
 

FormsFX
Project Report
Sacha Schmid
Rinesch Murugathas

Dirk Lemmermann
Dieter Holz

Windisch, 18 August 2017

1. Summary

This report describes the project «FormsFX» and contains information about

architectural decisions, technological specifications, and challenges faced

during development. It also compares different solutions for the challenges

in this project and how they compare to each other.

Forms are an essential part of many business applications. In JavaFX, creat-

ing such forms can be a tedious and time-consuming process with little to no

pre-defined components for things like validation.

The result of this project is a JavaFX framework that helps developers create

powerful forms with little manual effort. Instead of spending time on te-

dious manual work, developers can instead focus on the semantic specifics

of their forms and how the data entry could be handled most efficiently.

1.1. Fact Sheet

Table 1	 Fact sheet about the ‘FormsFX’ project 

Project Name FormsFX

Project Duration 20 February 2017 – 18 August 2017

Team Members Sacha Schmid, Rinesch Murugathas

Customer Dirk Lemmermann Software & Consulting

Coach Dieter Holz

Repository https://github.com/DieterHolz/FormsFX

�1

https://github.com/DieterHolz/FormsFX

�2

Table of Contents

1. Summary 1 ..

1.1. Fact Sheet	 1

2. Introduction 5 ..

3. Previous Situation 7 ...

3.1. Problems	 7

3.2. Competitors	 7

4. Architecture 15 ...

5. API Design 19 ..

5.1. Code Versus DSL	 19

5.2. Creational Patterns	 22

6. Model 25 ...

6.1. Structure	 25

6.2. Form	 25

6.3. Group and Section	 26

6.4. Field	 27

6.5. Validation	 35

6.6. Internationalisation	 38

6.7. Testing	 39

7. View 41 ...

7.1. Renderers	 41

�3

7.2. Grid Layout	 42

7.3. Custom Controls	 44

7.4. CSS Styling	 56

7.5. Testing	 56

8. Conclusion 57 ...

9. Evolution Scenarios 59 ...

9.1. Tab Indices	 59

9.2. Tables	 59

9.3. Business Controls	 59

10. References 61 ..

10.1. List of Tables	 61

10.2. List of Figures	 61

10.3. List of Listings	 62

11. Honesty Declaration 65...

�4

2. Introduction

This report details the processes and findings of the IP6 project «FormsFX»

along with architectural details, design decisions, and analysis on relevant

topics and competitors.

Most business applications use forms in some way or another to collect and

manipulate data. Some examples for this might be gathering customer ad-

dresses or credit card information.

In JavaFX there is not a lot of support for such forms. There are individual

components to handle user interaction. This, however, does not include

bindings to a model, support for multi-language applications, or validation

methods.

Creating forms in JavaFX is a complicated process that requires a lot of

manual effort and eventually leads to loads of repeated code and, thus, a

heavily error-prone process. FormsFX is a framework that allows developers

to create complex forms in an easy manner by hiding much of the complexi-

ty and by removing the need for tedious, repetitive, manual work.

Figure 1	 Distribution of work with JavaFX forms on top and FormsFX below

FormsFX not only saves a developer’s time, but also allows them to spend

their precious time on the things that actually matter, like structure and se-

mantics.

INTRODUCTION �5

First and foremost, FormsFX is a tool to increase developer productivity. De-

velopers should not be forced to waste hours upon hours writing the same

functionality, but instead be able to focus on how the form should be struc-

tured and which information is essential. In the end, this also helps end

users as they get a more usable form.

The main part of this report documents the individual pieces of the FormsFX

tool and how they interact and build upon each other.

Throughout this report, the term «user» will be in reference to developers

who use the FormsFX framework. Users of the resulting forms will be re-

ferred to as «end users». 

INTRODUCTION �6

3. Previous Situation

3.1. Problems

Java as a language is often criticised for its boilerplate and often repetitive

code. Of course this also applies to creating forms, where the problem is es-

pecially obvious. The process involves various bindings and listeners that

have to be created manually. Often, one of these bindings can be forgotten

or only applied in one direction, which then breaks the form in a rather non-

obvious way. This leads to time spent on unnecessary debugging and lots of

frustration on the developer’s side.

The following listing shows a snippet from a form developed in JavaFX. It is

clearly visible that even a simple form requires lots of manual bindings

among other complexities.

Listing 1	 Manual creation of bindings

3.2. Competitors

This project is not the first that tries to solve this problem. There have been

other projects, which solve it in their own ways. Two such products we have

found are FXForm2 and TornadoFX, which both attempt to make it easier to

create forms.

Bindings.bindBidirectional(tfName.textProperty(),
country.nameProperty());
Bindings.bindBidirectional(tfPopulation.textProperty(),
country.populationProperty(), new NumberStringConverter());
Bindings.bindBidirectional(tfCountryCode.textProperty(),
country.countryCodeProperty());
country.latitudeProperty(), new NumberStringConverter());
Bindings.bindBidirectional(tfLongitude.textProperty(),
country.longitudeProperty(), new NumberStringConverter());
Bindings.bindBidirectional(title.textProperty(),
country.nameProperty());

PREVIOUS SITUATION �7

3.2.1.	 FXForm2

FXForm2, like this project, is also solved in JavaFX and is very similar in the

features it offers. The approach with this competitor is that they have solved

it like a normal Java application extension, meaning you have to write code

like in any other Java application.

This competitor relies heavily on properties and Java beans, from which

most aspects of the form are derived. This, however, still involves lots of

manual coding, as the bean classes still have to be created manually. One of

their tag lines is «don’t waste time coding forms, focus on styling,» which is

indicative of their priorities. Indeed, the form is created based on the model

bean, at which point the user is practically forced to add in custom styling in

order to achieve a uniform and visually pleasing form.

Our approach is different. From the beginning, we set out to create a fluent

API, which is responsible for creating the form. This is not the case with FX-

Form2. In FormsFX, as well as in FXForm2, the model has to be created first.

However thanks to the fluent API it is much more intuitive and less compli-

cated to create the form itself.

Another big difference is that we have validators directly embedded in our

fluent API, whereas with FXForm2 the validators can be annotated in the ob-

ject class. Also our product offers more validators where the competition of-

fers only a limited amount of validators.

Also, FXForm2 offers the same styling possibilities as our product, however

their style is somewhat outdated. That, however, is no problem since the

user can style it however they like. The big advantage in FormsFX is that we

offer a default styling for the form, so that the form looks uniform and the

user does not have to do more if they are satisfied with the default styling.

Further, they offer only the possibility to add all the contents of the form in

one column, with the exception that the user can create a skin for the form

to do the layout. We offer the possibility to do that directly in our fluent API

with the .span() option, which defines how many columns a field can take.

This allows the user to layout his form however they like.

PREVIOUS SITUATION �8

Another big advantage our product has is the use of custom controls to ren-

der fields, whereas in FXForm2, they let the user create the fields first and

then add it to the form. With our approach, we relieve the user from creat-

ing more tedious boilerplate code as our custom controls are specified for

each type. For example, the user wants a field «name». Now all they have to

do is Field.ofStringType("name") and this will create a custom control

with a Label and TextField.

