
Sphere tracing:
a geometric method
for the antialiased ray
tracing of implicit
surfaces

John C. Hart

School of EECS, Washington State University,
Pullman, WA 99164-2752, USA
e-mail: hart@eecs.wsu.edu

Sphere tracing is a new technique for ren-
dering implicit surfaces that uses geomet-
ric distance. Sphere tracing marches along
the ray toward its first intersection in steps
guaranteed not to penetrate the implicit
surface. It is particularly adept at render-
ing pathological surfaces. Creased and
rough implicit surfaces are defined by
functions with discontinuous or undefined
derivatives. Sphere tracing requires only
a bound on the magnitude of the deriva-
tive, robustly avoiding problems where
the derivative jumps or vanishes. It is an
efficient direct visualization system for the
design and investigation of new implicit
models. Sphere tracing efficiently approx-
imates cone tracing, supporting symbolic-
prefiltered antialiasing. Signed distance
functions for a variety of primitives and
operations are derived.
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1 Introduction

Whereas a parametric surface is defined by a func-
tion that, given a tuple of parameters, indicates
a corresponding location in space, an implicit
surface is defined by a function that, given a point
in space, indicates whether the point is inside, on
or outside the surface.
The most commonly studied form of implicit sur-
faces is the algebraic surface, defined implicitly by
a polynomial function. For example, the unit
sphere is defined by the second-degree algebraic
implicit equation

x2#y2#z2!1"0 (1)

as the locus of coordinates of which the hypote-
nuse (squared) is unity.
Alternatively, using a distance metric, one can
represent the unit sphere geometrically by the
implicit equation

ExE!1"0 (2)

as the locus of points of unit distance from the
origin. Here x"(x, y, z) and E(x, y, z)E denotes the

Euclidean magnitude Jx2#y2#z2. The impli-
cit surface of Eq. 2 agrees with that of Eq. 1,
though their values differ at almost every other
point in R3. Specifically, Eq. 1 returns algebraic
distance (Rockwood and Owen 1987) whereas Eq.
2 returns geometric distance.
A comparison of geometric versus algebraic rep-
resentations of quadric surfaces led us to prefer
the geometric representation (Goldman 1983).
The parameters of a geometric representation are
independent of the coordinates, and are more
robust and intuitive than algebraic coefficients.
Distance-based functions like Eq. 2 provide
one method for representing implicit surfaces
geometrically.
Distance-based models can be found in a variety
of areas. Offset surfaces have become valuable in
computer-aided geometric design for their use of
distance to model the physical capabilities of ma-
chine cutting tools (Barnhill et al. 1992). Skeletal
models, which in computer graphics simulate ar-
ticulated figures such as hands and dinosaurs, are
equivalent to offset surfaces. Computer vision’s
medial-axis transform converts a given shape to
its skeletal representation (Ballard and Brown,
1982). Generalized cylinders, began as a geometric
representation in computer vision (Agin and
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Binford 1976), but have also matured into a stan-
dard modeling primitive in computer graphics
(Bloomenthal and Wyvill 1990) — special ray-
tracing algorithms were developed for their
rendering in (Wijk 1984; Bronsvoort and Klok
1985).

1.1 Previous work

Several methods exist for rendering implicit sur-
faces. Indirect methods polygonize the implicit
surface to a given tolerance, allowing the use of
existing polygon-rendering techniques and hard-
ware for interactive inspection (Wyvill et al. 1986;
Bloomenthal 1988). Although polygonization
transforms implicit surfaces into a representation
easily rendered and incorporated into graphics
systems, polygonizations are typically not gua-
ranteed and may not accurately detect discon-
nected or detailed sections of the implicit surface.
Production-rendering systems tend to polygonize
surfaces, resulting in large time and memory over-
heads to represent accurately an otherwise simple
implicit model.
In an effort to combine speed and accuracy, Sed-
erberg and Zundel (1989) developed a direct scan-
line method to render more accurately algebraic
implicit surfaces at interactive speeds.
Although slower, ray tracing provides a direct,
accurate, and elegant method for investigating
a much larger variety of implicit surfaces. Let

r(t)"r
0
#tr

d
(3)

parametrically define a ray anchored at r
0

in the
direction of the unit vector r

d
. Plugging the ray

equation r : RPR3 into the function f : R3PR
that defines the implicit surface produces the com-
posite real function F :RPR where F"f ° r so
that the solutions to

F(t)"0 (4)

correspond to ray intersections with the implicit
surface. Implicit surface ray-tracing algorithms
simply apply one of the multitude of numerical
root-finding methods to solve Eq. 4.
When f (x)"0 implicitly defines an algebraic sur-
face, Eq. 4 is a polynomial equation, and it can be
solved by DesCartes’ rule of signs (Hanrahan

1983), Sturm sequences (Wijk 1984), and Laguer-
re’s method (Wyvill and Trotman 1990).
Ideally, the root-finding procedure should only
need the ability to evaluate the function at any
point. However, one can always construct a patho-
logical function that will cause such a ‘‘blind’’
technique to miss one or more roots by inserting
an arbitrarily thin region between samples where
the function zips off to zero and back [a point
reiterated from Kalra and Barr (1989) and Von
Herzen et al (1990)]. Hence, any robust root fin-
der needs more information than simple function
evaluation.
The ‘‘hypertexture’’ system was a brute-force,
blind, ray-marching scheme, using only function
evaluation (Perlin and Hoffert 1989). This sup-
ported the design of implicit surfaces without re-
gard to the analytic properties of the defining
functions. Freed from such constraints, fractal
and hairy surfaces were modeled by implicit surfa-
ces with functions that contained procedural ele-
ments. The high frequencies produced by these
geometric textures required fine sampling along
the ray, resulting in a rendering speed so slow that
it necessitated parallel implementation.
Guaranted ray intersection requires extra in-
formation, which in most cases is produced by the
derivative of the function. Interval analysis finds
ray intersections by defining the function and its
derivative on intervals instead of single values
(Mitchell 1990).
The (LG) surfaces method imposed the Lipschitz
condition on f to create an efficient octree par-
titioning guaranteed to contain the implicit sur-
face, and imposed the Lipschitz condition on F@
to find ray intersections within each octree cell
(Kalra and Barr 1989).

