
Programmer documentation

xxx,xxx

February 12, 2013

1

Contents

1 ViFrame framework 3

1.1 Pipeline . 3

2 BaseLib 4

2.1 Overview . 4
2.1.1 Sockets . 4
2.1.2 Properties . 5
2.1.3 Objects . 6
2.1.4 Modules - templates . 6
2.1.5 Interfaces . 7

2.2 Data object . 7
2.3 Exception handling . 8
2.4 Communication with the user and the application 8
2.5 Properties . 9
2.6 Module and the application . 10

3 BaseLib::iModule 10

3.1 Uncompleted modules . 11
3.2 Module (dis)connect . 11
3.3 Changing module properties . 12
3.4 Module output . 12
3.5 CutOff . 12
3.6 Module load . 13

3.6.1 Module validity . 14
3.7 Computation . 14

3.7.1 Open, Close, Prepare . 15
3.8 Data owning . 15
3.9 Levelling . 15

4 Module templates 15

4.1 Loader . 16
4.2 RandTransformer . 16
4.3 Visualiser . 16

5 Sample implementation 16

2

1 ViFrame framework

The ViFrame framework is composed of two main parts — a library called
BaseLib and a standalone desktop application both developed in C++. The
application uses QT library to generate the user interface. Since ViFrame needs
to work with modules in the form of dynamically load libraries it is platform-
dependent. One of the most emphasized requirements when developing ViFrame
was to make the implementation of new modules that participate in the visu-
alisation as easy as possible. Since the modules make sense only within the
visualization pipeline, another important aspect was to allow easy integration
of the modules into the pipeline. Despite the requirement on simple implemen-
tation of new module the framework is complex, but it still can be used in simple
way.

1.1 Pipeline

The visualisation pipeline is composed of modules. Modules are the base compu-
tational units and they inherit from the BaseLib::iModule base class. Data be-
tween modules are exchange as data objects. Data object is a named container,
that holds values stored under string ids. Base classBaseLib::iModule does not
provide methods for data handling, these methods are presented in separated ab-
stract class BaseLib::Interfaces::SequentialAcces and BaseLib::Interfaces::RandomAcces.
To enable module the exchange of data objects, there is a need for passing infor-
mation what inner data an object holds. This is accomplished by using Sockets.
The socket is a class that describes data objects which can then be passed from
one module to another to share information about the contained data objects.
Each module can be in three different states: closed (default state), opened
and prepared. The module’s state can be changed by calling fallowing methods
Open, Prepare, Close. After calling Open method, a module should open all
sources. While after call of Prepare method, a module can be asked about data
objects through implemented interface. Finally, the Close method will result
into closing module, the state of module atfer calling of Close method should
be the same like the state after creation or before the Open method was called.
Some modules may require setting up some variables that drive the module
behavior (e.g., path to source file, number of iterations, . . .). A module can de-
clare that given variable is the module property. The module property consist
from associated variable, name and description. Module properties are shown
and can be set up in Properties dialog in the application. To enable connection
checking when assembling the pipeline, a concept of contract and socket is used.
Each module is responsible for proper specification of its input and output sock-
ets. The socket holds description of the data object that the module requires
on input or offers on output. In case of connection every input socket must be
subset of connected output socket. Because it is possible that multiple modules
share output socket specification (name-value array of objects passed), a con-
cept of levels is used to solve this situation. Data value is described not only by
its name but also by the number of the module that created it. The numbers

3

are assigned to modules in such a way that they create a topological numbering
over the pipeline. This enables existence of multiple data with the same name.
Many modules just add new values or modify given values, so their output is
determined by their input. To simplify manipulation inside these modules a
programmatic support is provided by BaseLib so that passing an object in term
of specification can be solved by calling several pre-implemented functions.

2 BaseLib

2.1 Overview

As can be seen from diagram 1 the BaseLib library can be split into several
parts. We list all parts and give at least brief comment to each.

Figure 1: BaseLib diagram

2.1.1 Sockets

This part contains only Socket class. Purpose of Socket is describe input as well
as output socket. For both cases the same class is used, difference is only in way
in which Socket is used. Socket class describes not only the data but also can
describe their meaning. This can by archived by using Name and Description
variables. Socket class is in fact the description of the data object. Levelling

4

(see 2.1.3 and 3.9 for more detail) is also supported with proper methods. The
interface that can be used to obtain described data objects is also specified by
Socket class.

