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1 Installation

The software requires a gcc compiler and makes use of the boost library (available at http://www.boost.

org/users/download/), which is distributed along with the software package under the Boost Software Li-

cense (https://www.boost.org/LICENSE_1_0.txt). Additionally, a programming software R [1] is required

for graphical visualization of the results.

1.1 Installing and setting up R

To install R, go to the website (https://cran.r-project.org) and download the right version (Linux, Mac

OS X or Windows) for installation. The latest version of R is version 3.4.3. After that, add the directory

where R is installed to the system Path environment variable by specifying the following:

For Windows users

Navigating through the following:

“My Computer > Control Panel > Systems > Advance system settings > Environment variable”

and click on edit to add "C:/Program Files/R/R-3.4.3/bin" manually. Or use command line to create/set

a variable permanently (as Administrator), use:

> setx PATH "C:/Program Files/R/R-3.4.3/bin/"

For Mac OS X/Linux users

Make sure that "usr/local/bin" is already added in Path, else type the following in the “Terminal”:

> PATH=$PATH:/usr/local/bin/

1.2 Installing iOmicsPASS

After downloading the zip folder for the software package from github (https://github.com/cssblab/

iOmicsPASS), uncompress the folder on your local directory. Then, type “make” in the directory to install

all the components of the software. Users can add the directory of iOmicsPASS to their PATH variable by

specifying:

For example, if the program is installed in "/Users/hiromi/Desktop/",

For BASH/ksh/sh shell users,

>PATH=$PATH:/Users/hiromi/Desktop/iOmicsPASS_v1.0/bin/

To make these changes permanent,

For BASH shell users,

>export PATH=$PATH:/Users/hiromi/Desktop/iOmicsPASS_v1.0/bin/ >> ~/.bash_profile

For ksh/sh shell users,

>export PATH=$PATH:/Users/hiromi/Desktop/iOmicsPASS_v1.0/bin/ >> ~/.profile

For Mac OS X/Linux users

Full installation of Xcode is required in Mac OS X users and all other instructions are the same as linux.

For Windows users

Executables for 64-bit Windows are included in the zip folder. Installation of Cygwin [2] is required (down-

load available at https://www.cygwin.com/) to run iOmicsPASS and after installation, ensure that the

directory is added to the system Path environment variable by navigating through the following:
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“My Computer > Control Panel > Systems > Advance system settings > Environment variable”

and click on edit to add "C:/cygwin64/bin" manually. Or use command line to create/set a variable per-

manently (as Administrator), use:

> setx PATH "C:/cygwin64/bin"

2 Introduction to iOmicsPASS

iOmicsPASS is a powerful bioinformatics tool, developed in C++ language, for network-based data integration

and predictive feature selection. The tool integrates multiple -omics datasets utilizing biological network

information and identifies important biological interactions in the network as signatures to distinguish be-

tween different sample groups (i.e. phenotypes). It is a supervised method where the classification of the

samples is known in the training data. The tool can be applied in clinical settings, to better understand

the biological mechanisms underlying the differences across groups of samples (e.g. when comparing disease

versus non-disease group) in studies with multiple related -omics data.

3 Workflow

Data Filtering Step

 

Missing Data
Missing data

No missing data

2. Subnetwork Discovery Module

Group A

For each molecular interaction in a sample group k, 
the centroid is shrunken towards the overall mean by the 
shrinkage parameter,       , borrowing information from other 

3. Pathway Enrichment Module
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related interactions involving the same molecules.

iOmicsPass Workflow
http://github.com/cssblab/iOmicsPASS

Network visualization
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• Multi-Omics Data Sets
  - DNA copy number data (optional)

• Biological Network Data:
  - Transcription factor regulatory network
  - Protein-protein interaction network

• Phenotypic Group Information

Input Data

  - mRNA expression data
  - Protein expression data

1. Calculation of 
interaction scores for
molecular interactions

Each interaction is represented
by one quantitative measure

with adaptation to a network setting
(counts of interactions, not molecules)

Analysis Results
• Predictive subnetworks

- First degree neighbor summary of individual molecules
  - Group-specific centroids for selected interactions*
  - Attribute table for edges (interactions)*

• Pathways enriched in subnetworks
- Statistical summary for over/under representation.