However, one feature they offer and we do not is the possibility to reorder

fields at runtime. This is not possible with our product, the user has to de-

fine the order of the fields from the beginning. This can easily be adjusted

with copy and paste to the desired order.

Lastly, our product has the advantage of handling state changes, which is

only possible to a limited degree in FXForm2. This means that it is easily vis-

ible when something on the form changes and this is supported by appro-

priate state stylings.

PREVIOUS SITUATION �9

Listing 2	 Simple form created with FXForm2

When comparing the above example with the one below, it is visible that the

latter has cleaner code. This also leads to the following example being much

easier to understand for a new user using FormsFX. Another advantage of

FormsFX is the fluent API, which allows the user to easily customise the field

further, like setting a label for the field with the .label() option and even

more (see 6.4.) With FXForm2 this is not that easily possible and also harder

to understand.

public class SimpleForm {
 @Override
 public String getSampleName() {
 return "Basic form";
 }

 @Accessor(value = Accessor.AccessType.FIELD)
 public class User {
 public StringProperty username = new
SimpleStringProperty();
 public StringProperty password = new
SimpleStringProperty();
 }

 @Override
 public Node getPanel(Stage stage) {
 Pane root = new Pane();

 FXForm form = new FXFormBuilder<>()
 .includeAndReorder("username", "password")
 .build();

 User user = new User();
 form.setSource(user);

 root.getChildren().add(form);
 return root;
 }
}

PREVIOUS SITUATION �10

Listing 3	 Simple form created with FormsFX

3.2.2.	 TornadoFX

TornadoFX is more than just a framework to build forms. It is intended to

create JavaFX applications easier and minimise the amount of code needed

to do so. TornadoFX is written in Kotlin and serves as a framework for

JavaFX. It has support for many of Kotlin’s practical features as well as work-

ing with existing JavaFX libraries, like ControlsFX. Therefore, the main prob-

lem this tries to solve is not exactly the same as FormsFX.

Even though this framework is not aimed directly at creating forms, it still

does a good job at it. It reduces the amount of code needed to build a form

and has handy features like checking for changes before saving the form

and disabling buttons accordingly. It also has validation features like, re-

quired check and showing errors in a Tooltip. This is all very similar to our

framework, with the difference being that we have a very strong API which

does all of that for us in a very simple and easily understandable way. So the

public class User {
 public StringProperty username = new
SimpleStringProperty();
 public StringProperty password = new
SimpleStringProperty();
}

User u = new User();

Form loginForm = Form.of(
 Group.of(
 Field.ofStringType(u.username)
 .label("username"),
 Field.ofStringType(u.password)
 .label("password")
)
).title("Basic form”);

Pane root = new Pane();

root.getChildren().add(new FormRenderer(loginForm));
return root;

PREVIOUS SITUATION �11

only difference, at first glance, might seem that their framework is written

in Kotlin and ours is in JavaFX.

However one of the big difference is that it still requires the user to create

the fields beforehand and then bind them with the appropriate property

type. There are controls to solve this issue, but there are only a few standard

controls available and most of them are application specific and not really

created to work within a form. They, however, have a guide, which shows

how to create a control if needed, whereas our framework already delivers a

simple control for almost every type that can be included in a form. The

added bonus of our product is that our form can be extended with custom

built controls, whenever more functionality is needed.

This example shows how a simple login form can be created with Tornad-

oFX and it includes also some logic for the buttons.

PREVIOUS SITUATION �12

Listing 4	 Simple form created with TornadoFX in Kotlin

With FormsFX the same form can be achieved like follows, however the but-

tons have to be created outside of the fluent API. With these examples it is

now visible that the TornadoFX example above is more error prone than the

lower FormsFX one. This is due to the fact that the fields have to be bound

by the user, whereas with FormsFX this is done automatically. Another ad-

vantage our product brings is that the user can set the required message

himself, making it easier for him to configure that instead of having a de-

fault message.

class EnabledView : View("Basic form") {
 val model = ViewModel()
 val username = model.bind { SimpleStringProperty() }
 val password = model.bind { SimpleStringProperty() }

 override val root = form {
 fieldset {
 field("username") {
 textfield(username).required()
 }
 field("password") {
 passwordfield(password).required()
 }
 buttonbar {
 button("Cancel",
ButtonBar.ButtonData.CANCEL_CLOSE).setOnAction {
 println("do nothing")
 }
 button("OK", ButtonBar.ButtonData.OK_DONE) {
 enableWhen { model.valid }
 setOnAction {
 println("do something")
 }
 }
 }
 }
 model.validate(decorateErrors = false)
 }
}

PREVIOUS SITUATION �13

Listing 5	 Simple form created with FormsFX in JavaFX 

public class User {
 public StringProperty username = new
SimpleStringProperty();
 public StringProperty password = new
SimpleStringProperty();
}

User u = new User();

Form loginForm = Form.of(
 Group.of(
 Field.ofStringType(u.username)
 .label("username"),
 Field.ofStringType(u.password)
 .label("password")
)
).title("Basic form”);

Pane root = new Pane();

root.getChildren().add(new FormRenderer(loginForm));
return root;

PREVIOUS SITUATION �14

4. Architecture

In general, the architecture is made up of two main layers. On one hand,

there is a model layer, which defines the semantical relation between all

components and processes the form data. On the other hand, there is the

view layer, which presents the modelled data to the end users and allows

them to interact with the data in order to create and modify it.

Figure 2	 High-level diagram 

ARCHITECTURE �15

Figure 3	 Model layer class diagram

The model layer is made up of structural elements that group, contain, and

process form data. This layer is also responsible for validation using a set of

pre-defined and custom validators, as well as handling different localisation

options.  

ARCHITECTURE �16

Figure 4	 View layer class diagram

The view layer is made up of renderers. These take a structural element

from the model layer and turn them into a displayable element that can be

included in a GUI application.

The separation between model and view is clear. Both layers serve their

own task and rely on each other to fulfil the tasks outside of their own re-

sponsibility. This separation of concerns makes the framework much more

understandable and allows for more extensibility. This way, especially on

the view layer, users can extend existing functionality and provide new in-

teraction models to their own end users, without losing the many benefits of

FormsFX.

This extensibility and potential for customisation is a clear goal for Forms-

FX. Reducing complexity for the expected use cases of a form goes a long

way towards higher developer efficiency, however, also providing extension

points and paving the way for custom implementations makes FormsFX the

ideal tool for forms-based applications. 

ARCHITECTURE �17

ARCHITECTURE �18

5. API Design

5.1. Code Versus DSL

With this project there was the possibility to go in different ways with the

API design. One of this discussion was to create the API in code versus using

a DSL.

This project solved this problem in code for the following reasons. With the

code approach there is the advantage of having code completion in the IDE.

Lots of developers rely heavily on code completion as it makes it really easy

to code and lets the developer be more efficient.

Along with the ease and comfort of code completion comes greater trans-

parency of the API. Developers can often simply start typing a method name

and have code completion offer them a list of available methods and their

expected arguments and types.

Another advantage this approach gives us, is that there is the possibility of

validation. Some form of basic validation is already available in every lan-

guage and the special advantage is that they can be enhanced further, mean-

ing they can be custom built, which is not possible with DSL.

