Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

THE gXelem PROJECT

Home/
Research/

Anti-Grain Geometry

News Docs Download Mailing List SVN

Texts Rasterization Exposures

An attempt to improve text rasterization algorithms using only
publicly available information

First published in July, 2007

Introduction

Microsoft, Apple, Adobe, and FontFocus
Microsoft and Adobe: Sub-pixel Positioning and Kerning
ClearType Sub-pixel Positioning: Is that Possible?

The FontFocus Way of Grid-fitting

Linux
Inheriting the Worst
Gamma Correction
Gamma does not Work!
FreeType Auto-Hinter

What can we do?
The RGB Sub-Pixel Rendering
Other Details
The Demo Application
It Can Work Fast

References

Introduction

Joel Spolsky in his article » “Font smoothing, anti-aliasing, and sub-pixel rendering” [1] compares
Microsoft and Apple ways of text rendering and explains why windows people don't like Safari. Text in
Safari looks too blurry and that must be why. 1 want to go further and sum up my experience and
observations about it. I'm not an expert in digital typography, but I “have something to say”. At least,
some ideas may be useful for the GNU/Linux community.

Jeff Atwood in his blog post » “Font Rendering: Respecting the Pixel Grid” [5] says:

I don't understand why Apple is asking us to sacrifice the present at the altar of the future. Can't we
have hinting at low resolutions, and accuracy at high resolutions, too? Snapping fonts to a
pixel grid may very well be irrelevant when everyone is luxuriating in the glow of their 200 DPI
monitors. Until that glorious day arrives, respecting the pixel grid certainly makes text a lot more
readable for those of us stuck in the here and now.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 1 of 23

https://web.archive.org/web/20181020033338/http://www.antigrain.com/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/news/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/doc/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/download/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/maillist/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/svn/index.html
https://web.archive.org/web/20181020033338/http://www.joelonsoftware.com/items/2007/06/12.html
https://web.archive.org/web/20181020033338/http://www.codinghorror.com/blog/archives/000885.html

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

My short answer is while Microsoft uses their aggressive hinting there will be no higher than
100 DPI resolutions, period. With the Microsoft approach there is simply no way to break this vicious
circle.

Jeff doesn't like Apple way of text rendering. I don't like it either. But may be Apples' mission is hamely
to aspire to those “glorious days” of 200 DPI? Well, my bar it higher, it's 300 DPI. I think 200 is not
enough to completely discard text hinting. However, in this article I'll make an attempt to “unmask” the
Apple way too. The article may look long and boring for you, but I feel I need to carefully analyze the
situation in circumstantial details.

To make it more intriguing I'll leap ahead and show you a few examples.

A single pixel on a color LCD is made of three colored elements
ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because
of blurring by the optics and spatial integration by nerve cells in the eye.

Looks blurry? But consider the text size. And consider the fact it remain perfectly readable, smooth and
clean at the same time. And at the same time, the letter-forms are fairly preserved (typeface “Arial”).

OK, how about this one?

A single pixel on a color LCD is made of three colored elements
ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because
of blurring by the optics and spatial integration by nerve cells in the eye.

Looks heavy? No problemo, we can make it lighter.

A single pixel on a color LCD is made of three colored elements
ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because
of blurring by the optics and spatial infegration by nerve cells in the eye.

And two more samples:

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.

It's the Georgia font. Note that the letter-form appearance is perfectly preserved in both cases; just the
last one was intentionally made slightly heavier.

But it was only a “body show”; the main message of this article is. No more horizontal pixel grid!
Really! From now on the horizontal grid is 1/256 of a pixel! You can shift the text horizontally by
any fractional value, while the visual appearance does not change a whit! This “little detail” means a lot.
How about this:

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 2 of 23

Anti-Grain Geometry - Texts Rasterization Exposures

You can kern symbols with sub-pixel precision, not worrying about introducing extra blurriness.

You can freely scale the text as you want, with 100% guarantee of preserving a stable text
layout that always fits other graphic elements.

You can always be sure that the calculated text width exactly corresponds with what you will see

on screen and paper.

You can apply fancy vector effects such as "faux bold" and "faux italic" being sure the text will

not look any blurrier.

Sounds impossible? OK, one more sample.

Look at it carefully, do you see something strange? Each line has a 1/10th pixel shift, so that, in the run
of 30 lines it gradually (gradually!) accumulates 3 extra pixels. I'm sure you know how it would look
shapped to the horizontal pixel grid, don't you?

OK, just in case: » sample_arial_1ltenth_int.png.

The amazing thing is there is no rocket science! Nothing to patent! All information is publicly available
and/or deducible from what we see. You only need to use a bit of your engineering intuition plus
common sense. So, it goes. You can download an application with full sources in the end of the article
and play with it, but not now, please. Now be patient to read rather a long story.

Microsoft, Apple, Adobe, and FontFocus

I'll start with a tough statement. Microsoft played a dirty trick on the world. Windows XP way of text
rendering has zero taste and zero engineering culture. Their text looks sharp and eye catching but

wrong.

Just a simple test. Suppose you have a single line of text printed with “Times New Roman” at a high

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
..A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog
-.A Quick Brown Fox Jumps Over The Lazy Dog
...A Quick Brown Fox Jumps Over The Lazy Dog

...A Quick Brown Fox Jumps Over The Lazy Dog

5/5/19, 9:16 PM

Page 3 of 23

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/sample_arial_1tenth_int.png

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

resolution (say, exactly 1000 DPI). This line occupies exactly 87% of some given distance (say, 5
inches) on paper. Then, we want to see a strictly proportional picture at a low-resolution, say, exactly
100 DPI, so that, our 5 inches would map to exactly 500 pixels. Is there a simple way in Windows to
display this text so that, it would occupy exactly 87% of our 500-pixel distance? — No way! It's clearly
seen in the following snapshots. They are from Windows XP — Display Properties — Settings —
Advanced — General — DPI Setting — Custom Setting.

Scale to this percentage of normal size: I 120% = I
| | | ‘ | | ‘ |

0 1 2

10 point Arial at 115 pixels per inch.

Scale to this percentage of normal size: I 121% = I
| | | ‘ | | ‘ l

0 1 2
10 point Arial at 116 pixels per inch.