• Datasets created
 - Normalized dataset for each -omics platform

  - Interaction scores

*Input files for Cytoscape for visualization

- Sample classification probabilities in training data

Figure 1: Workflow of iOmicsPASS

Figure 1 above shows the overview of the workflow in iOmicsPASS. The tool first applies data filtering with

user-specified criteria on each -omics dataset to ensure that molecules with too many missing data points

are removed from the data. Next, if there are still missing data, the user can choose to use the K -nearest

neighbour (KNN) method to impute the data [3]. The multi-omics datasets are then integrated into a single

dataset over the user-provided biological network to form an edge-level feature dataset (nodes and edges

are used following the nomenclature of network biology). Next, a subnetwork discovery module, adapted
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from the Prediction Analysis of Microarray method by Tibshirani’s et al. [4], is carried out on the trans-

formed data, shrinking each group’s centroid towards the overall average centroid by using a soft-thresholding

method. K -fold cross-validation is used to optimize the shrinkage parameter, which minimizes the overall

misclassification error rate. Finally, a novel method for pathway-level scoring, in a network setting, is carried

out for the set of selected features from the previous steps.

Further details regarding the method can be found in Koh et al. [5]

3.1 Data Filtering Step

To filter out molecules with too many missing data points, each molecule should have non-missing measure-

ments in (1) at least x number of samples or (2) at least x/n samples with non-missing data in each sample

group, where x and n are integers and x≤n.

3.2 Data Imputation

To impute missing data, weighted K -nearest neighbors (KNNimpute) method proposed by Schwender et

al. [6] is used. For every molecule i with a missing value in sample j, the algorithm searches for K other

molecules most similar to the given molecule but with a value present in sample j. A weighted average of

the values for the K closest molecules in the same sample j is used as an estimate for the missing value,

with the weights proportional to the similarity of each of the K molecules and molecule i. The similarity is

determined by the Euclidean distance, or L2-norm.

Specifically, assuming LK is a set consisting of K molecules with the smallest Euclidean distances to molecule

i with a value present in sample j. The missing value xij is replaced by

xij =
∑
`∈LK

wi`x`j/
∑
`∈LK

wi`

where the weight wi` is the reciprocal of the Euclidean distance between feature i and feature `.

3.3 Integration of Multiple -Omics Datasets

To integrate multiple -omics datasets, we create an interaction score that measures the “co-variation” for

every pair of interacting molecules in the given biological network. When modelling the expression profiles

across samples at the DNA, mRNA and protein level, two types of networks are relevant for linking the

information from different molecular levels: protein-protein interaction (PPI) network and transcription fac-

tor (TF) regulatory network. The former is a network of physical binding between protein molecules, and

the latter is a network between protein molecules of TF genes and mRNA molecules of target genes. In the

latter network, DNA copy number can also be incorporated as a normalizing value for mRNA abundance,

since the ratio mRNA / DNA copy number can be considered as the “output” of gene transcription. Here we

form two types of edges, where we consider the case with DNA copy number and the case without separately.
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Each edge, ei,j,t for i=1,..., p, j=1,..., n and t=1 or 2, is defined as follows:

(1) when DNA copy number data is not available,

ei,j,1 = zprotA,j + zmrnaB ,j

ei,j,2 = zprotA,j + zprotB ,j

(2) when DNA copy number data is available,

ei,j,1 = zprotA,j + (zmrnaB ,j − zdnaB ,j)
ei,j,2 = zprotA,j + zprotB ,j

where z represents the standardized log-scale (base 2) measurement of each molecule in the different -omics

datasets, p denotes the total number of edges, n denotes the total number of samples, and t represent the

type of data, where t=1 denotes the TF edge and t=2 denotes the PPI edge. For t=1, gene A is the TF and

gene B is the target of A.

Here, mrnaB and dnaB are the mRNA expression and DNA copy number of gene B, respectively. It is

assumed to be a target of the transcription factor protein protA. Also, protA and protB are assumed to be

any two different interacting proteins.

These new values {e} are considered as co-variation between two or three related molecules because consis-

tently high or low values of the molecules involved in a biological interaction (PPI or TF regulation) suggests

increased or decreased chance of molecular interaction in a given biological sample.

Generalizing to other -omics datasets

The same data transformation approach can also be used to integrate other types of data such as mRNA

expression and DNA methylation data (e.g. DNA methylation array with probe sets located in various ge-

nomic regions). Similar to protein-mRNA integration, a gene-to-gene interaction network and a network of

methylation probes to their nearest gene(s) can be used for integration. It is commonly reported in literature

[7, 8, 9] that methylation probes are usually negatively correlated with the gene target’s expression values

if the methylation site is located in the upstream of transcription start site (TSS) of a gene, and are posi-

tively correlated if the site is located within a gene body. In this case, we multiply a signed constant (-1 or

1) to the standardized measurements and allow for positive and negative interactions, as directed by the user.