5.1.1.	 Kotlin

To create the API design, there was also the possibility to do it in Kotlin

(https://goo.gl/rjQvjf). Kotlin is very similar to Java and it features new and

additional functionality, since it is more modern than Java.

Kotlin features a somewhat less verbose syntax, at least compared to Java,

while inferring a lot of information from the code and its context. This has a

variety of benefits as it could potentially streamline some of the previously

mentioned tedious handiwork by wrapping it in a more concise and clear

syntax, but the approach would still suffer from the repetition. Thus, Kotlin

alone would not be the desired silver bullet.

API DESIGN �19

https://goo.gl/rjQvjf

Listing 6	 Java vs Kotlin code comparison

Another reason to choose JavaFX over Kotlin is that Kotlin 1.0 was only re-

leased a few days before this project started, thus it was fairly new and a po-

tential risk to take. There was not much documentation available at that

time and all the problems had to be solved through StackOverflow. There-

fore, we decided to stick with JavaFX, since we already know that and were

confident in our skills.

// Java

public abstract class Car {
 private String name;

 Car(String name){
 this.name = name;
 }
}

public class Ford extends Car{
 private String model;
 private String color;

 Ford(String model, String color){
 super("Ford");
 this.model = model;
 this.color = color;
 }
}

Ford focus = new Ford("Focus", “blue”);

// Kotlin

abstract class Car(val name: String)

class Ford(val model: String, val color: String) : Car(“Ford")

val focus = Ford("Focus", "Blue")

API DESIGN �20

5.1.2.	 YAML

During development there was the possibility to design the API with YAML

(YAML Ain't Markup Language). This approach has the advantage that it is

very easy to understand since the syntax is created to be very much human-

readable.

The big advantage of YAML is that it was built from ground up to be simple

to use and therefore it allows you to do powerful configuration without hav-

ing to learn complex concepts.

Another benefit of YAML is that it relies on indentation to derive hierarchy.

This would make something like a form with its sub-elements and structure

instantly transparent.

Listing 7	 YAML sample code

The most obvious drawback is lack of code completion. Personal experience

has shown that configuration files are often created by copying and pasting

sections of the file and replacing the required values. Having the API in code

receipt: Oz-Ware Purchase Invoice
date: 2012-08-06
customer:
 first_name: Dorothy
 family_name: Gale

items:
 - part_no: A4786
 descrip: Bucket
 price: 1.47
 quantity: 4

bill-to: &id001
 street: |
 123 Tornado Alley
 Suite 16
 city: East Centerville
 state: KS

ship-to: *id001

API DESIGN �21

makes it easier to write the entire structure by hand and to have a better

understanding of the inner workings of what’s happening.

In addition to the issue of code completion, having the configuration in an-

other language would also introduce another layer of complexity as the file

would first have to be parsed and interpreted. For the user, this would also

mean that they have to shift their model of thinking from writing code to

writing configuration, which often breaks developer flow.

5.2. Creational Patterns

5.2.1.	 Factory Pattern

The factory pattern is used to create instances of the structural objects, i.e.

Forms, Groups, and Fields. All these classes act as abstract factories that ex-

pose methods starting with of, e.g. Form#of, Group#of, and Field#of-

StringType.

These factories make the structural options for creating a form very trans-

parent. Especially the ofType distinction on Fields gives users a clear un-

derstanding of the semantics contained within a field.

Listing 8	 Form structure made up using the structural elements

5.2.2.	 Builder Pattern

FormsFX relies heavily on a simplified form of the builder pattern. This cre-

ational pattern offers users a flexible approach to creating and augmenting

objects using a fluent API.

Form.of(
 Group.of(
 Field.ofStringType("Test"),
 Field.ofSingleSelectionType(new ArrayList<>() { … }, 1)
),
 Section.of(
 Field.ofDoubleType(3.5),
 Field.ofBooleanType(false)
)
)

API DESIGN �22

Unlike the factory pattern and traditional constructors, a builder does not

necessarily restrict available options and the order in which they are de-

fined. Instead, users can chain method calls and build up objects or even

augment them later on using an API that is based on natural language, i.e.

the method calls read fluently.

The advantages of this approach are clear. Users have a way to rapidly build

up a form without creating auxiliary variables as they can chain method

calls. This makes the form's structure much clearer and groups relevant ob-

jects together.  

API DESIGN �23

�24

6. Model

6.1. Structure

The model layer relies on a clear structure to build an understandable and

usable form. This structure needs to be represented by a transparent API

and clear naming conventions.

The structural components each represent their own purpose and delegate

relevant work to the lower levels. Like this, a clear separation of concern

can be achieved, which in turn keeps the form efficient and extensible.

Semantic issues are a clear focus on this layer. Components, properties and

their modification methods, as well as state indicators are named to repre-

sent their functionality in a very transparent fashion.

6.2. Form

Forms are the highest semantic level on the structural layer. In general, end

users expect to handle exactly one form at a time. For a good user experi-

ence, they expect this form to be structured clearly with groupings for con-

nected fields.

In its essence, a form is simply a container for groups and sections, and, by

connection, for fields. This brings with it a lot of responsibility, as forms

handle some properties that are to apply to all child elements, such as locali-

sation functionality.

The form is then the primary point of interaction for the user. In most cases,

checking the state of individual components is not necessary, but instead

one only wants to check if the entire form is valid or changed. In this situa-

tion, the form acts as a proxy, checking all its children for their state and re-

vealing this aggregate to the user.

MODEL �25

As mentioned above, the form is also responsible for handling international-

isation. After localising all the form properties, the localisation service is

then passed down to the child elements, where the responsibility for transla-

tion is delegated to the other components.

Table 2	 Form properties

6.2.1.	 Value Handling

Form fields can be bound to external properties. For this, there exist differ-

ent modes. One mode is to update the model only when the form is persist-

ed, while the other mode does it continuously. These can be changed on the

form-level. Internally, the continuous binding mode persists form data upon

all valid changes.

6.3. Group and Section

Groups and sections are intermediary component on the structural layer.

Just like the form, they act as a sort of wrapper for child components, in this

case fields.

As the name implies, these components create a structural grouping or a

semantic sectioning of content. The difference between the two components

is just that. Groups are a loose coupling of fields where there is no need for a

semantic relevance between each field, but instead only a need for structur-

Property Purpose Methods I18N

title Sets the form title. In forms-centered
applications, the window title can be
bound to this property.

title(String)
getTitle()
titleProperty()

x

valid Determines whether all child elements
are currently valid.

isValid()
validProperty()

changed Determines whether any child
elements have changes from their
persisted state.

hasChanged()
changedProperty()

persistable Determines whether all child elements
can be persisted. For this, the form
needs to have changes, all of which
are valid.

isPersistable()
persistableProperty()

translationService This service is used to translate all
translatable values.

i18n(TranslationService)
isI18N()

MODEL �26

al organisation. Sections, on the other hand, represent both a structural and

semantic grouping so they serve a more strict purpose than groups. Sections

can also carry a title to identify the purpose of the fields, as well as offering

the end user the possibility of collapsing the entire section.

Both groups and sections are essentially collections of fields. Just like the

forms delegate work to groups, groups can then delegate work to their fields

in a very similar manner.

