h.html#vertex_d
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_base
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_stl_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_basics.h.html#vertex_d
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 10 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

For compatibility, path_storage is declared as:

typedef path_base<vertex_block_storage<double> > path_storage;

Also, instead of former confusing function add_path() there are:

 template<class VertexSource>
 void concat_path(VertexSource& vs, unsigned path_id = 0);

 template<class VertexSource>
 void join_path(VertexSource& vs, unsigned path_id = 0)

The first one concatenates a path as is, with all move_to commands, the second one joins the path,
replacing move_to to line_to commands, that is, as if the pen of a plotter was always down
(drawing).

Custom Clippers in the Rasterizers
The rasterizers, rasterizer_scanline_aa and rasterizer_compound_aa now have custom clippers that can
be:

rasterizer_sl_no_clip

rasterizer_sl_clip_int

rasterizer_sl_clip_int_sat (clipping with saturation to avoid overflow)

rasterizer_sl_clip_int_3x (for future use, LCD optimized rasterization)

rasterizer_sl_clip_dbl

rasterizer_sl_clip_dbl_3x (for future use, LCD optimized rasterization)

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_base
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#vertex_block_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_path_storage.h.html#path_storage
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_compound_aa.h.html#rasterizer_compound_aa
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_no_clip
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_clip_int
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_clip_int_sat
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_basics.h.html#saturation
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_clip_int_3x
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_clip_dbl
https://web.archive.org/web/20180720115010/http://www.antigrain.com/__code/include/agg_rasterizer_sl_clip.h.html#rasterizer_sl_clip_dbl_3x
https://web.archive.org/web/20180720115010/http://www.antigrain.com/mcseem/index.html
https://web.archive.org/web/20180720115010/http://www.antigrain.com/mcseem/index.html

5/5/19, 9'20 PMAnti-Grain Geometry - Version 2.4 Release Notes

Page 11 of 11https://web.archive.org/web/20180720115010/http://www.antigrain.com/news/release_notes/v24.agdoc.html#PAGE_RELEASE_V24

