1/2/2015 mysqlsla v2 Reports

Hack MySQL < mysqlsla < Download < Guide < Documentation < Filters < Reports > Replays > User-
Defined Logs

mysqlsla v2 Reports

This document explains how to create and customize
mysglsla v2 standard reports. Standard reports are the
human-readable reports that mysqglsla prints after parsing » mysgqlsla v2 Reports - Synopsis
and filtering a log. These reports are formatted according , stanard Report Format Template
to a report format which tells mysglsla what to print,
where and how.

mysqlsla v2 Reports
Table of Contents

» Header and Report Format/Value Lines

» Codes
A report format is associated with each type of MySQL log: ... micro
slow, general, binary, udl and msl. mysglsla has, . .. short
internally, a default report format for each log type. For ... cap
all but udl logs, these default report formats are usually ... op

sufficient (they cover every meta-property available). » Special Lines and Values

Conditional Lines

However, you can override the default report format for i
Valueless Lines

any log type by explicitly setting the report format with
the report-format option. . .. Summary Values
» Walk-Through Example
» Why Not Perl Formats

Stanard Report Format Template

« Top

A report format is defined in a simple text file. The report format itself must follow a template in order to
allow mysglsla to easily parse it. The template is:

(extra command line options)
HEADER

(header line format)

(header line values)

REPORT

report line format

report line values

The first lines are extra command line options and are optional. Any command line option is valid and must be
entered exactly as it would be on the real command line. These command line options override those actually
given on the command line. Blank lines are allowed and ignored for readability.

With or without any extra command line options, the next line must be the exact literal string at the very
start of the line: HEADER. This tells mysglsla that all the lines that follow until REPORT are header lines
which are printed only once at the beginning of the report. Here is where you begin putting header and report
format/value lines as described in the next section. Blank lines are allowed but not ignored: a blank line here
because a blank line in the header.

With or without any header lines (but always with the HEADER line present), the next line must be the exact
literal string at the very start of the line: REPORT. This tells mysglsla that all the rest of the lines are
per-query report lines. Here again you put header and report format/value lines. Blank lines are allowed but not
ignored: a blank line here becomes a blank line in the report.

mysglsla will die with an error if it parses no report format lines (lines after REPORT). (Unless the silent
option is being used, then mysglsla does not parse the report format file at all.)

In general, mysglsla tries to make the report format WYSIWYG, although it is by no means a complete and
comprehensive reporting system. I think, at least, it is flexible enough to allow for some creativity. It is
surely far superior to the vl branch which had zero flexibility.

Header and Report Format/Value Lines
« Top

The most important lines in a report format are the header and report format/value lines. These pairs of lines
are like Perl picture/argument lines or sprintf (FORMAT, ARGUMENTS). Since both header and report lines can have
the exact same values (or "arguments" if you prefer that term), I will speak only of report lines.

The first line in the pair is the format. It is identical to an sprintf() format because it is an sprintf () format.
mysglsla simply passes the format line to sprintf (). Therefore, practically everything you know about sprintf ()
formats is true for mysqglsla report format lines, too.

The second line in the pair lists the values to print according to the format. (The values are interpolated
into the format.) These values must be separated by a single space and put on one single line (there is no way
to escape and break the line).

The values are simple names, not code-style variables. These are the available value names:

e Any meta-property name except those noted as "Only for meta-property filter" (except db)
Any abbreviated command line option name: 1t for log-type, etc. (see the op code)

Any grand total meta-property name

e 'query' for the abstracted form of the current query

e 'total gqueries' for the total number of queries

e 'total unique queries' for the total number of unique (abstracted) queries

e 'total unique users' for the total number of unique 'user@host IP'

e 'users' to produce the special total users summary value

e 'explain' to produce the special EXPLAIN summary value

'logs' to produce the special list of logs parsed summary value

If you use a value in a standard report which does not exist, nothing terrible will happen. mysglsla will
simply return a 0 (zero) or blank string.

Each value can be appended with a code in the form: value:code. Codes are the subject of the next section.