They sacrificed the “engineering honor” in favor of money, which resulted in zero technical progress
during many years. They use too aggressive font hinting. Microsoft hinting not only distorts the
letter-forms, but accumulates a huge error along the text line. As the result the fonts are not
freely scalable; they only seem to be scalable but they are not. This fact affects the computer monitor
industry. Can you imagine Microsoft Windows XP on a 600 DPI display? Say, 8000x6000 pixels? I can't
and not only because of invisible pixel icons, but mostly because of poor text scaling. When you change
DPI in the display settings, some dialogs in some software will inevitably be displayed incorrectly. So,
where is the motivation?

You can argue that the software designers have to consider different font sizes. I would agree with it,
except for one little detail. Designing 100% correct dialogs is extremely tedious. Free scaling is much
better in Windows Vista, but the situation already exists now and it will be a long way to go to fix it. In
other words, we can't freely resize the dialog forms.

A while ago I worked for Johnson&Johnson (Hello » Dimitris Agrafiotis and the others!) and I had to
design some complex dialogs using the .Net WinForms. By default any static or edit-box text was set
something like “Tahoma, 10pt”. But I all the time had to worry about some "extra space" in the end of
the text line, because when changing the resolution it sometimes didn't fit the given width and used
text wrapping. In these cases the forms became totally unusable. So, if you take care of the
proportional scaling, you have to design your forms in a very ugly way, keeping a lot of empty space
just in case. The other way is to take a hammer, and nail the text size to pixels. Namely, set something
like “Tahoma 14px”. It means a lot. It means that your software cannot be used at high resolutions. No
matter how well Windows Vista supports text scaling: the bad thing already happened. There is a lot of
software that relies on a fixed resolution, which prevents the manufacturers from developing higher
resolution displays. There is simply no motivation! Do not blame me, do not blame many other software
developers and designers. Blame Microsoft for their brutal text hinting, which results in unpredictable
overlapping between text and other graphic elements.

Yes, in Windows Vista, with WPF everything becomes freely scalable. That's the good news. The bad
news is it's still impossible to use high resolutions. The problems are clearly described by Long Zheng
and Jim Mathies:

» Long Zheng, Windows Vista DPI scaling: my Vista is bigger than your Vista.

» Jim Mathies, XP Style DPI Scaling.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 4 of 23

https://web.archive.org/web/20181020033338/http://www.dimitris-agrafiotis.com/
https://web.archive.org/web/20181020033338/http://www.istartedsomething.com/20061211/vista-dpi-scaling
https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.html

Anti-Grain Geometry - Texts Rasterization Exposures

Microsoft and Adobe: Sub-pixel Positioning and Kerning

5/5/19, 9:16 PM

In Microsoft Word, as a WISIWIG system, it is mandatory to preserve the accurate layout at any
resolution. It means the layout must be freely scalable, and it is scalable. But let me undertake a simple
investigation. Below there is a text as it looks in Microsoft Word Office 2003. There's no necessity to

read it, just take a general impression.

Adobe, the Adobe logo, Acrobat, the Acrobat logo. Acrobat Capture, Adobe Garamond, Adobe
Intelligent Document Platform, Adobe PDF, Adobe Reader, Adobe Solutions Network, Aldus,
Distiller, ePaper, Extreme, FrameMaker, Illustrator, InDesign, Minion, Mvriad, PageMaker,
Photoshop, Poetica, PostScript, and XMP are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries. Microsoft and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Apple, Mac, Macintosh, and Power Macintosh are trademarks of Apple
Computer, Inc_, registered in the United States and other countries. IBM is a registered trademark
of IBM Corporation in the United States. Sun is a trademark or registered trademark of Sun
Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark of
The Open Group. SVG is a trademark of the World Wide Web Consortium; marks of the W3C are
registered and held by its host |institutions | MIT, INRIA and Keio. Helvetica and Times are
registered trademarks of Linotype-Hell AG and/or its subsidiaries. Arial and Times New Roman
are trademarks of The Monotvpe Corporation registered in the U.S. Patent and Trademark Office
and may be registered in certain other jurisdictions. ITC Zapf Dingbats is a registered trademark
of International Tvpeface Corporation. Rvumin Light is a trademark of Morisawa & Co., Ltd. All
other trademarks are the property of their respective owners.

And compare it with how it looks in the Adobe Acrobat Reader:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Adobe Garamond, Adobe
Intelligent Document Platform, Adobe PDF, Adobe Reader, Adobe Solutions Network, Aldus, Dis-
tiller, ePaper, Extreme, FrameMaker, Illustrator, InDesign, Minion, Myriad, PageMaker, Photo-
shop, Poetica, PostScript, and XMP are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries. Microsoft and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Apple, Mac, Macintosh, and Power Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries. IBM is a registered trademark of IBM
Corporation in the United States. Sun is a trademark or registered trademark of Sun Microsys-
tems, Inc. in the United States and other countries. UNIX is a registered trademark of The Open -
Group. SVG is a trademark of the World Wide Web Consortium; marks of the W3C are registered
and held by its hostMIT, INRIA and Keio. Helvetica and Times are registered trade-
marks of Linotype-Hell AG and/or its subsidiaries. Arial and Times New Roman are trademarks of
The Monotype Corporation registered in the U.S. Patent and Trademark Office and may be regis-
tered in certain other jurisdictions. ITC Zapf Dingbats is a registered trademark of International
Typeface Corporation. Ryumin Light is a trademark of Morisawa & Co., Ltd. All other trademarks
are the property of their respective owners.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

You can see the difference better if you download these pictures and switch between them with some

Page 5 of 23

Anti-Grain Geometry - Texts Rasterization Exposures

slideshow program. I use nice and free » Irfanview. Text in Adobe Acrobat looks much more consistent
and very close to what you have on a printer. Text in MS Word looks sharper, but ugly in general. Why?
— Because of lousy kerning; it looks like they simply discard kerning at low resolutions (96 DPI is very
low). Snapping the glyphs to pixels eventually results in some “randomly distributed white spaces” that
look ugly. There's only one way to make it look better — use horizontal sub-pixel positioning. It's the
law of nature, closely connected to the Nyquist-Shannon theorem (in the Russian science community it's
called Kotelnikov-Shannon theorem), which says:

Exact reconstruction of a continuous-time base-band signal from its samples is possible if the signal
is band limited and the sampling frequency is greater than twice the signal bandwidth.