The edge data are calculated as follows:

ei,j,1 = zgeneA,j + sign(zmethylprobeB ,j) ∗ zmethylprobeB ,j .

The same logic can be applied for the integration of negative interactions for microRNAs and protein and

mRNA molecules of their target genes based on a target scan map of conserved sequences of miRNAs and

target genes.

3.4 Subnetwork Discovery Module

In this module, the integrated data is put into a shrunken-centroid algorithm that we modified from the

traditional PAM methodology to identify edges in a network that is predictive of the sample groups. This
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involves testing and training of data using cross-validations to build the best model that can be used to

predict group membership of samples. And by doing so, we also obtain the set of edges or biological

interactions in the overall network constructed, that best characterizes each of the sample groups that are

called signatures.

3.4.1 Modifications to PAM method for predictive analysis

Tibshirani’s et al. [4] developed a method for identifying important gene signatures across multiple subtypes

of cancers using gene expression microarray data, called Prediction of Microarray (PAM) which is a nearest

shrunken centroid method (NSC). The method computes a group centroid for each feature (gene) with a

soft-thresholding method, and the shrinkage parameter is optimized using cross-validation. However, the

PAM method was designed for a single -omic dataset and the method was shown to be biased towards

subgroups with larger sample sizes [10, 11]. As part of iOmicsPASS, we made changes to the PAM method

to account for the network-based data integration. The modifications are as follows:

(1) Computation of centroids for each feature (edge-level data)

The overall centroid for feature i, or interaction i, is weighted by sample group size and is calculated as:

x̄i =
1

K

K∑
k=1

x̄ik =
1

K

K∑
k=1

(
1

nk

∑
j∈Ck

xij

)

where Ck represents the set of indices of the nk samples in group k and K represents the number of sample

groups.

(2) Computation of test statistics for features

In PAM, dik is defined to be the t statistics for each gene i, comparing sample group k to the overall centroid:

dik =
x̄ik − x̄i

mk.(si + s0)

where mk =
√

1/nk + 1/n and si is the pooled within-class standard deviation of feature i and s0 is a

positive constant, the median value of si across all features.

Here, we add an additional term in the score to reward or penalize dik depending on the quantitative levels

of the “neighbor” edges that share common molecules. We define d∗ik as the new test statistics for each edge

i, comparing sample group k to the overall centroid:

d∗ik = dik +

(
ψik ∗

|Nei,1 |
∑
s∈Nei,1

dsk + |Nei,2 |
∑
r∈Nei,2

drk

|Nei |

)
where Nei represents the set of edges which are connected to at least one of the nodes of edge ei. Nei can be

further partitioned into two subsets, Nei,1 and Nei,2 , representing the set of TF and PPI edges, respectively.

Furthermore, we set

ψik =
2e5(pik−0.5)

1 + e5(pik−0.5)
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where

pik =
|
∑
j∈Nei

,i6=j sign(dik) = sign(djk)|
|Nei |

.

Here, ψik acts as a multiplicative factor based on the proportion of agreement, pk, between the edge and its

direct neighbor edges sharing at least one node of the edge i in sample group k.

Note. Since the set of neighbor edges sharing node(s) of a given edge is invariant across samples, eijt is

referred to as ei (ei1 for TF edges and ei2 for PPI edges) below.

(3) Group-specific thresholds for soft-thresholding

For each sample group k, a group-specific threshold ∆k is derived from the shrinkage parameter, ∆.

∆k =
∆

∆max
∗max
{i,k}

dik

where

∆max =
1

K

K∑
k=1

max
{i,k}

dik

∆ is defined to be over a grid of 30 equally-spaced values arranged in an increasing order from zero to some

constant (i.e. ∆ ∈ {0,∆1,∆2, ...,∆max}). Using a soft-thresholding method, each feature’s distance measure

dik is re-computed by reducing it incrementally by an absolute shrinkage amount and it will be set to zero

if it falls below zero:

d
′

ik = sign(d∗ik)(|d∗ik| −∆k)+

The optimal value for ∆ is chosen based on K -fold cross-validation, to yield a set of features, or subnetwork

signatures that can best classify samples to their respective groups.

3.4.2 Cross-validations

By default, a 10-fold cross-validation is used to estimate the shrinkage parameter for soft-thresholding. The

data is first split into 10 mutually exclusive parts where each part is used as test dataset and the rest of

the 9 parts are used as training datasets. The training dataset is used to build a discriminant model that

separates the sample groups based on a certain ∆ value to yield a sparse set of predictive features. Then

the model is used to predict the membership of the test samples and the mis-classification error is recorded.