Finally, one important point remains to be noted here: be sure to use the correct conversion in the format for
each value. For example, do not use an integer conversion (%d) for a string value, otherwise mysqglsla will

http://hackmysql.com/mysqlsla_reports 1/4

http://hackmysql.com/mysqlsla_documentation
javascript:history.back();
http://hackmysql.com/mysqlsla_guide
http://hackmysql.com/mysqlsla_documentation#silent
http://hackmysql.com/mysqlsla_filters
http://perldoc.perl.org/functions/sprintf.html
http://hackmysql.com/
http://hackmysql.com/mysqlsla_filters
http://hackmysql.com/mysqlsla_documentation
javascript:history.back();
http://hackmysql.com/scripts/mysqlsla-2.03.tar.gz
http://hackmysql.com/mysqlsla
http://hackmysql.com/mysqlsla_documentation#report-format
http://hackmysql.com/mysqlsla_reports
http://hackmysql.com/mysqlsla_replays
http://hackmysql.com/udl

1/2/2015 mysqlsla v2 Reports

print many errors.

Codes

« Top
Technically any value can be "coded," but it only makes sense to code certain values. If you code a string
value with short for example, the result is undefined (mysglsla will probably print a lot of errors). In
general, the codes are straightforward and there are only four.
micro
« Top
The micro code is used with microsecond values and requires an %$s converstion in the format line. The
value is shortened (if possible) and labeled according to its percision: 'value s' for values >= 1
second; 'value ms' for values 1-999 milliseconds; 'wvalue ps' for values 1-999 microseconds. For
microsecond values, the default ps label can be changed with the microsecond-symbol option.
See Microsecond Support for MySQL Slow Logs for a quick overview of microsecond values (1 s vs. 1 ms vs. 1
us) .
short
« Top
The short code is like the micro code except that it is used with big integer values; it also requires
an %s converstion in the format line. The value is shorted and labeled according to its size:
e 'value' for wvalues 0-999
e 'value.nnk' for values 1,000-999,999 (where n is always 2 decimal places of percision)
e 'value.nnM' for wvalues 1,000,000-999,999,999
e 'value.nnG' for wvalues 1,000,000,000-999,999,999,999
¢ 'value.nnT' for values 1,000,000,000,000-999,999,999,999,999
e 'value.nnP' for values 1,000,000,000,000,000-999,999,999,999,999,999 (1-999.99 petabytes)
e 'value.nnkE' for values 1,000,000,000,000,000,000-999,999,999,999,999,999,999 (1-999.99 exabytes)
cap
« Top
The cap code capitalizes SQL syntax. It is used with the query or sample value to make the SQL easier
to read. For the query value, it "un-flattens" the query which was flattened (made all lowercase) by
the abstraction process. The same can be done to correct or normalize the SQL syntax of the sample
value.
The capitalized words are all of the MySQL reserved words plus: SUM, MIN, MAX, COUNT, AGAINST,
SQL NO CACHE, RESET, MASTER, SLAVE, CONCAT, UNIX TIMESTAMP, ROUND, RAND.
mysglsla does not understand backtick () escaping. In fact, it removes all backticks. Therefore, if a
SQL statement has a terribly named table called “join’, mysqglsla will render the table name as JOIN
thereby confusing everyone.
op
« Top

The final code is not a formatting code like the previous three. The op code tells mysglsla that value
is the name of a command line option and it should therefore print the value given to that command line
option. If no value was given because the command line option was not used, a 0 (zero) or blank will be
printed. Or, some options are set with their defaults values even if not explicitly used (sort, for
example) . For such options their default values will be printed.

value must reference the abbreviated name of the option if it has one. For example: db for databases,
1t for log-type, rf for standard-report-format, mf for meta-filter, sf for statement-filter but grep
for grep, top for top, host for host.

This code was implemented to avoid name collisions between command line options and SQL statement meta-
properties. At present there are no collisions but since mysglsla can parse user-defined logs it is
possible that a udl would introduce a meta-property with the same name as a command line option.

Special Lines and Values
« Top
Conditional Lines
« Top

Conditional lines begin with a single quesiton mark (?). They are only printed if all values exist. A
value can be zero (or an empty string) and still exist. Non-existent values are usually command line
options that were not used or meta-properties that were not available from the log or not calucated for
some reason. The question mark is automatically removed from the line if it is printed.

Valueless Lines
« Top

Valueless lines are created by using a single underscore () for the value line of the format line
which has no values yet should still be printed. Do not simply leave the value line blank; this will
terribly confuse mysqglsla.