Groups and sections both offer the possibility to check the changed and valid

states, however, this is usually handled through the form itself (see 6.2.)

Table 3	 Group and Section properties

6.4. Field

Fields are the smallest unit in a form. They contain and manage the actual

values and handle user interaction and input, thus handling the most essen-

tial task in the entire form. On a semantic and functional level, fields need to

be differentiated based on what types of values they are to contain.

In FormsFX, there is a distinction between two general types of fields. On

one hand, there is the DataField, a type of field that handles free-form user

entry, usually text-based. End users can thus enter any kind of text into these

fields. The user input is then converted to an appropriate type that the field

can hold as the current value.

Property Purpose Methods I18N

title Sets the section title. Does not apply to
groups.

title(String)
getTitle()
titleProperty()

x

collapsed Keeps track of whether the section is
currently collapsed. Does not apply to
groups.

isCollapsed()
collapsedProperty()

valid Determines whether all child elements
are currently valid.

isValid()
validProperty()

changed Determines whether any child elements
have changes from their persisted
state.

hasChanged()
changedProperty()

MODEL �27

On the other hand, there is the SelectionField. These fields offer end users a

list of possible items, from which one or more can be selected. End users do

not have the option to modify this list in any way other than changing the

current selection.

In the context of a form, fields cannot stand on their own. They are to be

contained in a group or a section, which in turn is contained in a form. This

allows delegation of things like internationalisation to a higher level. The

fields can then focus on their own properties.

MODEL �28

Table 4	 Field properties

6.4.1.	 Value Handling

Fields handle values in multiple levels. The first level is the user input

property. This value is directly modified by users and not validated, i.e. it is

an exact representation of what the user entered. If the validation passes,

Property Purpose Methods I18N

label Describes the field’s content in a
concise manner. This description is
always visible and usually placed next
to the editable control.

label(String)
getLabel()
labelProperty()

x

tooltip This contextual hint further describes
the field. It is usually displayed on
hover or focus.

tooltip(String)
getTooltip()
tooltipPorperty()

x

placeholder This hint describes the expected input
as long as the field is empty.

placeholder(String)
getPlaceholder()
placeholderProperty()

x

required Determines, whether entry in this field
is required for the correctness of the
form.

required(boolean)
required(String)
isRequired()
requiredProperty()

x

editable Determines, whether end users can
edit the contents of this field.

editable(boolean)
isEditable()
editableProperty()

valid Determines, whether the current user
input is considered valid.

isValid()
validProperty()

changed Determines, whether the current user
input is different from the persisted
value.

hasChanged()
changedProperty()

id Describes the field with a unique ID.
This is not visible directly, but can be
used for styling purposes.

id(String)
getID()
idProperty()

styleClass Adds styling hooks to the field. This
can be used on the view layer.

styleClass(List<String>)
getStyleClass()
styleClassProperty()

span Determines, how many columns the
field should span on the view layer.
Can be a number between 1 and 12 or
a ColSpan fraction.

span(int)
span(ColSpan)
getSpan()
spanProperty()

errorMessages Holds a list of all current error
messages that validators have raised.
Usually displayed in a tooltip.

getErrorMessages()
errorMessagesProperty()

x

renderer Determines the control that is used to
render this field on the view layer.

render(SimpleControl)
getRenderer()

MODEL �29

the user input is then transformed and stored in the value property. The

value property can then be persisted using the persist() method, which

not only updates the persistent value property, but also updates any

bindings to model classes. Alternatively, fields can be reset to their persisted

value using the reset() method.

6.4.2. DataField

A DataField contains arbitrary data that can be entered and modified by

the end user. These fields are generally considered free-form, i.e. end users

can enter whatever kind of value they want to.

DataFields can be initialised with a default value or with a property of the

respective type. If a value is used, the persistent value will be initialised with

this value. If a property is used, the persistent value will be bound to this

property and the initial value will be derived from the property.

Listing 9	 DataField initialisation

The user entry is converted using a value transformer. These helper meth-

ods take a String input and convert it to a concrete type, i.e. the generic type

of each field. All fields have a default transformer, which can be overridden

using the format() method.

Listing 10	 Value transformer definition

// Binding initialisation

StringProperty name = new SimpleStringProperty("Hans");
Field.ofStringType(name);

// Value initialisation

Field.ofStringType("Hans");

Field.ofDoubleType(5.0)
 .format(d -> Double.parseDouble(d) * 2)

MODEL �30

Value transformations rely on the correct implementation of the transform-

ing methods. The expectation is that the method either returns the trans-

formed value or throws some sort of exception.

Users may define error messages for these value transformations. The mes-

sages may be localised.

Table 5	 DataField properties

6.4.3.	 StringField

A StringField is a concrete implementation of a DataField. This type of

field handles String input, i.e. any kind of text. Due to the user input being

represented as a String, this class has the least amount of restrictions, at

least in regard to the value transformation.

By default, this field transforms values using the String::valueOf method.

This method does not throw any exceptions, thus the transformation will

always succeed.

There are two modes for this field. It can be either single-line or multi-line.

This is a semantic differentiation which has results on the view layer, but

otherwise the fields share a common semantic definition.

Property Purpose Methods

value Holds the field’s last valid value. Invalid
values are not stored in this property.

getValue()
valueProperty()

userInput Holds the current user input. This is an
exact representation of the user’s input
before any transformation or validation
happens.

getUserInput()
userInputProperty()

validators Holds a list of all validators. validate(Validator…)

valueTransformer Determines the function that is
responsible for transforming the user
input string into a concrete value.

format(ValueTransformer, String)
format(ValueTransformer)

MODEL �31

Table 6	 StringField information

6.4.4.	 BooleanField

A BooleanField is a concrete implementation of a DataField. This type of

field handles boolean input, i.e. either truthy or falsy values. In cases where

values other than true or false are accepted, it is up to the user to decide

which values fall into which category.

By default, this field transforms values using the Boolean::parseBoolean

method. Like this, only values which are explicitly true are transformed to a

true value, all other values just turn into false.

The handling of the required case is also different here. Since, by default,

any non-null value is considered to fulfil the required condition, Boolean-

Field has to be handled differently. Here, only a true value is considered

valid, any other value fails this check.

Table 7	 BooleanField information

6.4.5.	 IntegerField

An IntegerField is a concrete implementation of a DataField. This type

of field handles numerical input, more precisely integer values.

By default, this field transforms values using the Integer::parseInt

method. This method throws an exception if the user input could not be

parsed as an integer value, thus failing the type conversion.

Value Type String

Super Type DataField

Transformer String::valueOf

Value Type Boolean

Super Type DataField

Transformer Boolean::parseBoolean

MODEL �32

Table 8	 IntegerField information

6.4.6.	 DoubleField

A DoubleField is a concrete implementation of a DataField. This type of

field handles numerical input, more precisely double values.

By default, this field transforms values using the Double::parseDouble

method. This method throws an exception if the user input could not be

parsed as a double value, thus failing the type conversion.

Table 9	 DoubleField information

6.4.7.	 SelectionField

A SelectionField contains a pre-defined list of available items. End users

can then select one or more of those items, depending on the concrete im-

plementation. This type of field cannot be directly modified by the end user,

other than changing which elements are selected.