2.1.2 Properties

Contains classes which are used as the module properties. The diagram 2 shown
a dependency in Properties namespace/package. Properties can be set before

Figure 2: diagram of Properties namespace

execution in Properties dialog, which is generated by application. In fact prop-
erties are the only way in which module can obtain information from the user.
So the set up of module is secured through module’s properties. Application
support six types of properties which are the fallowing:

• Bool - CheckBox

• String, Int, Double - TextBox

• IntSelection - ComboBox

• StringFile - TextBox with button for file selection

After dash the graphical element that is used to set given property type is given.
The process of properties setup and more details about properties are described
in section 2.5.

5

2.1.3 Objects

Contains classes for data object which is basically data container. The data
object is a basic data unit handled between modules. Data object does not
provide any functionality that would enable interaction between Socket and
data object. So data object must be constructed by module directly. Data
object contains objects that inhered from class Variant. Variant is value base
class. It doesn’t in way restrict value that can be hold in the data object. All
that class that want to be value carriers must inherit Variant as a base class
and provide implementation of two methods. These methods are Get Type and
To String, second method is used to get value into representation in which it
can be presented to the user. The purpose of first method is identify data value
in framework, so the method should return as unique value as possible.

Figure 3: diagram of Object namespace

Diagram 3 show that BaseLib contains several pre-implemented value types.
The names of the classes are almost all self explanation, just note that prefix V
mean vector.

2.1.4 Modules - templates

The class iModule contains number of methods and to work properly must holds
number of conditions. So to work properly the module have to contain some
utility code. However when writing new module much of these utility code
can be reused. To make implementation of new module easier there are three

6

classes-templates. They could be use as a base for a new module. Each template
corresponds to certain module purpose.

• Loader is a base class that contains all necessary code for a module which
is meant to be data source.

• RandTransfomer is literally a c++ template. It can be used as a base for
modules which want to work as data transformers and need access to all
data at once.

• Visualiser is c++ template as well as RandTransfomer, in fact they are
very similar. But visualiser provide less function then RandTransfomer
and so is easier to be used.

For more detail or implementation information please see documentation for
certain class-module or see 4.

2.1.5 Interfaces

Is some application the access to all the data at once can be required on the
other hand in some application the data can be so large, that they cannot be
loaded into memory at once. To enable usage of ViFrame in both cases there
are two different interfaces that are used to handle data between modules.

• SequentialAcces enable module to work always with only one object.

• RandomAcces provide access to all data by index. All the data are loaded
into memory.

There is also concept of data owning. The concept is used to determine respon-
sibility for data object release. For more information please see 3.8.

2.2 Data object

Data in the application are stored in data objects which are the base data unit
transmitted between modules. A data object is a class that contains the object’s
name and a collection of named values. Each data object can contain at most
one value of a given name. The values that are stored in the data object are
derived from a base value type called Variant. The Variant is a base class that
specifies the interface that is mandatory for every data value. Adding a new
data type is accomplished by deriving from the Variant type.

We can easily imagine a situation where two connected modules has the same
name for their output socket. Which mean that both modules try to save data
under same name, we can call this situation name collision. If there wouldn’t be
any solution and the issue is silently ignored then the second module would have
to deal with this situation on it’s own. By ignoring the situation and simply
rewriting pointer to the data in data object will the module cause memory leak.
To prevent such situation a concept of levelling is used. For more information
about this concept please see 3.9.

7

2.3 Exception handling

Framework has it’t own base class for exception BaseLib::Exception which in-
herit from std::exception. Using this base class for exception is preferred. Addi-
tional support is provided by class ExceptionHolder, which is design to carry the
exception between calling of modules. By stage when the exception is thrown
exception is caught and handled. If it’s thrown in Open, Prepare or Close (or
any inner version of those methods) it’s caught and transferred as parameter
and thrown again. The code which done this can look like this:

// exception holder class

ExceptionHolder ex;

// call Open on SourceModule

SourceModule ->Open(ex);

// any thrown exception is stored in ex variable

// if any exception was thrown this will re -throw it ,

// otherwise nothing happen

ex.Rethrow ();

Instead of direct call of Rethrow the caller can call ContainsException, and if the
exception was thrown do some work before calling Rethrow. ExceptionHolder is
design to carry not only exception from ViFrame framework but also exceptions
that inherit from std::exception.