In our case the “signal bandwidth” is about the “sampling frequency”. Practically it means that you
cannot properly display a bunch of vertical lines, sharp and with the equal intervals at the same time,
unless the intervals are multiples of a pixel. Whether the distance between the lines will vary, or some
lines will look blurry. There is no other choice, period.

Pierre Arnaud demonstrated it more clearly:
» http://article.gmane.org/gmane.comp.graphics.agg/3597

Assume that you output a glyph for the letter "i" which is exactly 2.4 pixel wide.
If you grid-fit it using the hinter, you'd probably get a 2 pixel wide shape.
Assume that a space measure 4 pixels.

Now, imagine you display "iiiiiiiiii" (ten times the "i" glyph). This would produce
a word which occupies 20 pixels on screen, yet the typographic position should move
by 24 pixels. You end up adding 4 pixels to the following space, which doubles its
size. This will look strange on the screen. Worse, if the "i" glyph measures 2.6
pixels, and the hinter decides to grid-fit it to occupy 3 pixels, you'll occupy 30
pixels on screen whereas the typographic position only advanced by 26 pixels. This
time, you get a -4 pixel error which completely eats away the space.

Another approach would be to position the "i" glyphs by rounding their typographic
position, which would lead us to use the following x coordinates in the 2.4 pixel
wide case:

x =0 -—-—=>0 error = 0 width=2
X =2.4 -—> 2 error = -0.4 width=3
x = 4.8 --> 5 error = +0.2 width=2
x = 7.2 =——=> 17 error = -0.2 width=3
Xx = 9.6 -—=> 10 error = +0.4 width=2

The result is ugly

You get the idea... The "i" glyphs appear at irregular intervals.

Yes, they do. They do appear at irregular intervals in MS Word.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

5/5/19, 9:16 PM

Page 6 of 23

https://web.archive.org/web/20181020033338/http://www.irfanview.com/
https://web.archive.org/web/20181020033338/http://article.gmane.org/gmane.comp.graphics.agg/3597

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

So, Microsoft does not allow for sub-pixel positioning, while Adobe does. It means that the same glyphs

at different positions may produce different pixel result. It is clearly seen with the word "institutions",
marked with the red rectangles in the snapshots above.

institutions «— Adobe Acrobat

institutions <— MS Word 2003
mstitutions «— \WordPad

INSEITULIONS — s
{I].Elt {t Ut{ D‘I]_E. «— MS Word 2003
:I.I]-E'ﬁm‘tll. Dﬂs «— WordPad

Take a look at Adobe's glyphs “i”, “n”, “s”, “t”. There are at least two versions of them in different
positions. And this is why text in Adobe looks more consistent, but more blurry.

Now, if you type the very same word “institutions” in WordPad, the result will be different and it does
look much better. So, why in MS Word it looks worse? — Only because of the visible inaccuracy in
positioning. Function TextOut(), that is probably used in WordPad does not care about it, but MS Word
has to. I'm not sure, but probably the MS Word developers calculate the glyph advance at a high
resolution for “unhinted” glyphs. With the public Win32 API the only way to do that is to call
GetGlyphOutline() with a heavily zoomed affine matrix, so that, the resulting glyph would fit
1024x1024 box or something like that. Otherwise the advance value will be inaccurate since it is
measured in integral pixels. The direct use of it produces exactly the same result as in TextOut(). It
looks good, but accumulates a significant error along the text line (more than the whole symbol position
within only one word!).

In the dialog boxes they think it is fair to ignore preserving the text width. Why? — Because
otherwise the captions, menus, dialogs, and so on, wouldn't looks so pretty! They would have
the very same problem with “randomly distributed kerning”, which would be bad for business. So, nice
looking and sharp text in the dialogs is good for business, but it accumulates huge inaccuracy in the text
width, which makes it impossible to change the dialog size, which makes software vendors rely on 96
DPI. So, it goes, we have a circulus vitiosus. Eventually it turned into a big profanation.

From the fair engineering point of view there must be some reasonable trade-off between the sharpness
and functionality. The problem is Microsoft concentrated on the glamorous look but completely sacrificed
the functionality. The paradox is at 300 DPI or more you don't need any hinting at all and any text

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 7 of 23

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

becomes freely scalable (after 600 DPI you can do without anti-aliasing). But you can't use your
software at 300 DPI because it's designed for at most 100 DPI! This is the price the world pays for this
glamorous look. The price is too high, just incredibly high.

However, even 5 (five!) years ago it was technically possible to have freely scalable forms and dialogs.
All we needed is allow for a certain degree of blurriness, very subtle, not like in Mac OS X. Like in
Adobe's products. Windows people do not like Safari for too blurry output. I partially agree with them,
except for blind refusing any other ways of rendering but Windows. This “fanboyism” is reckless. It is
equivalent to saying "I don't care about the resolution, I just want to have my 96 DPI for ever, with the
Windows-style text, and so, I vote for stopping the progress.” Is that clever?

I'm not advocating Apple because I do not like Apple rendering either. To me it really looks too blurry. It
looks like they use some kind of a strange auto-hinting that blurs horizontal strokes, but does not offer
any advantages. In fact, their hinting looks lousy. It especially looks bad with the sans-serif group of
fonts, as if they intentionally shifted sharp text by 0.2...0.5 pixel. This is really why windows people do
not like Safari. But at the same time many of them happily use the Adobe Acrobat Reader and do not
buzz. It's because the text looks appropriate there (I'm not saying it's perfect, I'm saying it's
appropriate to windows fans). And it remains freely scalable! — just load any document and gradually
zoom it in/out. The text layout remains fully consistent and has proper kerning at the same time. So,
yes, I would vote for the Adobe way of rendering, because their trade-off seems to be very close to the
optimum.

ClearType Sub-pixel Positioning: Is that Possible?

Jeff Atwood » definitely votes [5] for strict snapping to the pixel grid. My opinion is different. I do
respect the pixel grid, but only in the Y-direction. In the X direction the sub-pixel positioning
must be allowed. In this case we can reasonably sacrifice some sharpness (very gently!), but
obtain freedom.

The irony is that Microsoft already uses sub-pixel positioning in glyph hinting! There is even more irony
because it is clearly seen on Jeff's pages with the font he uses.

Dave's opinion carries a lot of weight here, not just because h
he provides demonstrate just how[common|it is for designers
ClearType does for us automatically. And it's not just an aestr
support the assertion that snapping fonts to the pixel grid img

Look at it carefully — word “common” marked with red above, letter *m”.