Summary Values
« Top

Currently there are only three summary values: users, explain and logs.

users refers to the list of all unique "user@host IP" which are associated with the query. The users
summary prints these users as well as what percentage each user accounts for each occurrence of the
query and what percentage each user accounts for all queries.

explain refers to the output from EXPLAIN if the explain option was used and the query was able to be
EXPLAINed. Otherwise, the summary will print why they query could not be EXPLAINed.

http://hackmysql.com/mysqlsla_reports 2/4

javascript:history.back();
http://hackmysql.com/mysqlsla_udl
javascript:history.back();
javascript:history.back();
javascript:history.back();
http://dev.mysql.com/doc/refman/6.0/en/reserved-words.html
http://hackmysql.com/mysqlsla_documentation#microsecond-symbol
http://hackmysql.com/mysqlsla_documentation#explain
http://hackmysql.com/mysqlsla_documentation
javascript:history.back();
javascript:history.back();
javascript:history.back();
javascript:history.back();
javascript:history.back();
http://hackmysql.com/microsecond_slow_logs

1/2/2015

mysqlsla v2 Reports
logs refers simply to the list of log files given to mysglsla to parse. The summary prints all given
log files even those that could not be parsed for some reason (if the file did not exist for example).
(Technically, this summary just prints ARGV.)

Walk-Through Example

« Top

Now that you are a certified mysglsla v2 report format hacker, having read all the above documentation, here is
a rapid walkthrough of the default report format for slow logs. Line numbers have been added for reference.
First, brief yourself with the format. After, we will walk through it "aloud."

01 -nthp
02
03 HEADER

04 Report for %$s logs: %s

05 1t:op logs

06 %d queries total, %d unique

07 total queries, total unique_ queries

08 Sorted by '%s'

09 sort:op

10 Grand Totals: Time %s s, Lock %s s, Rows sent %s, Rows Examined %s
11 gt t:short gt l:short gt rs:short gt re:short

12

13 REPORT

14

15 %03d
16 sort rank

17 Count : %s (%.2£%%)

18 c¢ sum:short c_sum p

19 Time : %s total, %s avg, %s to %s max (%.2f%%

20 t sum:micro t _avg:micro t min:micro t max:micro t sum p

21 ? %3s%% of Time : %s total, %s avg, %s to %s max

22 nthp:op t sum nthp:micro t avg nthp:micro t min nthp:micro t max nthp:micro
23 ? Distribution : $%s

24 t_dist

25 Lock Time : %s total, %s avg, %s to %s max (%.2£f£%%)

26 1 sum:micro 1_avg:micro 1 min:micro 1 max:micro 1 _sum p

27 ? %3s%% of Lock : %s total, %s avg, %s to %s max

28 nthp:op 1 sum nthp:micro 1 _avg nthp:micro 1 min nthp:micro 1 max_ nthp:micro
29 Rows sent : %s avg, %s to %s max (%.2£%%)

30 rs_avg:short rs_min:short rs_max:short rs_sum p

31 Rows examined : %s avg, %s to %s max (%.2£%%)

32 re_avg:short re min:short re max:short re sum p

33 Database : %8s
34 db

35 Users : %8s
36 users

37 ?EXPLAIN : %s
38 explain

39

40 Query abstract:

41

42 %s

43 query:cap

44

45 Query sample:

46

47 $s

48 sample

49

Line 01 and all lines until HEADER are extra command line options. The nth-percent option is given to enable, if
possible, conditional lines 21 and 27. Line 02 is ignored because blank lines are ignored until HEADER.

HEADER 1is read at line 03, signaling that the lines that follow until REPORT are print-once header lines. Lines
04 and 05 are read as one header line. 1t refers to the command line option log-type because of the op code;
whatever value was given to log-type will be printed. logs is a summary value which will result in @ARGV being
printed: all the log files that mysglsla was told to parse. Lines 06 and 07 are read as one header line.

total queries and total unique queries are normal values. Lines 08 and 09 are read as one header line. sort
refers to the command line option sort because of the op code; whatever value was given to sort will be printed
(or sort's default value). Lines 10 and 11 are read as one header line. The four values, gt t, gt 1, gt rs and
gt re, all refer to grand totals: the log-wide sum of the respective meta-properties. Each value is short coded
so it will be printed in short format: 12.73M instead of 12730021. Line 12 is read as one blank header line.

REPORT is read at line 13, signaling that all the following lines are report lines. Line 14 is read a one blank
report line. Lines 15 and 16 are read as one report line. sort rank is a normal value (from the unique queries
hash). Lines 17 and 18 are read as one report line. c sum short is shortcoded as we have already seen so we will
not mention this coding anymore. Both ¢ sum and c_sum p are normal values (from the unique queries hash).