This is repeated over a grid of increasing values for ∆ starting from 0 to a value large enough that all the

features in the model are reduced towards the group centroids (i.e d
′

ik values become zero) and this is known

as soft-thresholding method. The process is repeated for each of the 10 folds and the mis-classification error

recorded will be averaged to give the overall mis-classifcation error.

The test samples will be classified to the nearest shrunken centroid of each group. Suppose a test sample

with expression values x∗ = (x∗1, x
∗
2, ..., x

∗
p), the discrimminant score for class k is defined to be:

δk(x∗) =

p∑
i=1

(x∗i − x̄′ik)2

(si + s0)2
− 2log(πk)

7



where πk is the kth class prior probability and estimated using an equal prior πk = 1/K.

We then assign each of the test sample to the class with the smallest discriminant score, using the classification

rule: C(x∗) = ` where δ`(x
∗) = minkδk(x∗). Using the discriminant scores, we can then construct the

estimates of the class probabilities as follows:

p̂k(x∗) =
e−

1
2 δk(x

∗)∑K
`=1 e

− 1
2 δ`(x

∗)
.

3.5 Pathway Enrichment Module

From the previous step, a set of edges with non-zero centroids are obtained. These edges can be used to

perform enrichment of biological pathways in each of the subgroup. The edges are first separated into two

groups with positive and negative d
′

ik scores for each subgroup. Edges which have been shrunken towards

zero (i.e. d
′

ik = 0) are removed. Then, hypergeometric test will be applied to compute the probability of

over-representation in a particular pathway, separately for each subgroup.

Given a graph G = (V,E) where V is the set of all possible nodes (i.e. mRNA and Proteins available in

the data) and E is the set of all possible edges (i.e. TF and PPI interactions from network information) in

the graph. We can construct smaller subgraphs, Gp = (Vp, Ep) to represent every pathway where Vp (i.e.

Vp ⊂ V ) is the set of nodes representing all genes in pathway p and Ep (i.e. Ep ⊂ E) is the set of edges

that exist in the graph. Using the set of edges in the enrichment list for each sample group k, we create an

induced subgraph of graph Gp, Gk = (Vk, Ek), where Vk (i.e. Vk ⊆ Vp) is the set of nodes in the enrichment

list that represent all genes in pathway p, and Ek (i.e. Ek ⊆ Ep) is the set of edges in the enrichment list

that exist in the subgraph.

To find the probability of over-representation of edges in a particular pathway, we perform a hypergeometric

test. Let X be a random variable representing the number of edges in a graph and define the following:

X ∼ Hypergeometric(K,N, n)

Pr(overrepresentation) = Pr(X > x) = 1− Pr(X ≤ x)

where |Ek| = K is the number of edges in the enrichment list, |E| = N is the total number of possible TF

and PPI edges, and n is the number edges that can be constructed with the vertices representing genes that

belong to the pathway of interest.
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4 Structuring of Input Datasets

iOmicsPASS takes several types of input files and the following sections give an overview of the required

structure of the input datasets. All input files should be formatted in tab-delimited format. The labels in

the header do not matter but the ordering of the information in each column for the different input files

should be strictly adhered to the format as described below.

4.1 Molecular Data

The molecular data should be in the format of a p by n matrix, where the rows represent the p molecules

and the columns represent the samples. The first column in the data is the gene/protein identifier, followed

by quantitative values in each sample. The column headers for the samples should be unique and have to

correspond to the sample IDs provided by user in the sample group information.

Table 1: Example of a molecular dataset structure

Gene identifier Sample 1 Sample 2 . . . Sample n

gene1 1.032 1.423 · · · 0.894

gene2 2.355 0.983 · · · 1.188

gene3 0.783 1.216 · · · 0.730

gene4 2.892 1.822 · · · 0.741
...

...
...

. . .
...

genep 0.283 1.024 · · · 0.762

Note. The ordering of the samples does not matter and data will only be extracted from samples that have

a sample ID provided in the sample group information. The type of gene identifiers should be uniform across

the different -omics datasets. For example, if gene symbols are used in RNA-level data, it should also be

used in Protein-level data.

4.2 Sample Group Information

The sample group information should contain two columns. The first column is the sample identifiers/IDs

and the second column is the sample group information (class).

Table 2: Example of a Sample Information structure

Sample ID Classification

Sample 1 Class 1

Sample 2 Class 3

Sample 3 Class 2

Sample 4 Class 1
...

...

Sample n Class k

9



4.3 Network Data

Up to two types of network files can be supplied by the user in the current version. One of the network

files will be used to link features from the Protein-level input data to the RNA-level input data. The other

network file will be used to link features within the Protein-level input data.

