Anti-Grain Geometry - Image Parallelogram Transformations 5/5/19, 9:23 PM

PROJECT

Home/
Tips & Tricks/

Anti-Grain Geometry

News Docs Download MailingList CVS

Image Parallelogram Transformations

Using perspective transformations to simulate the functionality of
WinAPI PlgBIt()

The declaration of PIgBIt() is:

BOOL PlgBlt (
HDC hdcDest, // handle to destination device context
CONST POINT *1pPoint, // vertices of destination parallelogram
HDC hdcSrc, // handle to source device context
int nXSrc, // x-coord. of upper-left corner of source rectangle.
int nY¥Src, // y-coord. of upper-left corner of source rectangle.
int nWidth, // width of source rectangle
int nHeight, // height of source rectangle
HBITMAP hbmMask, // handle to bitmask
int xMask, // x-coord. of upper-left corner of bitmask rectangle.
int yMask // y-coord. of upper-left corner of bitmask rectangle.
)

Here the most important argument is:

IpPoint
e Pointer to an array of three points in logical space that identify three corners of the destination
parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this
array, the upper-right corner to the second point in this array, and the lower-left corner to the
third point. The lower-right corner of the source rectangle is mapped to the implicit fourth point
in the parallelogram.

It means that this function can apply arbitrary affine transformations to the image. Anti-Grain
Geometry can do that too, but there's a problem with proper calculating of the affine transformation
matrix. It really is tricky.

In AGG there are good news, bad news, and then good news again. The good news is that you can use
the perspective transformations that in general can transform an arbitrary convex qudrangle to another
convex quadrangle, particularly, a rectangle to an arbitrary parallelogram.

The bad news is that in general case, the perspective transformations work much slower than the affine
ones. It's because the image transformations use the “scanline” approach. You take your destination
scanline (a row of pixels in the destination canvas), then apply the reverse transformations to each
pixel and pick up the source pixel possibly considering a filter (bilinear, bicubic, etc...). In case of affine
transformations we don't have to calculete every point directly. Instead, we can calculate only two
points for each scanline (begin and end) and use a bresenham-like linear interpolator that works in
integer coordinates, thus very fast. But the restriction is that the transformations must be linear and

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG Page 1 of 7


https://web.archive.org/web/20180707025615/http://www.antigrain.com/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/news/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/download/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/maillist/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/cvs/index.html

Anti-Grain Geometry - Image Parallelogram Transformations 5/5/19, 9:23 PM

parellel. It means that any straight line must remain straight after applying the transformation, and any
two parallel lines must remain parallel. In case of perspective transformations it is not so (they are not
parallel), and we cannot use linear interpolation.

The good news again is that the parallelogram case of the perspective transformations is linear and
parallel, so, the the linear interpolation is perfectly applicable and it will work as fast as the image affine
transformations.

To demonstrate it we modify the AGG example image perspective.cpp (it can be found in
agg2/examples/). Just replace the code of image perspective.cpp to the following:

#include <stdlib.h>

#include <ctype.h>

#include <stdio.h>

#include "agg basics.h"

#include "agg rendering buffer.h"
#include "agg rasterizer scanline aa.h"
#include "agg scanline u.h"

finclude "agg renderer scanline.h"
#include "agg path storage.h"

#include "agg conv_transform.h"

#include "agg trans bilinear.h"

#include "agg trans perspective.h"
#include "agg span_interpolator trans.h"
#include "agg span_ interpolator linear.h"
#include "agg pixfmt rgb24.h"

#include "agg span image filter rgb24.h"
#include "ctrl/agg rbox ctrl.h"

#include "platform/agg platform support.h"
#include "interactive polygon.h"

enum { flip y = true };

agg::rasterizer scanline aa<> g rasterizer;
agg::scanline u8 g scanline;

double g x1 = 0;
double gyl = 0;
double g x2 = 0;
double g y2 = 0;

class the application : public agg::platform support
{
public:
typedef agg::pixfmt bgr24 pixfmt;
typedef agg::renderer base<pixfmt> renderer base;
typedef agg::renderer scanline aa solid<renderer base> renderer solid;

agg::interactive polygon m_triangle;
the application(agg::pix format e format, bool flip y)

agg::platform support (format, flip y),
m triangle (4, 5.0)

virtual void on_init ()

{

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG Page 2 of 7


https://web.archive.org/web/20180707025615/http://www.antigrain.com/demo/image_perspective.cpp.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/demo/image_perspective.cpp.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_basics.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_rendering_buffer.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_scanline_u.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_path_storage.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_conv_transform.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_bilinear.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_perspective.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_trans.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_linear.h.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_scanline_u.h.html#scanline_u8
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_pixfmt_rgb.h.html#pixfmt_bgr24
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa_solid
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base

Anti-Grain Geometry - Image Parallelogram Transformations

{

g yl =0.0;
g x2 = rbuf img(0) .width();
g y2 = rbuf img(0).height();

(
double dx = width() / 2.0 (g x2 - g x1) / 2.0;
double dy = height() / 2.0 - (g y2 - g yl) / 2.0;
m_triangle.xn(0) = g x1 + dx;
m triangle.yn(0) = g yl + dy;
m_triangle.xn(l) = g x2 + dx;
m_triangle.yn(l) = g yl + dy;
m triangle.xn(2) = g x2 + dx;
m_triangle.yn(2) = g y2 + dy;
m_triangle.xn(3) = g xl1 + dx;
m triangle.yn(3) = g y2 + dy;

virtual void on draw()

// Calculate the 4-th point of the parallelogram

m triangle.xn(3) = m triangle.xn(0) +

(m_triangle.xn(2) - m triangle.xn(l));
m triangle.yn(3) = m triangle.yn(0) +

(m_triangle.yn(2) - m triangle.yn(l));
pixfmt pixf (rbuf window()) ;

renderer base rb?pixf);
renderer solid r(rb);
rb.clear (agg::rgba(l, 1, 1));

g _rasterizer.clip box (0, 0, width(), height());

typedef agg::span_allocator<agg::rgba8> span_alloc_ type;
span_alloc_type sa;

agg::trans_perspective tr(m triangle.polygon(),
g_xl, 9_vyl, g %2, g_y2);

if(tr.is_valid())
{

// The trick with interpolator.

