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Abstract

Genes responsible for orchestrating developmental programs have in many cases been successfully identified using expression arrays by searching for differentially expressed transcripts over the course of development. However in genes with multiple isoforms, it is known that even tiling arrays cannot fully resolve transcripts and RACE or directed RT-PCR followups are required. Missing or incorrectly inferred transcripts may bias gene expression estimates. Moreover, the regulatory relationships among key factors cannot be accurately inferred without targeted experiments.

We describe a novel approach for transcriptome analysis based on RNA-Seq with which we are able to identify complete novel isoforms of genes and to accurately quantify abundances of transcripts. This allows us to move beyond the identification of differentially expressed genes towards a detailed understanding of the regulatory changes that drive expression dynamics. In particular, we are able to distinguish transcriptional regulatory changes from post-transcriptional changes during the course of a developmental program, even in the absence of overall changes in gene expression.

Our methods are implemented in an open source program called ``Cufflinks'' that is suitable for the analysis of hundreds of millions of short reads. Cufflinks requires a sequenced genome, but

does not rely on existing gene annotations. Cufflinks analysis of an RNA-Seq time course of C2C12 myoblasts undergoing differentiation to myotubes revealed thousands of novel transcripts, including hundreds of putative novel promoters and splice sites. It also identified hundreds of genes undergoing differential transcriptional and post-transcriptional regulation including many that are believed to be central to the regulation of myogenesis.  These results suggest that transcription in embryonic muscle development is regulated at the isoform-level through several strategies that may not often be visible at the level of gene expression.

Introduction
1. Muscle development is tightly controlled through transcriptional, post-transcriptional mechanisms.  

a. Differentiating myoblasts radically alter the program of their protein production as they fuse into contractile muscle tissue.

i. Mention actin, myosin production

b. Protein output is regulated through transcriptional and post-transcriptional mechanisms.

i. Transcription rates, controlled through the activity of an ensemble of transcription factors, some of which are well characterized in muscle.

ii. The proteins produced from individual primary transcripts depend on the abundances of distinct splice variants of each.

iii. Understanding the regulation of muscle development requires surveying both transcriptional (i.e. rate of primary transcription) and post-transcriptional (i.e. splicing) activity.
2. We developed new computational methods to measure transcript-level expression dynamics from high-throughput cDNA sequencing (RNA-Seq)

a.  Discover the transcriptome of an organism 

b. Measure transcript abundances of a cell or tissue under certain conditions

3. We hypothesized that our estimates would be sensitive enough to distinguish transcriptional and post-transcriptional regulatory effects on transcript abundances.

4. To test this hypothesis, we sequenced a culture of developing C2C12 cells, a model of skeletal muscle development, at four time points. 

Results
1. The skeletal myogenesis transcriptome in mouse.

a. RNA-Seq at four time points from C2C12 cells, which model the transition from myoblast to myocyte, the elongation of myocytes, and their fusion into myotubes

i. Fragments size selected to 200bp, paired-end sequencing (see supplemental figure for length distributions)

ii. Reads are both long and paired – the first such reported?
iii. Lots of reads – give fold increase over first generation RNA-Seq, and total gigabases of input data.

b. Mapped four time points with TopHat, without using annotation, to assess discovery in less well studied organisms.

i. Mapped to mouse build 37.1 + spike-in sequences

ii. Each time point mapped separately

iii. Junctions pooled and filtered

iv. All samples re-mapped to pooled set to maximize spliced alignment sensitivity in each sample

v. Note decrease in multiread fractions from Ali’s paper
c. Assemble by parsimony, quote Dilworth
d. Describe (in one sentence) disambiguation/phasing strategy, citing Speed and Burge. 

e. Comparison of the individual time point assemblies to annotated isoforms to assess assembly quality

i. We recovered a total of XX known isoforms, and YY new isoforms.  ZZ of the new ones were present in all four time points

ii. XX of the new isoforms were tiled by high-identity EST hits and xeno RNAs, suggesting that these are genuine, and that the annotation is incomplete.

iii. XX % percent of the reads are assigned to known isoforms
f. We’d still get a large fraction of the transcripts that we did, had we sequenced a lot less deeply. (nomagram)
g. Cataloged new promoters and validated them against TAF1 and RNA polymerase II ChIP-Seq peaks

i. Selected novel 5’ exons that did not fall within 200bp of an annotated exon, had >=  5.0 RPKM, were at least 50bp long, and had at least XX distinctly-offset spliced reads connecting them to the rest of the transcript

ii. TAF1/PolII validation – of XX candidate novel promoters, YY were validated by a proximal TAF1 peak 
2. Deconvolution of RNA-Seq read density reveals transcript expression dynamics

a. Each fragment was drawn from a single transcript, but it’s not clear from that alignment of the fragment to transcripts which one it might be.