You see, the three vertical stems of the “m” are different!

. . Although, they look rather sharp and pretty in the original text.
- - What does it mean? It means a lot. It means that with
ClearType it is possible to have a 1/3"d pixel positioning! So,

why do they nail the glyphs to pixels?! I do not understand it. 1/3 s good enough for accurate kerning
and sharp text at the same time! OK, if it's still not convincing I can demonstrate it in more details. I
took a snapshot of a text line from Microsoft Word that looks like this:

A single pixel on a color LCD is made of three colored elements

Then, with simple programmatic manipulations, I converted the colors into a 3-x grayscale bitmap:

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 8 of 23

https://web.archive.org/web/20181020033338/http://www.codinghorror.com/blog/archives/000885.html

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

And then, I “alpha-blended” it in RGB, interpreting the channels as individual gray pixels. I did that 12

times with 1 gray-pixel offset, which eventually gives us the 1/3rd pixel offset in RGB. See what
happened:

A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements
A single pixel on a color LCD is made of three colored elements

It namely means sub-pixel positioning. You can easily make sure it does — in the run of 12 lines it
accumulates 4 extra pixels, keeping perfectly even and smooth “boundary”. Well, the lines are slightly
different, but you have to closely stare into the picture to notice it (I have 100% clear vision without
glasses.) Trust me it's a very low price for the freedom of accurate sub-pixel positioning! So, it
goes. It's quite possible. Why didn't you use sub-pixel positioning, dear Microsoft? Give us an answer. —
No answer.

By the way, is there sub-pixel positioning in Windows Vista? It looks like

there is not. At least I couldn't find any case, when the same glyph would @I” Windows Media Player
have different pixel set in different positions. You see, they slightly Q) Windows Media Player
increased the default text size for 96 DPI, but most of all, they increased

the intervals between letters, so that, the positioning inaccuracy became

less visible. It's good, but what about more accurate letter-forms? Yes, I can state, the situation with
digital typography didn't dramatically change after the Vista release. And we can't expect it to change
for a long time.

Another big question is about the definition “Microsoft ClearType Font Collection”. Why do they call it
“ClearType Font Collection”? So, the “ClearType-ness” is heavily bound to the typefaces? Again, it
sounds like a heavily customized ad-hoc solution, so, not every font can be successfully used with
ClearType. Below I'm going to show you that with the » FreeType auto-hinter it's very possible to find a
fair, general, and “font-independent” solution. All you need is the vector glyph outlines. Nothing else.

The FontFocus Way of Grid-fitting

Jeff also mentions the » FontFocus white paper [4]. Respectively, I have to disagree with it.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 9 of 23

https://web.archive.org/web/20181020033338/http://freetype.org/
https://web.archive.org/web/20181020033338/http://artofcode.com/fontfocus/

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

The whole duty of Typography, as of Calligraphy, is to communicate
to the imagination, without loss by the way, the thought or image
intended to be communicated by the Author. And the whole duty of
beautiful typography is not to substitute for the beauty or interest

of the thing thought and intended to be conveyed by the symbol, a
beauty or interest of its own, but, on the one hand, to win access for
that communication by the clearness and beauty of the vehicle, and
on the other hand, to take advantage of every pause or stage in that
communication to interpose some characteristic and restful beauty in
its own art. We thus have a reason for the clearness and beauty of the
text as a whole, for the especial beauty of the first or introductory
page and of the title, and for the especial beauty of the headings of
chapters. capital orinitial letters, and so on, and an opening for the
illustrator as we shall see by and by.

TelW

They align the stems to pixels and ignore vertical hinting. You see, symbols “T”, “W”, *C"” and “g” are
significantly “out of focus”. Besides, “W"” looks heavier.

To me it looks sloppy. It's supposed to be “Times New Roman”. Does it look so? — No, it looks like a
simple bitmap font. So, what's the point? — Isn't it better just to accurately encode it as a number of
real B&W pixel-maps? What's the point of anti-aliasing if we afford to discard the letter-forms? Besides,
it looks like the text has “blots”, as if you wrote it with ink on a soft napkin: most of the time the
strokes are good, but sometimes they smear. Anyways, the problem remains the same: whether you
discard the accurate text layout, or have inconsistent kerning.

I want to mention Safari again. I can't state it for sure, but it looks like Mac OS people do not use sub-
pixel kerning either, which practically means the very same problem I'm blaming Microsoft for. With the
Safari way it would be very possible to have more accurate positioning while preserving accurate
layouts. But it looks like they also rigidly snap symbols to pixels, ho matter how blurry they look. So,
what is their mission? To render blurry text only in order to make people buy higher resolution
displays?! It's an unfair game!

Below you will see how to achieve a pretty looking and accurate result with relatively simple
manipulations. I did that with the » FreeType library [10] and Win32 API GetGlyphOutline(). In other
words, this rendering can be used in both, Linux and Windows, and of course, Mac OS, where FreeType
perfectly compiles. I also figured out that the FreeType "auto-hinter" works pretty well in my way of
using it (I do not like its result under the “normal conditions”). But first I want to talk about the
situation in the Linux world.

Linux

Inheriting the Worst

The Windows way of text rendering is bad, the Linux way is much worse. In all Linux systems I've seen
they use » FreeType [10] by David Turner, Robert Wilhelm, and Werner Lemberg. It is a great library,
really, but the way of using it is not so good. A typical screenshot of Linux looks like this:

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 10 of 23

https://web.archive.org/web/20181020033338/http://freetype.org/
https://web.archive.org/web/20181020033338/http://freetype.org/

Anti-Grain Geometry - Texts Rasterization Exposures

5/5/19, 9:16 PM

{;__Home Folder V5 L V4
Edcups-samba-5. | linux-2.6.0- nbd-server
ADesktop gc-prealph...
[Egepsoneplijs-0.4 —
G
[FEkde3.4 el 7
[EaMy Downloads psoload2_ ~ PSOloadV2.
&3 TransGaming_ static 0_Linux.zip
The full screenshot is here: » linux_screenshot01.png

The apparent problem is very visible “dirty blots” in the round corners introduced by anti-aliasing. In
general, we can say that the oblique strokes look heavier than the stems, which gives you an
impression of dirt. You can argue that the FreeType and Linux can use a similar to ClearType RGB sub-

pixel rendering, but to me it doesn't look any better.

| ___omouter _ (ERINSHEERREW

Fedora-vs-Ubutu

—

FedoraCore4-vs-
UbuntuHoary.odt

Plik Edycja Widok Potozenia Pomoc
securnty_thumb.png

UbuntuHoary.html

FedoraCore4-vs-
UbuntuHoary.pdf

Look at "W”, “v” and “y” — the problem is essentially the same; these symbols look dirty.