// ————— Slow variant

// span_interpolator trans is a general purpose interpolator.
// It calls the Transformer::transform() for each point of the
// scanline, thus, it's slow. But it can be used with any

// kind of transformations, linear or non-linear.

e
//typedef agg::span interpolator trans<agg::trans perspective>
// interpolator type;
/] === Fast variant

// span_interpolator linear is an accelerated version of the general
// purpose one, span_interpolator trans. It calculates

// actual coordinates only for the beginning and the ending points

// of the span. But the transformations must be linear and parallel,
// that is, any straight line must remain straight after applying the
// transformation, and any two parallel lines must remain parallel.
// It's not sutable for perspective transformations in general

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG

5/5/19, 9:23 PM

Page 3 of 7


https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_perspective.h.html#trans_perspective
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_trans.h.html#span_interpolator_trans
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_trans.h.html#span_interpolator_trans
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_perspective.h.html#trans_perspective
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_trans.h.html#span_interpolator_trans

Anti-Grain Geometry - Image Parallelogram Transformations

{

{

// (they are not parallel), but quite OK for this particular case,
// i.e., parallelogram transformations.

typedef agg::span interpolator linear<agg::trans perspective>
interpolator type;

e ————

interpolator type interpolator (tr);
// "hardcoded" bilinear filter

typedef agg::span image filter rgb24 bilinear<agg::order bgr24,
interpolator type>
span_gen type;

typedef agg::renderer scanline aa<renderer base, span_gen type>
renderer type;

span_gen_type sg(sa,
rbuf img(0),
agg::rgba(l, 1, 1, 0),
interpolator) ;

renderer type ri(rb, sg);

g _rasterizer.reset();

g _rasterizer.move to d(m_triangle.
g _rasterizer.line to d(m triangle.
g rasterizer.line to d(m triangle.
g _rasterizer.line to d(m _triangle.

), m_triangle.yn(
), m_triangle.yn(
), m_triangle.yn(
) (

xn (0
xn (1
xn (2
xn(3), m_triangle.yn

agg::render scanlines (g rasterizer, g scanline, ri);

// Render the "quad" tool and controls

g rasterizer.add path(m triangle);

r.color (agg::rgba (0, 0.3, 0.5, 0.6));

agg::render scanlines (g rasterizer, g scanline, r);

virtual void on mouse button down (int x, int y, unsigned flags)

if (flags & agg::mouse_ left)

{
if (m _triangle.on mouse button down(x, y))
{

force redraw();

virtual void on mouse move (int x, int y, unsigned flags)

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG

5/5/19, 9:23 PM

Page 4 of 7


https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_perspective.h.html#trans_perspective
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180707025615/http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_color_rgba.h.html#rgba
https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines

Anti-Grain Geometry - Image Parallelogram Transformations

if (flags & agg::mouse left)
{
if (m_triangle.on mouse move (x, y))

{

force redraw();

}
if((flags & agg::mouse left) == 0)

{

on _mouse button up(x, y, flags);

virtual void on mouse button up(int x, int y, unsigned flags)
{
if (m _triangle.on mouse button up(x, y))

{

force redraw();

int agg main(int argc, char* argvl[])

the application app(agg::pix format bgr24, flip y);
app.caption ("AGG Example. Image Perspective Transformations");

const char* img name = "spheres";
if (argc >= 2) img name = argv[1l];
if (lapp.load img (0, img name))
{
char buf[256];
if (strcmp (img name, "spheres") == 0)

{

"or copy it from another directory if available.",
img name, app.img ext(), img name, app.img ext());

}
else
{

sprintf (buf, "File not found: %s%s", img name, app.img ext());
}
app.message (buf) ;
return 1;

if (app.init (600, 600, agg::window_resize))
{

return app.runf();

}

return 1;

sprintf (buf, "File not found: %$s%s. Download http://www.antigrain.com/%$s%s\n"

5/5/19, 9:23 PM

There is a screenshot:

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG

Page 5 of 7



Anti-Grain Geometry - Image Parallelogram Transformations 5/5/19, 9:23 PM

NOTE
The arcticle is actually outdated. Now class trans_affine has methods to calculate an affine matrix

that transforms a parellelogram to another one, a rectangle to a parellelogram, and a parellelogram
to a rectangle. See agg2/examples/image perspective.cpp. However, the above material is
useful because it helps understand better the AGG concepts.

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG Page 6 of 7


https://web.archive.org/web/20180707025615/http://www.antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180707025615/http://www.antigrain.com/demo/image_perspective.cpp.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/mcseem/index.html
https://web.archive.org/web/20180707025615/http://www.antigrain.com/mcseem/index.html

Anti-Grain Geometry - Image Parallelogram Transformations 5/5/19, 9:23 PM

https://web.archive.org/web/20180707025615/http://www.antigrain.com/tips/image_plg/image_plg.agdoc.htmI#PAGE_IMAGE_PLG Page 7 of 7