1.2 Overview

Sphere tracing is a guaranteed technique for ray
tracing implicit surfaces. Unlike LG surfaces or
interval analysis, it does not require the ability to
evaluate the derivative of the function. Instead, it
requires only a bound on the magnitude of the
derivative — that the function be continuous and
Lipschitz. Thus, the derivative of the function
need not be continuous, nor even defined.
Sphere tracing benefits from this relaxation by
using the continuous but nondifferentiable

528



minimum and maximum operations for construc-
tive solid geometry (CSG) instead of the com-
monly used Roth diagrams (Roth 1982). Unlike
typical ray tracers, sphere tracing finds the first
ray intersection, the least-positive solution t to
Eq. 4. Typically, all ray intersections must be
determined for constructive solid geometry (Roth
1982). Sphere tracing overcomes this requirement
by using maximum and minimum operations to
model the entire-scene with a single, nondifferenti-
able function. This also supports the blending of
nondifferentiable CSG results.
Sphere tracing allows the efficient visualization of
a wider range of implicit surfaces than previously
possible, including creased, rough, and fractal sur-
faces. Like the slower, brute force, rendering ap-
proach of the hypertexture system (Perlin and
Hoffert 1989), sphere tracing frees the implicit
surface designer from many concerns regarding
the analytic behavior of the defining function,
fostering more diverse implicit formulations.
Moreover, a structure in mathematics is often
specified as the locus of points that satisfy a par-
ticular condition. Sphere tracing visualizes such
structures, regardless of smoothness, extent, and
connectedness, given only a bound on the rate of
the condition’s continuous changes over space.
Sphere tracing provides a direct and flexible vi-
sualization tool for the development of new impli-
cit models.
Sphere tracing also approximates cone tracing
(Amanatides 1984) to eliminate aliasing artifacts
and simulate soft shadows.

2 Sphere tracing

Sphere tracing capitalizes on functions that return
the distance to their implicit surfaces (Sect. 2.1) to
define a sequence of points (Sect. 2.2) that con-
verges linearly to the first ray-surface intersection
(Sect. 2.3). Section 2.4 incorporates CSG into
sphere tracing at the model level. Section 2.5 de-
scribes several enhancements to sphere tracing to
hasten convergence.

2.1 Distance surfaces

This section defines and discusses functions that
measure or bound the geometric distance to their

implicit surfaces. Such functions implicitly define
distance surfaces, as mentioned by Bloomenthal
and Shoemake (1991). The appendices derive
functions that measure or bound distances for
a variety primitives and operations.
Let the function f be a continuous mapping
f : RnPR that implicitly describes the set
ALRn as the locus of points

A"Mx : f (x)40N . (5)

The continuity of f implies that it returns zero on
the boundary LA, which forms the implicit surface
of f. If f is strictly negative over the interior As ,
then the multivalued function image f~1 (0) con-
cisely represents the implicit surface of f. Even if
f is continuous, it need not be strictly negative
over the interior. For example, the set A may be
validly represented by a continuous function that
returns zero for every point in As .

Definition 1. The point-to-set distance defines the
distance from a point x3R3 to a set ALR3 as the
distance from x to the closest point in A,

d(x, A)"min
y|A

Ex!yE . (6)

Given a set A, the point-to-set distance d (x,A)
implicitly defines A (from the outside) (Kaplansky
1977). Here, we are interested in the converse:
given an implicit function, what is the point-to-set
distance to its surface?

Definition 2. A function f : R3PR is a signed
distance bound of its implicit surface f ~1(0) if and
only if

D f (x) D4d(x, f ~1(0)) . (7)

If the equality holds for Eq. 7, then f is a signed
distance function.
Table 1 lists the primitives and operations for
which the appendices contain signed distance
functions and bounds.
The Lipschitz constant is a useful quantity for
deriving signed distance bounds to complex
shapes. Lipschitz constants have been used in
computer graphics for collision detection (Von
Herzen and Barr 1987) and rendering implicit
surfaces (Kalra and Barr 1989).
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Table 1. Directory of signed distance functions and bounds

Primitive/operation Signed distance
function

Signed distance
bound

Plane Appendix A
Sphere Appendix A
Ellipsoid (Hart 1994) Appendices A and E
Cylinder Appendix A
Cone Appendix A
Torus Appendix A
Superquadrics Appendix B
Generalized cylinder Appendix C
Union Section 2.4
Intersection Section 2.4
Complement Section 2.4
Soft objects Section D
Pseudonorm blend (Rockwood 1989) Appendix D
Isometry Appendix E
Uniform scale Appendix E
Linear transformation Appendix E
Taper Appendix E
Twist Appendix E
Hypertexture Appendix F
Fractals Appendix F

Definition 3. A function f : R3PR is ¸ipschitz
over a domain D if and only if for all x, y3D, there
is a positive, finite, constant j such that

D f (x)!f (y) D4j Ex!yE . (8)

The value j is called the ¸ipschitz constant. The
function Lip f returns the minimum Lipschitz
constant j satisfying Eq. 8.
A Lipschitz constant of the sum of two functions
results from the sum of the functions’ Lipschitz
constants. By the chain rule, a Lipschitz constant
of the composition of functions results from the
product of the component functions’ Lipschitz
constants.
The following theorem shows how to turn a Lip-
schitz function into a signed distance bound,
allowing sphere tracing to render any implicit
surface defined by a Lipschitz function.

Theorem 1. ¸et f be ¸ipschitz with ¸ipschitz con-
stant j. ¹hen the function f /j is a signed distance
bound of its implicit surface.

Proof. Given a point x, let y3 f~1 (0) be one of the
points such that

Ex!yE"d (x, f ~1(0)) . (9)

Then by Eq. 8 and f ( y)"0 it follows that

D f (x) D4jd(x, f ~1(0)) . (10)

Hence, j~1f (x) is a signed distance bound for any
Lipschitz function f. [Compare Eq. 8 of Kalra and
Barr (1989).] K

If j"Lip f, then an optimal signed distance
bound results.

2.2 Ray intersection

One intersects a ray r(t) with the implicit surface
defined by the signed distance bound f (x) by
finding its least positive root (the first root) of F(t).
This root is the limit point of the sequence defined
by the recurrence equation

t
i`1

"t
i
#F(t

i
) (11)

and the initial point t
0
"0. The sequence con-

verges if and only if the ray intersects the implicit
surface. This sequence forms the kernel of the
geometric, implicit surface-rendering algorithm in
Fig. 1.
The convergence test e is set to the desired pre-
cision. The maximum distance D corresponds to
the radius of a viewer-centered yonder clipping
sphere and is necessary to detect nonconvergent
sequences.
The absolute value of the signed distance function
can be considered the radius of a sphere guaran-
teed not to penetrate any of the implicit surface.
This sphere was called an unbounding sphere by
Hart et al. (1989) who used a distance bound to
define and visualize 3D deterministic fractals im-
plicitly because the implicit surface is contained in
the closed complement of this sphere. Unlike
a bounding volume that surrounds an object, an
unbounding volume surrounds an area of space
not containing the object. The name ‘‘sphere
tracing’’ arose from the property that ray intersec-
tions are determined by sequences of unbounding
spheres.
As did Ricci (1974), sphere tracing uses the min-
imum and maximum functions for CSG. These
operations crease the implicit surface locally, so
that the defining function remains continuous
in value, but not in derivative. Derivative
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¹he signed distance bound f, ray r(t) and maximum
ray traversal distance D are given.