SelectionFields can be initialised with a list of items and an optional initial

selection. Alternatively, users can also supply a properties for the items and

the selection. This will cause a bidirectional binding between the form and

any model classes.

Value Type Integer

Super Type DataField

Transformer Integer::parseInt

Value Type Double

Super Type DataField

Transformer Double::parseDouble

MODEL �33

Listing 11	 SelectionField initialisation

Internally, the items are defined as a typed list property, thus, a Selection-

Field can only ever contain values of a single type. For displaying the values,

the toString method has to be implemented on all elements.

Selection is always based on indices. The user marks the element at a given

index as selected and, internally, the element at the given index is added to

the list of selected items. This means that while selection is based on indices,

getting the selection list returns a list of concrete items.

Table 10	 SelectionField properties

6.4.8.	 SingleSelectionField

A SingleSelectionField is a concrete implementation of a Selection-

Field. As the name implies, it is tasked with handling only single selection.

// Binding initialisation

ListProperty<String> items = new
SimpleListProperty(FXCollections.observableArrayList("Hello",
"World"));
ListProperty<String> selection = new
SimpleListProperty(FXCollections.observableArrayList("Hello"));
Field.ofMultiSelectionType(items, selection);

// Value initialisation

Field.ofMultiSelectionType(Arrays.asList("Hello", "World"),
Arrays.asList(1));

Property Purpose Methods

items Holds all selectable items. Changes to
this also reset the current selection.

items(List, List)
items(List, int)
items(List)
getItems()
itemsProperty()

selection Holds the current user selection.
Depending on the selection mode, this is
a single object or a list of objects.

getSelection()
selectionProperty()

validators Holds a list of all validators. validate(Validator…)

MODEL �34

The field keeps track of a single selected item, rather than a list of selected

items.

This also means that selecting a new element removes the selection on the

previously selected element. In some cases, an empty selection is desirable.

This can be achieved by selecting null or the index -1.

Users can always change the list of items, along with optionally providing a

new selected index.

Validators on this type of fields are expected to be able to handle concrete

type of the selectable value. They receive the new selection as an input.

6.4.9.	 MultiSelectionField

A MultiSelectionField is a concrete implementation of a Selection-

Field. This type of field handles multiple selections on a single list of avail-

able items. The field thus keeps track of a list of selected items.

Users are provided a select() and deselect() method which they can use

to modify the selection list. The passed indices are validated for correctness

and the methods silently fail if the index is invalid.

The list of items can always be changed, along with optionally providing a

new list of selected indices.

6.5. Validation

The act of validating user input takes care of ensuring that a form’s data is in

a valid and useful state. Validation can handle formatting issues as well as

semantic issues. Users expect to be able to create rules that cover all their

requirements, a flexibility that FormsFX provides. There is support for both

pre-defined rules that cover a variety of use cases, as well as custom valida-

tion rules.

The factory naming is designed to fit in with the fluent API of the structural

elements. This gives users a familiar approach to creating and managing

their field validators.

MODEL �35

In general, FormsFX validators are typed using generics. This means that

each validator can claim support for a given type. Fields can then limit their

options of validators to include just the ones that support the field’s type.

This gives a good amount of flexibility, while still ensuring that no invalid

combination is created.

Listing 12	 Definition of field validators

Every step of validation results in an instance of a ValidationResult. This

class contains a boolean that determines success or failure of the validation,

as well as any error messages. These messages can optionally be localised.

Aggregating a list of error messages is as simple as collecting all message en-

tries of all validation results.

Validation happens in a fixed order. If there is a failure at any step of the

way, the following steps are not checked. First of all, the required condition

is checked. If a field is marked as required and no entry was given, the vali-

dation fails. Then, at least for a DataField, the type conversion happens. If

the user input could not be converted to the field’s concrete type, the valida-

tion fails. The next step is going through all the field validators, thus collect-

ing the results and error messages in a list. If all the above validators result-

ed in a success, the field is marked as valid.

Listing 13	 Collection of error messages

Field.ofStringType(".ch").validate( 
 StringLengthValidator.exactly(3, "…"), 
 RegexValidator.forPattern("^.[a-z]{2}$", "…"), 
 CustomValidator.forPredicate(s -> s.contains("xyz"), "…") 
)

List<String> errorMessages = validators.stream() 
 .map(v -> v.validate(transformedValue)) 
 .filter(r -> !r.getResult()) 
 .map(ValidationResult::getErrorMessage) 
 .collect(Collectors.toList());

MODEL �36

6.5.1.	 Type Validation

Every DataField is represented in two ways. First, it is represented as a

String, which can be edited by the user. In addition to this, it is also stored as

a typed value, i.e. an IntegerField has a string-formatted integer and an

integer value.

This value transformation also acts as a kind of validation. If the transfor-

mation fails, the field is considered invalid as it could not be represented as

the concrete value.

Type validators are an extension point for developers. Here, they can pass

custom formats, e.g. a transformer that turns strings of numbers with thou-

sands separators into proper Integers or Doubles.

6.5.2.	 Required Validation

All fields can be marked as required. For most fields, this simply means that

the value must not be empty. BooleanField requires a true value, Single-

SelectionField requires a non-null selection, and MultiSelectionField

requires a non-empty selection. In the cases where this validation is differ-

ent from the default it is overridden using the validateRequired hook.

6.5.3.	 Range Validation

There are multiple validators that are only concerned with ensuring that a

value lies within a given range. All these validators offer factories for mini-

mum and maximum values, along with methods that only take one limit and

imply the other limit. Methods use names like atLeast, upTo, shorterThan,

longerThan, and exactly.

Listing 14	 Constructor for a range validator

private DoubleRangeValidator(double min, double max, String
errorMessage) {  
 super(input -> input >= min && input <= max, errorMessage); 
}

MODEL �37

Numbers (Integer, Double) can be validated for their value, Strings can be

validated for their length, and lists can be validated for their selection size.

6.5.4.	 RegEx Validation

Strings can be validated using a RegEx validator. The RegexValdiator pro-

vides a convenient way to check a string against a pattern. The class pro-

vides a factory for a user-defined pattern, as well as pre-defined patterns for

email addresses, URLs, and alphanumeric values.

6.5.5.	 Custom Validation

In situations where the provided validators are not enough, developers can

also create custom validators. Using the forPredicate factory on the Cus-

tomValidator class, they have the option to pass a Predicate that takes

the field’s transformed value and runs a custom validation on it.

Internally, most validators are subclasses of the custom validators, thus they

already use the developer-facing extension point. Ideally, the flexibility cre-

ated by the pre-defined validators and the custom predicates should make

creating new, custom validator classes unnecessary.

6.6. Internationalisation

Business applications are often used in an international context so providing

multiple localisations of an applications is a key feature. Handling these lo-

cale settings and correctly updating all the necessary components is a diffi-

cult and error-prone process, even more so if locale changes need to happen

at runtime.

FormsFX is fully i18n-ready. It provides mechanisms to translate all dis-

played values, such as titles, labels, and error messages. Translated values

are updated automatically whenever the underlying locale changes using a

listener.