2.4 Communication with the user and the application

To enable communication from module to the user and to the application, ap-
plication register at the module class that inhered from iReportable. Module
then can communicate by calling a method on the registered class. Methods
correspond with type of communication for they can be used to. There are four
type of communication:

• Text message to the user.

• Progress report, used to report progress in computation.

• ConnectionChanged

• InterfaceChanged

The first one can be used in any time. This message has no influence on ap-
plication execution at all and is meant only to communicate something to the
user. The second one used used in computation phase when the module is with
data objects. It also doesn’t have any real influence on application execution.
The last two type on other hand are used for system purpose. They should be
used only in under certain conditions. The purpose of them is to report the
possibility of change in the module’s connection of interface.

8

2.5 Properties

Module’s properties are set through Properties class. Module simply give list
of properties and all setting is done with properties classes so there is no call of
any Module methods. In this way base module class iModule provide all what is
needed which is access method to properties and properties storage. Properties
store their value into user defined variable. The fallowing example demonstrate
usage of property class.

// Module class

class MyModule : BaseLib:iModule

{

// variable where property value will be stored

int mTargetDimension;

public:

// ctor

MyModule ()

{

// we use static method CreateLimited

// this method create property with given name ,

// description and restrict property range

Properties :: BaseProperty* property =

BaseLib :: Properties :: CreateLimited (

"Target dimension: ",

"Output main data dimension.",

mTargetDimension ,

1,

1048576);

// now we add property into properties container

mProperties.push_back(property);

// now user can set property called "Target dimension: "

// which takes as a valid values integers

// between 1 and 1048576. When user confirm

// property change the value will be saved directly

// into variable mTargetDimension.

}

Module does not have any control of property setting. Because of that prop-
erty validation must be done in property class and if module want to react on
property change the callback method or similar mechanism must be used. The
second issue is pre-solved by Reportable class and existence of ReportProperty.
We demonstrate this on another example:

class MyModule : BaseLib:iModule , BaseLib :: Properties ::

Reportable

{

int mTargetDimension;

public:

virtual void OnChange(BaseProperty* prop)

{

// here we can react on property changes

}

MyModule ()

{

mProperties.push_back(

BaseLib :: Properties :: CreateReport(

9

"T.dim:",

"Description",

mTargetDimension ,

this);

);

}

}

When property T.dim changes the method OnChange with pointer to changed
property as parameter is called. Now we take closer look on the property vali-
dation. It must be done in property setting function

bool SetProperty (const TYPE& data , std:: string& log)

If any error occurs method should return false and store error message in log
parameter. There are two more base facts about properties that should be men-
tioned. The first fact is existence of SetPropertyLoad function. This function is
used when loading pipeline (see. module load 3.6 for more details about module
loading). The second fact is that FiVrame application is able to work only with
predefined properties. So it’s possible to inherent existing class and change it’s
behaviour like validation. For this purpose for example the Property¡Type¿ base
class can be used. But it’s no possible to create new property base directly on
base class BaseProperty.

2.6 Module and the application

Application load modules from sub-folders of Modules folder which is located in
same folder as application executable file. By using sub-folders a tree structure
in the list of modules can be created. Modules are stored as dynamically loaded
libraries dll-files. So in order to use your module in application it must be
compiled into dll file, we also recommend use same compiler as was used to
compiled main application. There is one additional condition. It necessary to
implement three methods which are used by application when loading module.
These methods are:

_DYNLINK void* CreateModule ()

_DYNLINK void DeleteModule(void* module)

_DYNLINK const BaseLib :: Description* GetDescription ()

Implementation example is given in 5. This functions are declared in BaseLib
Module.hpp header file.

3 BaseLib::iModule

Class iModule is base class for the framework module. iModule class contain
few pure virtual function which are

virtual void* AccessInterface (const int& interfaceId) ;

virtual bool CheckIntegrity ();

virtual void innerOpen ();

virtual void innerPrepare ();

10

virtual void innerClose ();

virtual void ValidateOutputSocket ();

This functions must be implemented by user. While some of this function Other
functions are pre-implemented. The suitability of pre-implementation depends
on purpose of usage iModule base class. There is no reason for list function in
module here while this list can be found in doxygen documentation. Instead of
that we present few examples of usage to give user a brief example how solve
some tasks or how is module used in application.

3.1 Uncompleted modules

The module output interface can strongly depend on connected modules or val-
ues of properties. In such case the module can be unable to work as a source
until some requirements are satisfied. The function bool PrepareForConnec-
tion()is used to check is ready to be used as a source.

