
5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 1 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ients_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

Home/
Tips & Tricks/

 News Docs Download Mailing List CVS

Working with Gradients
A Simple Step-by-Step Tutorial

This article will explain to you how to set up gradients and render them. We will use a simple command-
line example that produces the result in the agg_test.ppm file. You can use, for example IrfanView
(www.irfanview.com) to see the results.

You will need to tell the compiler the AGG include directory and add three source files to the project or
to the command line: agg_rasterizer_scanline_aa.cpp, agg_trans_affine.cpp, and
agg_sqrt_tables.cpp. You can find the source file here: (gradients.cpp).

#include <stdio.h>
#include <string.h>
#include "agg_pixfmt_rgb.h"
#include "agg_renderer_base.h"
#include "agg_renderer_scanline.h"
#include "agg_scanline_u.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_ellipse.h"
#include "agg_span_gradient.h"
#include "agg_span_interpolator_linear.h"

enum
{
 frame_width = 320,
 frame_height = 200
};

// Writing the buffer to a .PPM file, assuming it has
// RGB-structure, one byte per color component
//--
bool write_ppm(const unsigned char* buf,
 unsigned width,
 unsigned height,
 const char* file_name)
{
 FILE* fd = fopen(file_name, "wb");
 if(fd)
 {
 fprintf(fd, "P6 %d %d 255 ", width, height);
 fwrite(buf, 1, width * height * 3, fd);
 fclose(fd);
 return true;
 }
 return false;
}

https://web.archive.org/web/20180707024309/http://antigrain.com/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/tips/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/news/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/download/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/maillist/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/cvs/index.html
https://web.archive.org/web/20180707024309/http://www.irfanview.com/
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/src/agg_trans_affine.cpp.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/src/agg_sqrt_tables.cpp.html
https://web.archive.org/web/20180707024309/http://antigrain.com/tips/gradients_tutorial/gradients.cpp
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_pixfmt_rgb.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_base.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_scanline_u.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 2 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

// A simple function to form the gradient color array
// consisting of 3 colors, "begin", "middle", "end"
//---
template<class Array>
void fill_color_array(Array& array,
 agg::rgba8 begin,
 agg::rgba8 middle,
 agg::rgba8 end)
{
 unsigned i;
 unsigned half_size = array.size() / 2;
 for(i = 0; i < half_size; ++i)
 {
 array[i] = begin.gradient(middle, i / double(half_size));
 }
 for(; i < array.size(); ++i)
 {
 array[i] = middle.gradient(end, (i - half_size) / double(half_size));
 }
}

int main()
{
 unsigned char* buffer = new unsigned char[frame_width * frame_height * 3];

 agg::rendering_buffer rbuf(buffer,
 frame_width,
 frame_height,
 -frame_width * 3);

 // Pixel format and basic renderers.
 //-----------------
 typedef agg::pixfmt_rgb24 pixfmt_type;
 typedef agg::renderer_base<pixfmt_type> renderer_base_type;

 // The gradient color array
 typedef agg::pod_auto_array<agg::rgba8, 256> color_array_type;

 // Gradient shape function (linear, radial, custom, etc)
 //-----------------
 typedef agg::gradient_x gradient_func_type;

 // Span interpolator. This object is used in all span generators
 // that operate with transformations during iterating of the spans,
 // for example, image transformers use the interpolator too.
 //-----------------
 typedef agg::span_interpolator_linear<> interpolator_type;

 // Span allocator is an object that allocates memory for
 // the array of colors that will be used to render the
 // color spans. One object can be shared between different

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#rendering_buffer
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_pixfmt_rgb.h.html#pixfmt_rgb24
https://web.archive.org/web/20180707024309/http://antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#renderer_base
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_array.h.html#pod_auto_array
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_x
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 3 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

 // span generators.
 //-----------------
 typedef agg::span_allocator<agg::rgba8> span_allocator_type;

 // Finally, the gradient span generator working with the agg::rgba8
 // color type.
 // The 4-th argument is the color function that should have
 // the [] operator returning the color in range of [0...255].
 // In our case it will be a simple look-up table of 256 colors.
 //-----------------
 typedef agg::span_gradient<agg::rgba8,
 interpolator_type,
 gradient_func_type,
 color_array_type,
 span_allocator_type> span_gradient_type;