It's possible to improve the corners with gamma correction when rendering, but still, it's impossible to

achieve perfect consistency.

Gamma Correction

Gamma correction works like this:

D Gamma=1.0
|:| Gamma=2.0

As you can see, the round anti-aliased corners look much better with gamma=2.0. Gamma correction is
a separate and non-trivial topic and if you wish you can find comprehensive information in the » Charles

Poynton's "Gamma GAQ" [6].

In our case it's not about those signal-response curves in the electronic circuits, but mostly about the
specific of the human vision. The visual response is approximately proportional to the square root of the

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

Page 11 of 23

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/linux_screenshot01.png
https://web.archive.org/web/20181020033338/http://www.poynton.com/GammaFAQ.html

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

physical luminosity. In other words, if there are two white pixels on black, and one of them emits
exactly two times more photons per second, it won't look two times brighter. It will be about 1.4 times
brighter. You can easily check it:

On the right there are two pixels and we can credibly say that they emit two times more photons pre
second than the pixel on the left. However they do not look two times brighter. Four pixels will look
about two times brighter, not two.

Skipping all other explanations, we can say that there are two major RGB color spaces: perceptually
uniform, which is called sRGB, and physically uniform. In the latest, the physical luminosity is
proportional to the value, unlike sRGB, where the perceptual response is proportional to the value.
Often the physically uniform space is called just “linear RGB”. When using anti-aliasing, the color
compositing must be done in the linear space, but before displaying you have to convert the resulting
image to sRGB. However, very often it's ignored and anti-aliasing is calculated directly in SRGB. In many
cases it produces quite appropriate result, but it becomes critical for text rendering. It also can be
clearly demonstrated in Microsoft Word. The thing is they use some trick for the text selection,
something like trivial color inversion, instead of re-drawing the whole text. And so, if the normal text is
rendered with the correct gamma, the selected one has the inverse gamma. With regular, grayscale
anti-aliasing, the selected text looks dirty; with ClearType it also becomes very “color fringy”:

Normal text

Selected text

Grayscale AA ClearType

So, in Windows there is proper gamma correction (but not for the selected text!), in Linux they often
(always?) ignore it. With FreeType it is easy to apply gamma to the grayscale anti-aliasing mask that
the rasterizer produces. But it will work in the very same way like in Windows: inverting the colors will
invert the gamma. It's practically useless because gamma must be applied to each color component
separately when blending (which, in turn, is equivalent to working in the linear RGB space). Gamma
correction for the grayscale mask works well only if you draw black text on white background. In this
case you can use value about 2. But when drawing white text on black, you have to inverse the gamma,
that is, use value about 0.5. The problem is you do not know in advance the background and text
colors; the text can be drawn with a gradient over an image. So, the “grayscale” gamma correction
doesn't work, but the “full-color” gamma may be expensive and tricky. The problem is linear RGB
requires more than 8 bit per channel, otherwise you will inevitably have color loses. For the text it's
tolerable, but you don't have the right to require it for the entire desktop! And working in the loss-less
linear RGB requires 16 bits per channel, which is still unaffordable luxury.

Gamma does not Work!

The situation is even worse. You can apply gamma=2 to the Linux screenshot in Irfanview

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 12 of 23

Anti-Grain Geometry - Texts Rasterization Exposures

5/5/19, 9:16 PM

(Image/Enhance colors...) and look at the text. Please try to ignore the fact that the pictograms look too

"whitish", concentrate only on the text.

“Home Folder 7 Ny
Eicups-samba-5. linux-2.6.0- nbd-server
»Desktop dc-prealph...
+ lepsoneplijs-0.4 P -
+ | h\‘ .v
Elkde3.4 4
1My Downloads psoload2_ PSOloadva.
s (2 TransGaming_ static 0_Linux.zip

1 —=

Do you like it? I still don't. When I was working on text rendering in AGG, I though that proper gamma
correction should solve all the problems. Nothing of the kind! No matter how well it works, some
elements look thicker, some others thinner than the vertical and horizontal ones. It's especially visible
with the sans-serif group of fonts, and especially, when the strokes are strongly aligned to pixels. The
problem is TrueType hinting for small glyphs was designed specifically for a regular, aliased B&W
rasterizer! The use of anti-aliasing of any kind is inappropriate, while most Linux people do namely
that. The picture below is the result of anti-aliased rasterization with both, FreeType and Win32

GetGlyphOutline().

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

The text looks lousy and it is very similar to what we have in Linux in most cases. It's impossible to fix
the situation with any kind of gamma correction. For example, the best I could achieve is use

gamma=1.5. It still looks bad:

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

Page 13 of 23

Anti-Grain Geometry - Texts Rasterization Exposures

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quiclk Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

5/5/19, 9:16 PM

By the way, you must have noticed that after certain size the text abruptly becomes heavy. This is
namely what happens in Windows. If you turn off the ClearType feature for a while, it will be clearly

seen (the text size is not exactly preserved).

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

& Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 01234567389
& Quick Brown Fox Jumps Over The Lazy Dog 0123456739

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

So, you got the idea. To make it more convincing, we can zoom in the vector data returned by WinAPI

GetGlyphOutline() and see what happens.