3.2 Module (dis)connect

Figure 4: Connecting, call digram

Modules are connected and disconnected from Connection dialog. If the user
try to connect two module a function bool Connect(iModule∗, sizet) is called.
This function is used for connecting as well as disconnecting. The function is
called on module target. The example of calling is given in diagram 4. If old
source does not exist calling OnDisconnect is skipped. If new source is nullptr
calling OnConnect is skipped. New source can refuse connection by returning

11

false from OnDisconnect it that case target should not save new source as source
module. On the end three functions which ensure propagation of the Socket
changed are called.

There is one more function for establishing connection. This function is bool
ConnectPure(iModule∗, sizet). The function is used for purpose of pipeline
loading. The function should still call OnDisconnect and OnConnect but the
target should accept connection without any check. The module should not even
update output Socket. Methods for the output Socket update will be called later
by the application.

3.3 Changing module properties

Module can change the number and type of properties by simply changing con-
tent of mProperties. This can be done generally at any time expect when user
is working with module properties. The user can work with module properties
only through the Properties dialog. There is actually no way how to find out if
Properties dialog is open. Still there exist function in which changing properties
is relatively save. Such function is for example bool Connect(iModule∗, sizet).
The reason for safety of this function is that it’s called from Connection dialog
and so Properties dialog is closed.

3.4 Module output

The module can change it in output socket specification as a reaction to change
of the property or as a result of connecting new source. Module output socket
can be change at any time except between Open, Close calls and in OnConnect
method. When module interface is changed interested modules should be no-
tify. The notification can be send by calling ReportInterfaceChanged method.
To made working with output socket easier iModule contains two protected
variables mOutputSocketAdd, mOutputSocketPublic. The second one is used as
a public output socket. The first one can be used in free way. When user
deriving directly from iModule procedure ValidateOutputSocket must be also
implemented. This procedure should check that value of mOutputSocketPublic
correspond to the module properties and inputs. In the default implementation
this function is called to refresh output socket specification (value in mOutput-
SocketPublic).

3.5 CutOff

If user decide to delete the module from the pipeline all the connection must
be disconnected. Is such case all input modules must be disconnected but also
all modules which has the module as input must be disconnected from it. To
simplify this the method CutOff is used, this method do exactly what is describe
in previous sentence. The procedure disconnect all sources and callOnCutOff on
all targets (modules which have this module as a source). To enable this call, the
list of targets must be kept in proper way. If on the module OnCutOff is called

12

the module should disconnect the caller module without calling OnDisconnect
on the caller.

3.6 Module load

Figure 5: Module load diagram

The module number of input socket, specification of input or output socket
and completely whole module interface can be influenced by the module’s prop-

13

erties and modules which are connected to it. When the pipeline is load it’s not
effective simulate the user when he first assemble it. Instead of this two phase
load and unchecked connection establishment are used. In the diagram 5 a pro-
cess of single module load is presented. The main difference between the First
wave load and the Second wave load is that in the second case is guaranteed
that all sources for given module are fully loaded and in valid state. This is
archived by constructing a topological ordering. The Second wave load is done
in topological order.

3.6.1 Module validity

The variable mValid is used to indicate if module is in valid state. This variable
should be only set to false by ConnectPure function. So it’s used only in the load
phase. If mValid is set to false EmitTargetControl will do nothing. The function
which is responsible for setting mValid to true value is ModuleValidation().

3.7 Computation

Figure 6: Module computation diagram

The module it self does not contains the method for data handling. To
access module data the one of the interfaces should be used. The diagram 6
describe the work/computation phase of single module. The important notice
is, that module state before calling Open and after calling Close should be the
same. The annotation of prepared module (R) and prepare module (S) is there
only to emphasize the different between usage the Random and the Sequential
interface. The used interface determine not only the methods that are used to
obtain data but also the way in which data owning is handled (see 3.8 for more
detail).

14

3.7.1 Open, Close, Prepare

When working with source module the methods like Open, Prepare are called.
These function guaranteed that even when they are called multiple times their
inner equivalents will be called just once.

3.8 Data owning

Because the data are handled between modules and single data object can be
required multiple times there is need to define responsibility for final releasing of
the data. This is done by concept of data owning. This differs for each Interface.

• SequentialAcces The module give up owning if the object is passed with
GetObject method. It the GetObject method is not call and all the data are
just iterate by calling Next the source module is responsible for releasing
all the objects. But when GetObject is called there is no way in which
target module can return ownership to the source module.

