
Embedded Conic Solver (ECOS)

ECOS is a numerical software for solving convex second-order cone programs (SOCPs) of type

min c'*x
s.t. A*x = b
 G*x <=_K h

where the last inequality is generalized, i.e. h - G*x belongs to the cone K. ECOS supports the
positive orthant R_+ and second-order cones Q_n defined as

Q_n = { (t,x) | t >= || x ||_2 }

In the definition above, t is a scalar and x is in R_{n-1}. The cone K is therefore a direct product of
the positive orthant and second-order cones:

K = R_+ x Q_n1 x ... x Q_nN

Features of ECOS
ECOS runs on embedded platforms. Written in ANSI C (except for the timing code), it can be
compiled for any platform for which a C compiler is available. Excluding the problem setup part,
no memory manager is needed for solving problem instances of same structure.
ECOS is efficient. Using sparse linear algebra routines, it computes only what is really necessary.
The interior point algorithm it implements is one of the fastest converging methods that are
currently in use for solving convex conic problems.
ECOS has a tiny footprint. The ECOS solver consists of 750 lines of C code (excluding the problem
setup code).
ECOS is numerically robust. Using regularization and iterative refinement coupled with a carefully
chosen sparse representation of scaling matrices, millions of problem instances are solved
reliably.
ECOS comes with a MATLAB and CVX 2.1 interface, and it is supported by YALMIP. With CVX and
YALMIP you can prototype, simulate and verify the performance of ECOS before you implement
the very same code on your embedded hardware.
ECOS comes with a Python interface. This interface is built on top of NUMPY and SCIPY and uses
its sparse data structures.
There is a Julia interface for ECOS. Julia is a high-level, high-performance language for technical
and scientific computing. You can pull the Julia interface here.
ECOS is library-free. No need to link any external library to ECOS, apart from AMD and sparseLDL,
both from Timothy A. Davis, which are included in this project.

Credits
The solver is essentially based on Lieven Vandenberghe's CVXOPT ConeLP solver, although it differs
in the particular way the linear systems are treated.

The following people have been, and are, involved in the development and maintenance of ECOS:

Alexander Domahidi (principal developer)
Eric Chu (Python interface, unit tests)
Stephen Boyd (methods and maths)
Michael Grant (CVX interface)
Johan Löfberg (YALMIP interface)
Karanveer Mohan (Julia interface)

The main technical idea behind ECOS is described in a short paper. More details are given in Alexander
Domahidi's PhD Thesis in Chapter 9.

If you find ECOS useful, you can cite it using the following BibTex entry:

1

http://cvxr.com
http://users.isy.liu.se/johanl/yalmip/
http://numpy.org
http://scipy.org/
http://julialang.org
https://github.com/karanveerm/ecos.jl
http://cvxopt.org
http://www.ee.ucla.edu/~vandenbe/publications/coneprog.pdf
http://www.stanford.edu/~boyd/papers/ecos.html
http://e-collection.library.ethz.ch/view/eth:7611?q=domahidi

@INPROCEEDINGS{bib:Domahidi2013ecos,
author={Domahidi, A. and Chu, E. and Boyd, S.},
booktitle={European Control Conference (ECC)},
title={{ECOS}: {A}n {SOCP} solver for embedded systems},
year={2013},
pages={3071-3076}
}

Using ECOS with CVX
The simplest way to use ECOS is to install a CVX 2.0 shim. For this to work, you must have the latest
version of CVX installed in MATLAB. Once CVX is installed, add your ECOS directory to your MATLAB
install path and run cvx_setup.

 addpath <ecos-directory>/matlab
 cvx_setup

This will automatically detect the ECOS shim and add it to CVX. If you want to ensure you have the
latest binary for ECOS, instead run

cd <ecos-directory>/matlab
makemex
addpath <ecos-directory>/matlab
cvx_setup

This will build ECOS and install the CVX shim. Please report any error messages to us. The old method
also works:

cd <ecos-directory>/matlab
cvx_install_ecos

This is maintained for compatibility issues (i.e., for users who have not upgraded to CVX 2.0).

Once the ECOS shim is installed, the CVX solver can be switched using the cvx_solver command.
For instance,

 cvx_begin
 cvx_solver ecos % without this line, CVX will use its default solver
 variable x(n)

 minimize sum_square(A*x - b)
 subject to
 x >= 0
 cvx_end

IMPORTANT: Not all of CVX's atoms are SOCP-representable. Some of the atoms implemented in CVX
require the use of SDP cones. Some atoms that could be implemented with a second-order cone are
instead implemented as SDPs, but these are automatically converted to SOC cones. See Issue #8 for
more information.