In the TF network file, there should be two columns containing headers where each row shows the interac-

tion between two molecules: the molecule in the first column has a directed edge pointing or targeting the

corresponding molecule in the second column (see Table 3A).

In the PPI network file, there should be two columns containing headers where each row shows the interac-

tion between two features: the node in the first column has an undirected edge with the corresponding node

in the second column (see Table 3B).

For implementing both positive and negative interactions in a single network, a third column should be

included in the network file with values 1 or -1, to denote positive and negative interactions, respectively

(see Table 3C).

Table 3A: Example of a TF network file
structure

TF TF target

Proteina mRNA1

Proteina mRNA2

Proteinb mRNA3

Proteinb mRNA4

Proteinc mRNA5

...
...

Table 3B: Example of a PPI network file
structure

Protein A Protein B

Proteina Proteinb

Proteina Proteinc

Proteinb Proteind

Proteinc Proteind

Proteinc Proteine
...

...

Table 3C: Example of a network file with signed interactions

Gene MethylationProbe InteractionSign

genea methyprobe1 1

genea methyprobe2 −1

geneb methyprobe3 −1

geneb methyprobe4 1

genec methyprobe5 1
...

...
...
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4.4 Pathway Information

The pathway information file should have three columns containing headers. The first is the gene identifier,

the second column is the pathway identifier that the gene belongs to and the third column denotes the

pathway information (e.g. name of pathway).The type of gene identifier used should be consistent with that

used in the input data. For example, if gene symbols are used in the input for molecular datasets, then it

should also be used here in the pathway information.

Table 4: Example of a Pathway module file structure

Gene Symbol Pathway ID Pathway Function

SOX9 GO:0042981 regulation of apoptotic process

MAP3K8 GO:0042981 regulation of apoptotic process

ALX4 GO:0042981 regulation of apoptotic process

UBC GO:0042981 regulation of apoptotic process

BCL6 GO:0000902 cell morphogenesis

FRYL GO:0000902 cell morphogenesis

SOX6 GO:0000902 cell morphogenesis

...
...

...

5 Specification for Input Parameter file

The table below (Table 5) gives a short description of each input parameter offered in iOmicsPASS.

Table 5: Description of input parameters for iOmicsPASS

Parameter Label Variable Type Description

Input data files

DNA_FILE string Filename of DNA copy number dataset (optional).

RNA_FILE string Filename of RNA-level expression dataset.

PROT_FILE string Filename of Protein-level expression dataset.

PPI_NETWORK string Filename of Protein-Protein interaction network file.

TF_NETWORK string Filename of Transcription-factor regulatory network file.

MODULE_FILE string Filename of pathway information for enrichment.

SUBTYPE_FILE string Filename of group information.

Parameters for data manipulation and filtering step

LOG_TRANSFORM_DNA boolean

<true/false>

If true, the data will be treated as intensities (before log) and log (base

2) transformation will be carried out. If false, no log-transformation will

be carried out.

Continued on next page
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Table 5 – continued from previous page

Parameter Label Variable Type Description

LOG_TRANSFORM_RNA boolean

<true/false>

If true, the data will be treated as intensities (before log) and log (base

2) transformation will be carried out. If false, data will be assumed to

be log-transformed (default is true).

LOG_TRANSFORM_PROT boolean

<true/false>

If true, the data will be treated as intensities (before log) and log (base

2) transformation will be carried out. If false, data will be assumed to

be log-transformed (default is true).

ZTRANS_DNA boolean

<true/false>

Whether or not to perform standardization to the DNA-level data before

integration (default is true).

ZTRANS_RNA boolean

<true/false>

Whether or not to log-transform the RNA-level data before integration

(default is true).

ZTRANS_PROT boolean

<true/false>

Whether or not to log-transform the Protein-level data before integra-

tion (default is true).

MIN_OBS integer Minimum number of samples in each sample group with complete data

that is used in the analysis (default is 1).

MIN_PROP double [0-1] Minimum proportion of samples in each sample group with complete

data that is used in the analysis (default is 0.5).

KNN_IMPUTE boolean

<true/false>

Whether or not to perform K-nearest neighbor imputation. Should be

set to true if dataset has missing cells (default is true).

MAX_BLOCKSIZE integer Maximum number of samples used to infer the imputation in KNN (de-

fault is 1500).

Parameters for iOmicsPASS

ANALYSE_DNA boolean

<true/false>

Whether or not to include DNA in the integration analysis. If true, a

filename has to be provided in DNA_FILE.

INTERACT_SIGN boolean

<true/false>

Whether or not to account for different types of interactions in net-

work. If true, a third column with values 1 or -1 should be included in

TF_NETWORK (default is false).