Fig. 1. Pseudocode of the geometric implicit surface rendering
algorithm

discontinuity can cause problems with root fin-
ders, which must find all roots of the function and
resolve the CSG operation by using a Roth dia-
gram (Roth 1982). Sphere tracing operates inde-
pendently of the derivative, given its bound, and
need converge only to the first root, even for CSG
models.

2.3 Analysis

Root refinement methods, such as Newton’s
method, converge quadratically to simple roots
(where the ray penetrates the surface) and
linearly to multiple roots (where the ray grazes
the surface) (Gerald and Wheatley 1989). Root
isolation methods that divide and conquer,
such as LG surfaces (Kalra and Barr 1989) and
interval analysis (Mitchell 1990), converge lin-
early, since the widths of the intervals are reduced
by a factor of one-half at each iteration. Root
isolation methods are allowed to converge only in
the event of a multiple root; otherwise they pass
control to a faster root-refinement method the
moment they find a monotonic region straddling
the t-axis.

Theorem 2. Given a function F :RPR with the
¸ipschitz bound j5¸ip F and an initial point t

0
,

sphere tracing converges linearly to the smallest
root greater than t

0
.

The sphere-tracing sequence can be written as:

t
i`1

"g(t
i
)"t

i
#

DF(t
i
) D

j
. (12)

In this form, the similarities of Eq. 12 to Newton’s
method are more visible. Let r be the smallest root
greater than the initial point t

0
. Since F(r)"0,

then g(r)"r, and at any nonroot DF D/j is positive.
Hence Eq. 12 converges to the first root.
Without loss of generality, F is assumed to be
non-negative in the region of interest, which elim-
inates the need for the absolute value. The Taylor
expansion of F(t

i
) about the root r is:

g(t
i
)"g(r)#(t

i
!r)g@ (r)#

(t
i
!r)2
2

gA (q) (13)

for some q3[t
i
, r] and g@ (r)"1#F@ (y)/j. The

error term becomes:

e
i`1

"t
i`1

!r"g (t
i
)!g (r)

"g@(r)e
i
#higher-order terms . (14)

Since g@ (r) is constant in the iteration Eq. 12
converges linearly to y. K

Corollary 2.1. Sphere tracing converges quadrati-
cally if and only if the function is steepest at its first
root.

In the event that F@(r)"!j, the linear term of
the error of Eq. 13 drops out, leaving the quad-
ratic and higher-order terms. K

2.4 Constructive solid geometry (CSG)

Following Ricci (1974), the minimum and max-
imum operations on functions result in union and
intersection operations on their implicit surfaces.
In the following equations, let f

A
, f

B
be signed

distance functions of sets A and B respectively. If
f
A

or f
B

is a signed distance bound, then the
resulting CSG implicit function will be also be
a bound.
The distance to the union of A and B is the
distance to the closer of the two.

d(x, AXB)"min f
A
(x), f

B
(x) . (15)
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Similarly, the distance to a list of objects is the
smallest of the distances to each of the component
objects.
The distance to the complement of A takes ad-
vantage of the signed nature of the distance
function

d(x,R3CA)"!f
A
(x) . (16)

Although DeMorgan’s theorem defines an inter-
section as the complement of the union of com-
plements, the minimum operators used in the
union are not complemented properly. Instead,
the distance to the intersection is bound by the
distance to the farthest component.

Theorem 3. ¹he distance from a point x to the
intersection of two implicit surfaces A"f ~1

A
(0) and

B"f~1
B

(0) defined by signed distance bounds f
A
, f

Bis bounded by

d(x,AWB )5max f
A
(x), f

B
(x) . (17)

Proof. The theorem can be proved by parts, as
illustrated on a sample intersection in Fig. 3.

Case 1. x3AWB. Both f
A

and f
B

are negative,
and the larger of the two indicates the (negative)
distance to the closest edge of the intersection.

Case 2. x3A, xNB. The function f
A

is negative,
whereas f

B
is positive, hence the greater of the

two. The closest point on B to x may not be in the
intersection, but no point in the intersection can
be closer.

Case 3. xNA, x3B. This is symmetric with case 2.

Case 4. xNAXB. As before, the closest point in
the intersection AWB can be no closer than the
farther of the closest point in A and the closest
point in B. K

From its definition, set subtraction A!B may be
simulated as AW(R3CB), though it yields only
a signed distance bound due to the intersection
operator.
The union and intersection operators are demon-
strated in Fig. 9 in Sect. 4.2.

Fig. 2. A hit and a miss

Fig. 3. Sample points illustrate a bound on the distance
to the intersection between two sets

2.5 Enhancements

The following enhancements increase the efficien-
cy of sphere tracing by reducing unnecessary dis-
tance computations, which can be quite expensive
and even iterative in some cases. The enhance-
ments are evaluated and analyzed empirically in
Sect. 4.3.

2.5.1 Image coherence

An algorithm similar to sphere tracing has been
developed for rendering discrete volumetric data.
It uses the 3D distance transform (Zuiderveld et al.
1992). The distance transform takes a binary ‘‘fil-
led/unfilled’’ voxel array to a numerical voxel
array so that each voxel contains the distance to
the closest ‘‘filled’’ voxel under a given metric. We
have also extended the concept of Lipschitz con-
stants to volume rendering (Stander and Hart
1994), trading the distance transform for an octree
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of local Lipschitz constants as in Kalra and Barr
(1989), allowing distance-based, accelerated, vol-
ume rendering of arbitrary isovalued surfaces,
while eliminating the need to recompute the pre-
processed data structure for each change in the
threshold.
One enhancement by Zuiderveld et al. (1992)
keeps track of the smallest distance encoun-
tered by a ray that misses the object. Under
an orthogonal projection, this smallest
distance defines the radius of a disk of guaran-
teed empty pixels surrounding the sample
point. Under a perspective projection, the
minimum projected distance must be computed
(requiring ray-sphere intersection), and this en-
hancement becomes less efficient. Initial tests have
shown that this enhancement degrades perfor-
mance in the perspective case for typical implicit
surfaces.