 // The gradient scanline renderer type
 //-----------------
 typedef agg::renderer_scanline_aa<renderer_base_type,
 span_gradient_type> renderer_gradient_type;

 // Common declarations (pixel format and basic renderer).
 //----------------
 pixfmt_type pixf(rbuf);
 renderer_base_type rbase(pixf);

 // The gradient objects declarations
 //----------------
 gradient_func_type gradient_func; // The gradient function
 agg::trans_affine gradient_mtx; // Affine transformer
 interpolator_type span_interpolator(gradient_mtx); // Span interpolator
 span_allocator_type span_allocator; // Span Allocator
 color_array_type color_array; // Gradient colors

 // Declare the gradient span itself.
 // The last two arguments are so called "d1" and "d2"
 // defining two distances in pixels, where the gradient starts
 // and where it ends. The actual meaning of "d1" and "d2" depands
 // on the gradient function.
 //----------------
 span_gradient_type span_gradient(span_allocator,
 span_interpolator,
 gradient_func,
 color_array,
 0, 100);

 // The gradient renderer
 //----------------
 renderer_gradient_type ren_gradient(rbase, span_gradient);

 // The rasterizing/scanline stuff
 //----------------
 agg::rasterizer_scanline_aa<> ras;
 agg::scanline_u8 sl;

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#renderer_scanline_aa
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_scanline_u.h.html#scanline_u8

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 4 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

 // Finally we can draw a circle.
 //----------------
 rbase.clear(agg::rgba8(255, 255, 255));

 fill_color_array(color_array,
 agg::rgba8(0,50,50),
 agg::rgba8(240, 255, 100),
 agg::rgba8(80, 0, 0));

 agg::ellipse ell(50, 50, 50, 50, 100);
 ras.add_path(ell);

 agg::render_scanlines(ras, sl, ren_gradient);

 write_ppm(buffer, frame_width, frame_height, "agg_test.ppm");

 delete [] buffer;
 return 0;
}

It looks rather complex, especially the necessity to declare a lot of types and objects. But the
“complexity” gives you freedom, for example, you can define your own gradient functions or even
arbitrary distortions.

The example renders a circle with linear gradient from (0,0) to (100,0). In AGG you can define an
arbitrary color function, in our case it's a simple look-up table generated from three colors, start,
middle, and end.

Here is the result (the axes and text were added in Xara X):

It also can seem like an overkill for this simple task, but later you will see that it's not so.

The next step is one little modification. Modify the following:

 // Declare the gradient span itself.
 // The last two arguments are so called "d1" and "d2"
 // defining two distances in pixels, where the gradient starts
 // and where it ends. The actual meaning of "d1" and "d2" depands
 // on the gradient function.
 //----------------

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_color_rgba.h.html#rgba8
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180707024309/http://www.xara.com/

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 5 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

 span_gradient_type span_gradient(span_allocator,
 span_interpolator,
 gradient_func,
 color_array,
 50, 100);

The result:

It should explain those freaky d1 and d2 arguments. In fact, they determine the geometrical start
and end of the gradient and their meaning depends on the gradient function.

Now change the gradient function:

 // Gradient shape function (linear, radial, custom, etc)
 //-----------------
 typedef agg::gradient_circle gradient_func_type;

Set d1 back to 0:

 // Declare the gradient span itself.
 // The last two arguments are so called "d1" and "d2"
 // defining two distances in pixels, where the gradient starts
 // and where it ends. The actual meaning of "d1" and "d2" depands
 // on the gradient function.
 //----------------
 span_gradient_type span_gradient(span_allocator,
 span_interpolator,
 gradient_func,
 color_array,
 0, 100);

And modify the circle:

 agg::ellipse ell(0, 0, 120, 120, 100);

The result:

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_circle
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 6 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

Modify d1 again:

 // Declare the gradient span itself.
 // The last two arguments are so called "d1" and "d2"
 // defining two distances in pixels, where the gradient starts
 // and where it ends. The actual meaning of "d1" and "d2" depands
 // on the gradient function.
 //----------------
 span_gradient_type span_gradient(span_allocator,
 span_interpolator,
 gradient_func,
 color_array,
 50, 100);

So that, in case of a radial gradient, d1 and d2 define the starting and ending radii.