CROSS_VALIDATION boolean

<true/false>

Whether or not to carry out cross-validation to select optimal threshold

cut-off. If true, the minimum threshold will be automatically selected

and used as a cut-off. If false, a threshold value should be provided in

MIN_THRES.

CV_FOLD integer Number for K in K-fold cross-validation (default is 10).

MIN_THRES double Threshold to be used as the final cut-off in scoring algorithm. If not

specified, this value will be automatically selected to be the threshold at

which the lowest misclassification error occurs from the cross-validations.

Specifications for subnetwork enrichment module

BACKGROUND_PROP double Minimum proportion of genes in the pathway that are also in the back-

ground list (default = 0.5).

MINBG_SIZE integer Minimum number of edges constructed from the set of genes in a given

pathway (default is 1).

MINSIG_SIZE integer Minimum number of selected edges from the network constructed in a

given pathway to be reported (default is 3).

Choice of threshold through cross-validation:

The tool, by default, will use the threshold that yields the smallest misclassification error to select features

if no threshold is specified. At times, this may not be the most desirable method. For instance, there are
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many thresholds with similar misclassification error rates, yet the numerically optimal threshold leads to

selection of too many features (i.e. there is an alternative threshold with far sparser and more interpretable

size of networks).

A separate R-code (PerformancePlot.R) is provided in the tool to assist visualization of the misclassification

error plot for the entire range of possible thresholds. In the plot, a line indicating one standard deviation

above the minimum misclassification error is drawn. Users can select a threshold that produces a more

sparse network which maintains the core constituents of predictive network.

More generally, the user can then make an informed decision as to where to choose the optimal threshold

where the trade-off between misclassification error rate and the number of selected features is balanced.

Then, users can rerun iOmicsPASS by turning the option CROSS_VALIDATION off and specifying the preferred

threshold in MIN_THRES.

6 Illustration of iOmicsPASS

To illustrate the use of iOmicsPASS, we utilize the breast cancer (BRCA) dataset from the Cancer Genome

Atlas (TCGA) [12]. The gene expression data was quantified using RNA sequencing in 1,098 tumor samples

collected from patients and quantification of proteins using iTRAQ was carried out on a subset of 105 breast

cancer patients by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [13]. Of those, 103 subjects

had subtype classification using mRNA-based PAM50 signature [14]. into 4 breast cancer subtypes: Basal-

like, Her2-enriched, Luminal A and Luminal B subtype. By performing this analysis, we aim to identify

subnetwork signatures of transcriptional regulation network and protein-protein interaction network which

are predictive of each breast cancer subtype.

To reduce computational time, we randomly selected 1000 transcription factor proteins and 3000 mRNAs

from the gene targets of the selected transcription factors. Then, a smaller subset of the TF and PPI net-

work was derived to make up the datasets in the example folders. Out of the 103 individuals with group

information, 24 were classified as Basal-like, 18 were Her2-enriched, 24 were Luminal A and 32 were Luminal

B subtype.

Then, iOmicsPASS was executed to integrate the proteomics, mRNA and CNV datasets using the input

parameters shown in Figure 2. Here, we performed log-transformation on the mRNA data as the values are

fragments per kilobase of transcript per million mapped reads (FPKM) and KNN imputation has to be set to

true as there are missing values in two of the datasets. We also require that for each gene/protein in the in-

put data should have at least 10 or 80% (which ever is larger) non-missing observations across the samples in

each sample group. For parameters in the enrichment module, we will require pathways with at least 50% of

the genes in the background list and report pathways with a size of 3 edges and have at least 1 enriched edge.

In the directory of the example folder, type the following command to run the tool:

> ../bin/iOmicsPASS <input_example>
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If running on Windows, users can use Command Prompt and go to the directory "Windows Binary" to

use the executable (iOmicsPASS.exe). Note that another input parameter file —input_windows, slightly

modified from input_example, was created as the directories of the input files changed since iOmicsPASS.exe

has to be executed within "Windows Binary" folder.

Then, type the following command to run the tool:

> iOmicsPASS.exe <input_windows>

Note: The lines in the input parameter file commented out by hash # symbol will not be read in. The

input parameter and the data files should be placed are in the same working directory. Otherwise, include

the full path to the files in the input parameter.

Data manipula�on 
and filtering

Specifica�ons for 
Enrichment module

Specifica�ons for 
iOmicsPASS

Input data files

Figure 2: Screen shot of input parameter
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7 Output from iOmicsPASS

Executing iOmicsPASS may take some time depending on the size of the input data (number of molecules)

and the density of the network data. The runtime is the longest when the network density is very high, i.e.

many interactions share common nodes (molecules). During the runtime, the progress of the software will

be printed on the screen. Figure 3 shows an example of a log file when executing the tool on an example

dataset.