2.5.2 Bounding volumes

Bounding volumes provide a useful mechanism
to cull processing of intricate geometries that
are irrelevant to the current task. Beyond their
typical benefit of avoiding the casting of rays that
miss an object, they also help sphere tracing avoid
distance computations for objects farther away
than others. The overhead of quick distance
checks by bounding volume is, in most cases,
a small price to pay for the benefit of avoiding
many expensive, but useless, distance computa-
tions.
First, the distances to each bounding volume in
a union or collection of objects is computed.
Then, in order of increasing bounding volume
distance, the distance to the contents of each
bounding volume is computed until a content’s
distance is less than the smallest bounding volume
distance. This distance is then the point-to-set
distance to the collection of objects. This process
is sketched in Fig. 4.
A Lagrange multiplier method for finding the
bouding parallelepiped of an implicit surface ap-
pears in Kay and Kajiya (1986). The signed dis-
tance bound has properties that might yield an
alternative algorithm for the bounding volume of
an implicit surface, but this topic is left for further
research.

Fig. 4. An efficient algorithm for finding the closest object of
a collection using bounding volumes

2.5.3 The triangle inequality

When computing the shortest distance between
a point and a collection of objects, one need
not compute the distance to an object if its dis-
tance evaluation from the previous iteration
minus the distance traversed along the ray since
the previous iteration exceeds the minimum dis-
tance measured in the current iteration. This tri-
angle inequality enhancement is implemented in
Fig. 5.

2.5.4 Octree partitioning

Eliminating empty space certainly aids render-
ing efficiency, but the major benefit of partition-
ing is that it allows the imposition of local
bounds on the Lipschitz constants yielding more
accurate signed distance bounds. Octree par-
titioning has been used in the polygonization
(Bloomenthal 1988) and ray tracing (Kalra and
Barr 1989) of implicit surfaces. Sphere tracing
reaps the same benefits from spatial partitioning
as did the root finding method of Kalra and Barr,
who used the Lipschitz constant to cull octree
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Fig. 5. Triangle inequality algorithm for avoiding unnecessary
distance computations

nodes guaranteed not to intersect the implicit
surface.
Ray intersection with an implicit surface defined
by a signed distance bound is penalized by the
section of the domain where the gradient magni-
tude is greatest. Chopping an object into the
union of smaller chunks allows each chunk to be
treated individually, and it is penalized only by
the largest gradient within its bounds. Since Kalra
and Barr’s partitioning algorithm requires only
a bound on the Lipschitz constant of the function,
the use of this octree in no way restricts the
domain of functions available for sphere tracing.
Octree partitioning further enhances sphere trac-
ing of unions and lists by optionally storing an
index to the object closest to the cell. An object is
closest to an octree cell if and only if it is the
closest object to every point in the cell. Under this
definition, some cells may not have a closest ob-

ject. By the triangle inequality, an object is closest
to a cell if the distance from the cell’s centroid to
the object, plus the distance from the centroid to
the cell corner, is still less than the distance from
the centroid to any other object.

2.5.5 Convexity

Knowing that an object is convex can make
sphere tracing more efficient by increasing the
step size along the ray.

Theorem 4. ¸et ALR3 be a convex set defined
implicitly by the signed distance function f. ¹hen,
given a unit vector �3R3, the line segment

Cx,
f (x)

!� · + f (x)
�D (18)

does not intersect A, except possibly at its second
end point.

Proof. The gradient of a signed distance function
+ f has the following properties on the com-
plement of a convex set R3CA: (1) it is continuous,
(2) its magnitude is one (the change in the function
equals the change in the distance), and (3) its
direction points directly away from the closest
point on the implicit surface. Hence, for any
x3R3CA, we know the closest point in A, and its
surface normal points toward x. Since A is convex,
it cannot penetrate the tangent plane at the closest
point in A.
The intersection of a ray anchored at x and direc-
tion � with the tangent plane normal to the vector
+ f (x) a distance of f (x) from x is given by the
second end point of Eq. 18. K

Corollary 4.1. If + f (x) · �50, then the ray anchor-
ed at x and direction � does not intersect the implicit
surface of f.

Theorem 4 allows sphere tracing to take larger
steps toward convex objects, and Corollary 4.1
allows sphere tracing to avoid computing the dis-
tance to convex objects it has stepped beyond.
The convexity enhancement likely causes sphere
tracing to converge quadratically because of its
similarity to Newton’s method, which also con-
verges quadratically.
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Bounding volumes are usually convex, and com-
bining these two techniques can further reduce the
computation of unnecessary distances.
Knowledge of convexity becomes a necessity for
rendering scenes with a horizon line. Consider
a ground plane and a ray parallel to it. Sphere
tracing will step along this ray at fixed intervals
looking for an intersection that never happens.
Corollary 4.1 avoids this situation, whereas The-
orem 4 hastens convergence of rays nearly parallel
to the ground plane.

3 Antialiasing

Tracing cones instead of rays results in an area-
sampling antialiasing method in Amanatides
(1984). Cone tracing computes the intersection of
cones with spheres, planes, and polygons to prefil-
ter an image symbolically, eliminating the aliasing
artifacts that result from point sampling. Sphere
tracing can detect and approximate cone intersec-
tions with any implicit surface defined by a signed
distance function. One must still implement the
details of the cone-tracing algorithm to determine
the shape of the cones as they bounce around
a scene, but may rely on unbounding spheres to
increase the efficiency of computing cone intersec-
tions.
At some point along a grazing ray, the sequence of
unbounding spheres shrinks, falling within the
bounds of the cone; then enlarges, escaping the
bounds of the cone. This poses the problem of
‘‘choosing a representative’’ (Amanatides 1984)
— a location to take a sample to approximate the
shading of the cone’s intersection with the surface.
A cover is a pixel-radius offset bounding an impli-
cit surface on the inside and outside such that
a ray-cover intersection indicates a cone-object
intersection (Thomas et al. 1989). Given an impli-
cit surface defined by the signed distance function
f (x), its outer cover is the global offset surface
implicitly defined by f (x)!r

p
, and its inner cover

is the global offset surface implicitly defined by
f (x)#r

p
, where r

p
is the radius of a pixel [one-

half of the diameter of a pixel (Hart and DeFanti
1991)]. In other words, the outer cover is the
surface f~1(r

p
), and the inner cover is the surface

f ~1(r
p
). Instead of sphere tracing the implicit sur-

face of f (x), the antialiasing algorithm sphere

traces the inner cover — the implicit surface of
f (x)#r

p
.