Internationalisation is handled using a TranslationService. The core task

of this service is to take a key and provide a translated value for the current

MODEL �38

locale. Each concrete implementation of such a service is responsible for

handling locale changes and keeping track of the current locale.

Out of the box, FormsFX offers a ResourceBundle-based implementation. It

keeps track of the current ResourceBundle and notifies listeners whenever

it is changed. The translation is based on a lookup of the key in the bundle.

This implementation is to be considered a reference implementation. While

it covers many use cases, it does not offer proper error handling or fall-

backs. A custom TranslationService could augment the existing imple-

mentation or swap it for something else entirely, e.g. translation using a

database.

Internationalisation is handled on the form level. The form automatically

passes the localisation down to its children. Thanks to this, adding multi-

language capabilities to a form takes only a few lines of code.

Listing 15	 Adding internationalisation to a form

Multi-language is not mandatory. Applications can still be developed using a

single locale. Developers can then use the exact same API so there is no di-

vergence in the two approaches. The switch, however, is absolute. Forms

with mixed content, i.e. some localised and some non-localised strings, are

not currently possible.

6.7. Testing

There is a test suite covering the most important aspects of the model layer.

These tests ensure correct functionality of the core components, like struc-

tural elements and validators. The tests achieve a coverage of roughly 80%,

i.e. they cover all the core functionality and most of the extended functional-

ity.  

ResourceBundle rbEN = ResourceBundle.getBundle("demo.demo-
locale", new Locale("en", "UK"));
ResourceBundleService rbs = new ResourceBundleService(rbEN)

Form.of(…).i18n(rbs);

MODEL �39

�40

7. View

7.1. Renderers

Renderers are the core components responsible for turning the modelled

data into a visible user interface. They take the structural elements and use

their information to present end users with a well-designed and user-friend-

ly form.

Each structural level has a different renderer, with the field level offering an

extension point for developers where they can swap out the default render-

er for a custom control of their own.

7.1.1.	 Form

The FormRenderer class is, in most cases, the only class that developers di-

rectly interact with. It renders form specifics and redirects rendering for

groups and sections to their respective renderers (see 7.1.2.)

Internally, a form is displayed as a VBox where groups and sections are

added as child nodes in a vertical fashion.

Listing 16	 Form inclusion in a UI

7.1.2.	 Group and Section

Just as on the semantic level, groups and sections are also handled different-

ly on the view level. Groups represent a looser coupling of fields by only vi-

sually grouping the elements inside a rectangle.

Sections, on the other hand, use a TitledPane to offer a more visually obvi-

ous binding. Due to this, sections can also carry a title and be collapsed by

the end user.

Form formModel = Form.of(…);
getChildren().add(new FormRenderer(formModel));

VIEW �41

Internally, both GroupRenderer and SectionRenderer inherit from Sec-

tionRendererBase, which defines shared characteristics between the two

subtypes, such as grid columns and the way fields are added to the group.

For sections, the grid is then added to a TitledPane, which handles collaps-

ing in the UI.

The concrete rendering for a field is not handled by the group, but instead

redirected to the field’s renderer (see 7.1.3.)

7.1.3.	 Field

Fields do not have a general renderer. Instead, each field has a specific de-

fault renderer that is able to handle the field’s data. Developers can then de-

cide to override this default renderer with another compatible implementa-

tion, possibly even a custom implementation of their own.

Listing 17	 Changing of the default renderer on a field

This works by only initialising the control during rendering. In the end, this

offers a great deal of flexibility combined with type safety.

7.2. Grid Layout

A consistent layout is key to a visually pleasing form. Due to the different

types of data that need to be handled within a form and their respective con-

trols, achieving such a layout is often not an easy task.

In FormsFX, this is achieved by using a GridPane to layout children of the

controls. Every field has a definition for colspan, i.e. a value that deter-

mines the number of available columns and their width. The pre-defined

controls then all give two columns to the label, while the remaining columns

are reserved for the editable controls.

Field.ofMultiSelectionType(…, …)
 .render(new SimpleCheckBoxControl<>())

VIEW �42

Listing 18	 Column definitions for a simple control

Controls are then added to the Group grid, which is made up of 12 columns.

This grid handles different situations, namely one where the colspan val-

ues always result in 12 columns per row, but also one where this is not the

case. In this situation, the grid just leaves empty space at the end of a row

and moves the control to the next row.

Listing 19	 Column handling in a group 

int columns = field.getSpan(); 
 
for (int i = 0; i < columns; i++) { 
 ColumnConstraints colConst = new ColumnConstraints(); 
 colConst.setPercentWidth(100.0 / columns); 
 getColumnConstraints().add(colConst); 
}

for (Field f : element.getFields()) { 
 int span = f.getSpan(); 
 
 if (currentColumnCount + span > COLUMN_COUNT) { 
 currentRow += 1; 
 currentColumnCount = 0; 
 } 
 
 SimpleControl c = f.getRenderer(); 
 c.setField(f);  
 
 grid.add(c, currentColumnCount, currentRow, span, 1); 
 
 currentColumnCount += span; 
}

VIEW �43

Figure 5	 Grid layout with different column spans

Thanks to the Group and Field grids, a consistent layout can be achieved

throughout the whole form, regardless of how developers decide to struc-

ture their forms.

In order to make the grid layout more transparent to developers, a custom

ColSpan enum is provided with proportions instead of numbers, e.g. Col-

Span.HALF represents 6 columns. The 12 column grid offers many possible

divisions, such as halves, thirds, quarters, and sixths.

7.3. Custom Controls

On the view level, each field can be represented by a custom control. This is

an ideal extension point for developers where they can easily integrate their

own controls. In order to provide a proper out-of-the-box experience,

FormsFX provides a collection of reference implementations. These simple

controls handle the basic tasks of form controls, combined with the features

and possibilities of the backing fields.

7.3.1.	 SimpleControl

All controls share the SimpleControl base class. This abstract class holds

information which is to be available in every control. Most importantly, it

has a reference to a field, the type of which is defined using generics. Each

control can state which level of specificity of fields it decides to support.

VIEW �44

The base class does not contain any UI nodes, i.e. it could not be rendered by

itself. It is up to the concrete classes to determine, how the UI structure

needs to be set up for the control to work ideally.

The custom controls use pseudo classes to handle state-specific styling.

These classes react to state changes on the fields, e.g. when its validity

changes from valid to invalid, or vice versa. These classes help with structur-

ing the CSS code as they create a clear division between element and state.

Once a pseudo class has been set, CSS rules can target elements in a specific

state, e.g. .control:invalid.

Listing 20	Pseudo classes used for custom controls

Using pseudoClassStateChanged — a method defined on the Node class —

pseudo classes can easily be added to or removed from an object.

Enabling or disabling the four pseudo classes depends on certain properties

of the Field classes. In general, the state is set when the control is ini-

tialised, while listeners handle changes to the properties.