The total runtime of iOmicsPASS on the example dataset was about 6 minutes. A total of 14,888 edges

with quantitative data were constructed and 6,228 features were selected across the four subtypes by the

cross-validation.

Notes: The number of features (edges) selected for each run may vary as the software uses a random number

generator to perform the K -fold cross-validation. However, the key constituents of the predictive subnet-

works should remain stable.

Running iOmicsPASS will yield three types of output files:

1) SubnetworkDiscovery results - scores and attributes of the selected features, classification probabili-

ties and network summary of nodes on the network.

2) Pathway enrichment - statistical summary of the enrichment in pathways of the selected features and

the list of all genes/proteins used in the enrichment.

3) Datasets created - standardized datasets and the network-level data.

7.1 Subnetwork Discovery results

Four files are generated to summarize the information in the overall network formed by the selected edges

predictive of each sample group and report the classification probabilities on the samples based on the set

of selected edges:

7.1.1 EdgesSelected minThres.txt

Edges included in this output are the predictive subnetwork signatures in at least one of the groups. This

file can be read into Cytoscape directly as a table of interactions for network visualization.

• Edge : Concatenated string of the two molecules involved in the interaction.

• NodeA : Molecule represented on the Node A, interacting with Node B.

• NodeB : Molecule represented on the Node B, interacting with Node A.

• InteractionType : Type of interaction: <tf> for the interaction score of the TF protein molecule in

Node A and the target mRNA molecule in Node B in the TF network; or <ppi> for the interaction

score of the protein molecule in Node A and the protein molecule in Node B in the PPI network.

• XXX dikNew : The test statistics of the edge for the sample group as a measure of the predictiveness.

A large absolute value of this score indicates that the edge is highly predictive of the sample group.
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Number of features selected 
using the op�mal threshold

Number of samples 
in each group

Total run-�me

Different thresholds were applied to 
each subtype in the shrinkage module

Number of genes carried 
forward in the analysis.

Number of interac�on edges formed 
from the network files

Missing Data Imputa�on

Reading in the Data

Subnetwork Discovery module

Pathway Enrichment Module

Number of samples common 
across datasets integrated

Number of nodes in the network

Overall misclassifica�on error rate

mRNA data contains FPKM values which needs to be log-transformed

Progress update on Kth fold of CV

Figure 3: Screen shot of executing iOmicsPASS on the example datasets, with annotations.
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• XXX sigEdge : Type of significance of the selected edge: <died> if the edge has a test statistics of

0; <ppi> if the test statistics is not zero and the type of interaction is PPI; <tf> if the test statistics

is not zero and the type of interaction is TF.

• XXX dir : The direction of the selected edge: <died> if the edge has a test statistics of 0; <up> if

the test statistics is positive; <down> if the test statistics is negative.

• XXX absdiknew : The absolute value of the test statistics of the edge for the sample group as a

measure of the predictiveness.

7.1.2 AttributesTable.txt

This is the attribute table for the nodes in the set of selected edges. This file can be used as an attribute

table in Cytoscape.

• Node : Identifiers used for nodes.

• Gene : Gene identifier provided by user.

• Type : Molecule type: <mrna> if the molecule is a mRNA; <prot> if the molecule is a protein.

• XXX surv : “Survival” or selection status of the edge: <died> if the edge has a test statistics of 0;

<mrna> if the test statistics is not zero and the molecule is a mRNA; <prot> if the test statistics is

not zero and the molecule is a protein.

7.1.3 Node Neighbors.txt

This file gives a summary of number of “direct neighbors” of each node in the integrated network constructed.

• Node : Identifiers used for nodes.

• Gene : The gene identifier provided by user.

• Type : Type of molecule: <mrna> if the molecule is a mRNA; <prot> if the molecule is a protein.

• Neighbor inData : A concatenated string of molecules that have an edge with the current molecule

(direct neighbors).

• NumNeigh inData : Number of nodes connected with the current molecule (by an edge).

7.1.4 SampleClass Probabilities.txt

This file gives the classification probabilities (calculated based on discriminant scores) of each sample to the

different sample groups based on the set of selected features obtained from cross-validation.

• Subject : Sample ID

• Prob XXX : Classification probability: Probability of the sample belonging to each of the sample

group.

• TrueClass : The sample group that the sample belongs to.