The development of covers proposes that the
most representative choice for silhouette anti-
aliasing would be the point along the section of
the ray closest to the surface. Hence, of the un-
bounding spheres inside the cone, the center of the
smallest sphere (with respect to pixel size) be-
comes the representative sample. Though this
sample is off the implicit surface, one assumes
a reasonable level of continuity in the gradient of
the distance function to define a usable surface
normal. The sequence along the ray of unbound-
ing spheres is related to a cone as shown in Fig. 6.
For smooth implicit surfaces, one may assume
local planarity. Hence the implicit surface is as-
sumed to cover the cross section of the cone with
a straight edge of the given distance from the
cone’s center. The amount of influence this shaded
point has, with respect to the points the ray inter-
sects further on, depends on the signed distance
function evaluated at the representative f (x) (the
radius of the closest unbounding sphere) to the
implicit surface. The fraction of coverage of a disk
of radius r

p
by an intersecting half-plane of signed

distance f (x) from its center is given by:

a"
1
2
!

f (x)Jr2
p
!f (x)2

nr2
p

!

1
n

arcsin
f (x)
r
p

(19)

and is derived by Thompson (1990).
Ray traversal proceeds in steps of f (x)#r

p
(which

may take it through the surface). The percentage
of coverage a represents the cone intersection of
the grazing ray. It is treated as an opacity; it is
accumulated and used to blend the shading of the
current representative x with the shading resulting
from further near misses and intersections. The
standard rules of image compositing (Porter and
Duff 1984) are used.
For intersection edges, one must keep track of all
signed distance functions having unbounding
spheres that fit within the bounds of the cone.
Upon ray-intersection approximation, the signed
distance functions of each of the intersecting sur-
faces provide the proportions for the proper com-
bination of their shading properties. The repre-
sentative for intersection is the last point of the
ray-traversal sequence, the point that satisfies the
convergence test.
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Fig. 6. Sphere tracing approximates a cone intersection. The ray intersects the original surface but misses its inner cover.
This cone intersection accounts for more than half of the pixel’s illumination

Often the signed distance function is too expen-
sive to compute efficiently, and a signed distance
bound is used. A bound may return unbounding
spheres with radii that prematurely shrink below
the radius of a pixel, resulting in incorrect cone
intersections. In this case, a separate distance ap-
proximation may be useful. For example, Pratt
(1987) and Taubin (1994) estimate the distance to
the implicit surface of f with the first-order ap-
proximation f / E+ f E. In general, this approxima-
tion is not necessarily a distance bound. Taubin’s
(1994) Lemma 1 asserts that this approximation
is asymptotic to geometric distance as one ap-
proaches the surface. Cone intersections can
hence be more accurately determined by this ap-
proximation than by the signed distance bound.
Cone tracing inhibits texture aliasing by filtering
the texture based on the radius of the cone at
intersection and extends directly to the sphere
tracing method.

4 Results

Sphere tracing simplifies the implementation of an
implicit surface ray tracer, and runs at speeds
comparable to other implicit surface-rendering
algorithms.

4.1 Implementation

Sphere tracing has been implemented in a render-
ing system called zeno. Inclusion of an implicit

surface into zeno requires the definition of two
functions: a signed distance function for ray inter-
section and a surface normal function for shading.
A new primitive or operation can be incorporated
into zeno with no more than a distance bound.
The negative part of the signed distance bound is
only necessary for some CSG and blending opera-
tions. It is not needed for the visualization of
functions that are zero-valued inside the implicit
surface. The surface normal function can be avoid-
ed by a general six-sample numerical gradient ap-
proximation of the distance bound gradient. Since
most of the time is spent on ray intersection, the
inefficient numerical gradient approximation has
a negligible impact on rendering performance.
The simplicity with which implicit surfaces are
incorporated in zeno makes it useful for visuali-
zation of mathematical tasks and investigation of
new implicit surfaces. For example, a homotopy
that removes a 720° twist from a ribbon without
moving either end formed the basis for the ani-
mated short ‘Air on the Dirac strings’ (Sandin et al.
1993), for which zeno rendered a segment. This
homotopy is based heavily on interpolated qua-
ternion rotations and was easily incorporated into
zeno as a domain transformation after a quick
search and analysis of the most extreme deforma-
tion in the homotopy (Hart et al. 1993).

4.2 Exhibition

The three tori in Fig. 7 are combined with the
superelliptic blend described in Appendix D.2.
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Fig. 7. Three blends of tori (left), blow-up (upper right), and work image (lower right)

Fig. 8. A logo for zeno

Fig. 9. Creases created by blended edges

Fig. 10. ‘‘Lava’’ (a) modeled as a sphere deformed by the noise function, ‘‘Muscle’’ (b) modeled with b"2 noise, and ‘‘Rock’’ (c)
modeled with b"1 noise

The tori are all of major radius one, and minor
radius one-tenth. The blue-green blend is quad-
ratic, extending along the tori a radius of 0.5 from
their intersection. The red-green blend also has
the radius 0.5, but is degree eight. The red-blue
blend is also degree eight, but has a radius of
only 0.2.
Sphere tracing rendered Fig. 7 (left) in 12:47 at
a resolution of only 256]256, using prefiltering
to avoid the severe aliasing that ordinarily
accompany such low sampling rates. Experi-
ments on the difference of execution using point
sampling and area sampling show that the in-
creased execution time due to area sampling is
negligible.

Although the superelliptic blend is implemented
in zeno as a signed distance bound, it returns an
underestimated distance of no less than 70% of
the actual distance, which adequately indicated
cone intersections as the enlargement demon-
strates in Fig. 7 (upper right).
The work image in Fig. 7 (lower right) shows that
sphere tracing concentrates on silhouette edges.
Blue areas converge after ten iterations; green,
around 50; and red, over 100.
Figure 8 demonstrates a generalized cylinder,
from Appendix C, that has a skeleton consisting
of a space curve modeled with 14 Bézier control
polygons. Sphere tracing can render this scene in
as little as 5:30 using bounding spheres to
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eliminate unnecessary distance computations.
The curved horizon is an artifact of the yonder
clipping sphere of radius 1000 used to terminate
ray stepping.
Figure 9 demonstrates the robustness of sphere
tracing on creased surfaces. Both images were
rendered with prefiltering at a resolution of
512]512, and in 16:48 for the cylinders, 12:36 for
the cube.
The creases were created as CSG unions and
intersections, defined implicitly by the continu-
ous, but nondifferentiable, minimum and max-
imum operations from Sect. 2.4. The resulting
edge was then merged into a third object with the
aid of the pseudonorm blend from Appendix D.2.
Such creased surfaces appear periodically in
a variety of shapes, particularly in the modeling of
biological forms.
Figure 10 illustrates the ‘‘noise’’ range deforma-
tion described in Appendix F. The left image uses
a single octave of noise, whereas the next two
use six octaves. Their amplitudes were scaled by
1/ f 2 and 1/ f, respectively, yielding a muscle
texture and a rocky surface. The three images
were each rendered at a resolution of 256]256 in
(from left to right) approximately 5 min, 30 min,
and 2 h. The great variation of distance estimates
prohibited prefiltering the results of the noise
function.

