SSJ User’s Guide

Package randvarmulti

Generating Random Vectors

Version: December 14, 2009

This package is a multivariate version of the package randvar. It implements random
number generators for some (nonuniform) multivariate distributions.

CONTENTS 1

Contents
Overview] L 2
[RandomMultivariateGenl Lo 3
IDMultivariateGenl. oo 4
MultinormalGen|o)
[MultinormalCholeskyGen| o 7
MultinormalPCAGenl oo 9

CONTENTS 2

Overview

This package provides a collection of classes for non-uniform random variate generation, very
similar to randvar, but for multivariate distributions.

RandomMultivariateGen

This class is the multivariate counterpart of RandomVariateGen. It is the base class for
general random variate generators over the d-dimensional real space R?. It specifies the
signature of the nextPoint method, which is normally called to generate a random vector
from a given distribution. Contrary to univariate distributions and generators, here the
inversion method is not well defined, so we cannot construct a multivariate generator simply
by passing a multivariate distribution and a stream; we must specify a generating method as
well. For this reason, this class is abstract. Generators can be constructed only by invoking
the constructor of a subclass. This is an important difference with RandomVariateGen.

package umontreal.iro.lecuyer.randvarmulti;

public abstract class RandomMultivariateGen

Methods

abstract public void nextPoint (doublel[] p);

Generates a random point p using the the stream contained in this object.

public void nextArray0fPoints (double[][] v, int start, int n)

Generates n random points. These points are stored in the array v, starting at index start.
Thus v[start] [1] contains coordinate i of the first generated point. By default, this method
calls nextPoint n times, but one can override it in subclasses for better efficiency. The array
argument v[] [d] must have d elements reserved for each generated point before calling this
method.

public int getDimension()

Returns the dimension of this multivariate generator (the dimension of the random points).

public RandomStream getStream()
Returns the RandomStream used by this object.

public void setStream (RandomStream stream)

Sets the RandomStream used by this object to stream.

IIDMultivariateGen

Extends RandomMultivariateGen for a vector of independent identically distributed (i.i.d.)
random variables.

package umontreal.iro.lecuyer.randvarmulti;

public class IIDMultivariateGen extends RandomMultivariateGen

Constructor

public IIDMultivariateGen (RandomVariateGen genl, int d)

Constructs a generator for a d-dimensional vector of i.i.d. variates with a common one-
dimensional generator geni.

Methods

public void setDimension (int d)

Changes the dimension of the vector to d.

public void nextPoint (double[] p)

Generates a vector of i.i.d. variates.

public void setGenl (RandomVariateGen genl)

Sets the common one-dimensional generator to genl.

public RandomVariateGen getGenl ()

Returns the common one-dimensional generator used in this class.

public String toString()

Returns a string representation of the generator.

MultinormalGen

Extends RandomMultivariateGen for a multivariate normal (or multinormal) distribution
[1]. The d-dimensional multivariate normal distribution with mean vector p € R? and
(symmetric positive-definite) covariance matrix ¥, denoted N(p, 3), has density

1 ty =1y
fX) = (%)ddet(z)eXp(—(X—u)EJ (X —p)/2),

for all X € R and X" is the transpose vector of X. If Z ~ N(0,I) where I is the identity
matrix, Z is said to have the standard multinormal distribution.

For the special case d = 2, if the random vector X = (X7, X5)* has a bivariate normal
distribution, then it has mean g = (pq, 2)*, and covariance matrix

2
o 0'1 pPO102
— 2
PO102 0y

if and only if Var[X;]| = o7, Var[X,] = 02, and the linear correlation between X; and X, is
p, where g1 >0, 0o >0, and —1 < p < 1.

package umontreal.iro.lecuyer.randvarmulti;

public class MultinormalGen extends RandomMultivariateGen

Constructors

public MultinormalGen (NormalGen genl, int d)

Constructs a generator with the standard multinormal distribution (with g = 0 and ¥ =1I)
in d dimensions. Each vector Z will be generated via d successive calls to genl, which must
be a standard normal generator.

protected MultinormalGen (NormalGen genl, double[] mu,
DoubleMatrix2D sigma)
Constructs a multinormal generator with mean vector mu and covariance matrix sigma. The
mean vector must have the same length as the dimensions of the covariance matrix, which
must be symmetric and positive-definite. If any of the above conditions is violated, an
exception is thrown. The vector Z is generated by calling d times the generator genl, which
must be standard normal.

protected MultinormalGen (NormalGen genl, double[] mu, double[][] sigma)

Equivalent to MultinormalGen (genl, mu, new DenseDoubleMatrix2D (sigma)).