Verdana] Times New Roman ltalic
13 pixels, 13 pixels, 13 pixels, 13 pixels,
hinted unhinted hinted unhinted

This is how the patented aggressive hinting works for the nominal size of 13 pixels. This is why the
strokes in “k” look so fragile, almost invisible. In Times New Roman Italic it's even worse; the “slash” in
“z" completely disappears. This distortion does not affect the regular “aliased” rasterizer, but the one
FreeType uses is sensitive to these things. It directly computes pixel coverage values, so, it fairly
produces zero coverage at the “slash” of “z” when processing this zero-area degeneracy. So, it turns out
it does not make sense to interpret the TrueType hinting byte code (not to mention you have to buy a
license for that). Anti-aliasing is good, but it must not be a “thing-in-itself”. Anyway, I would prefer to

see regular, aliased text, rather than anti-aliased, with inadequately used hints.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

Page 14 of 23

Anti-Grain Geometry - Texts Rasterization Exposures

FreeType Auto-Hinter

5/5/19, 9:16 PM

In FreeType-2 David Turner introduced the auto-hinting mechanism. It works fairly well, but still, the
direct use of it produces a far from the perfection result. Look at the result of rendering Verdana font

with gamma=1.5:

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

Compare with the unhinted version:

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

The unhinted version definitely looks more consistent, but too blurry. There are three major differences.

1. Auto-hinting still introduces inconsistency in the round elements on small sizes (the same
different visual thickness between vertical and oblique strokes).

2. Sometimes it results in incorrect kerning, like "og" in word "Dog" (the font kerning table in this
example has been used).

3. It results in the very same accumulating error along the line, producing the “jagged edge” at the

right.

The auto-hinter works better with fancier typefaces, like Times New Roman, but still has the very same

positioning problems.

What can we do?

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

Page 15 of 23

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

Leaping ahead I'll show you one more sample.

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

A Quick Brown Fox Jumps Over The Lazy Dog 0123456789

It really IS possible to find a reasonable solution. But first of all, you have to agree that there is no way
to use any kind of hinting for absolutely exact text layout representation with any zoom factor, period.
Only unhinted text, with its natural blurriness. However, we can improve it and we have something to
sacrifice. Namely, we can afford some inaccuracy in the vertical positioning and the text height. After
all, the TrueType hinting works in the very same way: the lines of text with, say, 12, and 13 pixels
nominal heights have exactly the same pixel heights, but still look differently.

Pape description language

. . 1
Page descriptfion lomguage

So, in short words, for the nice looking text with accurate horizontal positioning we need the following.

Use horizontal RGB sub-pixel anti-aliasing for LCD flat panels.
Use vertical hinting only and completely discard the horizontal one.
Use accurate glyph advance values, calculated at a high resolution for unhinted glyphs.

W

Use accurate, high resolution values from the kerning table.

Slight gamma correction may improve the result, but it's not mandatory. The text looks good enough
even in direct sRGB, which means there are no potential problems when using inverse color schemes.

You can easily achieve a nice result with FreeType and its auto-hinter. It means that you don't have to
worry about licensing the native TrueType hinting. With Win32 GetGlyphOutline() it is more tricky, but
still possible.

The RGB Sub-Pixel Rendering

You can find the comprehensive guide how to use the RGB sub-pixel rendering on Steve Gibson's pages,
» Sub-Pixel Font Rendering Technology [2]. I also tried to use it with the 64-level anti-aliased bitmaps
that WinAPI GetGlyphOutline() can produce: Maxim Shemanarev, » Inside ClearType in Windows
Longhorn [3]. You can download a simple application for Windows with sources here: »
http://antigrain.com/stuff/lcd_font.zip.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 16 of 23

https://web.archive.org/web/20181020033338/http://www.grc.com/cleartype.htm
https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.html
https://web.archive.org/web/20181020033338/http://antigrain.com/stuff/lcd_font.zip

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

I also wrote a simple, "quick and dirty" pixel renderer for AGG that can be found in the demo examples
below. The code is unsafe and rather slow. It's OK for the demo application, but don't use it in a real
project, in particular because it uses a temporary buffer for at most 2048 pixels in the stack.

Basically, all we need is the per-channel alpha. In this file, agg_pixfmt_rgb24_lcd.h. I also perform
additional blurring Steve Gibson describes. It's performed on demand, but obviously can be pre-
computed and used with a cache mechanism. In this case it will work much faster, at least, not slower
than the regular alpha-blend.

To debug the per-channel blending I used a modified » ZoomIn program [9] by Brian Friesen. I added
“decoding” of the color triplets at all multiple-of-three zoom ratios. You can download the executable: »
http://antigrain.com/stuff/ZoomInLcd.zip, but since year 2005 I lost the modified sources. It's easy to
do, anyway. You can compare the zoomed results of regular, grayscale and RGB-sub-pixel renderings:

Grayscale RGB-sub-pixel

Other Details

To keep vertical hinting but discard horizontal we simply cheat the hinter. We stretch the symbols
horizontally so that, the hinter would have to work with high accuracy in the X direction. The only
problem is the AGG font engine for FreeType uses the inaccurate advance value, considering hinting.
Technically, the hinter should calculate accurate advances for heavily stretched glyphs, but for some
reason it does not. So, to use with exact, “unhinted” advances I had to modify it. The modified version
is in the demo example. After the glyph outline is acquired we use an affine transformer to shrink it
back. Basically, that's all we need. The kerning table has accurate enough values.

So, I want to ask David Turner, maybe it makes sense to add an option to his auto-hinter that would
modify the Y-direction only, completely discarding the X coordinates. It even can be a special, 1-D hinter
that is supposed to be much simpler than the existing one. As you will see, the text with the RGB-sub-
pixel blending looks pretty much like in the Adobe Acrobat Reader, at least to me it does look much
better than in a typical modern Linux system. I do believe it will promote Linux systems and
advantage their popularity.

In Windows, the use of their API is significantly trickier. Function GetGlyphOutline() returns the
advance value in integral pixels, which is too inaccurate. Stretching doesn't help. There are also
functions like GetCharABCWidthsFloat(), but they are useless because they calculate the values for
the hinted glyphs and despite the fact they formally contain floating point values, they actually remain
integers. So, I couldn't find a simple way of getting accurate advances. I ended up with using two fonts
simultaneously, one for nominal height of 1024 pixels, and the other for the given size, with hinting and
a “stretched” affine matrix. I admit, I could miss something, but I have no idea how to do that more
correctly. In the Microsoft Word they may use some undocumented functions, which would be totally
unfair from the competition point of view. I'm not sure of course, but the situation makes me think
Microsoft intentionally does not provide a good enough API for WISIWIG page making tools. It's a
typical monopoly approach that results in progress stagnation.