4.3 Analysis

Sphere tracing convergence is entirely linear,
whereas other general root finders, such as inter-
val analysis, have a linearly convergent root-
isolation phase, followed by a quadratically
convergent root-refinement stage. Work images,
such as Fig. 7 (lower right), show that ray intersec-
tion is most costly at silhouette edges. During the
sphere tracing of these edges, the distance to the
surface is only a fraction of the distance to the ray
intersection, which slows convergence. For other
methods like interval analysis, silhouettes are
double roots (which prevent root refinement), and
their neighborhoods consist of closely spaced
pairs of roots. Such root pairs are costly to separ-
ate with root-refinement methods that use mid-
point subdivision since the distance between the
two roots can be several orders of magnitude
smaller than the initial interval.

Table 2. Comparison of execution times for enhanced sphere
tracing of various scenes

Scene Execution
time (m:s)

Relative
time (%)

Enhancement

Single sphere 2:00 100 None
1:23 69 Convexity

Nine spheres/ 2:53 100 None
plane

1:42 59 Convexity
1:19 46 Triangle inequality
1:10 40 Both

Zeno logo 26:29 100 None
19:23 73 Triangle inequality
5:28 21 Bounding spheres

Lava 4:37 1 (Single noise)
Muscle 33:52 7.3 (1/ f 2 Noise)
Rock 2:06:56 27.5 (1/ f Noise)

The convexity enhancement hastened conver-
gence by 31% as shown in Table 2. With more
primitives, this same table shows that the triangle
inequality enhancement more than doubles the
convergence rate, and when combined with con-
vexity, it enhances ordinary sphere tracing by
60%.
Table 2 also compares various enhanced render-
ing times for the zeno logo. The fact that all 14
Bézier curves were nearly equidistant from the eye
prevented the triangle inequality from signifi-
cantly reducing unnecessary distance evaluations
until sphere tracing had traversed much of each
ray.
Figure 11 reveals the distribution of step sizes
used in sphere tracing a ball. This histogram
counted only the distance evaluations used to
intersect primary (eye) rays.
Unimproved sphere tracing is evenly distributed,
with a small hump in the middle. An octree re-
places the increased distance computation in this
humped area with octree parsing overhead (which
this histogram does not measure). Echoes of the
octree bounds cause the oscillations at the high
end of its spectrum, whereas the low end adheres
to the unenhanced performance. Experiments on
simple scenes failed to demonstrate any increased
performance from the octree enhancement, al-
though more complicated scenes are likely to ben-
efit from its use.
The convex histogram demonstrates the power of
this enhancement. Its slope on the left confirms
the expectation from Sect. 2.5.5 that it provides
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Fig. 11. Histogram of step sizes for sphere tracing a ball

Fig. 12. Halving step sizes doubles the convergence time

sphere tracing a faster order of convergence. The
right side of this histogram is significantly re-
duced, due to the cessation of stepping after mov-
ing beyond the sphere.
The spike in the unenhanced and convex graphs
indicates the distance from the eye to the ball,
which is the first step taken by every ray emanat-
ing from the eye point. One can remove these
spikes from the graph by measuring this distance
once and refering to it as the first step for rays
emanating from the eye point, and likewise for the
light sources. This ‘‘head start’’ barely improved
the performance in the experiments.

Similar histograms given by Zuiderveld et al.
(1992) measure performance logarithmically in
the number of steps, but linearly in step size. As
a result, their graphs are more logarithmically
shaped than Fig. 11.
The accuracy of the distance estimate is directly
proportional to the rate of convergence. Experi-
ments on a sphere show that half the distance
doubles the number of steps. The step-size histo-
grams in Fig. 12 reveals the effects of distance
underestimation.
The relationship between distance accuracy and
sphere-tracing performance suggests that in cer-
tain cases a slower signed distance function may
perform better than a fast distance underestimate.
For example, consider the distance to an ellipsoid
with major axes of radii 100, 100, and 1 modeled
as a nonuniform scale transformation of the unit
sphere. Appendix E yields a signed distance
bound that returns at best the distance to the
ellipsoid, and at worst 1% of the distance, in
closed form, whereas Hart (1994) yields a signed
distance function that returns the exact distance
at the expense of several Newton iterations. In this
case, the signed distance function would likely
result in better performance.
Finally, the Lipschitz constants of the noise func-
tions are 3 for single noise, 6 for 1/ f 2 noise, and 18
for 1/ f noise (six octaves). The timings in Table 2
corresponding to the images in Fig. 10 show that
the 1/ f 2-noise-rendering time was actually 7.3
times (instead of the expected value of twice) the
single noise time. The likely reason is that the 1/ f 2
noise invokes the noise function six times more
than the single noise function (yielding an ex-
pected value of 12 times). The 1/ f-noise-rendering
time was 27.5 times longer than that of single
noise (less than the expected 36 times), and 3.75
times longer than the 1/ f 2 noise (slightly larger
than the expected value of 3).

5 Conclusion

Sphere tracing provides a tool for investigating
a larger variety of implicit surfaces than pre-
viously possible.
With its enhancements and prefiltering, sphere
tracing becomes a competitive implicit surface
renderer of presentation quality. In particular,
the convexity enhancement greatly increases
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rendering speeds, and the triangle inequality is
quite effective for large assortments of objects.
Bounding volumes also increase the rendering
performance as expected. However, techniques
based on image coherence and space coherence
(octree) do not perform as well.
Whereas sphere tracing was significantly slower
than standard ray tracing on simple objects con-
sisting of quadrics and polygons, it excelled at
rendering the results of sophisticated geometric
modeling operations.
The geometric nature of sphere tracing adapts it
to symbolic prefiltering, supporting antialiasing at
a nominal overhead.
In lieu of direct experimental comparison, several
theoretical arguments show sphere tracing as
a viable alternative to interval analysis and LG
surfaces.