Listing 21	 Listeners to set and update pseudo classes

REQUIRED_CLASS = PseudoClass.getPseudoClass("required");
INVALID_CLASS = PseudoClass.getPseudoClass("invalid");
CHANGED_CLASS = PseudoClass.getPseudoClass("changed");
DISABLED_CLASS = PseudoClass.getPseudoClass("disabled");

setupValueChangedListeners() {
 field.validProperty().addListener(() ->
 updateStyle(INVALID_CLASS, !newValue));
 field.requiredProperty().addListener(() ->
 updateStyle(REQUIRED_CLASS, newValue));
 field.changedProperty().addListener(() ->
 updateStyle(CHANGED_CLASS, newValue));
 field.editableProperty().addListener(() ->
 updateStyle(DISABLED_CLASS, !newValue));
}

VIEW �45

Every control has a tooltip to show more information about the field. This

includes pre-defined messages that aid the end user’s understanding of the

field, but also any error messages that arise from the user input. Depending

on the controls model of interaction, tooltips are either shown when the ed-

itable control is focused, or when the editable control is hovered. These two

options cover most general use cases and thus offer much flexibility.

In general, concrete control implementations only determine when the

tooltip should be displayed. The logic behind creating the tooltip and posi-

tioning it below a given control lies in the SimpleControl class so a consis-

tent user experience can be achieved.

As with most JavaFX controls, the simple controls offer an easy way to add

custom styling by taking an ID and a list of style classes, which can then be

used as a styling hook. This adds an additional layer of flexibility for the de-

veloper.

7.3.2.	 SimpleTextControl

This implementation of a SimpleControl handles text input, i.e. a String-

Field. The control creates a Label and TextField and renders them in a

grid.

The speciality of this control is, that it is not only used for TextField, but

for TextArea as well. This distinction is based on the multiline property of

the field and can even be changed dynamically at runtime.

In order to achieve this a managed property is bound with the visibility

property for the TextField and TextArea. The managed property removes

the node completely from the view and does not just hide it. This way all the

layout settings also get updated.

Listing 22	Managed property binding to switch between nodes

editableArea.managedProperty().bind(editableArea.visiblePropert
y());
editableField.managedProperty().bind(editableField.visiblePrope
rty());

VIEW �46

Figure 6	 Default styling for SimpleTextControl in different states

The fact that this control supports two editable controls based on a condi-

tion, along with the default read only mechanism, leads to a more specific

binding. This binds the text field’s and text area’s visibility properties to a

binding, created using both conditions, i.e. multiline and editable.

VIEW �47

Listing 23	Visibility property binding to hide and show nodes

For the read only mechanism, TextField, TextArea, and a Label are

added to a StackPane. Depending on the visibility property the field or area

is hidden and the label will be shown, which will always show the current

user input in a non-editable label.

7.3.3.	 SimpleNumberControl

For the number types — Integer and Double — there need to be two sepa-

rate custom controls so that each type can be rendered individually. Howev-

er, since most of the code is identical, those parts are shared in a base ab-

stract class SimpleNumberControl.

This control creates a Label and Spinner and renders them in a grid. The

read only mechanism works by hiding or showing either the Spinner or the

Label, which are both included in a StackPane. In order to achieve this, the

visibility properties of the elements are bound to the field’s editable proper-

ty.

In order to improve the user experience, both numeric controls can be in-

cremented or decremented with the up and down keys, respectively. 

editableArea.visibleProperty().bind(Bindings.and(field.editable
Property(), field.multilineProperty()));
editableField.visibleProperty().bind(Bindings.and(field.editabl
eProperty(), field.multilineProperty().not()));

VIEW �48

Figure 7	 Default styling for SimpleNumberControl in different states

7.3.4.	 SimpleIntegerControl

This implementation of a SimpleControl handles numerical data, specifi-

cally integral numbers, i.e. an IntegerField. The control’s spinner is ini-

tialised using integer values. A concrete minimum or maximum is not de-

fined, developers are instead encouraged to use range validators (see 6.5.3.)

Listing 24	Creating an Integer-type Spinner

7.3.5.	 SimpleDoubleControl

This implementation of a SimpleControl handles numerical data, specifi-

cally double precision numbers, i.e. a DoubleField. The control’s spinner is

initialised using double values. A concrete minimum or maximum is not de-

fined, developers are instead encouraged to use range validators (see 6.5.3.)

editableSpinner.setValueFactory(new
SpinnerValueFactory.IntegerSpinnerValueFactory(Integer.MIN_VALU
E, Integer.MAX_VALUE, field.getValue()));

VIEW �49

7.3.6.	 SimpleBooleanControl

This implementation of a SimpleControl handles boolean data, i.e. a

BooleanField. This control creates a Label and a CheckBox. The CheckBox

is added to a VBox so that state stylings can be applied on the VBox instead of

the CheckBox or the whole control in order to keep the the overall style of

the form uniform. The read only mechanism works by enabling or disabling

the CheckBox.

Figure 8	 Default styling for SimpleBooleanControl in different states

7.3.7.	 SimpleListViewControl

This implementation of a SimpleControl handles lists in multi selection

mode, i.e. a MultiSelectionField. The control renders a Label and List-

View.

Since this control relies on string representation of the lists contents, the

binding from the view to the model and vice versa is handled with listeners

instead of bindings like with most other controls.

Another difference to the other controls is that since this control does not

have an editable control that can be focused, at least not like other controls,

the Tooltip has to be shown when the user hovers over the complete List-

VIEW �50

View and not only on one item in the list. Because of that the Tooltip gets

toggled on mouse enter and leave.

Listing 25	ListView Tooltip handling

The read only mechanism for this control works by enabling or disabling the

ListView.  

listView.setOnMouseEntered(event -> toggleTooltip(listView));
listView.setOnMouseExited(event -> toggleTooltip(listView));

VIEW �51

Figure 9	 Default styling for SimpleListViewControl in different states

VIEW �52

7.3.8.	 SimpleComboBoxControl

This implementation of a SimpleControl handles lists in single selection

mode, i.e. a SingleSelectionField. The control renders a Label and Com-

boBox, which are added to a StackPane so that they can be hidden and

shown to achieve the read only mechanism.

Since this control does not have an editable control the Tooltip will be only

shown, when the user hovers over the ComboBox. This is solved similar to

the Tooltip handling of SimpleListViewControl (see 7.3.7.)

Figure 10	Default styling for SimpleComboBoxControl in different states

7.3.9.	 SimpleCheckBoxControl

This implementation of a SimpleControl handles lists in multi selection

mode, i.e. a MultiSelectionField. The control renders renders a Label

and a list of CheckBoxes, which are added to a VBox for state styling pur-

poses. The read only mechanism here works enabling or disabling the

CheckBoxes whenever the editable property of the field changes. 

VIEW �53

Figure 11	 Default styling for SimpleCheckBoxControl in different states

With this control there is also a difference for the handling when the items

of the field changes. It is not a simple task of setting up a binding, but in-

stead means that all checkboxes have to be recreated. Since the CheckBoxes

have to be redrawn, they also need the new bindings as well as the new

event handlers.

VIEW �54

Listing 26	Handling of items change of field

7.3.10.	SimpleRadioButtonControl

This implementation of a SimpleControl handles lists in single selection

mode, i.e. a SingleSelectionField. The control creates a Label and a list

of RadioButtons, which are added to a VBox for state styling purposes. The

read only mechanism works by enabling or disabling the RadioButtons

when the editable property of the field changes.

When the items on the field change, the RadioButtons have to be redrawn.