MultinormalGen

Methods

public double[] getMu()

Returns the mean vector used by this generator.

public double getMu (int i)

Returns the i-th component of the mean vector for this generator.

public void setMu (double[] mu)

Sets the mean vector to mu.

public void setMu (int i, double mui)

Sets the i-th component of the mean vector to mui.

public DoubleMatrix2D getSigma()

Returns the covariance matrix 3 used by this generator.

public void nextPoint (double[] p)

Generates a point from this multinormal distribution.

MultinormalCholeskyGen

Extends MultinormalGen for a multivariate normal distribution [I], generated via a Cholesky
decomposition of the covariance matrix. The covariance matrix ¥ is decomposed (by the
constructor) as 3 = AA" where A is a lower-triangular matrix (this is the Cholesky decom-
position), and X is generated via

X=p+AZ,

where Z is a d-dimensional vector of independent standard normal random variates, and
Al is the transpose of A. The covariance matrix 3 must be positive-definite, otherwise the
Cholesky decomposition will fail. The decomposition method uses the CholeskyDecompo-
sition class in colt.

package umontreal.iro.lecuyer.randvarmulti;

import cern.colt.matrix.DoubleMatrix2D;
import cern.colt.matrix.impl.DenseDoubleMatrix2D;
import cern.colt.matrix.linalg.CholeskyDecomposition;

public class MultinormalCholeskyGen extends MultinormalGen

Constructors

public MultinormalCholeskyGen (NormalGen genl, double[] mu,
double[][] sigma)

Equivalent to MultinormalCholeskyGen(genl, mu, new DenseDoubleMatrix2D(sigma)).

public MultinormalCholeskyGen (NormalGen genl, double[] mu,
DoubleMatrix2D sigma)

Constructs a multinormal generator with mean vector mu and covariance matrix sigma. The
mean vector must have the same length as the dimensions of the covariance matrix, which
must be symmetric and positive-definite. If any of the above conditions is violated, an
exception is thrown. The vector Z is generated by calling d times the generator genl, which
must be a standard normal 1-dimensional generator.

Methods

public DoubleMatrix2D getCholeskyDecompSigma ()

Returns the lower-triangular matrix A in the Cholesky decomposition of 3.

public void setSigma (DoubleMatrix2D sigma)

Sets the covariance matrix 3 of this multinormal generator to sigma (and recomputes A).

public static void nextPoint (NormalGen genl, double[] mu,
double[] [] sigma, double[] p)

Equivalent to nextPoint(genl, mu, new DenseDoubleMatrix2D(sigma), p).

MultinormalCholeskyGen 8

public static void nextPoint (NormalGen genl, double[] mu,
DoubleMatrix2D sigma, double[] p)
Generates a d-dimensional vector from the multinormal distribution with mean vector mu
and covariance matrix sigma, using the one-dimensional normal generator genl to generate
the coordinates of Z, and using the Cholesky decomposition of 3. The resulting vector is
put into p. Note that this static method will be very slow for large dimensions, since it
computes the Cholesky decomposition at every call. It is therefore recommended to use a
MultinormalCholeskyGen object instead, if the method is to be called more than once.

public void nextPoint (double[] p)

Generates a point from this multinormal distribution. This is much faster than the static
method as it computes the singular value decomposition matrix only once in the constructor.