5.1 Further research

Sphere tracing demonstrates the utility of signed
distance functions in the task of rendering geo-
metric implicit surfaces. We expect that these
functions will similarly enhance other applica-
tions, particularly in the area of geometric pro-
cessing. As geometric distance becomes more im-
portant in computer-aided geometric design and
other areas of modeling, the demand for more
efficient geometric distance algorithms will
increase.
In retrospect, the use of the Euclidean distance
metric seems an arbitrary choice for sphere trac-
ing. The linear nature of the chessboard and
Manhatten metrics may result in more efficiently
computed distances and ray intersection. ‘‘Cube-
tracing’’ and ‘‘octahedron-tracing’’ algorithms are
left as further research.
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Appendix A.
Distance to natural quadrics and torus

These appendices derive signed distance func-
tions, bounds and Lipschitz constants, and
bounds for a variety of primitives and operations
in the hope that they will aid in the implementa-
tion of sphere tracing. They may also serve as
a tutorial in developing signed distance functions,
bounds and Lipschitz constants, and bounds for
other primitives and operations.
Distances to the standard solid modeling pri-
mitives are listed. The geometric rendering
algorithm is not as efficient as the standard
closed-form solutions. However, these distances
are useful when the primitives are used in higher-
order constructions such as blends and deforma-
tions.

Plane. The signed distance to a plane P with
a unit normal n intersecting the point rn is

d(x, P)"x · n!r . (20)

Sphere. A sphere is defined as the locus of points
a fixed distance from given point. The distance to
the unit sphere S about at the origin hence given
by:

d(x, S)"ExE!1 . (21)

Through domain transformations (Appendix E),
the radius and location of the sphere may be
changed. The sphere may even become an ellip-
soid, though this reformulates the signed distance
function into one requiring the solution to a sixth
degree polynomial (Hart 1994). Through alternate
distance metrics (Appendix B), the sphere can
become a superellipsoid. These techniques gener-
alize the rest of the basic primitives as well.

Cylinder. The distance to a unit-radius cylinder
centered about the z-axis is found by projecting
into the xy-plane and measuring the distance to
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Fig. 13. Geometry for the distance to a cone

the unit circle

d(x,Cyl)"E (x, y)E!1 . (22)

Note that, in Eq. 22, and throughout the rest of
the appendix, x"(x, y, z).

Cone. The distance to a cone centered at the
origin oriented along the z-axis is

d(x,Cone)"E(x, y)E cos h!Dz D sin h , (23)

where h is the angle of divergence from the z-axis.
The trigonometry behind its derivation is illus-
trated by Fig. 13.

¹orus. The torus is the product of two circles,
and its distance is evaluated as such

d(x,¹)"E(E (x, y)E!R, z)E!r (24)

for a torus of major radius R and minor radius
r, centered at the origin and spun about the
z-axis.

Appendix B.
Distance to superquadrics

Superquadrics (Barr 1981) result from the general-
ization of distance metrics. Distance to the basic
primitives all used the E · E operator. In two di-

mensions, this operator generalizes to the p-norm

E(x, y)Ep"( Dx Dp#Dy Dp)1@p . (25)

which, when p"2, becomes the familiar euclid-
ean metric whose circle is a round circle. The
Manhattan metric (p"1) has a diamond for its
circle. Taking the limit as pPR results in the
chessboard metric

E(x, y)E="max x, y , (26)

where a square forms its circle. The other inter-
vening values for p produce rounded variations
on these basic shapes, and setting 0(p(1 pro-
duces pinched versions. Generalized spheres, so-
called superellipsoids, are produced by a pq-norm
as

E(x, y, z)Epq"E(E (x, y)Ep, z)Eq . (27)

The natural quadrics now generalize to super-
quadrics, and tori likewise become supertori, and
their distances are measured in the appropriate
metric. One unifying metric space must be used
for the distances to be comparable. Hence, pq-
norm distances must be converted into euclidean
distances.
Let f (x) return a pq-norm distance to its implicit
surface. This distance defines the radius of an
unbounding superellipsoid. The radius of the
largest euclidean sphere r

e
inscribed within the

pq-norm superellipsoid of radius r
s

(in the pq-
norm metric) is given by:

r
e
"







r
sNKK A

J3
3

,
J3
3

,
J3
3 B KK

pq
if p or q(2

r
s

otherwise .
(28)

Appendix C.
Distance to offset surfaces

Given some closed skeleton geometry SLR3, the
global offset surface is defined geometrically by
the implicit equation

d(x, S)!r"0 . (29)
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We define local offsets parametrically, using the
normal of the skeleton geometry. Global offsets
are the more desirable representation (Hoffman
1989), and in particular avoid interior surfaces
that can cause problems in ray tracing and CSG
(Wijk 1984).
The offset of an algebraic implicit surface is alge-
braic, though of higher degree in general. Several
techniques have been developed to approximate
offset surfaces with lower-degree representations.
Treating offset surfaces geometrically overcomes
the problems of dealing with high-degree alge-
braic representations and the loss of precision of
low-degree approximations.
One useful skeletal model is the generalized cylin-
der, such as the fixed-radius global offset surface
of a Bézier curve. Define the space curve paramet-
rically as the image of the function p : RPR3.
Without loss of generality, assume the point from
which we want to find the distance to the space
curve is the origin.
Let p(u) define a cubic Bézier space curve. The
point on the space curve closest to a given point
x occurs either at one of the end points, or at point
p(u) on the space curve such that

(x!p(u)) · p
u
(u)"0 . (30)

Equation 30 can be converted into a degree-five
1D Bézier curve (Schneider 1990), and can be
solved efficiently using a technique described in
(Rockwood et al. 1989). Such a generalized cylin-
der is demonstrated in Fig. 8 in Sect. 4.2.

Appendix D.
Distance to blended objects

Blends smoothly join nearby objects and have
found applications in image synthesis and com-
puter-aided geometric design.

D.1 Soft metablobbies

Blinn (1982) uses a gaussian distribution function
to produce a blending function that has come to
be known as the ‘‘blobby’’ model. ‘‘Soft’’ objects
approximate gaussian distribution with a sixth
degree polynomial to avoid exponentiation and
localize the blends (Wyvill et al. 1986). ‘‘Meta-

balls’’ approximate gaussian distributions with
piecewise quadratics to avoid exponentiation and
iterative root finding (Nishimura et al. 1985).
Following (Wyvill et al. 1986), the following piece-
wise cubic in distance r

C
R
(r)"







2
r3
R3

!3
r2
R2

#1 if r(R ,

0 otherwise
(31)

approximates a gaussian distribution.
Reformulating this function to accommodate the
implicit surface definitions in this paper, Eq. 31
forms the basis for a soft implicit surface consist-
ing of n key points p

i
with radii R

i
, and threshold

¹, defined by the function

f (x)"¹!

n
+
i/1

C
Ri

(Ex!p
i
E) . (32)

Negative key points are incorporated into the
model by negating the value returned by C

Ri
( ).

Theorem 5. ¹he distance to the implicit blend
B defined by Eq. 32 is bounded by

d(x, B)5
2
3

f (x)
n
+
i/1

R
i
. (33)

Proof. Repeated differentiation of Eq. 31
produces

C@ (r)"6
r2
R3

!6
r

R2
(34)

CA (r)"12
r

R3
!