This means new RadioButtons are created, therefore they need to be

bound again and the event handlers have to be set up again (see Listing 24.)

Figure 12	Default styling for SimpleRadioButtonControl in different states

field.itemsProperty().addListener((observable, oldValue,
newValue) -> {
 createCheckboxes();
 setupCheckboxBindings();
 setupCheckboxEventHandlers();
});

VIEW �55

7.4. CSS Styling

FormsFX uses very little custom styling, mainly to achieve consistency be-

tween some of the components or to handle the visualisation of state

changes.

In some cases, such as with TextField and TextArea, JavaFX’s default

styling is different to the point that the controls feel unrelated, despite serv-

ing a similar purpose, which is why TextArea had to be adapted to look

more like the default TextField.

In other cases, however, it is a matter of adding styling to otherwise plain

components, such as with Group and Section. Since sections are wrapped

in a TitledPane, they reside in a clear container, which is not true for

groups. Due to this, groups were given some styling to make their contain-

ment more clear.

Most of the other styling handles state changes so most of the selectors rely

on custom pseudo classes (see 7.3.1.) The states are represented using a

coloured bar on the far right side of the control, where yellow represents

required, blue represents changed, and red represents invalid. Additionally,

invalid controls are highlighted with a light red background.

The custom styling is combined in view/style.css. Developers can simply

add this stylesheet to their own applications.

7.5. Testing

There is a test suite covering the most important aspects of the view layer.

These tests ensure correct functionality of the core components, like render-

ers and controls. The tests achieve a coverage of roughly 90%, i.e. they cover

all the core functionality and most of the extended functionality. 

VIEW �56

8. Conclusion

At the end of this bachelor’s project, FormsFX solves many of the goals it was

set out to solve. Already, developing and managing a form is a much simpler

task, both compared to standard JavaFX, as well as the competition. Devel-

opers can now focus their work much clearer on the tasks that are actually

important, like defining the structure and the semantics of the form, rather

than wasting time on tedious and repetitive work.

Much of the complexity in this project came from the separation between

model and view. Not always was it clear, which layer would be responsible

for a given task so this lead to some discussion. Even then, many discussions

were held about semantic issues or naming conventions. All of this in an at-

tempt to create a well-structured API that developers can quickly learn and

start using.

The end result is a very flexible and extensible solution. Especially the syn-

ergy between model and view and the way developers can extend the pro-

vided functionality will lead to much more efficiency for the developer.

Whether they want to use an out-of-the-box experience and use the provid-

ed controls or create an entirely new experience with custom controls, cus-

tom validation rules, and more powerful internationalisation services, all

the required functionality and extensibility is provided. 

CONCLUSION �57

�58

9. Evolution Scenarios

9.1. Tab Indices

Controlling the user’s flow through a form is an important part in creating a

user-friendly form. The key part in this is specifically designing the tab navi-

gation, i.e. determining which fields follow which.

In Java, this is handled using things like FocusTraversalPolicy or Tra-

versalEngine, both of which are not currently recommended to use in

JavaFX 8, and will likely arrive with JavaFX 10. At the point of writing this

report, support for custom tab order was not available, which is why it was

left out of the project.

The current implementation determines the tab order based on the order in

which fields have been added to the form.

9.2. Tables

There was much discussion on the topic of tables throughout this project.

Tables can be a vital part of forms-based applications so their inclusion in

FormsFX and possible approaches to the problem were considered. It was

eventually decided to postpone work on this issue and focus on other areas.

9.3. Business Controls

In parallel to the FormsFX project, another project called «MultiDeviceBusi-

nessControls» was conducted as a Bachelor’s project. During the project, the

option of combining the two projects to some degree was kept open. A first

push towards an integration was made by the Business Controls team, but

the idea was eventually pushed back and not considered in-scope for the

FormsFX project anymore.

It is, however, very much possible to integrate the other project, as well as

other business controls into the FormsFX project. In the long run, it could

EVOLUTION SCENARIOS �59

even be desirable to maintain a repository of controls that are compatible

with the FormsFX API. These controls could be new developments, or simply

wrappers for existing controls.

EVOLUTION SCENARIOS �60

10. References

10.1. List of Tables

Table 1	 Fact sheet about the ‘FormsFX’ project	 1

Table 2	 Form properties	 26

Table 3	 Group and Section properties	 27

Table 4	 Field properties	 29

Table 5	 DataField properties	 31

Table 6	 StringField information	 32

Table 7	 BooleanField information	 32

Table 8	 IntegerField information	 33

Table 9	 DoubleField information	 33

Table 10	 SelectionField properties	 34

10.2. List of Figures

Figure 1	 Distribution of work with JavaFX forms on top and FormsFX below	 5

Figure 2	 High-level diagram	 15

Figure 3	 Model layer class diagram	 16

Figure 4	 View layer class diagram	 17

Figure 5	 Grid layout with different column spans	 44

Figure 6	 Default styling for SimpleTextControl in different states	 47

Figure 7	 Default styling for SimpleNumberControl in different states	 49

Figure 8	 Default styling for SimpleBooleanControl in different states	 50

Figure 9	 Default styling for SimpleListViewControl in different states	 52

REFERENCES �61

Figure 10	Default styling for SimpleComboBoxControl in different states	 53

Figure 11	 Default styling for SimpleCheckBoxControl in different states	 54

Figure 12	Default styling for SimpleRadioButtonControl in different states	 55

10.3. List of Listings

Listing 1	 Manual creation of bindings	 7

Listing 2	 Simple form created with FXForm2	 10

Listing 3	 Simple form created with FormsFX	 11

Listing 4	 Simple form created with TornadoFX in Kotlin	 13

Listing 5	 Simple form created with FormsFX in JavaFX	 14

Listing 6	 Java vs Kotlin code comparison	 20

Listing 7	 YAML sample code	 21

Listing 8	 Form structure made up using the structural elements	 22

Listing 9	 DataField initialisation	 30

Listing 10	 Value transformer definition	 30

Listing 11	 Definition of field validators	 34

Listing 12	SelectionField initialisation	 36

Listing 13	 Collection of error messages	 36

Listing 14	 Constructor for a range validator	 37

Listing 15	 Adding internationalisation to a form	 39

Listing 16	 Form inclusion in a UI	 41

Listing 17	 Changing of the default renderer on a field	 42

Listing 18	 Column definitions for a simple control	 43

Listing 19	 Column handling in a group	 43

Listing 20	Pseudo classes used for custom controls	 45

REFERENCES �62

Listing 21	 Listeners to set and update pseudo classes	 45

Listing 22	Managed property binding to switch between nodes	 46

Listing 23	Visibility property binding to hide and show nodes	 48

Listing 24	Creating an Integer-type Spinner	 49

Listing 25	ListView Tooltip handling	 51

Listing 26	Handling of items change of field	 55 

REFERENCES �63

�64

11. Honesty Declaration

It is hereby declared that the contents of this report, unless otherwise stated,

have been authored by Sacha Schmid and Rinesch Murugathas. All external

sources have been named and quoted material has been attributed appro-

priately.

Windisch, 18 August 2017

Date and Location

Sacha Schmid Rinesch Murugathas

HONESTY DECLARATION �65