Using ECOS with CVXPY
CVXPY is a powerful Python modeling framework for convex optimization, similar to the MATLAB
counterpart CVX. ECOS is one of the default solvers in CVXPY, so there is nothing special you have to
do in order to use ECOS with CVXPY, besides specifying it as a solver. Here is a small example from the
CVXPY tutorial:

Solving a problem with different solvers.
x = Variable(2)

2

http://cvxr.com
https://github.com/ifa-ethz/ecos/issues/8
http://cvxpy.org
http://www.cvxpy.org/en/latest/tutorial/advanced/index.html#solve-method-options

obj = Minimize(norm(x, 2) + norm(x, 1))
constraints = [x >= 2]
prob = Problem(obj, constraints)

Solve with ECOS.
prob.solve(solver=ECOS)
print "optimal value with ECOS:", prob.value

Using ECOS with YALMIP
As of release R20130628, YALMIP supports ECOS as a solver - simply use the command

sdpsettings('solver','ecos');

to select ECOS as the solver for your problem. Below is a toy example:

% Solve 1000 SOCPs
x = sdpvar(3,1);
Ufo= [norm(x) <= 2, norm(x+1) <= 2];
plot(Ufo,x,'y',1000,sdpsettings('solver','ecos'))

Using ECOS in MATLAB
Compiling ECOS for MATLAB
ECOS comes with a makefile which resides in the matlab subdirectory of the code. To build ECOS for
MATLAB:

cd <ecos-directory>/matlab
makemex

You should now have a binary file ecos.[ending], with a platform-specific ending. This is the solver
binary. Add the directory <ecos-directory>/matlab to your path to be able to call ECOS from any
place. The command

makemex clean

deletes unecessary files that were produced during compilation.

Calling ECOS from MATLAB
You can directly call ECOS from Matlab using its native interface:

[x,y,info,s,z] = ecos(c,G,h,dims,A,b)

It takes the problem data c,G,h,A,b and some dimension information that is given in the struct
dims. Note that A and G have to be given in sparse format. The equality constraints defined by A and b
are optional and can be omitted. The dims structure has the following fields:

dims.l - scalar, dimension of positive orthant (LP-cone) R_+
dims.q - vector with dimensions of second order cones

The length of dims.q determines the number of second order cones. If you do not have a cone in
your problem, use the empty matrix [] instead, for example dims.q = [] if you do not have
second-order cones. After a solve, ECOS returns the following variables

 x: primal variables

3

http://users.isy.liu.se/johanl/yalmip/

 y: dual variables for equality constraints
 s: slacks for Gx + s <= h, s \in K
 z: dual variables for inequality constraints s \in K

In addition, the struct info is returned which contains the following fields:

 exitflag: 0=OPTIMAL, 1=PRIMAL INFEASIBLE, etc. (see exitcodes section in this readme)
 infostring: gives information about the status of solution
 pcost: value of primal objective
 dcost: value of dual objective
 pres: primal residual on inequalities and equalities
 dres: dual residual
 pinf: primal infeasibility measure
 dinf: dual infeasibility measure
 pinfres: NaN
 dinfres: 3.9666e+15
 gap: duality gap
 relgap: relative duality gap
 r0: ???
 numerr: numerical error?
 iter: number of iterations
 timing: struct with timing information

Example: L1 minimization (Linear Programming)

In the following, we show how to solve a L1 minimization problem, which arises for example in sparse
signal reconstruction problems (compressed sensing):

 minimize ||x||_1 (L1)
 subject to Ax = b

where x is in R^n, A in R^{m x n} with m <= n. We use the epigraph reformulation to express the
L1-norm of x,

 x <= u
 -x <= u

where u is in R^n, and we minimize sum(u). Hence the optimization variables are stacked as follows:

 z = [x; u]

With this reformulation, (L1) can be written as linear program (LP),

 minimize c'*z
 subject to Atilde*z = b; (LP)
 Gx <= h

where the inequality is w.r.t. the positive orthant. The following MATLAB code generates a random
instance of this problem and calls ECOS to solve the problem:

% set dimensions and sparsity of A
n = 1000;
m = 10;
density = 0.01;

% linear term
c = [zeros(n,1); ones(n,1)];

% equality constraints
A = sprandn(m,n,density);

4

Atilde = [A, zeros(m,n)];
b = randn(m,1);

% linear inequality constraints
I = speye(n);
G = [I -I;
 -I -I];
h = zeros(2*n,1);

% cone dimensions (LP cone only)
dims.l = 2*n;
dims.q = [];

% call solver
fprintf('Calling solver...');
z = ecos(c,G,h,dims,Atilde,b);
x = z(1:n);
u = z(n+1:2*n);
nnzx = sum(abs(x) > 1e-8);

% print sparsity info
fprintf('Optimal x has %d/%d (%4.2f%%) non-zero (>1e-8 in abs. value) entries.\n', nnzx , n, nnzx/n*100);

Example: Quadratic Programming

In this example, we consider problems of form

 minimize 0.5*x'*H*x + f'*x
subject to A*x <= b (QP)
 Aeq*x = beq
 lb <= x <= ub

where we assume that H is positive definite. This is the standard formulation that also MATLAB's built-
in solver quadprog uses. To deal with the quadratic objective, you have to reformulate it into a
second-order cone constraint to directly call ECOS. We do provide a MATLAB interface called ecosqp
that automatically does this transformation for you, and has the exact same interface as quadprog.
Hence you can just use

[x,fval,exitflag,output,lambda,t] = ecosqp(H,f,A,b,Aeq,beq,lb,ub)

to solve (QP). See help ecosqp for more details. The last output argument, t, gives the solution
time.