• PredictedClass : The sample group that the sample would be assigned to, given the highest clas-

sification probability. <tied> is reported if there are more than one highest classification probability

score.
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7.2 Pathway Enrichment

For each sample group, pathway enrichment is tested on the set of up-regulated and down-regulated subnet-

works, separately, and a statistical summary of the enrichment is reported. Here, the test of enrichment is

performed accounting for the fact that the data are network edges. For each pathway, a smaller network is

constructed based on the set of gene identifiers in the pathway and hypergeometric test is used to compute

the statistical significance of enrichment for the selected edges (up and down separately).

For example, in the TCGA BRCA dataset, there were 4 cancer subtypes (Basal-like, Her2-enriched, Luminal

A and Luminal B) specified, hence there is a total of 8 enrichment files generated based on the set of features

selected within each of the subtype.

e.g. Basal-like Enrichment up.txt

• Pathway : The pathway identifier provided by user in pathway module file.

• PathAnnotation : The annotation of the pathway provided by user in pathway module file.

• HypergeoPval : Hypergeometric P -value for functions in the up- and down-regulated edges.

• NumGene inPathway : The number of genes in the pathway.

• NumGenes inbg : The number of genes that are in the pathway and present in the input data, used

in the analyses (background list).

• PropPathway : The proportion of genes in the pathway that is represented in the background list.

• NumEdgesformed inbg : The number of edges formed from the set of genes/proteins in the pathway.

• Enriched Edgesize : The number of edges that are in the enrichment list that belong to the set of

edges constructed in the pathway

7.3 Datasets Reported by iOmicsPASS

For each of the molecular-level, a dataset will be generated after data-filtering, log-transformation (if re-

quired) and standardization (i.e. Ztransform XXX.txt). If imputation was required, the data will first

undergo filtering and log-transformation, followed by imputation where the output will also be generated

(i.e. imputedData XXX.txt), before standardization occurs.

8 Visualisation of Analysis Output

Along with the package, we provide a supplementary R-script in the folder Rcodes, to aid visualization for

evaluating the performance of the cross-validation. Users can use this plot to pick a threshold with good

trade-off between the mean misclassification error and number of features selected. Then, re-specify the

threshold (i.e. by entering the value in MIN_THRES) in the input parameter and run iOmicsPASS again,

without carrying out cross-validation (i.e. set CROSS_VALIDATION = false). This is useful especially when
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the optimal threshold picked out by the tool by default, results in too many features being selected.

After running iOmicsPASS, enter the following command in the same directory where the results are generated

(i.e. example/Windows Binary folder):

> R CMD BATCH ../Rcodes/PerformancePlot.R

8.1 CVplot Penalty.pdf
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Figure 4: Performance Plot of K -fold cross-validations

A plot similar to the figure above will be produced. The black colored line shows the overall misclassification

error rates and other colored lines show the group-specific misclassification error rates. We observed that,

as the threshold increases, the overall misclassification error rate decreases slightly before plateauing and

eventually rising to 1 as the number of features selected approaches 0. In this example, the threshold 2.115

is selected as the optimal threshold with the lowest error rate of 31.6%, which results in about 5,919 features

selected.

Note: The number of features that are selected in the actual data (i.e. 6,228 edges) is slightly different from

the number reported in the performance plot (i.e. 5,919 edges) as the latter is calculated using the mean of

the features selected from each of the training datasets in K -fold cross-validations.

A dotted-line is also shown on the plot to illustrate the range of thresholds that keep the mis-classification

error rates below one standard deviation (SD) from the minimum error. This enables the user to pick another

threshold that provides good trade-off between number of edges selected and the error rate. For example

in figure 4, thresholds ranging between 2.1 to 6.0 results in errors within one SD away from the minimum

error of 31.6%. At the current threshold that minimizes the error, the number of edges selected may be

still too large and to reduce this number, hence making the edges selected more specific, an alternative

threshold should be considered. One could pick a threshold of 4.0 instead and the number of edges selected

would be reduced to about 1,000 and at the same time, not increasing the error by too much and keeping it

controlled at about 32%. The user can then re-run iOmicsPASS without carrying out cross-validation (saving

computation time) and specifying a threshold in the input parameter file. One can also replace the names
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of the input files with the standardized versions (i.e. Ztransform XXX.txt) produced in the previous run

and turn off all options for standardization and log-transformation. (see Figure 5)

Re-specify threshold and turn o� 
option for cross-validation

Replace with imputed and standardized �les 
produced from previous run  

Turn o� option for imputation to 
reduce computation time

Turn o� options for standardization 
and log-transformation

Figure 5: Screen shot of input parameter file after respecifying threshold of 4.0.
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