Lines 19 and 20 are read as one report line. The first four values, t sum, t avg, t min and t max, are micro
coded so their values will be formatted and printed in terms of either microseconds (us unless changed by the

microsecond-symbol option), milliseconds (ms) or seconds (s). The fifth and final value, t sum p, is a normal
value.
Lines 21 and 22 are read as one conditional report line becasue line 21 begins with a question mark (?). If one or

more value from line 22 does not exist, then line 21 is not printed. The first wvalue, nthp, is opcoded as we
have already seen so we will not mention it further. If mysglsla was not ran with the nth-percent option, line 21
will immediately be skipped. However, the nth-percent option was given on line 01, therefore at least this
variable will have a value. However, the next four micro coded values, t sum nthp, t avg nthp, t min nthp and

t max nthp, may not exist and therefore may still cause line 21 to be skipped. These values will not exist if
the query appeared only once in the log (c_sum == 1, lines 17/18) or if it had less than nthp-min-values for this
meta-property (t).

http://hackmysql.com/mysqlsla_reports

3/4

http://hackmysql.com/mysqlsla_documentation#microsecond-symbol
http://hackmysql.com/mysqlsla_documentation#nthp-min-values
http://hackmysql.com/mysqlsla_documentation#nth-percent
javascript:history.back();
http://hackmysql.com/mysqlsla_documentation#nth-percent
http://hackmysql.com/mysqlsla_documentation#sort
http://hackmysql.com/mysqlsla_documentation#log-type

1/2/2015

mysqlsla v2 Reports

Lines 23 and 24 are read as one conditional report line because line 23 begins with a question mark. If
mysglsla was not ran with the dist option, line 24 will not be printed. If it was, the array of time (t)
distributions (dist) will be printed.

For brevity's sake, lines 25/26 and 27/28 are the same as 19/20 and 21/22 except that the meta-property is lock
time (1) instead of slow query time (t).

Lines 29/30 and 31/32 are the same execpt that the former reports the rows sent (rs) meta-property and the
later rows examined (re). Each have 3 short coded regular values and 1 regular value at the end (rs_sum p and
re sum p). Nothing special.

Lines 33 and 34 are read as one report line. Line 33 simple prints the database associated with the query if
any. Very often, this value is blank.

Lines 35 and 36 are read as one report line. users 1s a special summary value that will cause the log-wide
summary of all unique users to be printed along with what percentage each is associated with the specific query
being report and with all queries (log-wide). Due to a current limitation, this later percentage is blank when
replaying a replay.

Lines 37 and 38 are read as one conditional report line. explain is a special summary value that will cause the
full output of EXPLAIN for the query to be printed if it is possible to EXPLAIN the query (if the query has a
database and is a SELECT statement). Otherwise, any error or reason for why the gquery could not be EXPLAIN is
printed (assuming, first, the line itself is printed due to its conditional nature).

Line 39 is a blank line. Lines 40 and 41 are read as one valueless line because line 40 has no conversions (%s,
%d, %.2f, etc.) and line 41 is only a single underscore (). Line 40 will be printed as-is with nothing added.

Lines 42 and 43 are read as one report line. query is a regular value referring to the abstracted form of the
current query. It is capcoded so mysglsla will capitalize all the major SQL synatx words which were flattened
due to the abstraction process.

Line 44 is a blank line and lines 45 through 49 are nothing new: 45 and 46 are a valuelessline, 47 and 48 cause a
real sample of the query to be printed (not the abstracted form but a sample straight from the log), and the
standard format file ends on line 49 with another blank line.

Why Not Perl Formats

« Top

Yes, I know the whole reporting system could be implemented using native Perl formats. Surely, it would allow
much more powerful operations, but that power comes with complexity. I know Perl formats, you know Perl

formats, but you and I are not the only two people using mysglsla. A lot of good hackers do not hack in Perl;
they have chosen Python or some other language so native Perl formats would be more a cursing than a blessing.

I think, however, we can all agree on printf()-style formats which is what mysglsla essentially implements in a
grandiose manner. Unless you code only in Lisp or Fortran, I cannot imagine anyone of even the slightest
technical inclination not knowing at least the basic printf () formats.

I am interested in knowing if there is an easy ready-made solution I have egregiously overlooked? If you know
of one, please tellme. It, however, cannot rely on any non-standard Perl module or external script or program.

mysqlsla v2 Reports was last updated July 9, 2008 for mysqlsla v2.00.

http://hackmysql.com/mysqlsla_reports

4/4

javascript:history.back();
http://hackmysql.com/mysqlsla_replays
http://hackmysql.com/contact
http://hackmysql.com/mysqlsla_documentation#dist
http://hackmysql.com/mysqlsla_documentation#limitations