Using ECOS in Python
Compiling ECOS for Python
To create the Python interface, you need Numpy and Scipy. For installation instructions, see their
respective pages. Once those are installed, the following lines of code should work:

cd <ecos-directory>/python
python setup.py install

You may need sudo privileges for a global installation.

Windows installation

Windows users may experience some extreme pain when installing ECOS for Python 2.7. We suggest
switching to Linux or Mac OSX.

5

http://www.numpy.org/
http://www.scipy.org/

If you must use (or insist on using) Windows, we suggest using the Miniconda distribution to minimize
this pain.

If during the installation process, you see the error message Unable to find vcvarsall.bat,
you will need to install Microsoft Visual Studio Express 2008, since Python 2.7 is built against the 2008
compiler.

If using a newer version of Python, you can use a newer version of Visual Studio. For instance, Python
3.3 is built against Visual Studio 2010.

Calling ECOS from Python
After installing the ECOS interface, you must import the module with

import ecos

This module provides a single function ecos with one of the following calling sequences:

solution = ecos.solve(c,G,h,dims)
solution = ecos.solve(c,G,h,dims,A,b,**kwargs)

The arguments c, h, and b are Numpy arrays (i.e., matrices with a single column). The arguments G and
A are Scipy sparse matrices in CSR format; if they are not of the proper format, ECOS will attempt to
convert them. The argument dims is a dictionary with two fields, dims['l'] and dims['q']. These
are the same fields as in the Matlab case. If the fields are omitted or empty, they default to 0. The
argument kwargs can include the keywords feastol, abstol, reltol, feastol_inacc,
abstol_innac, and reltol_inacc for tolerance values, max_iters for the maximum number of
iterations, and the Boolean verbose. The arguments A, b, and kwargs are optional.

The returned object is a dictionary containing the fields solution['x'], solution['y'],
solution['s'], solution['z'], and solution['info']. The first four are Numpy arrays
containing the relevant solution. The last field contains a dictionary with the same fields as the info
struct in the MATLAB interface.

Using ECOS in C
ECOS exports 3 functions, see ecos.h. You need to call these in the following sequence:

1. Setup
Setup allocates memory for ECOS, computes the fill-in reducing ordering and provides other
initialization necessary before solve can start. Use the following function to initialize ECOS:

pwork* ECOS_setup(idxint n, idxint m, idxint p, idxint l, idxint ncones, idxint* q,
 pfloat* Gpr, idxint* Gjc, idxint* Gir,
 pfloat* Apr, idxint* Ajc, idxint* Air,
 pfloat* c, pfloat* h, pfloat* b);

where you have to pass the following arguments: n is the number of variables, m is the number of
inequality constraints (dimension 1 of the matrix G and the length of the vector h), p is the number of
equality constraints (can be 0) l is the dimension of the positive orthant, i.e. in Gx+s=h, s in K, the
first l elements of s are >=0 ncones is the number of second-order cones present in K q is an array of
integers of length ncones, where each element defines the dimension of the cone Gpr, Gjc, Gir are
the the data, the column index, and the row index arrays, respectively, for the matrix G represented in
column compressed storage (CCS) format (Google it if you need more information on this format, it is one
of the standard sparse matrix representations) Apr, Ajc, Air is the CCS representation of the matrix A
(can be all NULL if no equalities are present) c is an array of type pfloat of size n h is an array of type
pfloat of size m * b is an array of type pfloat of size p (can be NULL if no equalities are present) The
setup function returns a struct of type pwork, which you need to define first.

6

http://repo.continuum.io/miniconda/
go.microsoft.com/?linkid=7729279
http://go.microsoft.com/?linkid=9709949

2. Solve
After the initialization is done, you can call the solve function, which contains the actual interior point
method, by idxint ECOS_solve(pwork* w); The return value is an integer, see below.

3. Cleanup
Call void ECOS_cleanup(pwork* w, idxint keepvars); to free all allocated memory.

Exitcodes
ECOS defines a number of exitcodes that indicate the quality of the returned solution. In general,
positive values indicate that the solver has converged within the given tolerance. More specifically, +
0: optimal + 1: primal infeasible + 2: dual infeasible

An exact definition of when these flags are returned can be found in Alexander Domahidi's PhD
Thesis in Chapter 9.4.2. (pp. 163).

Negative numbers indicate that the problem could not be solved to the required accuracy (the
returned iterate might still be satisfactory - please do check the duality gap etc.) + -1: maximum
number of iterations reached + -2: numerical problems (unreliable search direction) + -3: numerical
problems (slacks or multipliers became exterior) + -7: unknown problem in solver

It is in general good practice to check the exitcode, in particular when solving optimization problems
in an unsupervised, automated fashion (in a batch job, for example). Please report optimization
problems for which ECOS struggles to converge to one of the authors.

7

http://e-collection.library.ethz.ch/view/eth:7611?q=domahidi
http://e-collection.library.ethz.ch/view/eth:7611?q=domahidi