• RandomAcces If the object is passed by GetObject the ownership is passed
as well. But if ClearOutState is called then the source object get back all
the ownership rights. So the source module should after the ClearOutState
method was called behave like no object has ever been passed.

The module can delete all owned data object when is being closed. From this
point of view for the target who used the RandomAcces access interface on
source is important to make sure that he owes all data he got.

3.9 Levelling

There exists no require on uniqueness of module output object names and of-
course two same modules can be connected in line. There can be situation that
two modules wants to use same name to save theire data. To solve this the
name is prefixed with module number. This enable using the same name for
multiple modules. The Socket as well as Object class contain support for this
functionality. In case of Object all what the module must do is to callPass
method on Object before the object is passed. Similarly the support for Socket
is solved.

4 Module templates

As can be seen from sample 5 usage of module template is simple. From this
reason we only briefly comment functionality of each template and mention
what is user suppose to do in order to use it. For more detail please see doxygen
documentation.

15

4.1 Loader

Loader is pre-implemented template, that is supposed to be used as a data
source. The template contains one pure virtual method GenerateObject meant
to be implemented by the user. The method should return a new object on each
call.

4.2 RandTransformer

RandTransformer is designed as a pre-implemented template for module that do
transformation over data and need access to all the data at once. The template
contains a pure virtual method Transform where the transformation is done.
The risk when using RandTransformer as a base class is that source and target
data can be the same. So for this reason, first some transformation function
should be composed and then apllied on all data at once.

4.3 Visualiser

Visualiser is similar to the RandTransformer and function which the user has
to implement here is Visualise. The greatest difference is that the source and
the target data are never the same.

5 Sample implementation

In this section the simple example of pre-implementation of the module is given.
To reduce amount of code the data processing is omitted. Module is meant to
be something like Visualisation module. As input module require VDouble data
type. The module give the same type on output. Module has one property of
type int named ’Output dimension: ’.

#ifndef sampleModule_h

#define sampleModule_h

// BaseLib includes

///

#include "Vector.hpp"

#include "Visualiser.hpp"

typedef BaseLib :: Modules ::Visualiser <BaseLib :: Objects ::VDouble ,

BaseLib :: Objects ::VDouble > BaseClass;

class SampleModule : public BaseClass {

private:

/**

* Output dimension.

*/

int mOutputDimension;

public:

SampleModule ()

: BaseClass("OutData"), mOutputDimension (2) {

// register property

16

mProperties.push_back(BaseLib :: Properties :: CreateLimited ("

Output dimension: ", "Output dimension.", mOutputDimension

, 1, 100));

}

public:

void Visualise () {

// test input data size

int dataSize = DataSize ();

if (dataSize == 0) { // no data -> finish

return;

}

// determine input dimension

// we assume that all data has the same size

int inputDimension = AccesInData (0).Data.size();

if (inputDimension < mOutputDimension) {

ReportMessage (BaseLib :: iReportable ::Error , "inputDimension <

mOutputDimension");

throw BaseLib :: Exception ();

}

// iterate input data

for (int i = 0; i < dataSize; ++i) {

std::vector <double >& inData = AccesInData(i).Data;

// data processing can be done here ...

}

// save output data

for (int i = 0; i < dataSize; ++i) {

std::vector <double >& outData = AccesOutData(i).Data;

// write output data into outData

}

}

};

_DYNLINK void* CreateModule () {

return new SampleModule ();

}

_DYNLINK void DeleteModule(void* module) {

SampleModule* convModule = reinterpret_cast <SampleModule *>(

module);

delete convModule;

}

// module description

BaseLib :: Description locDescription(std::pair <int , int >(1,0),

"SampleModule",

"Short description.",

"Long description."

);

_DYNLINK const BaseLib :: Description* GetDescription () {

return &locDescription;

}

#endif // sampleModule_h

17

	ViFrame framework
	Pipeline

	BaseLib
	Overview
	Sockets
	Properties
	Objects
	Modules - templates
	Interfaces

	Data object
	Exception handling
	Communication with the user and the application
	Properties
	Module and the application

	BaseLib::iModule
	Uncompleted modules
	Module (dis)connect
	Changing module properties
	Module output
	CutOff
	Module load
	Module validity

	Computation
	Open, Close, Prepare

	Data owning
	Levelling

	Module templates
	Loader
	RandTransformer
	Visualiser

	Sample implementation