b. We propose a statistical model parameterized by the abundances of a given set of transcript sequences and fragment alignments.  The likelihood function of this model is a function of these abundances.

c. The likelihood function has a unique maximum, and we find it through a numerical algorithm.
d. Simulated a similar RNA-Seq run to measure the accuracy of abundance calls in a controlled environment.

i. Flux simulator to generate reads, mapped with TopHat and assembled with Cufflinks using same parameters

ii. Fed alignments to Cufflinks’ estimation routines given a perfect transcriptome assembly
iii. *Assembly recaptured XX% of expressed transcripts as full-length matches, YY% as partial matches.

iv. *Correlation between both Cufflinks’ RPKMs on both full and partial matches and true RPKM is also very high. 

e. Many genes have relatively small gene-level RPKM changes, and yet feature substantial transcript-level changes (pick best example of this: RTN4?)

f. We requantitated all time points against only the annotated isoforms from the consensus, leaving out the new isoforms, and noted that forgoing discovery has a large impact on some transcript abundances
g. To measure the change between relative levels of groups of transcripts (i.e. those from a single TSS, gene), we use the Jensen-Shannon divergence, which has numerous nice properties (mention whatever we want here)

h. Myc story (transition from transcriptional to post-transcriptional regulation, as a means of explaining JS divergence)
i.  We noted that some genes and TSSs had transcripts with opposite or switch-like behavior, so we set out to measure how prevalent this overloading is.

3. Widespread regulatory overloading during skeletal myogenesis.

a. Grouped transcripts by TSS (primary transcript) and gene, tested for expression changes at gene, TSS, and isoform level

i. XX, YY, ZZ genes, TSS groups, and isoforms undergoing changes in at least one time point.

ii. Most extreme changes in Supplemental table XX.

iii. *GO enrichment for changing genes.

b. Distinguishing transcriptional and post-transcriptional regulation

i. XX genes were found to undergo differential splicing, and YY were found to undergo differential promoter use.  Of these, XX% and YY% corresponded to differential output of distinct coding segments.

c. Not only are genes undergoing dynamic transcriptional and post-transcriptional regulation, but the dynamics suggest that their functions may be overloaded.

i. Classified isoforms as nonincreasing, nondecreasing, or “saddle” (Venn diagram)

ii. Genes with isoforms from multiple classes show “regulatory overloading”
d. Fhl story (differential promoter preference, discovery required).  

i. Measuring abundance of the known isoform without including the new one yields a qualitatively different gene-level RPKM curve.  

ii. Performing the discovery reveals a novel TSS (backed up by TAF1) 

iii. This gene is undergoing TSS preference.

e. Eya3 story (differential splicing, key muscle regulator)

Discussion
1. We conclude that our computational method turns RNA-Seq into a high-throughput assay for detection of regulatory overloading.  This could be the basis of inferring transcriptional and post-transcriptional regulatory networks, constructed at the transcript, rather than the gene level.

Results Figures

1. Algorithm overview
a. Assembly

b. Estimation of abundances
2. Assembly quality, quantitation accuracy
a. Transfrag categorization w.r.t reference (cuffcompare)
b. Transfrag depth of coverage histogram
i. Truncate at < 0.1, >1000
c. Depth of sequencing nomogram
i. Counts of reference captured
d. Nanostring*
3. Differential expression, splicing, and promoter use

a. Gene-level fold change in RPKM vs. differential splicing (Napoleon plot)
b. Pie-chart panel explaining JS divergence and groupings
c. Expression plots of interesting muscle genes*
d. JS divergence vs. RPKM
4. Impact of transcript discovery

a. Inclusion/Exclusion of novel isoforms RPKM plot
b. Fhl3
i.  Isoform-level plot
ii. Fhl3 browser shot with new promoter, TAF1 and polII occupancy
Supplemental Figures and Tables
1. Overall analysis workflow
a. TopHat mapping overview figure (similar to original TopHat paper)
b. Consensus generation
2. Sequencing fragment length distribution plots (against spikes)
3. Sequencing and mapping statistics (#reads, #alignments, # multireads, # spliced reads,  # alignments included in consensus)
4. Consensus set statistics table 
a. # matched isoforms, # novel isoforms of known genes, # intergenic
b. # multi isoform genes, # multi-isoform TSS groups, average transcripts in each
5. Abundances of spike-in fragments: correlation against known concentrations
6. Simulations with perfect, ab initio assemblies
7. Top 25 differentially expressed genes
8. Top 25 differentially expressed isoforms