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 17 of 23

https://web.archive.org/web/20181020033338/http://www.csc.calpoly.edu/~bfriesen/software/zoomin.shtml
https://web.archive.org/web/20181020033338/http://antigrain.com/stuff/ZoomInLcd.zip

Anti-Grain Geometry - Texts Rasterization Exposures

5/5/19, 9:16 PM

It's even worse than that. The patented hinter does not work with a “stretched” matrix! At least, I
couldn't find any scaling coefficient that would correctly process the glyphs. Only scaling 1:1 works
correctly, but it results in the very same problem that dictates the use of a B&W aliased rasterizer:

I
I

wd Quick Brown Fox Jumps Over TheLazy Dog...J

I...A Quick Broun Fox Junmps Cver The Lazy Dog..J

...A Quick Broun Fox Jumps Over The Lazy Dog...J
I...A Quick Brown Fox Jumps Over The Lazy Dog...I

I..A Quick Brown FoxJumps Over The Lazy Dog..I

I...A Quick Brown FoxJumps QOver The Lazy Dog...I

I...A Quick Brown Fox Jumps Quer The Lazy Dog...I

I...A Quick Brown Fox Jumps Over The Lazy Dog...I
I...A Quick Broun Fox Jumps Over The Lazy Dog...I

I...A Quick Brown Fox Jumps Over The Lazy Dog...I

Looks like crap, doesn't it? Any other scaling ratio results in heavily distorted glyphs, like this one

(Times New Roman Italic, 16-x horizontal stretching):

The components are easily visible, however, when viewed with

a small magnifving glass, such as « loupe. Over « certain resolution
range the colors in the sub-pixels are not visible, but the relative
intensity of the components shifts the apparent position or orientation
of a line. Methods that take this interaction between the display
technology and the human visual system into account are called

subpixel rendering algorithms.

Or, even like this (Arial, 100-x horizontal stretching — nice leaking, huh? But unreadable.)

oy L l
Gl

0

S0 '|€ a |tag

d t a
odicto ogess, afe
tlese d ys| e tec Ae

oga c g te" tt 'adodesa

el|llellde’| "a ess|effect veLfo
s ol|d| ave good cato
dot'e d

il N
xe a tt
t 0 "o 'le s

eva t'e

to
ay tec "0o0g es.

Needless to say that the FreeType auto-hinter works just fine with any stretch ratio.

It looks like Microsoft API is a huge set of ill-considered random ad-hoc solutions, with no engineering
culture and no any common idea behind. Typically you can use Microsoft software only in one rigidly
straightforward way. Step to the left or step to the right — and you fail. I admit it might be good for
business, but it's unfair. It prevents others from fair competition and stops the progress. The anti-
monopoly committee should take into account namely this situation instead of ridiculous requirements
to remove the Media Player or Internet Explorer from Windows.

So, eventually I found out that value 16 is the least evil; it works in most cases, but still fails on “"Times

New Roman Italic”.

The Demo Application

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION

Page 18 of 23

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

So, here it is, the Windows application with sources that uses FreeType:
& (truetype_test_02_ft.zip)

The one uses Win32 API:
&8 (truetype_test_02_win.zip)

The FreeType version requires the following font files to be found in the current directory: arial.ttf,
ariali.ttf, georgia.ttf, georgiai.ttf, tahoma.ttf, times.ttf, timesi.ttf, verdana.ttf, verdanai.ttf.
You can find them in the Windows/Fonts directory.

If you want to compile it you download AGG v2.4 or v2.5, and unzip the files somewhere like agg-
2.4 /research/win32/trutype_lcd/*.*. For the FreeType version you also need to build the FreeType
itself and probably adjust the settings in the project.

It also can be built for Linux/X11 or another system if you write a Makefile, similar to the ones used
in the AGG examples.

The text with the FreeType and WinAPI versions look differently because of different hinting algorithms.

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.

The components are easily visible, however, when viewed with

a small magnifying glass, such as a loupe. Over a certain resolution
range the colors in the sub-pixels are not visible, but the relative
intensity of the components shifts the apparent position or orientation
of a line. Methods that take this interaction between the display
technology and the human visual system into account are called
subpixel rendering algorithms.

.] Invert Primary Weight=0.33_@)
@ Georgia Kerning Gomma=1.00 @
O Times Hinting Width=1.00 —
O Verdana | Grayscale Interval=0.000 B -

Faux Weight=0.00 S— —
O Tahoma - gnt
- aux ltalic=0.00 B

O Arial Font Scale=1.09 —o

You see a lot of controls here. First, you can switch between the fonts and control “Kerning”,
“Hinting”, “Grayscale/Sub-pixel” rendering and see the inverse image (white on black).

The “Font Scale” slider just uses this ratio to gradually change the size. You see, with hinting, the lines
are snapped to pixels, but the text width still changes absolutely gradually. You can see it better
changing “Interval”. Without hinting the appearance of the layout is exactly preserved at any scale,
but the text looks blurry. Snapping the lines vertically is the most reasonable trade-off between the
sharpness and general appearance of the layout. It's just surprising how much the vertical hinting
improves the quality at the same time preserving the letter-form appearance.

The “Interval”, “"Width”, and “Faux Italic” sliders are obvious and do not require explanations. It's
apparent to people skilled in the art that they are just trivial affine transformations. I only want to
mention that “Faux Italic” works slightly differently in the “Grayscale” and “RGB-Sub-pixel” modes,
simply because I'm too lazy to calculate it properly with arctangents. It's trivial and immaterial, anyway.

The feature I'm especially proud of is “"Faux Bold” that works like this:

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 19 of 23

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/truetype_test_02_ft.zip
https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/truetype_test_02_win.zip

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes

called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.

The components are easily visible, however, when viewed with

a small magnifying glass, such as a loupe. Over a certain resolution

range the colors in the sub-pixels are not visible, but the relative

intensity of the components shifts the apparent position or orientation

of a line. Methods that take this interaction between the display

technology and the human visual system into account are called
There is also a simple trick. AGG has conv_contour tool that allows you to calculate an equidistant

polygon to the given one. But the direct use of it produces a very blurry result that also considerably
changes the letter-form appearance (it might me good for glow and shadow effects, though):

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, grem, and blue (RGB). These pixel components, sometimes
called sub-pixels e color to the human eye because

of blurring theopﬁuand integration by nerve cells in the eye.