By default the origin point for the gradients is (0,0). How to draw a gradient in some other place? The
answer is to use affine transformations. Strictly speaking, the transformations are fully defined by the
span interpolator. In our case we use span_interpolator_linear with an affine matrix. The linear

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#span_gradient
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_allocator.h.html#span_allocator
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_interpolator_linear.h.html#span_interpolator_linear

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 7 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ients_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

interpolator allows you to speed up the calculations vastly, because we calculate the floating point
coordinates only in the begin and end of the horizontal spans and then use a fast, integer, Bresenham-
like interpolation with Subpixel Accuracy.

Add the following code somewhere before calling agg::render_scanlines(ras, sl,
ren_gradient);

 gradient_mtx *= agg::trans_affine_scaling(0.75, 1.2);
 gradient_mtx *= agg::trans_affine_rotation(-agg::pi/3.0);
 gradient_mtx *= agg::trans_affine_translation(100.0, 100.0);
 gradient_mtx.invert();

And modify the circle:

 agg::ellipse ell(100, 100, 120, 120, 100);

The code of initializing of the affine matrix should be obvious except for some strange
gradient_mtx.invert(). It's necessary because the gradient generator uses reverse
transformations instead of direct ones. In other words it takes the destination point, applies the
transformations and obtains the coordinates in the gradient. Note that the affine transformations allow
you to turn a circular gradient into elliptical.

Now it should be obvious how to define a linear gradient from some Point1 to Point2. So, get back
to the original code and add the following function:

// Calculate the affine transformation matrix for the linear gradient
// from (x1, y1) to (x2, y2). gradient_d2 is the "base" to scale the
// gradient. Here d1 must be 0.0, and d2 must equal gradient_d2.
//---
void calc_linear_gradient_transform(double x1, double y1, double x2, double y2,
 agg::trans_affine& mtx,
 double gradient_d2 = 100.0)
{
 double dx = x2 - x1;
 double dy = y2 - y1;
 mtx.reset();
 mtx *= agg::trans_affine_scaling(sqrt(dx * dx + dy * dy) / gradient_d2);
 mtx *= agg::trans_affine_rotation(atan2(dy, dx));
 mtx *= agg::trans_affine_translation(x1, y1);
 mtx.invert();

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_renderer_scanline.h.html#render_scanlines
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_scaling
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_rotation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_basics.h.html#pi
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_translation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_scaling
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_rotation
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine_translation

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 8 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

}

Then modify the circle:

 agg::ellipse ell(100, 100, 80, 80, 100);

And add the transformations:

 calc_linear_gradient_transform(50, 50, 150, 150, gradient_mtx);

Try to play with different parameters, transformations, and gradient functions: gradient_circle,
gradient_x, gradient_y, gradient_diamond, gradient_xy, gradient_sqrt_xy, gradient_conic. Also look at
the gradient functions and try to write your own. Actually, the set of the gradient functions in AGG is
rather poor, it just demonstrates the possibilities. For example, repeating or reflecting gradients should
be implemented in gradient functions (or you can write adaptors that will use the existing functions).

Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_ellipse.h.html#ellipse
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_circle
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_x
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_y
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_diamond
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_xy
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_sqrt_xy
https://web.archive.org/web/20180707024309/http://antigrain.com/__code/include/agg_span_gradient.h.html#gradient_conic
https://web.archive.org/web/20180707024309/http://antigrain.com/mcseem/index.html
https://web.archive.org/web/20180707024309/http://antigrain.com/mcseem/index.html

5/5/19, 9'24 PMAnti-Grain Geometry - Working with Gradients

Page 9 of 9https://web.archive.org/web/20180707024309/http://antigrain.com/tips…ents_tutorial/gradients_tutorial.agdoc.html#PAGE_GRADIENTS_TUTORIAL