MultinormalPCAGen

Extends MultinormalGen for a multivariate normal distribution [I], generated via the
method of principal components analysis (PCA) of the covariance matrix. The covariance
matrix ¥ is decomposed (by the constructor) as ¥ = VAV"® where V is an orthogonal
matrix and A is the diagonal matrix made up of the eigenvalues of 3. V' is the transpose
matrix of V. The eigenvalues are ordered from the largest (A;) to the smallest (\;). The
random multinormal vector X is generated via

X=u+AZ,

where A = VVA, and Z is a d-dimensional vector of independent standard normal random
variates. The decomposition method uses the SingularValueDecomposition class in colt.

package umontreal.iro.lecuyer.randvarmulti;

import cern.colt.matrix.DoubleMatrix2D;
import cern.colt.matrix.linalg.SingularValueDecomposition;

public class MultinormalPCAGen extends MultinormalGen

Constructors

public MultinormalPCAGen (NormalGen genl, double[] mu, double[][] sigma)
Equivalent to MultinormalPCAGen(genl, mu, new DenseDoubleMatrix2D(sigma)).
public MultinormalPCAGen (NormalGen genl, double[] mu,
DoubleMatrix2D sigma)

Constructs a multinormal generator with mean vector mu and covariance matrix sigma. The
mean vector must have the same length as the dimensions of the covariance matrix, which
must be symmetric and positive semi-definite. If any of the above conditions is violated, an
exception is thrown. The vector Z is generated by calling d times the generator genl, which
must be a standard normal 1-dimensional generator.

Methods

public static DoubleMatrix2D decompPCA (double[][] sigma)
Computes the decomposition sigma = ¥ = VAV*. Returns A = VVA.

public static DoubleMatrix2D decompPCA (DoubleMatrix2D sigma)
Computes the decomposition sigma = ¥ = VAV!. Returns A = VVA.

public DoubleMatrix2D getPCADecompSigma ()
Returns the matrix A = VV/A of this object.

MultinormalPCAGen 10

public static double[] getLambda (DoubleMatrix2D sigma)

Computes and returns the eigenvalues of sigma in decreasing order.

public double[] getLambda()

Returns the eigenvalues of ¥ in decreasing order.

public void setSigma (DoubleMatrix2D sigma)

Sets the covariance matrix 3 of this multinormal generator to sigma (and recomputes A).

public static void nextPoint (NormalGen genl, double[] mu,
DoubleMatrix2D sigma, double[] p)
Generates a d-dimensional vector from the multinormal distribution with mean vector mu
and covariance matrix sigma, using the one-dimensional normal generator genl to generate
the coordinates of Z, and using the PCA decomposition of 3. The resulting vector is put
into p. Note that this static method will be very slow for large dimensions, because it
recomputes the singular value decomposition at every call. It is therefore recommended to
use a MultinormalPCAGen object instead, if the method is to be called more than once.

public static void nextPoint (NormalGen genl, double[] mu,
double[] [] sigma, double[] p)

Equivalent to nextPoint(genl, mu, new DenseDoubleMatrix2D(sigma), p).

public void nextPoint (doublel[] p)

Generates a point from this multinormal distribution. This is much faster than the static
method as it computes the singular value decomposition matrix only once in the constructor.

11

DirichletGen

Extends RandomMultivariateGen for a Dirichlet [1] distribution. This distribution uses the
parameters aj,...,ax, and has density

I'(ap) Hf:l x?i_l

Flonom) ==)

k
where g = Y 7| ;.

Here, the successive coordinates of the Dirichlet vector are generated @ via the class
GammaAcceptanceRejectionGen in package randvar, using the same stream for all the uni-
forms.

package umontreal.iro.lecuyer.randvarmulti;

public class DirichletGen extends RandomMultivariateGen

Constructor

public DirichletGen (RandomStream stream, double[] alphas)

Constructs a new Dirichlet generator with parameters a;; 11 = alphas[i], fori =0,...,k—1,
and the stream stream.

Methods

public double getAlpha (int i)
Returns the ;41 parameter for this Dirichlet generator.
public static void nextPoint (RandomStream stream, double[] alphas,
double([] p)

Generates a new point from the Dirichlet distribution with parameters alphas, using the
stream stream. The generated values are placed into p.

public void nextPoint (double[] p)

Generates a point from the Dirichlet distribution.

I From Pierre: How?

REFERENCES 12

References

[1] N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Multivariate Distri-
butions. John Wiley, New York, NY, 1972.

	Overview
	RandomMultivariateGen
	IIDMultivariateGen
	MultinormalGen
	MultinormalCholeskyGen
	MultinormalPCAGen
	DirichletGen