6
R2

. (35)

Solving CA (r)"0 yields the maximum slope,
which occurs at the midpoint r"R /2. Its Lip-
schitz constant is given by

LipC (r)"DC@ (R/2) D"
3

2R
. (36)

The Lipschitz constant of a sum is bounded by the
sum of the Lipschitz constants, which gives the
result just noted. K
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In practice, local Lipschitz bounds may be used
for tighter distance bounds by taking the first
summation in Eq. 33 over key points i with non-
zero contributions. Additional efficiency results
from the use of bounding volumes of radius
R

i
surrounding the key points p

i
, as detailed by

Wyvill and Trotman (1990).

D.2 Superelliptic blends

Rockwell and Owen’s (1987) pseudonorm blend
returns the p-norm distance to the blended union
of implicit surfaces of signed distance functions.
Hence, with the techniques from Appendix B,
sphere tracing can render pseudonorm-blended
surfaces, as demonstrated in Figs. 3 and 5 in
Sect. 4.2.
The pseudonorm blend creases the space sur-
rounding the blend (Rockwood and Owen 1987).
Such gradient discontinuities can be disastrous
for some root finders, but do not impact sphere
tracing.

Appendix E.
Distances to transformed objects

Implicit surfaces are transformed by applying the
inverse transformation to the space before ap-
plying the function. Let T (x) be a transformation
and let f (x) define the implicit surface. Then the
transformed implicit surface is defined as the im-
plicit surface of

f (T~1(x))"0 . (37)

The Lipschitz constant of the composition is no
greater than the product of the component Lip-
schitz constants. We are concerned with the Lip-
schitz constant of the transformation inverse,
which is not necessarily the inverse of the Lip-
schitz constant of the transformation.

Isometry. Isometries are transformations that
preserve distances. If I is an isometry, the distance
returned by f needs no adjustment.

d(x, I ° f~1(0))"d (I~1(x), f~1 (0)) . (38)

Isometries include rotations, translations, and
reflections.

ºniform scale. A uniform scale is a transforma-
tion S(x) of the form

S(x)"sx , (39)

where s is the scale factor. The inverse S~1 is
a scale by 1/s. Hence, the distance to a scaled
implicit surface is

d(x, S( f ~1(0)) )"sd(S~1(x), f ~1(0)) (40)

and the Lipschitz constant of the inverse scale is
1/s.

¸inear deformation. The distance to the linear im-
age of an implicit surface is found by determining
the Lipschitz constant of the linear trans-
formation’s inverse, which is also a linear
transformation.
The Lipschitz constant of an arbitrary linear
transformation is found by the power method,
which iteratively finds the largest eigenvalue of
a matrix (Gerald and Wheatley 1989).

¹aper. The taper deformation scales two axes by
a function r ( · ) of the third axis (Barr 1984). The
taper is defined as:

taper(x)"(r (z)x, r (z)y, z) , (41)

whereas its inverse differs only by using r~1( · )
instead of r ( · ). The Lipschitz constant of the in-
verse deformation is

Lip taper"min
z|R

r~1(z) . (42)

In other words, the Lipschitz constant of the in-
verse taper is the amount of its ‘‘tightest’’ tapering.

¹wist. The twisting deformation rotates two axes
by a linear function a( · ) of the third axis. Twisting
is defined as:

twist (x)"A
x cos a(z)!y sin a (z) ,
x sin a (z)#y cos a (z) ,

z B , (43)
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Fig. 14. Geometric calculation of the Lipschitz constant of
the bounded twist deformation

whereas its inverse differs only by using a~1( · )
instead of a( · ). Twisting is not Lipschitz on Rn,
since for any Lipschitz bound j one can find two
points Rn at a great distance from the twisting
axis that are transformed farther apart by a ratio
greater than j. Thus, twisting must be constrained
to a domain where it satisfies the Lipschitz cri-
terion. One such domain is the unit cylinder
oriented along the twisting axis. The Lipschitz
constant of the twist is computed from the worst-
case scenario within the bounds of the unit cylin-
der as illustrated in Fig. 14:

Lip twist"S4#A
n
a@B

2
. (44)

Appendix F.
Distance to hypertextures

The use of sophisticated noise functions has greatly
increased the power of procedural models for mak-
ing existing geometric representations more realis-
tic. The recent work has applied stochastic textures
directly to the geometry instead of altering the
shading (Lewis 1989; Perlin and Hoffert 1989).
The original ‘‘hypertexture’’ system formulated
implicit models for a variety of surface phe-
nomena, including hair and fire. This appendix
focuses on incorporating hypertexture’s model of
noise into sphere tracing, though the same tech-
niques can be used to adapt the other hypertex-
ture models as well.
‘‘Hypertexture’’ treats solid procedural noise as
a deformation, and it was designed for use with

implicit surfaces. Its original ray-tracing algo-
rithm stepped along the ray in fixed intervals.
Determining a distance bound on a ‘‘hypertex-
tured’’ shape allows sphere tracing to render its
result more efficiently.
Band-limited solid noise results from the smooth
interpolation of a lattice of random unit vectors.
Condensing (Perlin and Hoffert 1989), the noise
function is given by

noise(x, y, z)"
xzy`1
+

k/xzy

xyy`1
+

j/xyy

xxy`1
+

i/xxy
C

1
( Dx!i D )

]C
1
( Dy!j D )C

1
( Dz!k D)C(i, j, k)

· (x!i, y!j, z!k) , (45)

where C
R

is the cubic gaussian approximation
(Eq. 31) used for soft objects, and C is an array of
random unit vectors. From Theorem 5, we know
that LipC

1
"3/2. Two opposing vectors can be

neighbors in C, so LipC"2. Hence, their com-
position results in Lip noise"3.
Fractal noise is formed by summing scaled ver-
sions of the noise function

noiseb(x)"
n~1
+
i/0

noise(2ix)
2bi

(46)

over n octaves (Perlin and Hoffert 1989).
For b"1, the amplitude decreases proportion-
ately to the increase in frequency, so its Lipschitz
constant equals the sum of the individual noise
functions:

Lipnoiseb/1
"3n . (47)

Thus b"1 noise is not Lipschitz, but its band-
limited form for finite n is.
For b"2 noise, the amplitude decreases geomet-
rically as the frequency increases, resulting in

Lipnoiseb/2
"3 A2!

1
2n~1B46 . (48)

Hence, Brownian motion is Lipschitz (this can
also be derived from the definition of brownian
motion as the integral of white noise).
Sphere tracings of noise-textured spheres appear
in Fig. 10.
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