It's easy to avoid the blurriness, if we stretch the glyphs vertically, say 100 or 1000 times, calculate the
equidistant polygon and shrink them again. So, eventually the Y coordinates change very little; and it's
practically invisible. The text remains sharp. In the demo there's a pipeline class “faux_weight”. Once
again, it's amazing how many extra capabilities free horizontal scaling gives you. And it's amazing how
vertical snapping improves the result.

One more example: (I love this freedom)

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes
called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.

It's the very same “Georgia” font, just programmatically transformed. Perfectly readable, sharp and
smooth at the same time (well, I agree that it requires custom kerning).

Or, the very same with "Tahoma":

A single pixel on a color LCD is made of three colored elements

ordered (on various displays) either as blue, green, and red (BGR),

or as red, green, and blue (RGB). These pixel components, sometimes

called sub-pixels, appear as a single color to the human eye because

of blurring by the optics and spatial integration by nerve cells in the eye.
Slider “"Gamma” controls per-component gamma correction. Theoretically, you have to apply the

"Direct Gamma" to the source colors, and then, after the scene is drawn, apply the "Inverse Gamma".
But since the text in these examples is always black or white, the first operation does not make any

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 20 of 23

https://web.archive.org/web/20181020033338/http://www.antigrain.com/__code/include/agg_conv_contour.h.html#conv_contour

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

difference.

Slider “Primary Weight” controls the energy distribution exactly as on Steve Gibson's page: ?
http://www.grc.com/freeandclear.htm. It's good enough to control only the primary weight and
calculate the other ones accordingly. Increasing the primary weight you can make the text sharper, but
more “color fringy”. Values up to 0.5 are reasonable; above 0.5 the color halos become too visible. To
me, Windows ClearType with the default settings looks too “color fringy” as well.

It Can Work Fast

The demo applications are slow. Partially because of a lot of vector operations performed on-the-fly, but
especially because WinAPI GetGlyphOutline() is ridiculously slow. However, it can be as fast as any kind
of hardware accelerated text output. But first, you have to agree that it's extremely difficult, almost
impossible to accelerate arbitrarily transformed text keeping hinting, accurate layout and perfect RGB-
sub-pixel quality at the same time. “Arbitrary” namely means arbitrary, including perspective and any
non-linear transformations.

Most of the times we have to deal with regular horizontal text, even using East Asian languages. And
most of the times the glyphs have equal nominal size. It means that some caching mechanism is a must
here. The RGB-sub-pixel gray mask takes 3 times more space, but at the same time it allows for 1/3m
pixel positioning. It works fairly well in most practical cases. Only for hypothetical “luxury” rendering
you can use two grayscale masks per glyph, which gives you the 1/6th pixel accuracy. Even pure
software alpha-blending works fast enough; about 2-4 microseconds per glyph on modern Intel or PPC
processors. With video hardware acceleration it may work much faster if you upload the textures. The
only problem is the hardware must allow for using per-channel alpha blending, which, as I heard, is
possible. At least, David Brown mentions about it in his » presentation [8]. But I couldn't find more
information about it (how to return a 6-channel output from the pixel shader) and I'd highly appreciate
if you give me some references.

References

1. Joel Spolsky, Font smoothing, anti-aliasing, and sub-pixel rendering.
» http://www.joelonsoftware.com/items/2007/06/12.html.

2. Steve Gibson, Sub-Pixel Font Rendering Technology.
» http://www.grc.com/cleartype.htm.

3. Maxim Shemanareyv, Inside ClearType in Windows Longhorn.
» http://www.byte.com/documents/s=9553/byt1113241694002/0411_shemanarev.html
(requires online registration.)

FontFocus white paper, » http://artofcode.com/fontfocus/

5. Jeff Atwood, Font Rendering: Respecting the Pixel Grid.
» http://www.codinghorror.com/blog/archives/000885.html

6. Charles Poynton, Frequently-Asked Questions about Gamma.
» http://www.poynton.com/GammaFAQ.html

7. Dave Shea, A Subpixel Safari.
» http://mezzoblue.com/archives/2007/06/12/a_subpixel_s

8. David Brown, » Avalon Text. A PowerPoint presentation.

9. Brian Friesen, ZoomIn Program.
» http://www.csc.calpoly.edu/~bfriesen/software/zoomin.shtml

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 21 of 23

https://web.archive.org/web/20181020033338/http://www.grc.com/freeandclear.htm
https://web.archive.org/web/20181020033338/http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-a6f2295b40c8/TW04007_WINHEC2004.ppt
https://web.archive.org/web/20181020033338/http://www.joelonsoftware.com/items/2007/06/12.html
https://web.archive.org/web/20181020033338/http://www.grc.com/cleartype.htm
https://web.archive.org/web/20181020033338/http://www.byte.com/documents/s=9553/byt1113241694002/0411_shemanarev.html
https://web.archive.org/web/20181020033338/http://artofcode.com/fontfocus
https://web.archive.org/web/20181020033338/http://www.codinghorror.com/blog/archives/000885.html
https://web.archive.org/web/20181020033338/http://www.poynton.com/GammaFAQ.html
https://web.archive.org/web/20181020033338/http://mezzoblue.com/archives/2007/06/12/a_subpixel_s
https://web.archive.org/web/20181020033338/http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-a6f2295b40c8/TW04007_WINHEC2004.ppt
https://web.archive.org/web/20181020033338/http://www.csc.calpoly.edu/~bfriesen/software/zoomin.shtml

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

10. David Turner and the others, FreeType font Library.
» http://freetype.org

11. Jim Mathies, XP Style DPI Scaling.
» http://www.mathies.com/weblog/?p=908

12. Long Zheng, Windows Vista DPI scaling: my Vista is bigger than your Vista
» http://www.istartedsomething.com/20061211/vista-dpi-scaling

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 22 of 23

https://web.archive.org/web/20181020033338/http://freetype.org/
https://web.archive.org/web/20181020033338/http://www.mathies.com/weblog/?p=908
https://web.archive.org/web/20181020033338/http://www.istartedsomething.com/20061211/vista-dpi-scaling
https://web.archive.org/web/20181020033338/http://www.antigrain.com/mcseem/index.html
https://web.archive.org/web/20181020033338/http://www.antigrain.com/mcseem/index.html

Anti-Grain Geometry - Texts Rasterization Exposures 5/5/19, 9:16 PM

https://web.archive.org/web/20181020033338/http://www.antigrain.com/research/font_rasterization/index.htmI#FONT_RASTERIZATION Page 23 of 23

